1
|
Aditya T, Moitra P, Alafeef M, Skrodzki D, Pan D. Chiral Induction in 2D Borophene Nanoplatelets through Stereoselective Boron-Sulfur Conjugation. ACS NANO 2024; 18:11921-11932. [PMID: 38651695 DOI: 10.1021/acsnano.4c01792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Chirality is a structural metric that connects biological and abiological forms of matter. Although much progress has been made in understanding the chemistry and physics of chiral inorganic nanoparticles over the past decade, almost nothing is known about chiral two-dimensional (2D) borophene nanoplatelets and their influence on complex biological networks. Borophene's polymorphic nature, derived from the bonding configurations among boron atoms, distinguishes it from other 2D materials and allows for further customization of its material properties. In this study, we describe a synthetic methodology for producing chiral 2D borophene nanoplatelets applicable to a variety of structural polymorphs. Using this methodology, we demonstrate feasibility of top-down synthesis of chiral χ3 and β12 phases of borophene nanoplatelets via interaction with chiral amino acids. The chiral nanoplatelets were physicochemically characterized extensively by various techniques. Results indicated that the thiol presenting amino acids, i.e., cysteine, coordinates with borophene in a site-selective manner, depending on its handedness through boron-sulfur conjugation. The observation has been validated by circular dichroism, X-ray photoelectron spectroscopy, and 11B NMR studies. To understand how chiral nanoplatelets interact with biological systems, mammalian cell lines were exposed to them. Results showed that the achiral as well as the left- and right-handed biomimetic χ3 and β12 borophene nanoplatelets have distinct interaction with the cellular membrane, and their internalization pathway differs with their chirality. By engineering optical, physical, and chemical properties, these chiral 2D nanomaterials could be applied successfully to tuning complex biological events and find applications in photonics, sensing, catalysis, and biomedicine.
Collapse
Affiliation(s)
- Teresa Aditya
- Department of Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Parikshit Moitra
- Department of Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Maha Alafeef
- Department of Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Biomedical Engineering Department, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - David Skrodzki
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Dipanjan Pan
- Department of Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Huck Institutes of the Life Sciences, Millennium Science Complex, University Park, Pennsylvania 16802, United States
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
2
|
Anitha K, Chenchula S, Surendran V, Shvetank B, Ravula P, Milan R, Chikatipalli R, R P. Advancing cancer theranostics through biomimetics: A comprehensive review. Heliyon 2024; 10:e27692. [PMID: 38496894 PMCID: PMC10944277 DOI: 10.1016/j.heliyon.2024.e27692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 03/19/2024] Open
Abstract
Nanotheranostics, especially those employing biomimetic approaches, are of substantial interest for molecular imaging and cancer therapy. The incorporation of diagnostics and therapeutics, known as cancer theranostics, represents a promising strategy in modern oncology. Biomimetics, inspired by nature, offers a multidisciplinary avenue with potential in advancing cancer theranostics. This review comprehensively analyses recent progress in biomimetics-based cancer theranostics, emphasizing its role in overcoming current treatment challenges, with a focus on breast, prostate, and skin cancers. Biomimetic approaches have been explored to address multidrug resistance (MDR), emphasizing their role in immunotherapy and photothermal therapy. The specific areas covered include biomimetic drug delivery systems bypassing MDR mechanisms, biomimetic platforms for immune checkpoint blockade, immune cell modulation, and photothermal tumor ablation. Pretargeting techniques enhancing radiotherapeutic agent uptake are discussed, along with a comprehensive review of clinical trials of global nanotheranostics. This review delves into biomimetic materials, nanotechnology, and bioinspired strategies for cancer imaging, diagnosis, and targeted drug delivery. These include imaging probes, contrast agents, and biosensors for enhanced specificity and sensitivity. Biomimetic strategies for targeted drug delivery involve the design of nanoparticles, liposomes, and hydrogels for site-specific delivery and improved therapeutic efficacy. Overall, this current review provides valuable information for investigators, clinicians, and biomedical engineers, offering insights into the latest biomimetics applications in cancer theranostics. Leveraging biomimetics aims to revolutionize cancer diagnosis, treatment, and patient outcomes.
Collapse
Affiliation(s)
- Kuttiappan Anitha
- Department of Pharmacology, School of Pharmacy and Technology Management (SPTM), SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Shirpur, 425405, India
| | - Santenna Chenchula
- Department of Clinical Pharmacology, All India Institute of Medical Sciences (AIIMS), Bhopal, 462020, Madhya Pradesh, India
| | - Vijayaraj Surendran
- Dr Kalam College of Pharmacy, Thanjavur District, Tamil Nadu, 614 623, India
| | - Bhatt Shvetank
- School of Health Sciences and Technology, Dr Vishwanath Karad MIT World Peace University, Pune, 411038, Maharashtra, India
| | - Parameswar Ravula
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior, 474005, Madhya Pradesh, India
| | - Rhythm Milan
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior, 474005, Madhya Pradesh, India
| | - Radhika Chikatipalli
- Sri Venkateshwara College of Pharmacy, Chittoor District, Andhra Pradesh, 517520, India
| | - Padmavathi R
- SVS Medical College, Mahbubnagar, Telangana, India
| |
Collapse
|
3
|
Fei J, Liu Y, Zeng Y, Yang M, Chen S, Duan X, Lu L, Chen M. Cancer diagnosis and treatment platform based on manganese-based nanomaterials. Front Bioeng Biotechnol 2024; 12:1363569. [PMID: 38497051 PMCID: PMC10940866 DOI: 10.3389/fbioe.2024.1363569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 01/29/2024] [Indexed: 03/19/2024] Open
Abstract
Cancer is a leading cause of death worldwide, and the development of new diagnostic and treatment methods is crucial. Manganese-based nanomaterials (MnNMs) have emerged as a focal point in the field of cancer diagnosis and treatment due to their multifunctional properties. These nanomaterials have been extensively explored as contrast agents for various imaging technologies such as magnetic resonance imaging (MRI), photoacoustic imaging (PAI), and near-infrared fluorescence imaging (NIR-FL). The use of these nanomaterials has significantly enhanced the contrast for precise tumor detection and localization. Moreover, MnNMs have shown responsiveness to the tumor microenvironment (TME), enabling innovative approaches to cancer treatment. This review provides an overview of the latest developments of MnNMs and their potential applications in tumor diagnosis and therapy. Finally, potential challenges and prospects of MnNMs in clinical applications are discussed. We believe that this review would serve as a valuable resource for guiding further research on the application of manganese nanomaterials in cancer diagnosis and treatment, addressing the current limitations, and proposing future research directions.
Collapse
Affiliation(s)
- Jia Fei
- Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, China
| | - Yanyan Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong, China
| | - Ya Zeng
- Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, China
| | - Mingqi Yang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong, China
| | - Shanshan Chen
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong, China
| | - Xiaobing Duan
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong, China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong, China
| | - Muhe Chen
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong, China
| |
Collapse
|
4
|
Jain P, Jangid AK, Pooja D, Kulhari H. Design of manganese-based nanomaterials for pharmaceutical and biomedical applications. J Mater Chem B 2024; 12:577-608. [PMID: 38116805 DOI: 10.1039/d3tb00779k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
In the past few years, manganese-based nanostructures have been extensively investigated in the biomedical field particularly to design highly biocompatible theranostics, which can not only act as efficient diagnostic imaging contrast agents but also deliver the drugs to the target sites. The nanoscale size, large surface area-to-volume ratio, availability of cheap precursors, flexibility to synthesize nanostructures with reproducible properties and high yield, and easy scale up are the major reasons for the attraction towards manganese nanostructures. Along with these properties, the nontoxic nature, pH-sensitive degradation, and easy surface functionalization are additional benefits for the use of manganese nanostructures in biomedical and pharmaceutical sciences. Therefore, in this review, we discuss the recent progress made in the synthesis of manganese nanostructures, describe the attempts made to modify their surfaces to impart biocompatibility and stability in biological fluids, and critically discuss their use in magnetic resonance imaging, drug and gene delivery, hyperthermia, photothermal/photodynamic, immunotherapy, biosensing and tumor diagnosis.
Collapse
Affiliation(s)
- Poonam Jain
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, 382030, India.
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Limda Road, Vadodara, Gujarat, 391760, India
| | - Ashok Kumar Jangid
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, 382030, India.
| | - Deep Pooja
- School of Pharmacy, National Forensic Sciences University, Sector 9, Gandhinagar, 382007, Gujarat, India.
| | - Hitesh Kulhari
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, 382030, India.
| |
Collapse
|
5
|
Sorouri F, Gholibegloo E, Mortezazadeh T, Kiani S, Foroumadi A, Firoozpour L, Khoobi M. Tannic acid-mediated synthesis of flower-like mesoporous MnO 2 nanostructures as T 1-T 2 dual-modal MRI contrast agents and dual-enzyme mimetic agents. Sci Rep 2023; 13:14606. [PMID: 37670132 PMCID: PMC10480446 DOI: 10.1038/s41598-023-41598-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023] Open
Abstract
This study introduces a simple method for preparing a new generation of MnO2 nanomaterials (MNMs) using tannic acid as a template. Two shapes of MnO2 NMs, flower-like M1-MnO2 and near-spherical M2-MnO2, were prepared and compared as dual-active nanozymes and contrast agents in magnetic resonance imaging (MRI). Various parameters, including the crystallinity, morphology, magnetic saturation (Ms), surface functionality, surface area, and porosity of the MNMs were investigated. Flower-like M1-MnO2 NMs were biocompatible and exhibited pH-sensitive oxidase and peroxidase mimetic activity, more potent than near-spherical M2-MnO2. Furthermore, the signal intensity and r1 relaxivity strongly depended on the crystallinity, morphology, pore size, and specific surface area of the synthesized MNMs. Our findings suggest that flower-like M1-MnO2 NM with acceptable dual-enzyme mimetic (oxidase-like and peroxidase-like) and T1 MRI contrast activities could be employed as a promising theranostic system for future purposes.
