1
|
Lach M, Rütten M, Beck T. Tunable crystalline assemblies using surface-engineered protein cages. Protein Sci 2024; 33:e5153. [PMID: 39167037 PMCID: PMC11337932 DOI: 10.1002/pro.5153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/04/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024]
Abstract
Assembly of nanoparticles into superlattices yields nanomaterials with novel properties. We have recently shown that engineered protein cages are excellent building blocks for the assembly of inorganic nanoparticles into highly structured hybrid materials, with unprecedented precision. In this study, we show that the protein matrix, composed of surface-charged protein cages, can be readily tuned to achieve a number of different crystalline assemblies. Simply by altering the assembly conditions, different types of crystalline structures were produced, without the need to further modify the cages. Future work can utilize these new protein scaffolds to create nanoparticle superlattices with various assembly geometries and thus tune the functionality of these hybrid materials.
Collapse
Affiliation(s)
- Marcel Lach
- Department of Chemistry, Institute of Physical ChemistryUniversity of HamburgHamburgGermany
| | - Michael Rütten
- Department of Chemistry, Institute of Physical ChemistryUniversity of HamburgHamburgGermany
| | - Tobias Beck
- Department of Chemistry, Institute of Physical ChemistryUniversity of HamburgHamburgGermany
- The Hamburg Centre for Ultrafast ImagingHamburgGermany
| |
Collapse
|
2
|
Hassaan MA, El-Nemr MA, Elkatory MR, Ragab S, Niculescu VC, El Nemr A. Principles of Photocatalysts and Their Different Applications: A Review. Top Curr Chem (Cham) 2023; 381:31. [PMID: 37906318 PMCID: PMC10618379 DOI: 10.1007/s41061-023-00444-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/11/2023] [Indexed: 11/02/2023]
Abstract
Human existence and societal growth are both dependent on the availability of clean and fresh water. Photocatalysis is a type of artificial photosynthesis that uses environmentally friendly, long-lasting materials to address energy and environmental issues. There is currently a considerable demand for low-cost, high-performance wastewater treatment equipment. By changing the structure, size, and characteristics of nanomaterials, the use of nanotechnology in the field of water filtration has evolved dramatically. Semiconductor-assisted photocatalysis has recently advanced to become among the most promising techniques in the fields of sustainable energy generation and ecological cleanup. It is environmentally beneficial, cost-effective, and strictly linked to the zero waste discharge principle used in industrial effluent treatment. Owing to the reduction or removal of created unwanted byproducts, the green synthesis of photoactive nanomaterial is more beneficial than chemical synthesis approaches. Furthermore, unlike chemical synthesis methods, the green synthesis method does not require the use of expensive, dangerous, or poisonous ingredients, making it a less costly, easy, and environmental method for photocatalyst synthesis. This work focuses on distinct greener synthesis techniques utilized for the production of new photocatalysts, including metals, metal doped-metal oxides, metal oxides, and plasmonic nanostructures, including the application of artificial intelligence and machine learning to the design and selection of an innovative photocatalyst in the context of energy and environmental challenges. A brief overview of the industrial and environmental applications of photocatalysts is also presented. Finally, an overview and recommendations for future research are given to create photocatalytic systems with greatly improved stability and efficiency.
Collapse
Affiliation(s)
- Mohamed A Hassaan
- Marine Pollution Department, Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, 21556, Alexandria, Egypt.
| | - Mohamed A El-Nemr
- Department of Chemical Engineering, Faculty of Engineering, Minia University, Minia, 61519, Egypt
| | - Marwa R Elkatory
- Advanced Technology and New Materials Research Institute, SRTA-City, New Borg El-Arab City, 21934, Alexandria, Egypt
| | - Safaa Ragab
- Marine Pollution Department, Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, 21556, Alexandria, Egypt
| | - Violeta-Carolina Niculescu
- National Research and Development Institute for Cryogenic and Isotopic Technologies-ICSI Rm. Valcea, 4th Uzinei Street, 240050, Valcea, Romania
| | - Ahmed El Nemr
- Marine Pollution Department, Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, 21556, Alexandria, Egypt.
| |
Collapse
|
3
|
Mirkin CA, Petrosko SH. Inspired Beyond Nature: Three Decades of Spherical Nucleic Acids and Colloidal Crystal Engineering with DNA. ACS NANO 2023; 17:16291-16307. [PMID: 37584399 DOI: 10.1021/acsnano.3c06564] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
The conception, synthesis, and invention of a nanostructure, now known as the spherical nucleic acid, or SNA, in 1996 marked the advent of a new field of chemistry. Over the past three decades, the SNA and its analogous anisotropic equivalents have provided an avenue for us to think about some of the most fundamental concepts in chemistry in new ways and led to technologies that are significantly impacting fields from medicine to materials science. A prime example is colloidal crystal engineering with DNA, the framework for using SNAs and related structures to synthesize programmable matter. Herein, we document the evolution of this framework, which was initially inspired by nature, and describe how it now allows researchers to chart paths to move beyond it, as programmable matter with real-world significance is envisioned and created.
Collapse
Affiliation(s)
- Chad A Mirkin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Sarah Hurst Petrosko
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
4
|
Borah R, Ag KR, Minja AC, Verbruggen SW. A Review on Self-Assembly of Colloidal Nanoparticles into Clusters, Patterns, and Films: Emerging Synthesis Techniques and Applications. SMALL METHODS 2023; 7:e2201536. [PMID: 36856157 DOI: 10.1002/smtd.202201536] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/25/2023] [Indexed: 06/09/2023]
Abstract
The colloidal synthesis of functional nanoparticles has gained tremendous scientific attention in the last decades. In parallel to these advancements, another rapidly growing area is the self-assembly or self-organization of these colloidal nanoparticles. First, the organization of nanoparticles into ordered structures is important for obtaining functional interfaces that extend or even amplify the intrinsic properties of the constituting nanoparticles at a larger scale. The synthesis of large-scale interfaces using complex or intricately designed nanostructures as building blocks, requires highly controllable self-assembly techniques down to the nanoscale. In certain cases, for example, when dealing with plasmonic nanoparticles, the assembly of the nanoparticles further enhances their properties by coupling phenomena. In other cases, the process of self-assembly itself is useful in the final application such as in sensing and drug delivery, amongst others. In view of the growing importance of this field, this review provides a comprehensive overview of the recent developments in the field of nanoparticle self-assembly and their applications. For clarity, the self-assembled nanostructures are classified into two broad categories: finite clusters/patterns, and infinite films. Different state-of-the-art techniques to obtain these nanostructures are discussed in detail, before discussing the applications where the self-assembly significantly enhances the performance of the process.
Collapse
Affiliation(s)
- Rituraj Borah
- Sustainable Energy, Air & Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
| | - Karthick Raj Ag
- Sustainable Energy, Air & Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
| | - Antony Charles Minja
- Sustainable Energy, Air & Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
| | - Sammy W Verbruggen
- Sustainable Energy, Air & Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
| |
Collapse
|
5
|
Michelson A, Minevich B, Emamy H, Huang X, Chu YS, Yan H, Gang O. Three-dimensional visualization of nanoparticle lattices and multimaterial frameworks. Science 2022; 376:203-207. [PMID: 35389786 DOI: 10.1126/science.abk0463] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Advances in nanoscale self-assembly have enabled the formation of complex nanoscale architectures. However, the development of self-assembly strategies toward bottom-up nanofabrication is impeded by challenges in revealing these structures volumetrically at the single-component level and with elemental sensitivity. Leveraging advances in nano-focused hard x-rays, DNA-programmable nanoparticle assembly, and nanoscale inorganic templating, we demonstrate nondestructive three-dimensional imaging of complexly organized nanoparticles and multimaterial frameworks. In a three-dimensional lattice with a size of 2 micrometers, we determined the positions of about 10,000 individual nanoparticles with 7-nanometer resolution, and identified arrangements of assembly motifs and a resulting multimaterial framework with elemental sensitivity. The real-space reconstruction permits direct three-dimensional imaging of lattices, which reveals their imperfections and interfaces and also clarifies the relationship between lattices and assembly motifs.
Collapse
Affiliation(s)
- Aaron Michelson
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, USA
| | - Brian Minevich
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
| | - Hamed Emamy
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
| | - Xiaojing Huang
- National Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Yong S Chu
- National Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Hanfei Yan
- National Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Oleg Gang
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, USA.,Department of Chemical Engineering, Columbia University, New York, NY 10027, USA.,Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
6
|
Samanta D, Zhou W, Ebrahimi SB, Petrosko SH, Mirkin CA. Programmable Matter: The Nanoparticle Atom and DNA Bond. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107875. [PMID: 34870875 DOI: 10.1002/adma.202107875] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/22/2021] [Indexed: 05/21/2023]
Abstract
Colloidal crystal engineering with DNA has led to significant advances in bottom-up materials synthesis and a new way of thinking about fundamental concepts in chemistry. Here, programmable atom equivalents (PAEs), comprised of nanoparticles (the "atoms") functionalized with DNA (the "bonding elements"), are assembled through DNA hybridization into crystalline lattices. Unlike atomic systems, the "atom" (e.g., the nanoparticle shape, size, and composition) and the "bond" (e.g., the DNA length and sequence) can be tuned independently, yielding designer materials with unique catalytic, optical, and biological properties. In this review, nearly three decades of work that have contributed to the evolution of this class of programmable matter is chronicled, starting from the earliest examples based on gold-core PAEs, and then delineating how advances in synthetic capabilities, DNA design, and fundamental understanding of PAE-PAE interactions have led to new classes of functional materials that, in several cases, have no natural equivalent.
