1
|
Mavromatidis L. Constructal Thermodynamics and its Semantic Ontology in Autopoetic, Digital, and Computational Architectural and Urban Space Open Systems. Biosystems 2025:105404. [PMID: 39880153 DOI: 10.1016/j.biosystems.2025.105404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 01/31/2025]
Abstract
This paper explores the intersections of constructal thermodynamics, and its semantic ontology within the context of autopoetic, digital and computational design in protocell inspired numerical architectural and urban narratives that are examined here as open systems. Constructal law is the thermodynamic theory based on the analysis of fluxes across the border of an open system. Protocells, as dynamic and adaptive open finite size systems, serve in this paper as a compelling metaphor and design model for responsive and sustainable manmade architectural and urban environments. The ability of protocells to harness energy, minimize entropy, and adapt to environmental changes mirrors the principles of constructal thermodynamics, which govern the flow and distribution of resources in complex self-organizing information open systems in nature. By applying these principles to digital architecture, this study investigates how relational dynamics between spaces, materials, and functions can create adaptive designs that "go with the flow" of ecological and cultural systems. The research demonstrates using the Gouy-Stodola theorem as a variational principle, how protocell-inspired processes facilitate exergy-efficient designs, minimizing waste while maximizing resilience and flexibility. The present through an applied case study argues for a paradigm where protocell digital architecture serves not only as an ecological and material model but also as a spatial narrative driver, blending constructal and digital tools with cultural mythos. Finally, this paper exploring simultaneously the semantic complexity of such systems, in turn, connects these constructal driven digital designs to broader méta-narratives, embedding cultural, symbolic, philosophical and functional predicates into architectural forms.
Collapse
Affiliation(s)
- Lazaros Mavromatidis
- ICube Laboratory, UMR 7357, Department of Mechanics, Civil Engineering and Energetics Team - GCE, CNRS, University of Strasbourg, INSA Strasbourg, Department of Architecture, 24 Boulevard de la Victoire, 67084 Strasbourg Cedex, France; MAP-Aria Laboratory, UMR CNRS/MCC 3495, École Nationale Supérieure d'Architecture de Lyon, 3 rue Maurice Audin, BP 170, 69512 Vaulx-en-Velin Cedex, France.
| |
Collapse
|
2
|
Archer RJ, Ebbens SJ, Kubodera Y, Matsuo M, Nomura SIM. Menthyl acetate powered self-propelled Janus sponge Marangoni motors with self-maintaining surface tension gradients and active mixing. J Colloid Interface Sci 2025; 678:11-19. [PMID: 39236350 DOI: 10.1016/j.jcis.2024.08.213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/07/2024]
Abstract
HYPOTHESIS Small scale Marangoni motors, which self-generate motion by inducing surface tension gradients on water interfaces through release of surface-active "fuels", have recently been proposed as self-powered mixing devices for low volume fluids. Such devices however, often show self-limiting lifespans due to the rapid saturation of surface-active agents. A potential solution to this is the use volatile surface-active agents which do not persist in their environment. Here we investigate menthyl acetate (MA) as a safe, inexpensive and non-persistent fuel for Marangoni motors. EXPERIMENTS MA was loaded asymmetrically into millimeter scale silicone sponges. Menthyl acetate reacts slowly with water to produce the volatile surface-active menthol, which induces surface tension gradients across the sponge to drive motion by the Marangoni effect. Videos were taken and trajectories determined by custom software. Mixing was assessed by the ability of Marangoni motors to homogenize milliliter scale aqueous solutions containing colloidal sediments. FINDINGS Marangoni motors, loaded with asymmetric "Janus" distributions of menthyl acetate show velocities and rotational speeds up to 30 mm s-1 and 500 RPM respectively, with their functional lifetimes scaling linearly with fuel volume. We show these devices are capable of enhanced mixing of solutions at orders of magnitude greater rates than diffusion alone.