Collapse
Affiliation(s)
- Farzaneh Sorouri
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Elham Gholibegloo
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Tohid Mortezazadeh
- Department of Medical Physics, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahar Kiani
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Loghman Firoozpour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Khoobi
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
- Biomaterials Group, Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, 1417614411, Iran.
| |
Collapse
|
6
|
Jiang Y, Gu H, Cai Z, Fu S, Cao Y, Jiang L, Wu C, Chen W, Xia C, Lui S, Song B, Gong Q, Ai H. Ultra-small manganese dioxide nanoparticles with high T1 relaxivity for magnetic resonance angiography. Biomater Sci 2023. [PMID: 37144293 DOI: 10.1039/d3bm00443k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Gadolinium (Gd)-based contrast agents (CAs) for clinical magnetic resonance imaging are facing the problems of low longitudinal relaxivity (r1) and toxicity caused by gadolinium deposition. Manganese-based small molecule complexes and manganese oxide nanoparticles (MONs) are considered as potential alternatives to Gd-based CAs due to their better biocompatibility, but their relatively low r1 values and complicated synthesis routes slow down their clinical translation. Herein, we presented a facile one-step co-precipitation method to prepare MONs using poly(acrylic acid) (PAA) as a coating agent (MnO2/PAA NPs), which exhibited good biocompatibility and high r1 values. A series of MnO2/PAA NPs with different particle sizes were prepared and the relationship between the particle size and r1 was studied, revealing that the MnO2/PAA NPs with a particle size of 4.9 nm exhibited higher r1. The finally obtained MnO2/PAA NPs had a high r1 value (29.0 Mn mM-1 s-1) and a low r2/r1 ratio (1.8) at 1.5 T, resulting in a strong T1 contrast enhancement. In vivo magnetic resonance angiography with Sprague-Dawley (SD) rats further proved that the MnO2/PAA NPs showed better angiographic performance at low-dosage administration than commercial Gadovist® (Gd-DO3A-Butrol). Moreover, the MnO2/PAA NPs could be rapidly cleared out after imaging, which effectively minimized the toxic side effects. The MnO2/PAA NPs are promising candidates for MR imaging of vascular diseases.
Collapse
Affiliation(s)
- Yuting Jiang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China.
| | - Haojie Gu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China.
| | - Zhongyuan Cai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China.
| | - Shengxiang Fu
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yingzi Cao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China.
| | - Lingling Jiang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China.
| | - Changqiang Wu
- Medical Imaging Key Laboratory of Sichuan Province and School of Medical Imaging, North Sichuan Medical College, Nanchong, 637000, China
| | - Wei Chen
- Medical Imaging Key Laboratory of Sichuan Province and School of Medical Imaging, North Sichuan Medical College, Nanchong, 637000, China
| | - Chunchao Xia
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Su Lui
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
- Psychoradiology Research Unit of Chinese Academy of Medical Sciences, Sichuan University, Chengdu, 610041, China
| | - Hua Ai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China.
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
7
|
Watt MM, Moitra P, Sheffield Z, Ostadhossein F, Maxwell EA, Pan D. A narrative review on the role of carbon nanoparticles in oncology. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1845. [PMID: 35975704 DOI: 10.1002/wnan.1845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/19/2022] [Accepted: 07/26/2022] [Indexed: 11/10/2022]
Abstract
The lymphatic system is the first site of metastasis for most tumors and is a common reason for the failure of cancer therapy. The lymphatic system's anatomical properties make it difficult to deliver chemotherapy agents at therapeutic concentrations while avoiding systemic toxicity. Carbon nanoparticles offer a promising alternative for identifying and transporting therapeutic molecules. The larger diameter of lymphatic vessels compared to the diameter of blood vessels, allows carbon nanoparticles to selectively enter the lymphatic system once administered subcutaneously. Carbon nanoparticles stain tumor-draining lymph nodes black following intratumoral injection, making them useful in sentinel lymph node mapping. Drug-loaded carbon nanoparticles allow higher concentrations of chemotherapeutics to accumulate in regional lymph nodes while decreasing plasma drug accumulation. The use of carbon nanoparticles for chemotherapy delivery has been associated with lower mortality, fewer histopathology changes in vital organs, and lower serum concentrations of hepatocellular enzymes. This review will focus on the ability of carbon nanoparticles to target the lymphatics as well as their current and potential applications in sentinel lymph node mapping and oncology treatment regimens. This article is categorized under: Implantable Materials and Surgical Technologies > Nanoscale Tools and Techniques in Surgery.
Collapse
Affiliation(s)
- Meghan M Watt
- Department of Small Animal Clinical Sciences, University of Florida College of Veterinary Medicine, Gainesville, Florida, USA
| | - Parikshit Moitra
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, Health Sciences Facility III, University of Maryland Baltimore School of Medicine, Baltimore, Maryland, USA.,Department of Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Zach Sheffield
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Fatemeh Ostadhossein
- Department of Bioengineering, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Mills Breast Cancer Institute, Urbana, Illinois, USA.,Carle Foundation Hospital, Urbana, Illinois, USA
| | - Elizabeth A Maxwell
- Department of Small Animal Clinical Sciences, University of Florida College of Veterinary Medicine, Gainesville, Florida, USA
| | - Dipanjan Pan
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, Health Sciences Facility III, University of Maryland Baltimore School of Medicine, Baltimore, Maryland, USA.,Department of Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA.,Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland, USA.,Department of Bioengineering, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Mills Breast Cancer Institute, Urbana, Illinois, USA.,Carle Foundation Hospital, Urbana, Illinois, USA.,Department of Diagnostic Radiology and Nuclear Medicine, Health Sciences Facility III, University of Maryland Baltimore, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Wang F, Li N, Wang W, Ma L, Sun Y, Wang H, Zhan J, Yu D. A Multifunctional, Highly Biocompatible, and Double-Triggering Caramelized Nanotheranostic System Loaded with Fe 3O 4 and DOX for Combined Chemo-Photothermal Therapy and Real-Time Magnetic Resonance Imaging Monitoring of Triple Negative Breast Cancer. Int J Nanomedicine 2023; 18:881-897. [PMID: 36844435 PMCID: PMC9948638 DOI: 10.2147/ijn.s393507] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/14/2023] [Indexed: 02/20/2023] Open
Abstract
Purpose Owing to lack of specific molecular targets, the current clinical therapeutic strategy for triple negative breast cancer (TNBC) is still limited. In recent years, some nanosystems for malignancy treatment have received considerable attention. In this study, we prepared caramelized nanospheres (CNSs) loaded with doxorubicin (DOX) and Fe3O4 to achieve the synergistic effect of combined therapy and real-time magnetic resonance imaging (MRI) monitoring, so as to improve the diagnosis and therapeutic effect of TNBC. Methods CNSs with biocompatibility and unique optical properties were prepared by hydrothermal method, DOX and Fe3O4 were loaded on it to obtain Fe3O4/DOX@CNSs nanosystem. Characteristics including morphology, hydrodynamic size, zeta potentials and magnetic properties of Fe3O4/DOX@CNSs were evaluated. The DOX release was evaluated by different pH/near-infrared (NIR) light energy. Biosafety, pharmacokinetics, MRI and therapeutic treatment of Fe3O4@CNSs, DOX and Fe3O4/DOX@CNSs were examined in vitro or in vivo. Results Fe3O4/DOX@CNSs has an average particle size of 160 nm and a zeta potential of 27.5mV, it demonstrated that Fe3O4/DOX@CNSs is a stable and homogeneous dispersed system. The hemolysis experiment of Fe3O4/DOX@CNSs proved that it can be used in vivo. Fe3O4/DOX@CNSs displayed high photothermal conversion efficiency, extensive pH/heat-induced DOX release. 70.3% DOX release is observed under the 808 nm laser in the pH = 5 PBS solution, obviously higher than pH = 5 (50.9%) and pH = 7.4 (less than 10%). Pharmacokinetic experiments indicated the t1/2β, and AUC0-t of Fe3O4/DOX@CNSs were 1.96 and 1.31 -fold higher than those of DOX solution, respectively. Additionally, Fe3O4/DOX@CNSs with NIR had the greatest tumor suppression in vitro and in vivo. Moreover, this nanosystem demonstrated distinct contrast enhancement on T2 MRI to achieve real-time imaging monitoring during treatment. Conclusion Fe3O4/DOX@CNSs is a highly biocompatible, double-triggering and improved DOX bioavailability nanosystem that combines chemo-PTT and real-time MRI monitoring to achieve integration of diagnosis and treatment of TNBC.
Collapse
Affiliation(s)
- Fangqing Wang
- Department of Radiology, Qilu Hospital, Shandong University, Affiliated Hospital of Shandong University, Jinan, 250012, People’s Republic of China
| | - Nianlu Li
- Physical and Chemical Laboratory, Shandong Academy of Occupational Health and Occupational Medicine, Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250002, People’s Republic of China
| | - Wenbo Wang
- Department of Radiology, Qilu Hospital, Shandong University, Affiliated Hospital of Shandong University, Jinan, 250012, People’s Republic of China
| | - Long Ma
- The Testing Center of Shandong Bureau of China Metallurgical Geology Bureau, Shandong Normal University, Jinan, 250014, People’s Republic of China
| | - Yaru Sun
- Department of Nuclear Medicine, The Second Hospital of Shandong University, Affiliated Hospital of Shandong University, Jinan, 250033, People’s Republic of China
| | - Hong Wang
- Department of Radiology, Qilu Hospital, Shandong University, Affiliated Hospital of Shandong University, Jinan, 250012, People’s Republic of China
| | - Jinhua Zhan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People’s Republic of China,Correspondence: Jinhua Zhan, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People’s Republic of China, Email
| | - Dexin Yu
- Department of Radiology, Qilu Hospital, Shandong University, Affiliated Hospital of Shandong University, Jinan, 250012, People’s Republic of China,Dexin Yu, Department of Radiology, Qilu Hospital, Shandong University, Affiliated Hospital of Shandong University, Jinan, 250012, People’s Republic of China, Tel +86-18560081629, Fax +86-531-86927544, Email
| |
Collapse
|
9
|
Hegedűs N, Forgách L, Kiss B, Varga Z, Jezsó B, Horváth I, Kovács N, Hajdrik P, Padmanabhan P, Gulyás B, Szigeti K, Máthé D. Synthesis and preclinical application of a Prussian blue-based dual fluorescent and magnetic contrast agent (CA). PLoS One 2022; 17:e0264554. [PMID: 35857783 PMCID: PMC9299340 DOI: 10.1371/journal.pone.0264554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/12/2022] [Indexed: 11/21/2022] Open
Abstract
The aim of this study was to develop and characterize a Prussian Blue based biocompatible and chemically stable T1 magnetic resonance imaging (MRI) contrast agent with near infrared (NIR) optical contrast for preclinical application. The physical properties of the Prussian blue nanoparticles (PBNPs) (iron (II); iron (III);octadecacyanide) were characterized with dynamic light scattering (DLS), zeta potential measurement, atomic force microscopy (AFM), and transmission electron microscopy (TEM). In vitro contrast enhancement properties of PBNPs were determined by MRI. In vivo T1-weighted contrast of the prepared PBNPs was investigated by MRI and optical imaging modality after intravenous administration into NMRI-Foxn1 nu/nu mice. The biodistribution studies showed the presence of PBNPs predominantly in the cardiovascular system. Briefly, in this paper we show a novel approach for the synthesis of PBNPs with enhanced iron content for T1 MRI contrast. This newly synthetized PBNP platform could lead to a new diagnostic agent, replacing the currently used Gadolinium based substances.