Collapse
Affiliation(s)
- Devleena Samanta
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Wenjie Zhou
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Sasha B Ebrahimi
- Department of Chemical Engineering and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Sarah Hurst Petrosko
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Chad A Mirkin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
- Department of Chemical Engineering and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| |
Collapse
|
7
|
Petrosko SH, Coleman BD, Drout RJ, Schultz JD, Mirkin CA. Spherical Nucleic Acids: Integrating Nanotechnology Concepts into General Chemistry Curricula. JOURNAL OF CHEMICAL EDUCATION 2021; 98:3090-3099. [PMID: 35250048 PMCID: PMC8890693 DOI: 10.1021/acs.jchemed.1c00441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanoscience and technology research offer exciting avenues to modernize undergraduate-level General Chemistry curricula. In particular, spherical nucleic acid (SNA) nanoconjugates, which behave as "programmable atom equivalents" (PAEs) in the context of colloidal crystals, are one system that one can use to reinforce foundational concepts in chemistry including matter and atoms, the Periodic Table, Lewis dot structures and the octet rule, valency and valence-shell electron-pair repulsion (VSEPR) theory, and Pauling's rules, ultimately leading to enriching discussions centered on materials chemistry and biochemistry with key implications in medicine, optics, catalysis, and other areas. These lessons connect historical and modern concepts in chemistry, relate course content to current professional and popular science topics, inspire critical and creative thinking, and spur some students to continue their science, technology, engineering, and mathematics (STEM) education and attain careers in STEM fields. Ultimately, and perhaps most importantly, these lessons may expand the pool of young students interested in chemistry by making connections to a broader group of contemporary concepts and technologies that impact their lives and enhance their view of the field. Herein, a way of teaching aspects of General Chemistry in the context of modern nanoscience concepts is introduced to instructors and curricula developers at research institutions, primarily undergraduate institutions, and community colleges worldwide.
Collapse
Affiliation(s)
- Sarah Hurst Petrosko
- Department of Chemistry and International Institute for Nanotechnology, Evanston, Illinois 60208, United States
| | - Benjamin D Coleman
- Department of Chemistry and International Institute for Nanotechnology, Evanston, Illinois 60208, United States
| | - Riki J Drout
- Department of Chemistry and International Institute for Nanotechnology, Evanston, Illinois 60208, United States
| | - Jonathan D Schultz
- Department of Chemistry and International Institute for Nanotechnology, Evanston, Illinois 60208, United States
| | - Chad A Mirkin
- Department of Chemistry and International Institute for Nanotechnology, Evanston, Illinois 60208, United States
| |
Collapse
|
8
|
Du M, Zhou K, Yu R, Zhai Y, Chen G, Wang Q. Noncovalent Self-Assembly of Protein Crystals with Tunable Structures. NANO LETTERS 2021; 21:1749-1757. [PMID: 33556245 DOI: 10.1021/acs.nanolett.0c04587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Engineering noncovalent interactions for assembling nonspherical proteins into supramolecular architectures with tunable morphologies and dynamics is challenging due to the structural heterogeneity and complexity of protein surfaces. Herein, we employed an anisotropic building block l-rhamnulose-1-phosphate aldolase (RhuA) to control supramolecular polymorphism in highly ordered protein assemblies by introducing histidine residues. Histidine-based π-π stacking interactions enabled thermodynamically controlled self-organization of RhuA to form three-dimensional (3D) nanoribbons and crystals. Self-assembly of different 3D crystal phases was kinetically modulated by the strong metal ion-histidine chelation, and double-helical protein superstructures were formed by engineering increased histidine interactions at the RhuA binding surface. Their structural properties and dynamics were determined via fluorescence microscopy, transmission electron microscopy, atomic force microscopy, and small-angle X-ray scattering. This work is aimed at expanding the toolbox for the programming of tunable, highly ordered, protein superstructures and increasing the understanding of the mechanisms of protein interfacial interactions.
Collapse
Affiliation(s)
- Mingming Du
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Kun Zhou
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Runze Yu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yufeng Zhai
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Gang Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qiangbin Wang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
9
|
Kim HJ, Wang W, Mallapragada SK, Vaknin D. The Effects of Temperature on the Assembly of Gold Nanoparticle by Interpolymer Complexation. J Phys Chem Lett 2021; 12:1461-1467. [PMID: 33528263 DOI: 10.1021/acs.jpclett.0c03749] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Using synchrotron-based small-angle X-ray scattering techniques, we demonstrate that poly(ethylene glycol)-functionalized gold nanoparticles (PEG-AuNPs) are assembled into close-packed structures that include short-range order with face-centered cubic structure, where crystalline qualities are varied by controlling the electrolyte concentration, pH, and temperature of the suspensions. We show that interpolymer complexation with poly(acrylic acid) (PAA) is induced by lowering the pH level of the PEG-AuNPs suspensions, and furthermore, increasing the temperature of the suspension strengthens interparticle attraction, leading to improved supercrystal structures. Our results indicate that this strategy creates robust nanoparticle superlattices with high thermal stability. The effects of PAA and PEG chain lengths on the assemblies are also investigated, and their optimal conditions for creating improved superlattices are discussed.
Collapse
Affiliation(s)
- Hyeong Jin Kim
- Ames Laboratory and Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Wenjie Wang
- Division of Materials Sciences and Engineering, Ames Laboratory, U.S. DOE, Ames, Iowa 50011, United States
| | - Surya K Mallapragada
- Ames Laboratory and Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - David Vaknin
- Ames Laboratory and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
10
|
Dey J, Lee SJ, Kim J, Lim SH, Ha JM, Lee MJ, Choi SM. Spontaneous Formation of Highly Stable Nanoparticle Supercrystals Driven by a Covalent Bonding Interaction. NANO LETTERS 2021; 21:258-264. [PMID: 33372784 DOI: 10.1021/acs.nanolett.0c03616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanoparticle supercrystals (NPSCs) are of great interest as materials with emergent properties. Different types of intermolecular forces, such as van der Waals interaction and hydrogen bonding, are present in the NPSCs fabricated to date. However, the limited structural stability of such NPSCs that results from the weakness of these intermolecular forces is a challenge. Here, we report a spontaneous formation of NPSCs driven by covalent bonding interactions, a type of intramolecular force much stronger than the above-mentioned intermolecular forces. A model solution-phase anhydride reaction is used to form covalent bonds between molecules grafted on the surface of gold nanoparticles, resulting in three-dimensional NPSCs. The NPSCs are very stable in different solvents, in dried conditions, and at temperatures as high as 160 °C. In addition to this, the large library of covalent-bond-forming reactions available and the low cost of reactants make the covalent bonding approach highly versatile and economical.
Collapse
Affiliation(s)
- Jahar Dey
- Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Sang-Jo Lee
- Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jiwhan Kim
- Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Sung-Hwan Lim
- Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jae-Min Ha
- Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Min-Jae Lee
- Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Sung-Min Choi
- Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
11
|
Kim S, Zheng CY, Schatz GC, Aydin K, Kim KH, Mirkin CA. Mie-Resonant Three-Dimensional Metacrystals. NANO LETTERS 2020; 20:8096-8101. [PMID: 33054221 DOI: 10.1021/acs.nanolett.0c03089] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Optical metamaterials, engineered to exhibit electromagnetic properties not found in natural materials, may enable new light-based applications including cloaking and optical computing. While there have been significant advances in the fabrication of two-dimensional metasurfaces, planar structures create nontrivial angular and polarization sensitivities, making omnidirectional operation impossible. Although three-dimensional (3D) metamaterials have been proposed, their fabrication remains challenging. Here, we use colloidal crystal engineering with DNA to prepare isotropic 3D metacrystals from Au nanocubes. We show that such structures can exhibit refractive indices as large as ∼8 in the mid-infrared, far greater than that of common high-index dielectrics. Additionally, we report the first observation of multipolar Mie resonances in metacrystals with well-formed habits, occurring in the mid-infrared for submicrometer metacrystals, which we measured using synchrotron infrared microspectroscopy. Finally, we predict that arrays of metacrystals could exhibit negative refraction. The results present a promising platform for engineering devices with unnatural optical properties.
Collapse
Affiliation(s)
| | | | | | | | - Kyoung-Ho Kim
- Department of Physics, Chungbuk National University, Cheongju 28644, Republic of Korea
| | | |
Collapse
|
12
|
Hadrup N, Aimonen K, Ilves M, Lindberg H, Atluri R, Sahlgren NM, Jacobsen NR, Barfod KK, Berthing T, Lawlor A, Norppa H, Wolff H, Jensen KA, Hougaard KS, Alenius H, Catalan J, Vogel U. Pulmonary toxicity of synthetic amorphous silica - effects of porosity and copper oxide doping. Nanotoxicology 2020; 15:96-113. [PMID: 33176111 DOI: 10.1080/17435390.2020.1842932] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Materials can be modified for improved functionality. Our aim was to test whether pulmonary toxicity of silica nanomaterials is increased by the introduction of: a) porosity; and b) surface doping with CuO; and whether c) these modifications act synergistically. Mice were exposed by intratracheal instillation and for some doses also oropharyngeal aspiration to: 1) solid silica 100 nm; 2) porous silica 100 nm; 3) porous silica 100 nm with CuO doping; 4) solid silica 300 nm; 5) porous silica 300 nm; 6) solid silica 300 nm with CuO doping; 7) porous silica 300 nm with CuO doping; 8) CuO nanoparticles 9.8 nm; or 9) carbon black Printex 90 as benchmark. Based on a pilot study, dose levels were between 0.5 and 162 µg/mouse (0.2 and 8.1 mg/kg bw). Endpoints included pulmonary inflammation (neutrophil numbers in bronchoalveolar fluid), acute phase response, histopathology, and genotoxicity assessed by the comet assay, micronucleus test, and the gamma-H2AX assay. The porous silica materials induced greater pulmonary inflammation than their solid counterparts. A similar pattern was seen for acute phase response induction and histologic changes. This could be explained by a higher specific surface area per mass unit for the most toxic particles. CuO doping further increased the acute phase response normalized according to the deposited surface area. We identified no consistent evidence of synergism between surface area and CuO doping. In conclusion, porosity and CuO doping each increased the toxicity of silica nanomaterials and there was no indication of synergy when the modifications co-occurred.