Collapse
Affiliation(s)
- Nikolett Hegedűs
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - László Forgách
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Bálint Kiss
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Zoltán Varga
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Science, Budapest, Hungary
| | - Bálint Jezsó
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Science, Budapest, Hungary
| | - Ildikó Horváth
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Noémi Kovács
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Polett Hajdrik
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Cognitive Neuroimaging Centre, Nanyang Technological University, Singapore, Singapore
| | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Cognitive Neuroimaging Centre, Nanyang Technological University, Singapore, Singapore
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Krisztián Szigeti
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Domokos Máthé
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
- CROmed Translational Research Centers, Budapest, Hungary
- In Vivo Imaging Advanced Core Facility, Hungarian Center of Excellence for Molecular Medicine (HCEMM), Budapest, Hungary
| |
Collapse
|
10
|
Uselman TW, Medina CS, Gray HB, Jacobs RE, Bearer EL. Longitudinal manganese-enhanced magnetic resonance imaging of neural projections and activity. NMR IN BIOMEDICINE 2022; 35:e4675. [PMID: 35253280 PMCID: PMC11064873 DOI: 10.1002/nbm.4675] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/19/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Manganese-enhanced magnetic resonance imaging (MEMRI) holds exceptional promise for preclinical studies of brain-wide physiology in awake-behaving animals. The objectives of this review are to update the current information regarding MEMRI and to inform new investigators as to its potential. Mn(II) is a powerful contrast agent for two main reasons: (1) high signal intensity at low doses; and (2) biological interactions, such as projection tracing and neural activity mapping via entry into electrically active neurons in the living brain. High-spin Mn(II) reduces the relaxation time of water protons: at Mn(II) concentrations typically encountered in MEMRI, robust hyperintensity is obtained without adverse effects. By selectively entering neurons through voltage-gated calcium channels, Mn(II) highlights active neurons. Safe doses may be repeated over weeks to allow for longitudinal imaging of brain-wide dynamics in the same individual across time. When delivered by stereotactic intracerebral injection, Mn(II) enters active neurons at the injection site and then travels inside axons for long distances, tracing neuronal projection anatomy. Rates of axonal transport within the brain were measured for the first time in "time-lapse" MEMRI. When delivered systemically, Mn(II) enters active neurons throughout the brain via voltage-sensitive calcium channels and clears slowly. Thus behavior can be monitored during Mn(II) uptake and hyperintense signals due to Mn(II) uptake captured retrospectively, allowing pairing of behavior with neural activity maps for the first time. Here we review critical information gained from MEMRI projection mapping about human neuropsychological disorders. We then discuss results from neural activity mapping from systemic Mn(II) imaged longitudinally that have illuminated development of the tonotopic map in the inferior colliculus as well as brain-wide responses to acute threat and how it evolves over time. MEMRI posed specific challenges for image data analysis that have recently been transcended. We predict a bright future for longitudinal MEMRI in pursuit of solutions to the brain-behavior mystery.
Collapse
Affiliation(s)
- Taylor W. Uselman
- University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | | | - Harry B. Gray
- Beckman Institute, California Institute of Technology, Pasadena, California, USA
| | - Russell E. Jacobs
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Elaine L. Bearer
- University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
- Beckman Institute, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
11
|
Arkaban H, Karimi Shervedani R, Yaghoobi F, Kefayat A, Ghahremani F. Imaging and therapeutic capabilities of the AuNPs@MnCO3/Mn3O4, coated with PAA and integrated with folic acid, doxorubicin and propidium iodide for murine breast cancer. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102818] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
12
|
Green Synthesis of Metal and Metal Oxide Nanoparticles Using Different Plants’ Parts for Antimicrobial Activity and Anticancer Activity: A Review Article. COATINGS 2021. [DOI: 10.3390/coatings11111374] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nanotechnology emerged as a scientific innovation in the 21st century. Metallic nanoparticles (metal or metal oxide nanoparticles) have attained remarkable popularity due to their interesting biological, physical, chemical, magnetic, and optical properties. Metal-based nanoparticles can be prepared by utilizing different biological, physical, and chemical methods. The biological method is preferred as it provides a green, simple, facile, ecofriendly, rapid, and cost-effective route for the green synthesis of nanoparticles. Plants have complex phytochemical constituents such as carbohydrates, amino acids, phenolics, flavonoids, terpenoids, and proteins, which can behave as reducing and stabilizing agents. However, the mechanism of green synthesis by using plants is still highly debatable. In this report, we summarized basic principles or mechanisms of green synthesis especially for metal or metal oxide (i.e., ZnO, Au, Ag, and TiO2, Fe, Fe2O3, Cu, CuO, Co) nanoparticles. Finally, we explored the medical applications of plant-based nanoparticles in terms of antibacterial, antifungal, and anticancer activity.
Collapse
|
13
|
Geraldes CF, Castro MMC, Peters JA. Mn(III) porphyrins as potential MRI contrast agents for diagnosis and MRI-guided therapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Zhu D, Zhu XH, Ren SZ, Lu YD, Zhu HL. Manganese dioxide (MnO2) based nanomaterials for cancer therapies and theranostics. J Drug Target 2021; 29:911-924. [DOI: 10.1080/1061186x.2020.1815209] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dan Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiao-Hua Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Shen-Zhen Ren
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ya-Dong Lu
- Childrens Hospital, Neonatal Medical Center, Nanjing Medical University, Nanjing, China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
15
|
Tran HP, Jiang Y, Nguyen PH, Kim JJ, Yang SG. Retinoic acid-conjugated chitosan/manganese porphyrin ionic-complex nanoparticles for improved T 1 contrast MR imaging of hepatic fibrosis. J Biomed Mater Res B Appl Biomater 2021; 110:382-391. [PMID: 34309195 DOI: 10.1002/jbm.b.34914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/21/2021] [Accepted: 06/27/2021] [Indexed: 11/09/2022]
Abstract
Noninvasive and precise diagnosis of hepatic fibrosis is very important for the preventive therapeutic regimen of hepatic cirrhosis and cancer. In this study, we fabricated T1 contrast Mn-porphyrin (MnTPPS4 )/retinoic acid-chitosan ionic-complex nanoparticles (MRC NPs). The functional properties of MRC NPs were evaluated via transmission electron microscopy (TEM) imaging, release study, cytotoxicity assay, hepatocyte-specific uptake assay, and magnetic resonance (MR) imaging study. TEM images confirmed the typical structure of an ionic-complex NPs with around 100-200 nm of diameter. MnTPPS4 is released from MRC NPs for up to 24 hr in controlled pattern which implies that more reliable and convenient hepatic MR imaging is possible using of MRC NPs in clinical practice. Hepatocytes uptake assay proved retinoic acid-specific targeting of MRC NPs. The same results were observed in animal pharmacokinetic studies. In vitro MR phantom study, MRC NPs showed an increased T1 relaxivity (r1 = 6.772 mM-1 s-1 ) in comparison with 3.242 mM-1 s-1 of MnTPPS4 . The result was confirmed again in vivo MR imaging studies. Taken together, MRC NPs displayed a potential for noninvasive diagnostic T1 MR imaging of hepatic fibrosis with improved target specificity and prolonged MR imaging time window.
Collapse
Affiliation(s)
- Hoa Phuong Tran
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon, South Korea.,Inha Institute of Aerospace Medicine, Inha University College of Medicine, Incheon, South Korea
| | - Yixin Jiang
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon, South Korea.,Inha Institute of Aerospace Medicine, Inha University College of Medicine, Incheon, South Korea
| | - Phuong Hong Nguyen
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon, South Korea.,Inha Institute of Aerospace Medicine, Inha University College of Medicine, Incheon, South Korea.,Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - Jung Joo Kim
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon, South Korea
| | - Su-Geun Yang
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon, South Korea.,Inha Institute of Aerospace Medicine, Inha University College of Medicine, Incheon, South Korea
| |
Collapse
|
16
|
Poon K, Lu Z, De Deene Y, Ramaswamy Y, Zreiqat H, Singh G. Tuneable manganese oxide nanoparticle based theranostic agents for potential diagnosis and drug delivery. NANOSCALE ADVANCES 2021; 3:4052-4061. [PMID: 36132835 PMCID: PMC9419237 DOI: 10.1039/d0na00991a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 06/04/2021] [Indexed: 06/16/2023]
Abstract
Among various magnetic nanoparticles, manganese oxide nanoparticles are considered as established T 1 magnetic resonance imaging (MRI) contrast agents for preclinical research. The implications of their degradation properties and use as therapeutic carriers in drug delivery systems have not been explored. In addition, how the chemical composition and size of manganese oxide nanoparticles, as well as the surrounding environment, influence their degradation and MRI contrast properties (T 1 vs. T 2) have not been studied in great detail. A fundamental understanding of their characteristic properties, such as degradation, is highly desirable for developing simultaneous diagnosis and therapeutic solutions. Here, we demonstrate how the precursor type and reaction environment affect the size and chemical composition of manganese oxide nanoparticles and evaluate their influence on the nanoparticle degradability and release of the drug l-3,4-dihydroxyphenylalanine (l-dopa). The results show that the degradation rate (and the associated release of drug l-dopa molecules) of manganese oxide nanoparticles depends on their size, composition and the surrounding environment (aqueous or biometric fluid). The dependence of MRI relaxivities of manganese oxide nanoparticles on the size, chemical composition and nanoparticle degradation in water is also established. A preliminary cell viability study reveals the cytocompatible properties of l-dopa functionalized manganese oxide nanoparticles. Overall, this work provides new insights into smartly designed manganese oxide nanoparticles with multitasking capabilities to target bioimaging and therapeutic applications.