Collapse
Affiliation(s)
- Niels Hadrup
- National Research Centre for the Working Environment (NFA), Copenhagen, Denmark
| | - Kukka Aimonen
- Finnish Institute of Occupational Health (FIOH), Helsinki, Finland
| | - Marit Ilves
- Human Microbiome Research Program, University of Helsinki, Helsinki, Finland
| | - Hanna Lindberg
- Finnish Institute of Occupational Health (FIOH), Helsinki, Finland
| | - Rambabu Atluri
- National Research Centre for the Working Environment (NFA), Copenhagen, Denmark
| | - Nicklas M Sahlgren
- National Research Centre for the Working Environment (NFA), Copenhagen, Denmark
| | - Nicklas R Jacobsen
- National Research Centre for the Working Environment (NFA), Copenhagen, Denmark
| | - Kenneth K Barfod
- National Research Centre for the Working Environment (NFA), Copenhagen, Denmark.,Department of Veterinary and Animal Sciences. Experimental Animal Models, University of Copenhagen, Denmark
| | - Trine Berthing
- National Research Centre for the Working Environment (NFA), Copenhagen, Denmark
| | - Alan Lawlor
- CEH Lancaster, Lancaster Environment Centre, Lancaster, UK
| | - Hannu Norppa
- Finnish Institute of Occupational Health (FIOH), Helsinki, Finland
| | - Henrik Wolff
- Finnish Institute of Occupational Health (FIOH), Helsinki, Finland
| | - Keld A Jensen
- National Research Centre for the Working Environment (NFA), Copenhagen, Denmark
| | - Karin S Hougaard
- National Research Centre for the Working Environment (NFA), Copenhagen, Denmark.,Institute of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Harri Alenius
- Human Microbiome Research Program, University of Helsinki, Helsinki, Finland.,Institute of environmental medicine (IMM), Karolinska Institutet, Stockholm, Sweden
| | - Julia Catalan
- Finnish Institute of Occupational Health (FIOH), Helsinki, Finland.,Department of Anatomy, Embryology and Genetics, University of Zaragoza, Zaragoza, Spain
| | - Ulla Vogel
- National Research Centre for the Working Environment (NFA), Copenhagen, Denmark.,DTU Health Tech, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
13
|
Bettini S, Valli L, Giancane G. Applications of Photoinduced Phenomena in Supramolecularly Arranged Phthalocyanine Derivatives: A Perspective. Molecules 2020; 25:molecules25163742. [PMID: 32824375 PMCID: PMC7463501 DOI: 10.3390/molecules25163742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 01/10/2023] Open
Abstract
This review focuses on the description of several examples of supramolecular assemblies of phthalocyanine derivatives differently functionalized and interfaced with diverse kinds of chemical species for photo-induced phenomena applications. In fact, the role of different substituents was investigated in order to tune peculiar aggregates formation as well as, with the same aim, the possibility to interface these derivatives with other molecular species, as electron donor and acceptor, carbon allotropes, cyclodextrins, protein cages, drugs. Phthalocyanine photo-physical features are indeed really interesting and appealing but need to be preserved and optimized. Here, we highlight that the supramolecular approach is a versatile method to build up very complex and functional architectures. Further, the possibility to minimize the organization energy and to facilitate the spontaneous assembly of the molecules, in numerous examples, has been demonstrated to be more useful and performing than the covalent approach.
Collapse
Affiliation(s)
- Simona Bettini
- Department of Engineering of Innovation, University of Salento, Via per Monteroni, 73100 Lecce, Italy;
- National Interuniversity Consortium for Materials Science and Technology, INSTM, Via Giuseppe Giusti, 9, 50121 Florence, Italy;
| | - Ludovico Valli
- National Interuniversity Consortium for Materials Science and Technology, INSTM, Via Giuseppe Giusti, 9, 50121 Florence, Italy;
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via per Monteroni, 73100 Lecce, Italy
- Correspondence:
| | - Gabriele Giancane
- National Interuniversity Consortium for Materials Science and Technology, INSTM, Via Giuseppe Giusti, 9, 50121 Florence, Italy;
- Department of Cultural Heritage, University of Salento, Via D. Birago, 64, 73100 Lecce, Italy
| |
Collapse
|
14
|
Deng K, Luo Z, Tan L, Quan Z. Self-assembly of anisotropic nanoparticles into functional superstructures. Chem Soc Rev 2020; 49:6002-6038. [PMID: 32692337 DOI: 10.1039/d0cs00541j] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Self-assembly of colloidal nanoparticles (NPs) into superstructures offers a flexible and promising pathway to manipulate the nanometer-sized particles and thus make full use of their unique properties. This bottom-up strategy builds a bridge between the NP regime and a new class of transformative materials across multiple length scales for technological applications. In this field, anisotropic NPs with size- and shape-dependent physical properties as self-assembly building blocks have long fascinated scientists. Self-assembly of anisotropic NPs not only opens up exciting opportunities to engineer a variety of intriguing and complex superlattice architectures, but also provides access to discover emergent collective properties that stem from their ordered arrangement. Thus, this has stimulated enormous research interests in both fundamental science and technological applications. This present review comprehensively summarizes the latest advances in this area, and highlights their rich packing behaviors from the viewpoint of NP shape. We provide the basics of the experimental techniques to produce NP superstructures and structural characterization tools, and detail the delicate assembled structures. Then the current understanding of the assembly dynamics is discussed with the assistance of in situ studies, followed by emergent collective properties from these NP assemblies. Finally, we end this article with the remaining challenges and outlook, hoping to encourage further research in this field.
Collapse
Affiliation(s)
- Kerong Deng
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Key Laboratory of Energy Conversion and Storage Technologies, Ministry of Education, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
| | - Zhishan Luo
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Key Laboratory of Energy Conversion and Storage Technologies, Ministry of Education, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
| | - Li Tan
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Key Laboratory of Energy Conversion and Storage Technologies, Ministry of Education, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
| | - Zewei Quan
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Key Laboratory of Energy Conversion and Storage Technologies, Ministry of Education, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
| |
Collapse
|
15
|
Increasingly complex DNA assemblies. NATURE MATERIALS 2020; 19:689. [PMID: 32581352 DOI: 10.1038/s41563-020-0727-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
|
16
|
Baiyasi R, Gallagher MJ, McCarthy LA, Searles EK, Zhang Q, Link S, Landes CF. Quantitative Analysis of Nanorod Aggregation and Morphology from Scanning Electron Micrographs Using SEMseg. J Phys Chem A 2020; 124:5262-5270. [DOI: 10.1021/acs.jpca.0c03190] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Rashad Baiyasi
- Department of Electrical and Computer Engineering, Rice University, MS 366, Houston, Texas 77005, United States
| | - Miranda J. Gallagher
- Department of Chemistry, Rice University, MS 60, Houston, Texas 77005, United States
| | - Lauren A. McCarthy
- Department of Chemistry, Rice University, MS 60, Houston, Texas 77005, United States
| | - Emily K. Searles
- Department of Chemistry, Rice University, MS 60, Houston, Texas 77005, United States
| | - Qingfeng Zhang
- Department of Chemistry, Rice University, MS 60, Houston, Texas 77005, United States
- Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
| | - Stephan Link
- Department of Electrical and Computer Engineering, Rice University, MS 366, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, MS 60, Houston, Texas 77005, United States
- Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
| | - Christy F. Landes
- Department of Electrical and Computer Engineering, Rice University, MS 366, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, MS 60, Houston, Texas 77005, United States
- Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
17
|
Cepeda-Perez E, Doblas D, Kraus T, de Jonge N. Electron microscopy of nanoparticle superlattice formation at a solid-liquid interface in nonpolar liquids. SCIENCE ADVANCES 2020; 6:eaba1404. [PMID: 32426507 PMCID: PMC7220325 DOI: 10.1126/sciadv.aba1404] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/28/2020] [Indexed: 05/28/2023]
Abstract
Nanoparticle superlattice films form at the solid-liquid interface and are important for mesoscale materials, but are notoriously difficult to analyze before they are fully dried. Here, the early stages of nanoparticle assembly were studied at solid-liquid interfaces using liquid-phase electron microscopy. Oleylamine-stabilized gold nanoparticles spontaneously formed thin layers on a silicon nitride (SiN) membrane window of the liquid enclosure. Dense packings of hexagonal symmetry were obtained for the first monolayer independent of the nonpolar solvent type. The second layer, however, exhibited geometries ranging from dense packing in a hexagonal honeycomb structure to quasi-crystalline particle arrangements depending on the dielectric constant of the liquid. The complex structures formed by the weaker interactions in the second particle layer were preserved, while the surface remained immersed in liquid. Fine-tuning the properties of the involved materials can thus be used to control the three-dimensional geometry of a superlattice including quasi-crystals.
Collapse
Affiliation(s)
- E. Cepeda-Perez
- INM—Leibniz Institute for New Materials, Saarbrücken, Germany
| | - D. Doblas
- INM—Leibniz Institute for New Materials, Saarbrücken, Germany
| | - T. Kraus
- INM—Leibniz Institute for New Materials, Saarbrücken, Germany
- Colloid and Interface Chemistry, Saarland University, Saarbrücken, Germany
| | - N. de Jonge
- INM—Leibniz Institute for New Materials, Saarbrücken, Germany
- Department of Physics, Saarland University, Saarbrücken, Germany
| |
Collapse
|
18
|
Ge H, Wang D, Pan Y, Guo Y, Li H, Zhang F, Zhu X, Li Y, Zhang C, Huang L. Sequence‐Dependent DNA Functionalization of Upconversion Nanoparticles and Their Programmable Assemblies. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Huan Ge
- School of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
- Key Laboratory of Flexible Electronics (KLOFE) &, Institute of Advanced Materials (IAM)Jiangsu National Synergetic Innovation Center for Advanced, Materials (SICAM)Nanjing Tech University (NJTECH) 30 South Puzhu Road Nanjing 211816 China
| | - Dongya Wang
- Departments of Radiology and CardiologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai Jiao Tong University School of Medicine 600 Yishan Road Shanghai 200233 China
| | - Yue Pan
- Key Laboratory of Flexible Electronics (KLOFE) &, Institute of Advanced Materials (IAM)Jiangsu National Synergetic Innovation Center for Advanced, Materials (SICAM)Nanjing Tech University (NJTECH) 30 South Puzhu Road Nanjing 211816 China
| | - Yuanyuan Guo
- School of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Hongyu Li
- Key Laboratory of Flexible Electronics (KLOFE) &, Institute of Advanced Materials (IAM)Jiangsu National Synergetic Innovation Center for Advanced, Materials (SICAM)Nanjing Tech University (NJTECH) 30 South Puzhu Road Nanjing 211816 China
| | - Fan Zhang
- Key Laboratory of Flexible Electronics (KLOFE) &, Institute of Advanced Materials (IAM)Jiangsu National Synergetic Innovation Center for Advanced, Materials (SICAM)Nanjing Tech University (NJTECH) 30 South Puzhu Road Nanjing 211816 China
| | - Xinyuan Zhu
- School of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Yuehua Li
- Departments of Radiology and CardiologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai Jiao Tong University School of Medicine 600 Yishan Road Shanghai 200233 China
| | - Chuan Zhang
- School of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Ling Huang
- Key Laboratory of Flexible Electronics (KLOFE) &, Institute of Advanced Materials (IAM)Jiangsu National Synergetic Innovation Center for Advanced, Materials (SICAM)Nanjing Tech University (NJTECH) 30 South Puzhu Road Nanjing 211816 China
| |
Collapse
|
19
|
Ge H, Wang D, Pan Y, Guo Y, Li H, Zhang F, Zhu X, Li Y, Zhang C, Huang L. Sequence‐Dependent DNA Functionalization of Upconversion Nanoparticles and Their Programmable Assemblies. Angew Chem Int Ed Engl 2020; 59:8133-8137. [DOI: 10.1002/anie.202000831] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/17/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Huan Ge
- School of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
- Key Laboratory of Flexible Electronics (KLOFE) &, Institute of Advanced Materials (IAM)Jiangsu National Synergetic Innovation Center for Advanced, Materials (SICAM)Nanjing Tech University (NJTECH) 30 South Puzhu Road Nanjing 211816 China
| | - Dongya Wang
- Departments of Radiology and CardiologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai Jiao Tong University School of Medicine 600 Yishan Road Shanghai 200233 China
| | - Yue Pan
- Key Laboratory of Flexible Electronics (KLOFE) &, Institute of Advanced Materials (IAM)Jiangsu National Synergetic Innovation Center for Advanced, Materials (SICAM)Nanjing Tech University (NJTECH) 30 South Puzhu Road Nanjing 211816 China
| | - Yuanyuan Guo
- School of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Hongyu Li
- Key Laboratory of Flexible Electronics (KLOFE) &, Institute of Advanced Materials (IAM)Jiangsu National Synergetic Innovation Center for Advanced, Materials (SICAM)Nanjing Tech University (NJTECH) 30 South Puzhu Road Nanjing 211816 China
| | - Fan Zhang
- Key Laboratory of Flexible Electronics (KLOFE) &, Institute of Advanced Materials (IAM)Jiangsu National Synergetic Innovation Center for Advanced, Materials (SICAM)Nanjing Tech University (NJTECH) 30 South Puzhu Road Nanjing 211816 China
| | - Xinyuan Zhu
- School of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Yuehua Li
- Departments of Radiology and CardiologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai Jiao Tong University School of Medicine 600 Yishan Road Shanghai 200233 China
| | - Chuan Zhang
- School of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Ling Huang
- Key Laboratory of Flexible Electronics (KLOFE) &, Institute of Advanced Materials (IAM)Jiangsu National Synergetic Innovation Center for Advanced, Materials (SICAM)Nanjing Tech University (NJTECH) 30 South Puzhu Road Nanjing 211816 China
| |
Collapse
|
20
|
Deng Y, Zhang Z, Du P, Ning X, Wang Y, Zhang D, Liu J, Zhang S, Lu X. Embedding Ultrasmall Au Clusters into the Pores of a Covalent Organic Framework for Enhanced Photostability and Photocatalytic Performance. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916154] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yang Deng
- Tianjin Key Laboratory of Molecular Optoelectronic ScienceDepartment of ChemistrySchool of ScienceTianjin University Tianjin 300072 P. R. China
| | - Zhen Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic ScienceDepartment of ChemistrySchool of ScienceTianjin University Tianjin 300072 P. R. China
| | - Peiyao Du
- Tianjin Key Laboratory of Molecular Optoelectronic ScienceDepartment of ChemistrySchool of ScienceTianjin University Tianjin 300072 P. R. China
| | - Xingming Ning
- Tianjin Key Laboratory of Molecular Optoelectronic ScienceDepartment of ChemistrySchool of ScienceTianjin University Tianjin 300072 P. R. China
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu ProvinceCollege of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou 730070 P. R. China
| | - Yue Wang
- Tianjin Key Laboratory of Molecular Optoelectronic ScienceDepartment of ChemistrySchool of ScienceTianjin University Tianjin 300072 P. R. China
| | - Dongxu Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic ScienceDepartment of ChemistrySchool of ScienceTianjin University Tianjin 300072 P. R. China
| | - Jia Liu
- Tianjin Key Laboratory of Molecular Optoelectronic ScienceDepartment of ChemistrySchool of ScienceTianjin University Tianjin 300072 P. R. China
| | - Shouting Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic ScienceDepartment of ChemistrySchool of ScienceTianjin University Tianjin 300072 P. R. China
| | - Xiaoquan Lu
- Tianjin Key Laboratory of Molecular Optoelectronic ScienceDepartment of ChemistrySchool of ScienceTianjin University Tianjin 300072 P. R. China
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu ProvinceCollege of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou 730070 P. R. China
| |
Collapse
|
21
|
Deng Y, Zhang Z, Du P, Ning X, Wang Y, Zhang D, Liu J, Zhang S, Lu X. Embedding Ultrasmall Au Clusters into the Pores of a Covalent Organic Framework for Enhanced Photostability and Photocatalytic Performance. Angew Chem Int Ed Engl 2020; 59:6082-6089. [PMID: 31943588 DOI: 10.1002/anie.201916154] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Indexed: 01/09/2023]
Abstract
Gold clusters loaded on various supports have been widely used in the fields of energy and biology. However, the poor photostability of Au clusters on support interfaces under prolonged illumination usually results in loss of catalytic performance. Covalent organic frameworks (COFs) with periodic and ultrasmall pore structures are ideal supports for dispersing and stabilizing Au clusters, although it is difficult to encapsulate Au clusters in the ultrasmall pores. In this study, a two-dimensional (2D) COF modified with thiol chains in its pores was prepared. With -SH groups as nucleation sites, Au nanoclusters (NCs) could grow in situ within the COF. The ultrasmall pores of the COF and the strong S-Au binding energy combine to improve the dispersibility of Au NCs under prolonged light illumination. Interestingly, Au-S-COF bridging as observed in this artificial Z-scheme photocatalytic system is deemed to be an ideal means to increase charge-separation efficiency.
Collapse
Affiliation(s)
- Yang Deng
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Zhen Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Peiyao Du
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Xingming Ning
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China.,Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Yue Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Dongxu Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Jia Liu
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Shouting Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Xiaoquan Lu
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China.,Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| |
Collapse
|
22
|
Zhu J, Lin H, Kim Y, Yang M, Skakuj K, Du JS, Lee B, Schatz GC, Van Duyne RP, Mirkin CA. Light-Responsive Colloidal Crystals Engineered with DNA. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906600. [PMID: 31944429 PMCID: PMC7061716 DOI: 10.1002/adma.201906600] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/10/2019] [Indexed: 05/29/2023]
Abstract
A novel method for synthesizing and photopatterning colloidal crystals via light-responsive DNA is developed. These crystals are composed of 10-30 nm gold nanoparticles interconnected with azobenzene-modified DNA strands. The photoisomerization of the azobenzene molecules leads to reversible assembly and disassembly of the base-centered cubic (bcc) and face-centered cubic (fcc) crystalline nanoparticle lattices. In addition, UV light is used as a trigger to selectively remove nanoparticles on centimeter-scale thin films of colloidal crystals, allowing them to be photopatterned into preconceived shapes. The design of the azobenzene-modified linking DNA is critical and involves complementary strands, with azobenzene moieties deliberately staggered between the bases that define the complementary code. This results in a tunable wavelength-dependent melting temperature (Tm ) window (4.5-15 °C) and one suitable for affecting the desired transformations. In addition to the isomeric state of the azobenzene groups, the size of the particles can be used to modulate the Tm window over which these structures are light-responsive.