Collapse
Affiliation(s)
- Kingsley Poon
- ARC Centre for Innovative BioEngineering, Tissue Engineering and Biomaterials Research Unit, Sydney Nano Institute, School of Biomedical Engineering, The University of Sydney NSW 2008 Australia
| | - Zufu Lu
- ARC Centre for Innovative BioEngineering, Tissue Engineering and Biomaterials Research Unit, Sydney Nano Institute, School of Biomedical Engineering, The University of Sydney NSW 2008 Australia
| | - Yves De Deene
- Department of Engineering, The Biomedical Engineering Laboratory, Macquarie University Sydney 2109 Australia
| | - Yogambha Ramaswamy
- ARC Centre for Innovative BioEngineering, Tissue Engineering and Biomaterials Research Unit, Sydney Nano Institute, School of Biomedical Engineering, The University of Sydney NSW 2008 Australia
| | - Hala Zreiqat
- ARC Centre for Innovative BioEngineering, Tissue Engineering and Biomaterials Research Unit, Sydney Nano Institute, School of Biomedical Engineering, The University of Sydney NSW 2008 Australia
| | - Gurvinder Singh
- ARC Centre for Innovative BioEngineering, Tissue Engineering and Biomaterials Research Unit, Sydney Nano Institute, School of Biomedical Engineering, The University of Sydney NSW 2008 Australia
| |
Collapse
|
17
|
Ray P, Moitra P, Pan D. Emerging theranostic applications of carbon dots and its variants. VIEW 2021. [DOI: 10.1002/viw.20200089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Priyanka Ray
- Department of Chemical Biochemical, and Environmental Engineering University of Maryland Baltimore County Baltimore Maryland USA
- Department of Diagnostic Radiology and Nuclear Medicine University of Maryland Baltimore Baltimore Maryland USA
| | - Parikshit Moitra
- Department of Chemical Biochemical, and Environmental Engineering University of Maryland Baltimore County Baltimore Maryland USA
- Department of Pediatrics Center for Blood Oxygen Transport and Hemostasis University of Maryland Baltimore School of Medicine Baltimore Maryland USA
| | - Dipanjan Pan
- Department of Chemical Biochemical, and Environmental Engineering University of Maryland Baltimore County Baltimore Maryland USA
- Department of Pediatrics Center for Blood Oxygen Transport and Hemostasis University of Maryland Baltimore School of Medicine Baltimore Maryland USA
- Department of Diagnostic Radiology and Nuclear Medicine University of Maryland Baltimore Baltimore Maryland USA
| |
Collapse
|
18
|
Aminolroayaei F, Shahbazi‐Gahrouei D, Shahbazi‐Gahrouei S, Rasouli N. Recent nanotheranostics applications for cancer therapy and diagnosis: A review. IET Nanobiotechnol 2021; 15:247-256. [PMID: 34694670 PMCID: PMC8675832 DOI: 10.1049/nbt2.12021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/20/2020] [Accepted: 10/27/2020] [Indexed: 12/19/2022] Open
Abstract
Nanotheranostics has attracted much attention due to its widespread application in molecular imaging and cancer therapy. Molecular imaging using nanoparticles has attracted special attention in the diagnosis of cancer at early stages. With the progress made in nanotheranostics, studying drug release, accumulation in the target tissue, biodistribution, and treatment effectiveness are other important factors. However, according to the studies conducted in this regard, each nanoparticle has some advantages and limitations that should be examined and then used in clinical applications. The main goal of this review is to explore the recent advancements in nanotheranostics for cancer therapy and diagnosis. Then, it is attempted to present recent studies on nanotheranostics used as a contrast agent in various imaging modalities and a platform for cancer therapy.
Collapse
Affiliation(s)
- Fahimeh Aminolroayaei
- Department of Medical PhysicsSchool of MedicineIsfahan University of Medical SciencesIsfahanIran
| | | | | | - Naser Rasouli
- Department of Medical PhysicsSchool of MedicineIsfahan University of Medical SciencesIsfahanIran
| |
Collapse
|
19
|
A R, Yao Y, Guo X, Jiang W, Jiang M, Yang J, Li Y, Atinuke OO, Hu X, Li Y, Wang X, Yang L, Yang X, Wang K, Hu J, Sun X. Precise Cancer Anti-acid Therapy Monitoring Using pH-Sensitive MnO 2@BSA Nanoparticles by Magnetic Resonance Imaging. ACS APPLIED MATERIALS & INTERFACES 2021; 13:18604-18618. [PMID: 33856200 DOI: 10.1021/acsami.1c04310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Microfluctuations in a pH gradient create a harsh microenvironment in tumors, leaving behind the most aggressive, invasive, and drug-resistant tumor cells. Directly visualizing the spatiotemporal distribution of pH variations and accurately quantifying the dynamic acid-base changes during cancer treatment are critical to estimate prognosis and to evaluate therapeutic efficacy. However, the quantification of subtle pH variations dynamically and noninvasively remains challenging. The purpose of this study is to determine and visualize dynamic acid-base changes in solid tumors during anti-acid treatments by magnetic resonance imaging (MRI) using pH-sensitive nanoparticles. We report the development of pH-sensitive nanoparticles, MnO2@BSA, that rapidly and strongly amplify the MR contrast signal in response to the extracellular acidic environment of solid tumors. The spatiotemporal distribution and dynamic fluctuations of pH heterogeneity in NCI-H460 lung tumors were observed with MnO2@BSA at different time points after an anti-acid treatment with esomeprazole, which directly interferes with the acidic microenvironment of the tumor. Imaging results were validated using a pH microsensor. MRI of pH-sensitive MnO2@BSA nanoparticles provided direct readouts of the kinetics of pH gradient fluctuations during esomeprazole treatment. A significant MR signal reduction was observed at the 48 h time point after treatment. The manipulated extracellular pH changes detected noninvasively by MRI coincided with the extracellular pH fluctuations measured with a pH microsensor (pH 6.12-6.63). Immunofluorescence and Western blot analyses confirmed the expression of V-ATPase in NCI-H460 lung cancer cells, which could be inhibited by esomeprazole, as detected by ELISA assay. Overall, these results demonstrate that MnO2@BSA MRI has great potential as a noninvasive tool to accurately monitor pH fluctuations, thereby paving the way for the dynamic detection of acidic microenvironments in vivo without the need for pH microsensors.
Collapse
Affiliation(s)
- Rong A
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin 150028, China
- Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin 150028, China
| | - Yuzhu Yao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaolu Guo
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin 150028, China
| | - Weiqi Jiang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin 150028, China
- Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin 150028, China
| | - Meng Jiang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin 150028, China
- Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin 150028, China
| | - Jie Yang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin 150028, China
- Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin 150028, China
| | - Yingbo Li
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin 150028, China
- Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin 150028, China
| | - Olagbaju Oluwatosin Atinuke
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin 150028, China
- Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin 150028, China
| | - Xuesong Hu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin 150028, China
- Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin 150028, China
| | - Yuanyuan Li
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin 150028, China
- Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin 150028, China
| | - Xiance Wang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin 150028, China
| | - Lili Yang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin 150028, China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kai Wang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin 150028, China
- Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin 150028, China
| | - Jun Hu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xilin Sun
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin 150028, China
- Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin 150028, China
| |
Collapse
|
20
|
Zhou J, Rao L, Yu G, Cook TR, Chen X, Huang F. Supramolecular cancer nanotheranostics. Chem Soc Rev 2021; 50:2839-2891. [PMID: 33524093 DOI: 10.1039/d0cs00011f] [Citation(s) in RCA: 213] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Among the many challenges in medicine, the treatment and cure of cancer remains an outstanding goal given the complexity and diversity of the disease. Nanotheranostics, the integration of therapy and diagnosis in nanoformulations, is the next generation of personalized medicine to meet the challenges in precise cancer diagnosis, rational management and effective therapy, aiming to significantly increase the survival rate and improve the life quality of cancer patients. Different from most conventional platforms with unsatisfactory theranostic capabilities, supramolecular cancer nanotheranostics have unparalleled advantages in early-stage diagnosis and personal therapy, showing promising potential in clinical translations and applications. In this review, we summarize the progress of supramolecular cancer nanotheranostics and provide guidance for designing new targeted supramolecular theranostic agents. Based on extensive state-of-the-art research, our review will provide the existing and new researchers a foundation from which to advance supramolecular cancer nanotheranostics and promote translationally clinical applications.
Collapse
Affiliation(s)
- Jiong Zhou
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | | | | | | | | | | |
Collapse
|
21
|
El-Fakharany EM. Nanoformulation of lactoferrin potentiates its activity and enhances novel biotechnological applications. Int J Biol Macromol 2020; 165:970-984. [PMID: 33011258 DOI: 10.1016/j.ijbiomac.2020.09.235] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 02/08/2023]
|
22
|
Fathi P, Pan D. Current trends in pyrrole and porphyrin-derived nanoscale materials for biomedical applications. Nanomedicine (Lond) 2020; 15:2493-2515. [PMID: 32975469 PMCID: PMC7610151 DOI: 10.2217/nnm-2020-0125] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 08/14/2020] [Indexed: 02/01/2023] Open
Abstract
This article is written to provide an up-to-date review of pyrrole-based biomedical materials. Porphyrins and other tetrapyrrolic molecules possess unique magnetic, optical and other photophysical properties that make them useful for bioimaging and therapy. This review touches briefly on some of the synthetic strategies to obtain porphyrin- and tetrapyrrole-based nanoparticles, as well as the variety of applications in which crosslinked, self-assembled, porphyrin-coated and other nanoparticles are utilized. We explore examples of these nanoparticles' applications in photothermal therapy, drug delivery, photodynamic therapy, stimuli response, fluorescence imaging, photoacoustic imaging, magnetic resonance imaging, computed tomography and positron emission tomography. We anticipate that this review will provide a comprehensive summary of pyrrole-derived nanoparticles and provide a guideline for their further development.