Collapse
Affiliation(s)
- Jinghan Zhu
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL, 60208, USA
- International Institute for Nanotechnology, 2190 Campus Drive, Evanston, IL, 60208, USA
| | - Haixin Lin
- International Institute for Nanotechnology, 2190 Campus Drive, Evanston, IL, 60208, USA
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Youngeun Kim
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL, 60208, USA
- International Institute for Nanotechnology, 2190 Campus Drive, Evanston, IL, 60208, USA
| | - Muwen Yang
- International Institute for Nanotechnology, 2190 Campus Drive, Evanston, IL, 60208, USA
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Kacper Skakuj
- International Institute for Nanotechnology, 2190 Campus Drive, Evanston, IL, 60208, USA
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Jingshan S Du
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL, 60208, USA
- International Institute for Nanotechnology, 2190 Campus Drive, Evanston, IL, 60208, USA
| | - Byeongdu Lee
- X-Ray Science Division, Argonne National Laboratory, 9700 S. Cass Ave., Lemont, IL, 60439, USA
| | - George C Schatz
- International Institute for Nanotechnology, 2190 Campus Drive, Evanston, IL, 60208, USA
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Richard P Van Duyne
- International Institute for Nanotechnology, 2190 Campus Drive, Evanston, IL, 60208, USA
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Chad A Mirkin
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL, 60208, USA
- International Institute for Nanotechnology, 2190 Campus Drive, Evanston, IL, 60208, USA
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| |
Collapse
|
23
|
Abdilla A, Dolinski ND, de Roos P, Ren JM, van der Woude E, Seo SE, Zayas MS, Lawrence J, Read de Alaniz J, Hawker CJ. Polymer Stereocomplexation as a Scalable Platform for Nanoparticle Assembly. J Am Chem Soc 2020; 142:1667-1672. [PMID: 31909990 DOI: 10.1021/jacs.9b10156] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
DNA-mediated assembly of inorganic particles has demonstrated to be a powerful approach for preparing nanomaterials with a range of interesting optical and electrical properties. Building on this inspiration, we describe a generalizable gram-scale method to assemble nanoparticles through the formation of poly(methyl methacrylate) (PMMA) triple-helices. In this work, alkene-terminated syndiotactic (st-) and isotactic (it-) PMMA polymers were prepared and subsequently functionalized to afford nanoparticle ligands. Nanoparticles with complementary st- and it-PMMA ligands could then be spontaneously assembled upon mixing at room temperature. This process was robust and fully reversible through multiple heating and cooling cycles. The versatility of PMMA stereocomplexation was highlighted by assembling hybrid structures composed of nanoparticles of different compositions (e.g., Au and quantum dots) and shapes (e.g., spheres and rods). These initial demonstrations of nanoparticle self-assembly from inexpensive PMMA-based materials present an attractive alternative to DNA-based nanomaterials.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jimmy Lawrence
- Department of Chemical Engineering , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| | | | | |
Collapse
|
24
|
Bewana S, Ndolomingo MJ, Carleschi E, Doyle BP, Meijboom R, Bingwa N. Inorganic Perovskite-Induced Synergy on Highly Selective Pd-Catalyzed Hydrogenation of Cinnamaldehyde. ACS APPLIED MATERIALS & INTERFACES 2019; 11:32994-33005. [PMID: 31423771 DOI: 10.1021/acsami.9b10820] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The transformation of various organic molecules into value-added chemicals has been driven by the success in development of highly active catalytic systems. Heterogeneous catalysts have found use in many industrial processes by virtue of their ease of separation and high activities in various reactions. However, many processes employing heterogeneous catalysts in the transformation of organic molecules suffer significantly when it comes to product selectivity. Herein, we report on the synthesis of highly selective palladium nanoparticle (Pd NP)-containing catalysts. The heterogeneous catalysts reported herein consist of active mixed-metal oxides, in the form of perovskites as catalysts, and as catalytic supports for Pd NPs. The activity of pure perovskites when applied as catalysts in the hydrogenation of cinnamaldehyde is 3 factors lower compared with Pd NPs immobilized on them. However, considering the fact that perovskites achieved percentage conversions between 18 and 25% in a short period of time makes them perfect candidates to replace platinum group metals in the future. In addition to being earmarked as the future of catalysis, perovskites induced a synergistic effect on the conversion of the substrate compared to when Pd NPs are immobilized on the silica support. Furthermore, these catalysts are 100% selective to hydrocinnamaldehyde and stable for up to five catalytic cycles. With regard to reusability of the catalysts, Pd/LaFeO3 was used as a benchmark catalyst and revealed the need for surface restructuring of the catalyst for optimum activity.
Collapse
|
25
|
Kogikoski S, Kubota LT. Electron transfer in superlattice films based on self-assembled DNA-Gold nanoparticle. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.06.091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Lv H, Xu D, Henzie J, Feng J, Lopes A, Yamauchi Y, Liu B. Mesoporous gold nanospheres via thiolate-Au(i) intermediates. Chem Sci 2019; 10:6423-6430. [PMID: 31367304 PMCID: PMC6615434 DOI: 10.1039/c9sc01728c] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 05/27/2019] [Indexed: 12/13/2022] Open
Abstract
This manuscript reports a facile yet effective surfactant-templated synthesis methodology to grow in situ metallic gold mesoporous nanospheres for methanol electrooxidation.
Mesoporous gold (mesoAu) nanospheres support enhanced (electro)catalytic performance owing to their three-dimensional (3D) interior mesochannels that expose abundant active sites and facilitate electron/mass transfers. Although various porous Nanostructured Au has been fabricated by electrochemical reduction, alloying–dealloying and hard/soft templating methods, successful synthesis of mesoAu nanospheres with tailorable sizes and porosities remains a big challenge. Here we describe a novel surfactant-directed synthetic route to fabricate mesoAu nanospheres with 3D interconnected mesochannels by using the amphiphilic surfactant of C22H45N+(CH3)2–C3H6–SH (Cl–) (C22N–SH) as the mesopore directing agent. C22N–SH can not only self-reduce trivalent Au(iii)Cl4– to monovalent Au(i), but also form polymeric C22N–S–Au(i) intermediates via covalent bonds. These C22N–S–Au(i) intermediates facilitate the self-assembly into spherical micelles and inhibit the mobility of Au precursors, enabling the crystallization nucleation and growth of the mesoAu nanospheres via in situ chemical reduction. The synthetic strategy can be further extended to tailor the sizes/porosities and surface optical properties of the mesoAu nanospheres. The mesoAu nanospheres exhibit remarkably enhanced mass/specific activity and improved stability in methanol electrooxidation, demonstrating far better performance than non-porous Au nanoparticles and previously reported Au nanocatalysts. The synthetic route differs markedly from other long-established soft-templating approaches, providing a new avenue to grow metal nanocrystals with desirable nanostructures and functions.
Collapse
Affiliation(s)
- Hao Lv
- Jiangsu Key Laboratory of New Power Batteries , Jiangsu Collaborative Innovation Center of Biomedical Functional Materials , School of Chemistry and Materials Science , Nanjing Normal University , Nanjing , Jiangsu 210023 , China .
| | - Dongdong Xu
- Jiangsu Key Laboratory of New Power Batteries , Jiangsu Collaborative Innovation Center of Biomedical Functional Materials , School of Chemistry and Materials Science , Nanjing Normal University , Nanjing , Jiangsu 210023 , China .
| | - Joel Henzie
- Key Laboratory of Eco-chemical Engineering , College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , China.,International Center for Materials Nanoarchitectonics (WPI-MANA) , National Institute for Materials Science (NIMS) , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan
| | - Ji Feng
- Department of Chemistry , University of California , Riverside , California 92521 , USA
| | - Aaron Lopes
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , USA
| | - Yusuke Yamauchi
- Key Laboratory of Eco-chemical Engineering , College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , China.,School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN) , The University of Queensland , Brisbane , QLD 4072 , Australia . .,Department of Plant & Environmental New Resources , Kyung Hee University , 1732 Deogyeong-daero, Giheung-gu , Yongin-si , Gyeonggi-do 446-701 , South Korea
| | - Ben Liu
- Jiangsu Key Laboratory of New Power Batteries , Jiangsu Collaborative Innovation Center of Biomedical Functional Materials , School of Chemistry and Materials Science , Nanjing Normal University , Nanjing , Jiangsu 210023 , China .
| |
Collapse
|
27
|
Li N, Shang Y, Han Z, Wang T, Wang ZG, Ding B. Fabrication of Metal Nanostructures on DNA Templates. ACS APPLIED MATERIALS & INTERFACES 2019; 11:13835-13852. [PMID: 30480424 DOI: 10.1021/acsami.8b16194] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Metal nanoarchitectures fabrication based on DNA assembly has attracted a good deal of attention. DNA nanotechnology enables precise organization of nanoscale objects with extraordinary structural programmability. The spatial addressability of DNA nanostructures and sequence-dependent recognition allow functional elements to be precisely positioned; thus, novel functional materials that are difficult to produce using conventional methods could be fabricated. This review focuses on the recent development of the fabrication strategies toward manipulating the shape and morphology of metal nanoparticles and nanoassemblies based on the rational design of DNA structures. DNA-mediated metallization, including DNA-templated conductive nanowire fabrication and sequence-selective metal deposition, etc., is briefly introduced. The modifications of metal nanoparticles (NPs) with DNA and subsequent construction of heterogeneous metal nanoarchitectures are highlighted. Importantly, DNA-assembled dynamic metal nanostructures that are responsive to different stimuli are also discussed as they allow the design of smart and dynamic materials. Meanwhile, the prospects and challenges of these shape-and morphology-controlled strategies are summarized.
Collapse
Affiliation(s)
- Na Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience , National Center for NanoScience and Technology , 11 Bei Yi Tiao, Zhong Guan Cun , Beijing 100190 , China
| | - Yingxu Shang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience , National Center for NanoScience and Technology , 11 Bei Yi Tiao, Zhong Guan Cun , Beijing 100190 , China
| | - Zihong Han
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience , National Center for NanoScience and Technology , 11 Bei Yi Tiao, Zhong Guan Cun , Beijing 100190 , China
| | - Ting Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience , National Center for NanoScience and Technology , 11 Bei Yi Tiao, Zhong Guan Cun , Beijing 100190 , China
| | - Zhen-Gang Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience , National Center for NanoScience and Technology , 11 Bei Yi Tiao, Zhong Guan Cun , Beijing 100190 , China
| | - Baoquan Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience , National Center for NanoScience and Technology , 11 Bei Yi Tiao, Zhong Guan Cun , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| |
Collapse
|
28
|
Ha JM, Lim SH, Dey J, Lee SJ, Lee MJ, Kang SH, Jin KS, Choi SM. Micelle-Assisted Formation of Nanoparticle Superlattices and Thermally Reversible Symmetry Transitions. NANO LETTERS 2019; 19:2313-2321. [PMID: 30673238 DOI: 10.1021/acs.nanolett.8b04817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanoparticle superlattices (NPSLs) are of great interest as materials with designed emerging properties depending on the lattice symmetry as well as composition. The symmetry transition of NPSLs depending on environmental conditions can be an excellent ground for making new stimuli-responsive functional materials. Here, we report a spherical micelle-assisted method to form exceptionally ordered NPSLs which are inherently sensitive to environmental conditions. Upon mixing functionalized gold nanoparticles (AuNPs) with a nonionic surfactant spherical micellar solution, NPSLs of different symmetries such as NaZn13, MgZn2, and AlB2-type are formed depending on the size ratio between micelles and functionalized AuNPs and composition. The NPSLs formed by the spherical micelle-assisted method show thermally reversible order-order (NaZn13-AlB2) and order-disorder (MgZn2-isotropic) symmetry transitions, which are consistent with the Gibbs free energy calculations for binary hard-sphere model. This approach may open up new possibilities for NPSLs as stimuli-responsive functional materials.
Collapse
Affiliation(s)
- Jae-Min Ha
- Department of Nuclear and Quantum Engineering , Korea Advanced Institute of Science and Technology Daejeon , 34141 , Republic of Korea
| | - Sung-Hwan Lim
- Department of Nuclear and Quantum Engineering , Korea Advanced Institute of Science and Technology Daejeon , 34141 , Republic of Korea
| | - Jahar Dey
- Department of Nuclear and Quantum Engineering , Korea Advanced Institute of Science and Technology Daejeon , 34141 , Republic of Korea
| | - Sang-Jo Lee
- Department of Nuclear and Quantum Engineering , Korea Advanced Institute of Science and Technology Daejeon , 34141 , Republic of Korea
| | - Min-Jae Lee
- Department of Nuclear and Quantum Engineering , Korea Advanced Institute of Science and Technology Daejeon , 34141 , Republic of Korea
| | - Shin-Hyun Kang
- Department of Nuclear and Quantum Engineering , Korea Advanced Institute of Science and Technology Daejeon , 34141 , Republic of Korea
| | - Kyeong Sik Jin
- Pohang Accelerator Laboratory , Pohang , Gyeongbuk 37673 , Republic of Korea
| | - Sung-Min Choi
- Department of Nuclear and Quantum Engineering , Korea Advanced Institute of Science and Technology Daejeon , 34141 , Republic of Korea
| |
Collapse
|
29
|
Zhang L, Jin L, Liu B, He J. Templated Growth of Crystalline Mesoporous Materials: From Soft/Hard Templates to Colloidal Templates. Front Chem 2019; 7:22. [PMID: 30805330 PMCID: PMC6371053 DOI: 10.3389/fchem.2019.00022] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/10/2019] [Indexed: 11/13/2022] Open
Abstract
Mesoporous non-siliceous materials, in particular mesoporous transition metal oxides (m-TMOs), are of interest due to their fascinating electronic, redox, and magnetic properties for a wide range of applications in catalysis and energy storage. Control of the porosity (e.g., pore size, wall thickness, and surface area) and the crystalline degree (e.g., phase composition, crystallinity, and crystal grain size) of m-TMOs are critical for those applications. To crystallize TMOs, high temperature annealing is often needed to remove the amorphous defects and/or tune the compositions of different crystalline phases. This has brought many challenges to surfactant or block copolymer templates used in the process of evaporation-induced-self-assembly to prepare m-TMOs. In this review, we summarize the most recent achievements including the findings in our own laboratory on the use of organosilicate-containing colloids for the templated growth of mesoporous materials. We review a few key examples of preparing crystalline mesoporous oxides using different templating methods. The colloidal templating method by which mesoporous nanostructures can be stabilized up to 1,000°C is highlighted. The applications of m-TMOs and meso metal-oxide hybrids synthesized using organosilicate-containing colloidal templates in photocatalysis and high-temperature catalysis are also discussed.
Collapse
Affiliation(s)
- Lei Zhang
- Jiangsu Key Laboratory of New Power Batteries, Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
- Department of Chemistry, University of Connecticut, Mansfield, CT, United States
| | - Lei Jin
- Department of Chemistry, University of Connecticut, Mansfield, CT, United States
| | - Ben Liu
- Jiangsu Key Laboratory of New Power Batteries, Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
| | - Jie He
- Department of Chemistry, University of Connecticut, Mansfield, CT, United States
- Institute of Materials Science, University of Connecticut, Mansfield, CT, United States
| |
Collapse
|
30
|
Oh T, Park SS, Mirkin CA. Stabilization of Colloidal Crystals Engineered with DNA. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805480. [PMID: 30370680 DOI: 10.1002/adma.201805480] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/24/2018] [Indexed: 05/23/2023]
Abstract
A postsynthetic method for stabilizing colloidal crystals programmed from DNA is developed. The method relies on Ag+ ions to stabilize the particle-connecting DNA duplexes within the crystal lattice, essentially transforming them from loosely bound structures to ones with very strong interparticle links. Such crystals do not dissociate as a function of temperature like normal DNA or DNA-interconnected superlattices, and they can be moved from water to organic media or the solid state, and stay intact. The Ag+ -stabilization of the DNA bonds is accompanied by a nondestructive ≈25% contraction of the lattice, and both the stabilization and contraction are reversible with the chemical extraction of the Ag+ ions, by AgCl precipitation with NaCl. This synthetic tool is important, since it allows scientists and engineers to study such crystals in environments that are incompatible with structures made by conventional DNA programmable methods and without the influence of a matrix such as silica.
Collapse
Affiliation(s)
- Taegon Oh
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL, 60208, USA
| | - Sarah S Park
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Chad A Mirkin
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL, 60208, USA
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| |
Collapse
|
31
|
Affiliation(s)
- Chad A Mirkin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA.
| | - Sarah Hurst Petrosko
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
32
|
Kang ES, Kimu YT, Ko YS, Kim NH, Cho G, Huh YH, Kim JH, Nam J, Thach TT, Youn D, Kim YD, Yun WS, DeGrado WF, Kim SY, Hammond PT, Lee J, Kwon YU, Ha DH, Kim YH. Peptide-Programmable Nanoparticle Superstructures with Tailored Electrocatalytic Activity. ACS NANO 2018; 12:6554-6562. [PMID: 29842775 PMCID: PMC6556112 DOI: 10.1021/acsnano.8b01146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Biomaterials derived via programmable supramolecular protein assembly provide a viable means of constructing precisely defined structures. Here, we present programmed superstructures of AuPt nanoparticles (NPs) on carbon nanotubes (CNTs) that exhibit distinct electrocatalytic activities with respect to the nanoparticle positions via rationally modulated peptide-mediated assembly. De novo designed peptides assemble into six-helix bundles along the CNT axis to form a suprahelical structure. Surface cysteine residues of the peptides create AuPt-specific nucleation site, which allow for precise positioning of NPs onto helical geometries, as confirmed by 3-D reconstruction using electron tomography. The electrocatalytic model system, i.e., AuPt for oxygen reduction, yields electrochemical response signals that reflect the controlled arrangement of NPs in the intended assemblies. Our design approach can be expanded to versatile fields to build sophisticated functional assemblies.
Collapse
Affiliation(s)
- Eun Sung Kang
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yong-Tae Kimu
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Young-Seon Ko
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Nam Hyeong Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Geonhee Cho
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yang Hoon Huh
- Electron Microscopy Research Center, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Ji-Hun Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jiyoung Nam
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Trung Thanh Thach
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - David Youn
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Young Dok Kim
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Wan Soo Yun
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - William F. DeGrado
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94158, United States
| | - Sung Yeol Kim
- School of Mechanical Engineering, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Paula T. Hammond
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jaeyoung Lee
- School of Environmental Science and Engineering, Ertl Center for Electrochemistry and Catalysis, Research Institute for Solar and Sustainable Energies (RISE), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Young-Uk Kwon
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Don-Hyung Ha
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yong Ho Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
| |
Collapse
|
33
|
Kogikoski S, Kubota LT. Electrochemical behavior of self-assembled DNA–gold nanoparticle lattice films. Electrochem commun 2018. [DOI: 10.1016/j.elecom.2018.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
34
|
Axtell JC, Saleh LMA, Qian EA, Wixtrom AI, Spokoyny AM. Synthesis and Applications of Perfunctionalized Boron Clusters. Inorg Chem 2018; 57:2333-2350. [PMID: 29465227 PMCID: PMC5985200 DOI: 10.1021/acs.inorgchem.7b02912] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This Viewpoint describes major advances pertaining to perfunctionalized boron clusters in synthesis and their respective applications. The first portion of this work highlights key synthetic methods, allowing one to access a wide range of polyhedral boranes (B4 and B6-B12 cluster cores) that contain exhaustively functionalized vertices. The second portion of this Viewpoint showcases the historical developments in using these molecules for applications ranging from materials science to medicine. Last, we suggest potential new directions for these clusters as they apply to both synthetic methods and applications.