Collapse
Affiliation(s)
- Parinaz Fathi
- Departments of Bioengineering, Materials Science & Engineering & Beckman Institute, University of Illinois, Urbana, IL 61801, USA
- Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL 61801, USA
| | - Dipanjan Pan
- Departments of Bioengineering, Materials Science & Engineering & Beckman Institute, University of Illinois, Urbana, IL 61801, USA
- Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL 61801, USA
- Departments of Diagnostic Radiology & Nuclear Medicine & Pediatrics, University of Maryland Baltimore, Health Sciences Facility III, 670 W Baltimore St., Baltimore, MD 21201, USA
- Department of Chemical, Biochemical & Environmental Engineering, University of Maryland Baltimore County, Interdisciplinary Health Sciences Facility, 1000 Hilltop Circle Baltimore, MD 21250, USA
| |
Collapse
|
23
|
Raja IS, Kang MS, Kim KS, Jung YJ, Han DW. Two-Dimensional Theranostic Nanomaterials in Cancer Treatment: State of the Art and Perspectives. Cancers (Basel) 2020; 12:E1657. [PMID: 32580528 PMCID: PMC7352353 DOI: 10.3390/cancers12061657] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/11/2020] [Accepted: 06/17/2020] [Indexed: 12/12/2022] Open
Abstract
As the combination of therapies enhances the performance of biocompatible materials in cancer treatment, theranostic therapies are attracting increasing attention rather than individual approaches. In this review, we describe a variety of two-dimensional (2D) theranostic nanomaterials and their efficacy in ablating tumors. Though many literature reports are available to demonstrate the potential application of 2D nanomaterials, we have reviewed here cancer-treating therapies based on such multifunctional nanomaterials abstracting the content from literature works which explain both the in vitro and in vivo level of applications. In addition, we have included a discussion about the future direction of 2D nanomaterials in the field of theranostic cancer treatment.
Collapse
Affiliation(s)
| | - Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea;
| | - Ki Su Kim
- Department of Organic Materials Science and Engineering, College of Engineering, Pusan National University, Busan 46241, Korea
| | - Yu Jin Jung
- Research Centre for Advanced Specialty Chemicals, Division of Specialty and Bio-based Chemicals Technology, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44412, Korea
| | - Dong-Wook Han
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Korea;
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea;
| |
Collapse
|
24
|
Yaghoobi F, Karimi shervedani R, Torabi M, Kefayat A, Ghahremani F, Farzadniya A. Therapeutic effect of deferrioxamine conjugated to PEGylated gold nanoparticles and complexed with Mn(II) beside the CT scan and MRI diagnostic studies. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123917] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Xu C, Chen X, Yang M, Yuan X, Zhao A, Bao H. Simple strategy for single-chain fragment antibody-conjugated probe construction. Life Sci 2019; 239:117052. [PMID: 31733318 DOI: 10.1016/j.lfs.2019.117052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/29/2019] [Accepted: 11/07/2019] [Indexed: 11/29/2022]
Abstract
AIMS A combination of biomarker and instrument technology diagnosis methods, especially antigen-targeted imaging methods, is required to increase the accuracy of the diagnosis of cancer. Currently, the targeting efficiency is limited by the conjugation methods used for the conjugation of antibodies and imaging materials. Here, a simple strategy for the conjugation of a probe and a single-chain fragment antibody (scFv) that does not change the characteristics of the antibody was shown. MAIN METHODS An ScFv was conjugated with superparamagnetic iron oxide (SPIO) or indocyanine green (ICG) via a linker by utilizing the reaction between cysteine and maleimide. The characterization of the probe was performed by flow cytometry, confocal imaging, optical imaging and magnetic resonance imaging (MRI). KEY FINDINGS After conjugation, the scFv retained high affinity, antigen specificity, and strong internalization ability. The application of the conjugated probe was also confirmed by optical imaging and MRI. SIGNIFICANCE The proposed strategy provides a simple method for the production of high efficiency antigen-targeted imaging probes for tumor diagnosis.
Collapse
Affiliation(s)
- Chen Xu
- Laboratory Science Department, Tianjin 4th Central Hospital, Tianjin, China, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiang Chen
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mingjuan Yang
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaopeng Yuan
- Zhujiang Hospital, Southern Medical University, Guangzhou, China, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Aizhi Zhao
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Hujing Bao
- Integrative Medical Diagnosis Laboratory, Tianjin Nankai Hospital, Room 441, 4th Floor of Outpatient Building, Changjiang Road #6, Nankai District, Tianjin, 300100, China.
| |
Collapse
|
26
|
Cai X, Zhu Q, Zeng Y, Zeng Q, Chen X, Zhan Y. Manganese Oxide Nanoparticles As MRI Contrast Agents In Tumor Multimodal Imaging And Therapy. Int J Nanomedicine 2019; 14:8321-8344. [PMID: 31695370 PMCID: PMC6814316 DOI: 10.2147/ijn.s218085] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 10/02/2019] [Indexed: 01/09/2023] Open
Abstract
Contrast agents (CAs) play a crucial role in high-quality magnetic resonance imaging (MRI) applications. At present, as a result of the Gd-based CAs which are associated with renal fibrosis as well as the inherent dark imaging characteristics of superparamagnetic iron oxide nanoparticles, Mn-based CAs which have a good biocompatibility and bright images are considered ideal for MRI. In addition, manganese oxide nanoparticles (MONs, such as MnO, MnO2, Mn3O4, and MnOx) have attracted attention as T1-weighted magnetic resonance CAs due to the short circulation time of Mn(II) ion chelate and the size-controlled circulation time of colloidal nanoparticles. In this review, recent advances in the use of MONs as MRI contrast agents for tumor detection and diagnosis are reported, as are the advances in in vivo toxicity, distribution and tumor microenvironment-responsive enhanced tumor chemotherapy and radiotherapy as well as photothermal and photodynamic therapies.
Collapse
Affiliation(s)
- Xiaoxia Cai
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, People’s Republic of China
| | - Qingxia Zhu
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, People’s Republic of China
| | - Yun Zeng
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, People’s Republic of China
| | - Qi Zeng
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, People’s Republic of China
| | - Xueli Chen
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, People’s Republic of China
| | - Yonghua Zhan
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, People’s Republic of China
| |
Collapse
|
27
|
Samiei Foroushani M, Niroumand N, Karimi Shervedani R, Yaghoobi F, Kefayat A, Torabi M. A theranostic system based on nanocomposites of manganese oxide nanoparticles and a pH sensitive polymer: Preparation, and physicochemical characterization. Bioelectrochemistry 2019; 130:107347. [PMID: 31437809 DOI: 10.1016/j.bioelechem.2019.107347] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 08/04/2019] [Accepted: 08/05/2019] [Indexed: 01/17/2023]
Abstract
A multifunctional nanocomposite theranostic system is constructed of manganese oxide (Mn3O4) nanoparticles (NPs), as a tumor diagnostic agent, in conjunction with polyacrylic acid (PAA), as a pH-sensitive drug delivery agent, and methotrexate (MTX), as a model of targeting agent and anticancer drug. Physicochemical characteristics of the Mn3O4@PAA/MTX system is studied in detail by several techniques, including X-ray and Auger photoelectron spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, and electrochemical methods. The system performance is studied based on (i) in-vitro MRI measurements to support efficiency of the Mn3O4@PAA NPs as a diagnostic agent, (ii) drug release performance of the Mn3O4@PAA/MTX NPs at pHs of 5.4 and 7.4 through in-vitro method to evaluate application of the NPs as pH-sensitive nanocarriers for MTX, and (iii) impedance spectroscopy measurements to show Mn3O4@PAA/MTX NPs affinity for capturing of cancer cells. The results show that (i) Mn3O4@PAA NPs can be used as a contrast agent in MRI measurements (r1 ≅ 6.5 mM-1 s-1), (ii) the MTX, loaded on Mn3O4@PAA NPs, is released faster and more efficient at pH 5.4 than 7.4, and (iii) the GC-Mn3O4@PAA/MTX electrode system captures the 4T1 cells 3.32 times larger than L929 cells.
Collapse
Affiliation(s)
| | - Nazanin Niroumand
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | | | - Fatemeh Yaghoobi
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | - Amirhosein Kefayat
- Department of Oncology, Cancer Prevention Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Mostafa Torabi
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| |
Collapse
|
28
|
Liu Y, Yu Q, Chang J, Wu C. Nanobiomaterials: from 0D to 3D for tumor therapy and tissue regeneration. NANOSCALE 2019; 11:13678-13708. [PMID: 31292580 DOI: 10.1039/c9nr02955a] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Nanobiomaterials have attracted tremendous attention in the biomedical field. Especially in the past few years, a large number of low dimensional nanobiomaterials, including 0D nanostructures, 1D nanotubes and 2D nanosheets, were employed for tumor therapy due to their optically triggered tumor therapy effects and drug loading capacities. However, these low dimensional nanobiomaterials cannot support cell adhesion and possess poor tissue regeneration ability, thus they are not suitable for application in regenerative medicine. Three dimensional (3D) nanofiber scaffolds have attracted extensive attention in tissue regeneration, including bone, skin, nerve and cardiac tissues, due to their similar extracellular matrix structures. Additionally, many 3D scaffolds displayed bone and cartilage regeneration abilities. Therefore, to obtain materials with both tumor therapy and tissue regeneration abilities, it is meaningful and necessary to develop 3D nanobiomaterials with multifunctions. In this review, we systematically review the research progress of nanobiomaterials with varied dimensional structures including 0D, 1D, 2D and 3D, as well as evolutional functions from single tumor therapy to simultaneous tumor therapy and tissue regeneration. This review may pave the way for developing an interdisciplinary research of nanobiomaterials in combination of tumor therapy and regenerative medicine.
Collapse
Affiliation(s)
- Yaqin Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China. and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Qingqing Yu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China. and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jiang Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China. and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China. and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
29
|
Wang P, Xu X, Wang Y, Zhou B, Qu J, Li J, Shen M, Xia J, Shi X. Zwitterionic Polydopamine-Coated Manganese Oxide Nanoparticles with Ultrahigh Longitudinal Relaxivity for Tumor-Targeted MR Imaging. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4336-4341. [PMID: 30813726 DOI: 10.1021/acs.langmuir.9b00013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We present the design of antifouling zwitterion-functionalized manganese oxide (Mn3O4) nanoparticles (NPs) modified with folic acid (FA) for targeted tumor magnetic resonance (MR) imaging. In the current work, diethylene glycol-stabilized Mn3O4 NPs were initially prepared via a solvothermal approach, coated with polydopamine (PDA), fluorescently labeled with rhodamine B, conjugated with FA via amide bond formation, and finally covered with zwitterions of l-lysine (Lys). The thus-generated multifunctional Mn3O4 NPs display excellent water dispersibility and colloidal stability, good protein resistance ability, and desirable cytocompatibility. With the PDA and Lys modifications, the multifunctional Mn3O4 NPs own an ultrahigh r1 relaxivity (89.30 mM-1 s-1) and enable targeted tumor MR imaging, owing to the linked FA ligands. The designed antifouling zwitterion-functionalized Mn3O4 NPs may be employed as an excellent MR contrast agent for targeted MR imaging of other biological systems.
Collapse
Affiliation(s)
- Peng Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , People's Republic of China
| | - Xiaoying Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , People's Republic of China
| | - Yue Wang
- Department of Radiology , Shanghai Songjiang District Central Hospital , Shanghai 201600 , People's Republic of China
| | - Benqing Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , People's Republic of China
| | - Jiao Qu
- Department of Radiology , Shanghai Songjiang District Central Hospital , Shanghai 201600 , People's Republic of China
| | - Jin Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , People's Republic of China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , People's Republic of China
| | - Jindong Xia
- Department of Radiology , Shanghai Songjiang District Central Hospital , Shanghai 201600 , People's Republic of China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , People's Republic of China
| |
Collapse
|
30
|
Nascimento BFO, Pereira NAM, Valente AJM, Pinho E Melo TMVD, Pineiro M. A Review on (Hydro)Porphyrin-Loaded Polymer Micelles: Interesting and Valuable Platforms for Enhanced Cancer Nanotheranostics. Pharmaceutics 2019; 11:E81. [PMID: 30769938 PMCID: PMC6410025 DOI: 10.3390/pharmaceutics11020081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/07/2019] [Accepted: 02/12/2019] [Indexed: 12/24/2022] Open
Abstract
Porphyrins are known therapeutic agents for photodynamic therapy of cancer and also imaging agents for NIR fluorescence imaging, MRI, or PET. A combination of interesting features makes tetrapyrrolic macrocycles suitable for use as theranostic agents whose full potential can be achieved using nanocarriers. This review provides an overview on nanotheranostic agents based on polymeric micelles and porphyrins developed so far.
Collapse
Affiliation(s)
- Bruno F O Nascimento
- CQC and Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal.
| | - Nelson A M Pereira
- CQC and Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal.
| | - Artur J M Valente
- CQC and Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal.
| | | | - Marta Pineiro
- CQC and Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal.
| |
Collapse
|
31
|
Shao S, Rajendiran V, Lovell JF. Metalloporphyrin Nanoparticles: Coordinating Diverse Theranostic Functions. Coord Chem Rev 2019; 379:99-120. [PMID: 30559508 PMCID: PMC6294123 DOI: 10.1016/j.ccr.2017.09.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Metalloporphyrins serve key roles in natural biological processes and also have demonstrated utility for biomedical applications. They can be encapsulated or grafted in conventional nanoparticles or can self-assemble themselves at the nanoscale. A wide range of metals can be stably chelated either before or after porphyrin nanoparticle formation, without the necessity of any additional chelator chemistry. The addition of metals can substantially alter a range of behaviors such as modulating phototherapeutic efficacy; conferring responsiveness to biological stimuli; or providing contrast for magnetic resonance, positron emission or surface enhanced Raman imaging. Chelated metals can also provide a convenient handle for bioconjugation with other molecules via axial coordination. This review provides an overview of some recent biomedical, nanoparticulate approaches involving gain-of-function metalloporphyrins and related molecules.
Collapse
Affiliation(s)
- Shuai Shao
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260, USA
| | - Venugopal Rajendiran
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260, USA
- Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu, Thiruvarur 610 005, India
| | - Jonathan F. Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260, USA
| |
Collapse
|
32
|
Wen J, Zhao Z, Tong R, Huang L, Miao Y, Wu J. Prussian Blue Nanoparticle-Labeled Mesenchymal Stem Cells: Evaluation of Cell Viability, Proliferation, Migration, Differentiation, Cytoskeleton, and Protein Expression In Vitro. NANOSCALE RESEARCH LETTERS 2018; 13:329. [PMID: 30350300 PMCID: PMC6197343 DOI: 10.1186/s11671-018-2730-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 09/24/2018] [Indexed: 02/05/2023]
Abstract
Mesenchymal stem cells (MSCs) have been used for the treatment of various human diseases. To better understand the mechanism of this action and the fate of these cells, magnetic resonance imaging (MRI) has been used for the tracking of transplanted stem cells. Prussian blue nanoparticles (PBNPs) have been demonstrated to have the ability of labeling cells to visualize them as an effective MRI contrast agent. In this study, we aimed to investigate the efficiency and biological effects of labeled MSCs using PBNPs. We first synthesized and characterized the PBNPs. Then, iCELLigence real-time cell analysis system revealed that PBNPs did not significantly alter cell viability, proliferation, and migration activity in PBNP-labeled MSCs. Oil Red O staining and Alizarin Red staining revealed that labeled MSCs also have a normal differentiation capacity. Phalloidin staining showed no negative effect of PBNPs on the cytoskeleton. Western blot analysis indicated that PBNPs also did not change the expression of β-catenin and vimentin of MSCs. In vitro MRI, the pellets of the MSCs incubated with PBNPs showed a clear MRI signal darkening effect. In conclusion, PBNPs can be effectively used for the labeling of MSCs and will not influence the biological characteristics of MSCs.
Collapse
Affiliation(s)
- Jirui Wen
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, No17, 3rd section, Renmin Nanlu Road, Chengdu, 610041, Sichuan, China.,Department of Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Chengdu, China
| | - Zhiwei Zhao
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, No17, 3rd section, Renmin Nanlu Road, Chengdu, 610041, Sichuan, China
| | - Ruijie Tong
- College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, China
| | - Liwei Huang
- West China School of Stomatology Medicine, Sichuan University, Chengdu, China
| | - Yali Miao
- Department of Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Chengdu, China. .,Deep Undergroud Space Medical Center, West China Hospital, Sichuan University, No.17, 3rd Section, Renmin Nanlu Road, Chengdu, 610041, Sichuan, China.
| | - Jiang Wu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, No17, 3rd section, Renmin Nanlu Road, Chengdu, 610041, Sichuan, China. .,Deep Undergroud Space Medical Center, West China Hospital, Sichuan University, No.17, 3rd Section, Renmin Nanlu Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
33
|
Construction and characterization of a theranostic system based on graphene/manganese chelate. Biosens Bioelectron 2018; 117:794-801. [DOI: 10.1016/j.bios.2018.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/08/2018] [Accepted: 07/09/2018] [Indexed: 12/28/2022]
|
34
|
Cao W, Muhammad F, Cheng Y, Zhou M, Wang Q, Lou Z, Li Z, Wei H. Acid Susceptible Ultrathin Mesoporous Silica Coated on Layered Double Hydroxide Nanoplates for pH Responsive Cancer Therapy. ACS APPLIED BIO MATERIALS 2018; 1:928-935. [DOI: 10.1021/acsabm.8b00343] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
35
|
Ta HT, Arndt N, Wu Y, Lim HJ, Landeen S, Zhang R, Kamato D, Little PJ, Whittaker AK, Xu ZP. Activatable magnetic resonance nanosensor as a potential imaging agent for detecting and discriminating thrombosis. NANOSCALE 2018; 10:15103-15115. [PMID: 30059122 DOI: 10.1039/c8nr05095c] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The early detection and accurate characterization of life-threatening diseases such as cardiovascular disease and cancer are critical to the design of treatment. Knowing whether or not a thrombus in a blood vessel is new (fresh) or old (constituted) is very important for physicians to decide a treatment protocol. We have designed smart MRI nano-sensors that can detect, sense and report the stage or progression of cardiovascular diseases such as thrombosis. The nanosensors were functionalized with fibrin-binding peptide to specifically target thrombus and were also labelled with fluorescent dye to enable optical imaging. We have demonstrated that our nanosensors were able to switch between the T1 and T2 signal depending on thrombus age or the presence or absence of thrombin at the thrombus site. The developed nanosensors appeared to be non-toxic when tested with Chinese Hamster Ovarian cells within the tested concentrations. The working principle demonstrated in this study can be applied to many other diseases such as cancer.
Collapse
Affiliation(s)
- Hang T Ta
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, Queensland, Australia. and School of Pharmacy, the University of Queensland, Brisbane, Queensland, Australia
| | - Nina Arndt
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, Queensland, Australia. and Department of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Yuao Wu
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, Queensland, Australia. and School of Pharmacy, the University of Queensland, Brisbane, Queensland, Australia
| | - Hui Jean Lim
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, Queensland, Australia.
| | - Shea Landeen
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, Queensland, Australia. and Department of Biological Engineering, Massachusetts Institute of Technology, Boston, USA
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, Queensland, Australia.
| | - Danielle Kamato
- School of Pharmacy, the University of Queensland, Brisbane, Queensland, Australia
| | - Peter J Little
- School of Pharmacy, the University of Queensland, Brisbane, Queensland, Australia
| | - Andrew K Whittaker
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, Queensland, Australia. and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Brisbane, Queensland, Australia and Centre of Advanced Imaging, the University of Queensland, Brisbane, Queensland, Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
36
|
Wang L, Habib AA, Mintz A, Li KC, Zhao D. Phosphatidylserine-Targeted Nanotheranostics for Brain Tumor Imaging and Therapeutic Potential. Mol Imaging 2018; 16:1536012117708722. [PMID: 28654387 PMCID: PMC5470144 DOI: 10.1177/1536012117708722] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Phosphatidylserine (PS), the most abundant anionic phospholipid in cell membrane, is strictly confined to the inner leaflet in normal cells. However, this PS asymmetry is found disruptive in many tumor vascular endothelial cells. We discuss the underlying mechanisms for PS asymmetry maintenance in normal cells and its loss in tumor cells. The specificity of PS exposure in tumor vasculature but not normal blood vessels may establish it a useful biomarker for cancer molecular imaging. Indeed, utilizing PS-targeting antibodies, multiple imaging probes have been developed and multimodal imaging data have shown their high tumor-selective targeting in various cancers. There is a critical need for improved diagnosis and therapy for brain tumors. We have recently established PS-targeted nanoplatforms, aiming to enhance delivery of imaging contrast agents across the blood-brain barrier to facilitate imaging of brain tumors. Advantages of using the nanodelivery system, in particular, lipid-based nanocarriers, are discussed here. We also describe our recent research interest in developing PS-targeted nanotheranostics for potential image-guided drug delivery to treat brain tumors.