Collapse
Affiliation(s)
- Jonathan C. Axtell
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095, United States
| | - Liban M. A. Saleh
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095, United States
| | - Elaine A. Qian
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095, United States
- Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, United States
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, United States
| | - Alex I. Wixtrom
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095, United States
| | - Alexander M. Spokoyny
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095, United States
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, United States
| |
Collapse
|
35
|
Wei J, Sun S, Lu Q, Gao P, Wang Y, Li X, Jiang Y. The formation of fibers via complementary base pairing of DNA-conjugated bovine serum albumin. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.09.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
36
|
Künzle M, Lach M, Beck T. Crystalline protein scaffolds as a defined environment for the synthesis of bioinorganic materials. Dalton Trans 2018; 47:10382-10387. [DOI: 10.1039/c8dt01192c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We discuss synthetic strategies and applications of highly ordered bioinorganic materials based on crystalline protein scaffolds.
Collapse
Affiliation(s)
- Matthias Künzle
- RWTH Aachen University
- Institute of Inorganic Chemistry
- JARA-SOFT (Researching Soft Matter)
- and I3TM
- 52074 Aachen
| | - Marcel Lach
- RWTH Aachen University
- Institute of Inorganic Chemistry
- JARA-SOFT (Researching Soft Matter)
- and I3TM
- 52074 Aachen
| | - Tobias Beck
- RWTH Aachen University
- Institute of Inorganic Chemistry
- JARA-SOFT (Researching Soft Matter)
- and I3TM
- 52074 Aachen
| |
Collapse
|
37
|
Lach M, Künzle M, Beck T. Free-Standing Metal Oxide Nanoparticle Superlattices Constructed with Engineered Protein Containers Show in Crystallo Catalytic Activity. Chemistry 2017; 23:17482-17486. [DOI: 10.1002/chem.201705061] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Indexed: 02/02/2023]
Affiliation(s)
- Marcel Lach
- RWTH Aachen University; Institute of Inorganic Chemistry; JARA-SOFT (Researching Soft Matter); and I3TM; 52074 Aachen Germany
| | - Matthias Künzle
- RWTH Aachen University; Institute of Inorganic Chemistry; JARA-SOFT (Researching Soft Matter); and I3TM; 52074 Aachen Germany
| | - Tobias Beck
- RWTH Aachen University; Institute of Inorganic Chemistry; JARA-SOFT (Researching Soft Matter); and I3TM; 52074 Aachen Germany
| |
Collapse
|
38
|
Calais T, Bourrier D, Bancaud A, Chabal Y, Estève A, Rossi C. DNA Grafting and Arrangement on Oxide Surfaces for Self-Assembly of Al and CuO Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:12193-12203. [PMID: 28960992 DOI: 10.1021/acs.langmuir.7b02159] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
DNA-directed assembly of nano-objects as a means to manufacture advanced nanomaterial architectures has been the subject of many studies. However, most applications have dealt with noble metals as there are fundamental difficulties to work with other materials. In this work, we propose a generic and systematic approach for functionalizing and characterizing oxide surfaces with single-stranded DNA oligonucleotides. This protocol is applied to aluminum and copper oxide nanoparticles due to their great interest for the fabrication of highly energetic heterogeneous nanocomposites. The surface densities of streptavidin and biotinylated DNA oligonucleotides are precisely quantified combining atomic absorption spectroscopy with conventional dynamic light scattering and fluorometry and maximized to provide a basis for understanding the grafting mechanism. First, the streptavidin coverage is consistently below 20% of the total surface for both nanoparticles. Second, direct and unspecific grafting of DNA single strands onto Al and CuO nanoparticles largely dominates the overall functionalization process: ∼95% and 90% of all grafted DNA strands are chemisorbed on the CuO and Al nanoparticle surfaces, respectively. Measurements of hybridization efficiency indicate that only ∼5 and ∼10% of single-stranded oligonucleotides grafted onto the CuO and Al surfaces are involved in the hybridization process, corresponding precisely to the streptavidin coverage, as evidenced by the occupancy of 0.9 and 1.2 oligonucleotides per protein. The hybridization efficiency of single-stranded oligonucleotides chemisorbed on CuO and Al without streptavidin coating decreases to only ∼2%, justifying the use of streptavidin despite its poor surface occupancy. Finally, the structure of directly chemisorbed DNA strands onto oxide surfaces is examined and discussed.
Collapse
Affiliation(s)
- Théo Calais
- University of Toulouse, LAAS-CNRS,7 Avenue du colonel Roche, F-31077 Toulouse, France
| | - David Bourrier
- University of Toulouse, LAAS-CNRS,7 Avenue du colonel Roche, F-31077 Toulouse, France
| | - Aurélien Bancaud
- University of Toulouse, LAAS-CNRS,7 Avenue du colonel Roche, F-31077 Toulouse, France
| | - Yves Chabal
- Department of Materials Science and Engineering, The University of Texas at Dallas , Richardson, Texas 75080, United States
| | - Alain Estève
- University of Toulouse, LAAS-CNRS,7 Avenue du colonel Roche, F-31077 Toulouse, France
| | - Carole Rossi
- University of Toulouse, LAAS-CNRS,7 Avenue du colonel Roche, F-31077 Toulouse, France
| |
Collapse
|
39
|
|
40
|
Al-Mahamad LLG, El-Zubir O, Smith DG, Horrocks BR, Houlton A. A coordination polymer for the site-specific integration of semiconducting sequences into DNA-based materials. Nat Commun 2017; 8:720. [PMID: 28959026 PMCID: PMC5620084 DOI: 10.1038/s41467-017-00852-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 07/31/2017] [Indexed: 11/09/2022] Open
Abstract
Advances in bottom-up material design have been significantly progressed through DNA-based approaches. However, the routine integration of semiconducting properties, particularly long-range electrical conduction, into the basic topological motif of DNA remains challenging. Here, we demonstrate this with a coordination polymer derived from 6-thioguanosine (6-TG-H), a sulfur-containing analog of a natural nucleoside. The complexation reaction with Au(I) ions spontaneously assembles luminescent one-dimensional helical chains, characterized as {AuI(μ-6-TG)} n , extending many μm in length that are structurally analogous to natural DNA. Uniquely, for such a material, this gold-thiolate can be transformed into a wire-like conducting form by oxidative doping. We also show that this self-assembly reaction is compatible with a 6-TG-modified DNA duplex and provides a straightforward method by which to integrate semiconducting sequences, site-specifically, into the framework of DNA materials, transforming their properties in a fundamental and technologically useful manner.Integration of semiconducting properties into the basic topological motif of DNA remains challenging. Here, the authors show a coordination polymer derived from 6-thioguanosine that complexes with Au(I) ions to form a wire-like material that can also integrate semiconducting sequences into the framework of DNA materials.
Collapse
Affiliation(s)
- Lamia L G Al-Mahamad
- Chemical Nanoscience Labs, School of Chemistry, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.,Department of Chemistry, College of Science, Al-Mustansiriya University, Baghdad, Iraq
| | - Osama El-Zubir
- Chemical Nanoscience Labs, School of Chemistry, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - David G Smith
- Chemical Nanoscience Labs, School of Chemistry, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.,School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia
| | - Benjamin R Horrocks
- Chemical Nanoscience Labs, School of Chemistry, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Andrew Houlton
- Chemical Nanoscience Labs, School of Chemistry, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| |
Collapse
|
41
|
Vybornyi M, Vyborna Y, Häner R. Silica Mineralization of DNA-Inspired 1D and 2D Supramolecular Polymers. ChemistryOpen 2017; 6:488-491. [PMID: 28794941 PMCID: PMC5542747 DOI: 10.1002/open.201700080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Indexed: 01/17/2023] Open
Abstract
The preparation of hybrid materials from supramolecular polymers through the sol‐gel process is presented. Supramolecular polymers are assembled from phosphodiester‐linked pyrene oligomers and act as water‐soluble one‐ or two‐dimensional templates for silicification. The fibrillary and planar morphologies of the assemblies, as well as the excitonic interactions between the chromophores, remain unaffected by the silicification process.
Collapse
Affiliation(s)
- Mykhailo Vybornyi
- Department of Chemistry and Biochemistry University of Bern Freiestrasse 33012 Bern Switzerland.,Current address: The Department of Chemical Engineering and Chemistry Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Yuliia Vyborna
- Department of Chemistry and Biochemistry University of Bern Freiestrasse 33012 Bern Switzerland
| | - Robert Häner
- Department of Chemistry and Biochemistry University of Bern Freiestrasse 33012 Bern Switzerland
| |
Collapse
|
42
|
Ramezani-Dakhel H, Bedford NM, Woehl TJ, Knecht MR, Naik RR, Heinz H. Nature of peptide wrapping onto metal nanoparticle catalysts and driving forces for size control. NANOSCALE 2017; 9:8401-8409. [PMID: 28604905 DOI: 10.1039/c7nr02813j] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Colloidal metal nanocrystals find many applications in catalysis, energy conversion devices, and therapeutics. However, the nature of ligand interactions and implications on shape control have remained uncertain at the atomic scale. Large differences in peptide adsorption strength and facet specificity were found on flat palladium surfaces versus surfaces of nanoparticles of 2 to 3 nm size using accurate atomistic simulations with the Interface force field. Folding of longer peptides across many facets explains the formation of near-spherical particles with local surface disorder, in contrast to the possibility of nanostructures of higher symmetry with shorter ligands. The average particle size in TEM correlates inversely with the surface coverage with a given ligand and with the strength of ligand adsorption. The role of specific amino acids and sequence mutations on the nanoparticle size and facet composition is discussed, as well as the origin of local surface disorder that leads to large differences in catalytic reactivity.