Collapse
Affiliation(s)
- Lulu Wang
- 1 Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Amyn A Habib
- 2 Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA.,3 North Texas VA Medical Center, Dallas, TX, USA
| | - Akiva Mintz
- 4 Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA.,5 Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - King C Li
- 4 Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA.,6 Clinical and Translational Science Institute, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Dawen Zhao
- 1 Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, NC, USA.,3 North Texas VA Medical Center, Dallas, TX, USA
| |
Collapse
|
37
|
Yang Z, He W, Zheng H, Wei J, Liu P, Zhu W, Lin L, Zhang L, Yi C, Xu Z, Ren J. One-pot synthesis of albumin-gadolinium stabilized polypyrrole nanotheranostic agent for magnetic resonance imaging guided photothermal therapy. Biomaterials 2018; 161:1-10. [DOI: 10.1016/j.biomaterials.2018.01.026] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 01/02/2018] [Accepted: 01/17/2018] [Indexed: 12/27/2022]
|
38
|
Xiong F, Huang S, Gu N. Magnetic nanoparticles: recent developments in drug delivery system. Drug Dev Ind Pharm 2018; 44:697-706. [PMID: 29370711 DOI: 10.1080/03639045.2017.1421961] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nanostructured functional materials have demonstrated their great potentials in medical applications, attracting increasing attention because of the opportunities in cancer therapy and the treatment of other ailments. This article reviews the problems and recent advances in the development of magnetic NPs for drug delivery.
Collapse
Affiliation(s)
- Fei Xiong
- a School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Jiangsu Laboratory for Biomsaterials and Devices , Southeast University , Nanjing , PR China
| | - Shengxin Huang
- a School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Jiangsu Laboratory for Biomsaterials and Devices , Southeast University , Nanjing , PR China
| | - Ning Gu
- a School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Jiangsu Laboratory for Biomsaterials and Devices , Southeast University , Nanjing , PR China
| |
Collapse
|
39
|
Chen HL, Hsu FT, Kao YCJ, Liu HS, Huang WZ, Lu CF, Tsai PH, Ali AAA, Lee GA, Chen RJ, Chen CY. Identification of epidermal growth factor receptor-positive glioblastoma using lipid-encapsulated targeted superparamagnetic iron oxide nanoparticles in vitro. J Nanobiotechnology 2017; 15:86. [PMID: 29166921 PMCID: PMC5700523 DOI: 10.1186/s12951-017-0313-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 10/30/2017] [Indexed: 01/27/2023] Open
Abstract
Background Targeted superparamagnetic iron oxide (SPIO) nanoparticles have emerged as a promising biomarker detection tool for molecular magnetic resonance (MR) image diagnosis. To identify patients who could benefit from Epidermal growth factor receptor (EGFR)-targeted therapies, we introduce lipid-encapsulated SPIO nanoparticles and hypothesized that anti-EGFR antibody cetuximab conjugated of such nanoparticles can be used to identify EGFR-positive glioblastomas in non-invasive T2 MR image assays. The newly introduced lipid-coated SPIOs, which imitate biological cell surface and thus inherited innate nonfouling property, were utilized to reduce nonspecific binding to off-targeted cells and prevent agglomeration that commonly occurs in nanoparticles. Results The synthesized targeted EGFR-antibody-conjugated SPIO (EGFR-SPIO) nanoparticles were characterized using dynamic light scattering, zeta potential assays, gel electrophoresis mobility shift assays, transmission electron microscopy (TEM) images, and cell line affinity assays, and the results showed that the conjugation was successful. The targeting efficiency of the synthesized EGFR-SPIO nanoparticles was confirmed through Prussian blue staining and TEM images by using glioblastoma cell lines with high or low EGFR expression levels. The EGFR-SPIO nanoparticles preferentially targeted U-251 cells, which have high EGFR expression, and were internalized by cells in a prolonged incubation condition. Moreover, the T2 MR relaxation time of EGFR-SPIO nanoparticles could be used for successfully identifying glioblastoma cells with elevated EGFR expression in vitro and distinguishing U-251 cells from U-87MG cells, which have low EFGR expression. Conclusion These findings reveal that the lipid-encapsulated EGFR-SPIO nanoparticles can specifically target cells with elevated EGFR expression in the three tested human glioblastoma cell lines. The results of this study can be used for noninvasive molecular MR image diagnosis in the future. Electronic supplementary material The online version of this article (10.1186/s12951-017-0313-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huai-Lu Chen
- Translational Imaging Research Center, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Fei-Ting Hsu
- Translational Imaging Research Center, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Medical Imaging, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chieh Jill Kao
- Translational Imaging Research Center, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hua-Shan Liu
- Translational Imaging Research Center, College of Medicine, Taipei Medical University, Taipei, Taiwan.,School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Wan-Zhen Huang
- Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chia-Feng Lu
- Translational Imaging Research Center, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Ping-Huei Tsai
- Translational Imaging Research Center, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Medical Imaging, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ahmed Atef Ahmed Ali
- Translational Imaging Research Center, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Gilbert Aaron Lee
- Translational Imaging Research Center, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan. .,Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei, Taiwan.
| | - Cheng-Yu Chen
- Translational Imaging Research Center, College of Medicine, Taipei Medical University, Taipei, Taiwan. .,Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan. .,Department of Medical Imaging, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan. .,Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
40
|
Bizeau J, Tapeinos C, Marella C, Larrañaga A, Pandit A. Synthesis and characterization of hyaluronic acid coated manganese dioxide microparticles that act as ROS scavengers. Colloids Surf B Biointerfaces 2017; 159:30-38. [DOI: 10.1016/j.colsurfb.2017.07.081] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/28/2017] [Accepted: 07/27/2017] [Indexed: 10/19/2022]
|
41
|
Yang T, Feng W, Hu C, Lv Z, Wei H, Jiang J, Liu S, Zhao Q. Manganese porphyrin-incorporated conjugated polymer nanoparticles for T1-enhanced magnetic resonance and fluorescent imaging. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.06.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
A Novel Gd-DTPA-conjugated Poly(L-γ-glutamyl-glutamine)-paclitaxel Polymeric Delivery System for Tumor Theranostics. Sci Rep 2017. [PMID: 28630436 PMCID: PMC5476566 DOI: 10.1038/s41598-017-03633-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The conventional chemotherapeutics could not be traced in vivo and provide timely feedback on the clinical effectiveness of drugs. In this study, poly(L-γ-glutamyl-glutamine)-paclitaxel (PGG-PTX), as a model polymer, was chemically conjugated with Gd-DTPA (Gd-diethylenetriaminepentaacetic acid), a T1-contrast agent of MRI, to prepare a Gd-DTPA-conjugated PGG-PTX (PGG-PTX-DTPA-Gd) delivery system used for tumor theranostics. PGG-PTX-DTPA-Gd can be self-assembled to NPs in water with a z-average hydrodynamic diameter about 35.9 nm. The 3 T MRI results confirmed that the relaxivity of PGG-PTX-DTPA-Gd NPs (r1 = 18.98 mM−1S−1) was increased nearly 4.9 times compared with that of free Gd-DTPA (r1 = 3.87 mM−1S−1). The in vivo fluorescence imaging results showed that PGG-PTX-DTPA-Gd NPs could be accumulated in the tumor tissue of NCI-H460 lung cancer animal model by EPR effect, which was similar to PGG-PTX NPs. The MRI results showed that compared with free Gd-DTPA, PGG-PTX-DTPA-Gd NPs showed significantly enhanced and prolonged signal intensity in tumor tissue, which should be attributed to the increased relaxivity and tumor accumulation. PGG-PTX-DTPA-Gd NPs also showed effective antitumor effect in vivo. These results indicated that PGG-PTX-DTPA-Gd NPs are an effective delivery system for tumor theranostics, and should have a potential value in personalized treatment of tumor.
Collapse
|
43
|
Kang MK, Mao W, Lee JB, Yoo HS. Epidermal growth factor (EGF) fragment-guided anticancer theranostic particles for pH-responsive release of doxorubicin. Int J Pharm 2017; 519:104-112. [DOI: 10.1016/j.ijpharm.2017.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/23/2016] [Accepted: 01/09/2017] [Indexed: 10/20/2022]
|
44
|
Wang P, Yang J, Zhou B, Hu Y, Xing L, Xu F, Shen M, Zhang G, Shi X. Antifouling Manganese Oxide Nanoparticles: Synthesis, Characterization, and Applications for Enhanced MR Imaging of Tumors. ACS APPLIED MATERIALS & INTERFACES 2017; 9:47-53. [PMID: 28004566 DOI: 10.1021/acsami.6b13844] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Antifouling manganese oxide (Mn3O4) nanoparticles (NPs) were synthesized by solvothermal decomposition of tris(2,4-pentanedionato) manganese(III) in the presence of trisodium citrate, followed by surface modification with polyethylene glycol and l-cysteine. The as-prepared nanoparticles have a uniform size distribution, good colloidal stability and good cytocompatibility. The modification of l-cysteine rendered the particles with much longer blood circulation time (half-decay time of 28.4 h) than those without l-cysteine modification (18.5 h), and decreased macrophage cellular uptake. Thanks to desirable antifouling property and relatively high r1 relaxivity (3.66 mM-1 s-1), the l-cysteine-modified Mn3O4 NPs can be used for enhanced tumor magnetic resonance imaging applications.
Collapse
Affiliation(s)
- Peng Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai 201620, People's Republic of China
| | - Jia Yang
- Department of Radiology, Department of Ultrasound, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University , Shanghai 200080, People's Republic of China
| | - Benqing Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai 201620, People's Republic of China
| | - Yong Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai 201620, People's Republic of China
| | - Lingxi Xing
- Department of Radiology, Department of Ultrasound, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University , Shanghai 200080, People's Republic of China
| | - Fanli Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai 201620, People's Republic of China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai 201620, People's Republic of China
| | - Guixiang Zhang
- Department of Radiology, Department of Ultrasound, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University , Shanghai 200080, People's Republic of China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai 201620, People's Republic of China
| |
Collapse
|
45
|
Shao S, Do TN, Razi A, Chitgupi U, Geng J, Alsop RJ, Dzikovski BG, Rheinstädter MC, Ortega J, Karttunen M, Spernyak JA, Lovell JF. Design of Hydrated Porphyrin-Phospholipid Bilayers with Enhanced Magnetic Resonance Contrast. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:10.1002/smll.201602505. [PMID: 27739249 PMCID: PMC5209247 DOI: 10.1002/smll.201602505] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 08/30/2016] [Indexed: 05/29/2023]
Abstract
Computer simulations are used to design more hydrated bilayers, formed from amine-modified porphyrin-phospholipids (PoPs). Experiments confirm that the new constructs give rise to bilayers with greater water content. When chelated with manganese, amine-modified PoPs provide improved contrast for magnetic resonance and are safely used for imaging in vivo.