Collapse
|
43
|
Dharmawardhana CC, Kanhaiya K, Lin TJ, Garley A, Knecht MR, Zhou J, Miao J, Heinz H. Reliable computational design of biological-inorganic materials to the large nanometer scale using Interface-FF. MOLECULAR SIMULATION 2017. [DOI: 10.1080/08927022.2017.1332414] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Chamila C. Dharmawardhana
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO, USA
| | - Krishan Kanhaiya
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO, USA
| | - Tzu-Jen Lin
- Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan City, Taiwan, ROC
| | - Amanda Garley
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO, USA
| | - Marc R. Knecht
- Department of Chemistry, University of Miami, Coral Gables, FL, USA
| | - Jihan Zhou
- Department of Physics and Astronomy and California NanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Jianwei Miao
- Department of Physics and Astronomy and California NanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Hendrik Heinz
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO, USA
| |
Collapse
|
44
|
Piñeros WD, Truskett TM. Designing pairwise interactions that stabilize open crystals: Truncated square and truncated hexagonal lattices. J Chem Phys 2017; 146:144501. [DOI: 10.1063/1.4979715] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- William D. Piñeros
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | - Thomas M. Truskett
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
45
|
Wendisch FJ, Oberreiter R, Salihovic M, Elsaesser MS, Bourret GR. Confined Etching within 2D and 3D Colloidal Crystals for Tunable Nanostructured Templates: Local Environment Matters. ACS APPLIED MATERIALS & INTERFACES 2017; 9:3931-3939. [PMID: 28094914 DOI: 10.1021/acsami.6b14226] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We report the isotropic etching of 2D and 3D polystyrene (PS) nanosphere hcp arrays using a benchtop O2 radio frequency plasma cleaner. Unexpectedly, this slow isotropic etching allows tuning of both particle diameter and shape. Due to a suppressed etching rate at the point of contact between the PS particles originating from their arrangement in 2D and 3D crystals, the spherical PS templates are converted into polyhedral structures with well-defined hexagonal cross sections in directions parallel and normal to the crystal c-axis. Additionally, we found that particles located at the edge (surface) of the hcp 2D (3D) crystals showed increased etch rates compared to those of the particles within the crystals. This indicates that 2D and 3D order affect how nanostructures chemically interact with their surroundings. This work also shows that the morphology of nanostructures periodically arranged in 2D and 3D supercrystals can be modified via gas-phase etching and programmed by the superlattice symmetry. To show the potential applications of this approach, we demonstrate the lithographic transfer of the PS template hexagonal cross section into Si substrates to generate Si nanowires with well-defined hexagonal cross sections using a combination of nanosphere lithography and metal-assisted chemical etching.
Collapse
Affiliation(s)
- Fedja J Wendisch
- Department of Chemistry and Physics of Materials, University of Salzburg , Hellbrunner Straße 34/III, A-5020 Salzburg, Austria
| | - Richard Oberreiter
- Department of Chemistry and Physics of Materials, University of Salzburg , Hellbrunner Straße 34/III, A-5020 Salzburg, Austria
| | - Miralem Salihovic
- Department of Chemistry and Physics of Materials, University of Salzburg , Hellbrunner Straße 34/III, A-5020 Salzburg, Austria
| | - Michael S Elsaesser
- Department of Chemistry and Physics of Materials, University of Salzburg , Hellbrunner Straße 34/III, A-5020 Salzburg, Austria
| | - Gilles R Bourret
- Department of Chemistry and Physics of Materials, University of Salzburg , Hellbrunner Straße 34/III, A-5020 Salzburg, Austria
| |
Collapse
|
46
|
Calais T, Baijot V, Djafari Rouhani M, Gauchard D, Chabal YJ, Rossi C, Estève A. General Strategy for the Design of DNA Coding Sequences Applied to Nanoparticle Assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:9676-9686. [PMID: 27578445 DOI: 10.1021/acs.langmuir.6b02843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The DNA-directed assembly of nano-objects has been the subject of many recent studies as a means to construct advanced nanomaterial architectures. Although much experimental in silico work has been presented and discussed, there has been no in-depth consideration of the proper design of single-strand sticky termination of DNA sequences, noted as ssST, which is important in avoiding self-folding within one DNA strand, unwanted strand-to-strand interaction, and mismatching. In this work, a new comprehensive and computationally efficient optimization algorithm is presented for the construction of all possible DNA sequences that specifically prevents these issues. This optimization procedure is also effective when a spacer section is used, typically repeated sequences of thymine or adenine placed between the ssST and the nano-object, to address the most conventional experimental protocols. We systematically discuss the fundamental statistics of DNA sequences considering complementarities limited to two (or three) adjacent pairs to avoid self-folding and hybridization of identical strands due to unwanted complements and mismatching. The optimized DNA sequences can reach maximum lengths of 9 to 34 bases depending on the level of applied constraints. The thermodynamic properties of the allowed sequences are used to develop a ranking for each design. For instance, we show that the maximum melting temperature saturates with 14 bases under typical solvation and concentration conditions. Thus, DNA ssST with optimized sequences are developed for segments ranging from 4 to 40 bases, providing a very useful guide for all technological protocols. An experimental test is presented and discussed using the aggregation of Al and CuO nanoparticles and is shown to validate and illustrate the importance of the proposed DNA coding sequence optimization.
Collapse
Affiliation(s)
- Théo Calais
- LAAS-CNRS, Université de Toulouse, CNRS , Toulouse, France
| | - Vincent Baijot
- LAAS-CNRS, Université de Toulouse, CNRS , Toulouse, France
| | | | - David Gauchard
- LAAS-CNRS, Université de Toulouse, CNRS , Toulouse, France
| | - Yves J Chabal
- Department of Materials Science and Engineering, University of Texas at Dallas , Richardson, Texas 75080, United States
| | - Carole Rossi
- LAAS-CNRS, Université de Toulouse, CNRS , Toulouse, France
| | - Alain Estève
- LAAS-CNRS, Université de Toulouse, CNRS , Toulouse, France
| |
Collapse
|
47
|
Schreiber R, Santiago I, Ardavan A, Turberfield AJ. Ordering Gold Nanoparticles with DNA Origami Nanoflowers. ACS NANO 2016; 10:7303-7306. [PMID: 27341272 DOI: 10.1021/acsnano.6b03076] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Nanostructured materials, including plasmonic metamaterials made from gold and silver nanoparticles, provide access to new materials properties. The assembly of nanoparticles into extended arrays can be controlled through surface functionalization and the use of increasingly sophisticated linkers. We present a versatile way to control the bonding symmetry of gold nanoparticles by wrapping them in flower-shaped DNA origami structures. These "nanoflowers" assemble into two-dimensonal gold nanoparticle lattices with symmetries that can be controlled through auxiliary DNA linker strands. Nanoflower lattices are true composites: interactions between the gold nanoparticles are mediated entirely by DNA, and the DNA origami will fold into its designed form only in the presence of the gold nanoparticles.
Collapse
Affiliation(s)
- Robert Schreiber
- Department of Physics, Clarendon Laboratory, University of Oxford , Parks Road, Oxford OX1 3PU, United Kingdom
| | - Ibon Santiago
- Department of Physics, Clarendon Laboratory, University of Oxford , Parks Road, Oxford OX1 3PU, United Kingdom
| | - Arzhang Ardavan
- Department of Physics, Clarendon Laboratory, University of Oxford , Parks Road, Oxford OX1 3PU, United Kingdom
| | - Andrew J Turberfield
- Department of Physics, Clarendon Laboratory, University of Oxford , Parks Road, Oxford OX1 3PU, United Kingdom
| |
Collapse
|
48
|
Piñeros WD, Baldea M, Truskett TM. Designing convex repulsive pair potentials that favor assembly of kagome and snub square lattices. J Chem Phys 2016; 145:054901. [DOI: 10.1063/1.4960113] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- William D. Piñeros
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | - Michael Baldea
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| | - Thomas M. Truskett
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
49
|
Nosheen F, Ni B, Xu X, Yang H, Zhang Z, Wang X. Facile synthesis of complex shaped Pt-Cu alloy architectures. NANOSCALE 2016; 8:13212-13216. [PMID: 27353342 DOI: 10.1039/c6nr03511f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Several intricate Pt-Cu alloy architectures have been synthesized including hexapod backbones with stretchers and caved octahedron like hexapods, as well as some other intermediates with complex structures. The mechanistic study indicates that the shape is realized via a competitive effect between etching and growth induced by different chemicals.
Collapse
Affiliation(s)
- Farhat Nosheen
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| | | | | | | | | | | |
Collapse
|
50
|
Petrosko SH, Johnson R, White H, Mirkin CA. Nanoreactors: Small Spaces, Big Implications in Chemistry. J Am Chem Soc 2016; 138:7443-5. [DOI: 10.1021/jacs.6b05393] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|