Collapse
Affiliation(s)
- Shuai Shao
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260, USA
| | - Trang Nhu Do
- Department of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L3G1, Canada
| | - Aida Razi
- Department of Biochemistry and Biomedical Sciences and M. G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, Ontario L8S4L8, Canada
| | - Upendra Chitgupi
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260, USA
| | - Jumin Geng
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260, USA
| | - Richard J. Alsop
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S4M1, Canada
| | - Boris G. Dzikovski
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Maikel C Rheinstädter
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S4M1, Canada
| | - Joaquin Ortega
- Department of Biochemistry and Biomedical Sciences and M. G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, Ontario L8S4L8, Canada
| | - Mikko Karttunen
- Department of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L3G1, Canada. Department of Mathematics and Computer Science & Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Joseph A. Spernyak
- Department of Cell Stress Biology, Roswell Park Cancer Institute Buffalo, NY 14263, USA
| | - Jonathan F. Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260, USA
| |
Collapse
|
46
|
Yang Z, Ren J, Ye Z, Zhu W, Xiao L, Zhang L, He Q, Xu Z, Xu H. Bio-inspired synthesis of PEGylated polypyrrole@polydopamine nanocomposites as theranostic agents for T1-weighted MR imaging guided photothermal therapy. J Mater Chem B 2017; 5:1108-1116. [DOI: 10.1039/c6tb02740g] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Polypyrrole nanoparticle (PPy) based theranostic agents for magnetic resonance imaging (MRI) guided photothermal therapy (PTT) have received increasing attention in recent years.
Collapse
Affiliation(s)
- Zhe Yang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials; Ministry of Education Key Laboratory for the Green Preparation and Application of Fuctional Materials
- Hubei University
- Wuhan
- China
| | - Jinghua Ren
- Cancer Center
- Union Hospital
- Tongji Medical College of Huazhong University of Science and Technology
- Wuhan
- China
| | - Zhilan Ye
- Cancer Center
- Union Hospital
- Tongji Medical College of Huazhong University of Science and Technology
- Wuhan
- China
| | - Wei Zhu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials; Ministry of Education Key Laboratory for the Green Preparation and Application of Fuctional Materials
- Hubei University
- Wuhan
- China
| | - Liji Xiao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials; Ministry of Education Key Laboratory for the Green Preparation and Application of Fuctional Materials
- Hubei University
- Wuhan
- China
| | - Li Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials; Ministry of Education Key Laboratory for the Green Preparation and Application of Fuctional Materials
- Hubei University
- Wuhan
- China
| | - Qianyuan He
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials; Ministry of Education Key Laboratory for the Green Preparation and Application of Fuctional Materials
- Hubei University
- Wuhan
- China
| | - Zushun Xu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials; Ministry of Education Key Laboratory for the Green Preparation and Application of Fuctional Materials
- Hubei University
- Wuhan
- China
| | - Haibo Xu
- Department of Radiology
- Zhongnan Hospital of Wuhan University
- Wuhan
- China
| |
Collapse
|
47
|
Miller SE, Teplensky MH, Moghadam PZ, Fairen-Jimenez D. Metal-organic frameworks as biosensors for luminescence-based detection and imaging. Interface Focus 2016; 6:20160027. [PMID: 27499847 PMCID: PMC4918838 DOI: 10.1098/rsfs.2016.0027] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Metal-organic frameworks (MOFs), formed by the self-assembly of metal centres or clusters and organic linkers, possess many key structural and chemical features that have enabled them to be used in sensing platforms for a variety of environmentally, chemically and biomedically relevant compounds. In particular, their high porosity, large surface area, tuneable chemical composition, high degree of crystallinity, and potential for post-synthetic modification for molecular recognition make MOFs promising candidates for biosensing applications. In this review, we separate our discussion of MOF biosensors into two categories: quantitative sensing, focusing specifically on luminescence-based sensors for the direct measurement of a specific analyte, and qualitative sensing, where we describe MOFs used for fluorescence microscopy and as magnetic resonance imaging contrast agents. We highlight several key publications in each of these areas, concluding that MOFs present an exciting, versatile new platform for biosensing applications and imaging, and we expect to see their usage grow as the field progresses.
Collapse
Affiliation(s)
| | | | | | - David Fairen-Jimenez
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA, UK
| |
Collapse
|
48
|
Platas-Iglesias C, Esteban-Gómez D, Helm L, Regueiro-Figueroa M. Transient versus Static Electron Spin Relaxation in Mn(2+) Complexes Relevant as MRI Contrast Agents. J Phys Chem A 2016; 120:6467-76. [PMID: 27459626 DOI: 10.1021/acs.jpca.6b05423] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The zero-field splitting (ZFS) parameters of the [Mn(EDTA)(H2O)](2-)·2H2O and [Mn(MeNO2A)(H2O)]·2H2O systems were estimated by using DFT and ab initio CASSCF/NEVPT2 calculations (EDTA = 2,2',2″,2‴-(ethane-1,2-diylbis(azanetriyl))tetraacetate; MeNO2A = 2,2'-(7-methyl-1,4,7-triazonane-1,4-diyl)diacetate). Subsequent molecular dynamics calculations performed within the atom-centered density matrix propagation (ADMP) approach provided access to the transient and static ZFS parameters, as well as to the correlation time of the transient ZFS. The calculated ZFS parameters present a reasonable agreement with the experimental values obtained from the analysis of (1)H relaxation data. The correlation times calculated for the two systems investigated turned out to be very short (τc ∼ 0.02-0.05 ps), which shows that the transient ZFS is modulated by molecular vibrations. On the contrary, the static ZFS is modulated by the rotation of the complexes in solution, which for the small complexes investigated here is characterized by rotational correlation times of τR ∼ 35-60 ps. As a result, electron spin relaxation in small Mn(2+) complexes is dominated by the static ZFS.
Collapse
Affiliation(s)
- Carlos Platas-Iglesias
- Centro de Investigaciones Científicas Avanzadas (CICA) and Departamento de Química Fundamental, Universidade da Coruña , Campus da Zapateira, Rúa da Fraga 10, 15008 A Coruña, Spain
| | - David Esteban-Gómez
- Centro de Investigaciones Científicas Avanzadas (CICA) and Departamento de Química Fundamental, Universidade da Coruña , Campus da Zapateira, Rúa da Fraga 10, 15008 A Coruña, Spain
| | - Lothar Helm
- Laboratoire de Chimie Inorganique et Bioinorganique, Ecole Polytechnique Fédérale de Lausanne, EPFL-BCH , CH-1015 Lausanne, Switzerland
| | - Martín Regueiro-Figueroa
- Centro de Investigaciones Científicas Avanzadas (CICA) and Departamento de Química Fundamental, Universidade da Coruña , Campus da Zapateira, Rúa da Fraga 10, 15008 A Coruña, Spain
| |
Collapse
|
49
|
Palekar RU, Jallouk AP, Lanza GM, Pan H, Wickline SA. Molecular imaging of atherosclerosis with nanoparticle-based fluorinated MRI contrast agents. Nanomedicine (Lond) 2016; 10:1817-32. [PMID: 26080701 DOI: 10.2217/nnm.15.26] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
As atherosclerosis remains one of the most prevalent causes of patient mortality, the ability to diagnose early signs of plaque rupture and thrombosis represents a significant clinical need. With recent advances in nanotechnology, it is now possible to image specific molecular processes noninvasively with MRI, using various types of nanoparticles as contrast agents. In the context of cardiovascular disease, it is possible to specifically deliver contrast agents to an epitope of interest for detecting vascular inflammatory processes, which serve as predecessors to atherosclerotic plaque development. Herein, we review various applications of nanotechnology in detecting atherosclerosis using MRI, with an emphasis on perfluorocarbon nanoparticles and fluorine imaging, along with theranostic prospects of nanotechnology in cardiovascular disease.
Collapse
Affiliation(s)
- Rohun U Palekar
- Department of Biomedical Engineering, Washington University, Whitaker Hall, Campus Box 1097, One Brookings Drive, St. Louis, MO 63130, USA
| | - Andrew P Jallouk
- Department of Medicine, Washington University, Campus Box 8215, 4320 Forest Park Avenue, St Louis, MO 63108, USA
| | - Gregory M Lanza
- Department of Biomedical Engineering, Washington University, Whitaker Hall, Campus Box 1097, One Brookings Drive, St. Louis, MO 63130, USA.,Department of Medicine, Washington University, Campus Box 8215, 4320 Forest Park Avenue, St Louis, MO 63108, USA
| | - Hua Pan
- Department of Medicine, Washington University, Campus Box 8215, 4320 Forest Park Avenue, St Louis, MO 63108, USA
| | - Samuel A Wickline
- Department of Biomedical Engineering, Washington University, Whitaker Hall, Campus Box 1097, One Brookings Drive, St. Louis, MO 63130, USA.,Department of Medicine, Washington University, Campus Box 8215, 4320 Forest Park Avenue, St Louis, MO 63108, USA
| |
Collapse
|
50
|
Lu W, Wang N, Chu Y, Zhou L, Li M, Huang T, Weng H, Zhang Y, Jiang L, Hu Y, Tan Q, Liu Y. CLIC1 antibody conjugated nanoscale contrast agent as a sensitive and targeted molecular imaging probe for gallbladder cancer diagnosis. RSC Adv 2016. [DOI: 10.1039/c5ra26593b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
CLIC1 antibody-conjugated nano-scale contrast agents exhibit a fast and sensitive detection of gallbladder tumors and may be used in the future as powerful targeted molecular imaging probes for gallbladder cancer diagnosis.
Collapse
|