Collapse
Affiliation(s)
- Richard J Archer
- Molecular Robotics Laboratory, Department of Robotics, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan.
| | - Stephen J Ebbens
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK
| | - Yujin Kubodera
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Muneyuki Matsuo
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan; Graduate School of Arts and Sciences, The University of Tokyo, Meguro City, Tokyo 153-0041, Japan.
| | - Shin-Ichiro M Nomura
- Molecular Robotics Laboratory, Department of Robotics, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan.
| |
Collapse
|
3
|
Farkas E, Dóra Kovács K, Szekacs I, Peter B, Lagzi I, Kitahata H, Suematsu NJ, Horvath R. Kinetic monitoring of molecular interactions during surfactant-driven self-propelled droplet motion by high spatial resolution waveguide sensing. J Colloid Interface Sci 2025; 677:352-364. [PMID: 39151228 DOI: 10.1016/j.jcis.2024.07.236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/19/2024]
Abstract
HYPOTHESIS Self-driven actions, like motion, are fundamental characteristics of life. Today, intense research focuses on the kinetics of droplet motion. Quantifying macroscopic motion and exploring the underlying mechanisms are crucial in self-structuring and self-healing materials, advancements in soft robotics, innovations in self-cleaning environmental processes, and progress within the pharmaceutical industry. Usually, the driving forces inducing macroscopic motion act at the molecular scale, making their real-time and high-resolution investigation challenging. Label-free surface sensitive measurements with high lateral resolution could in situ measure both molecular-scale interactions and microscopic motion. EXPERIMENTS We employ surface-sensitive label-free sensors to investigate the kinetic changes in a self-assembled monolayer of the trimethyl(octadecyl)azanium chloride surfactant on a substrate surface during the self-propelled motion of nitrobenzene droplets. The adsorption-desorption of the surfactant at various concentrations, its removal due to the moving organic droplet, and rebuilding mechanisms at droplet-visited areas are all investigated with excellent time, spatial, and surface mass density resolution. FINDINGS We discovered concentration dependent velocity fluctuations, estimated the adsorbed amount of surfactant molecules, and revealed multilayer coverage at high concentrations. The desorption rate of surfactant (18.4 s-1) during the microscopic motion of oil droplets was determined by in situ differentiating between droplet visited and non-visited areas.
Collapse
Affiliation(s)
- Eniko Farkas
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, 1121 Budapest, Hungary
| | - Kinga Dóra Kovács
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, 1121 Budapest, Hungary; Department of Biological Physics, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Inna Szekacs
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, 1121 Budapest, Hungary
| | - Beatrix Peter
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, 1121 Budapest, Hungary
| | - István Lagzi
- Department of Physics, Institute of Physics, Budapest University of Technology and Economics, Muegyetem rkp. 3, 1111 Budapest, Hungary; HUN-REN-BME Condensed Matter Physics Research Group, Budapest University of Technology and Economics, Muegyetem rkp. 3, 1111 Budapest, Hungary
| | - Hiroyuki Kitahata
- Graduate School of Science, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba 263-8522, Japan
| | - Nobuhiko J Suematsu
- Meiji Institute of Advanced Study of Mathematical Sciences (MIMS), Meiji University, 4-21-1 Nakano, Tokyo 164-8525, Japan; Graduate School of Advanced Mathematical Sciences, Meiji University, 4-21-1 Nakano, Tokyo 164-8525, Japan.
| | - Robert Horvath
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, 1121 Budapest, Hungary; Nanobiosensorics Laboratory, Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Hungary.
| |
Collapse
|
4
|
Buness CM, Rana A, Maass CC, Dey R. Electrotaxis of Self-Propelling Artificial Swimmers in Microchannels. PHYSICAL REVIEW LETTERS 2024; 133:158301. [PMID: 39454145 DOI: 10.1103/physrevlett.133.158301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/11/2024] [Indexed: 10/27/2024]
Abstract
Biological microswimmers alter their swimming trajectories to follow the direction of an applied electric field, exhibiting electrotaxis. We show that synthetic active droplet microswimmers also autonomously change swimming trajectories in microchannels, even undergoing "U-turns," in response to an electric field, mimicking electrotaxis. We exploit such electrotaxis, in the presence of an external flow, to robustly tune the swimming trajectory of active droplets between wall-adjacent, oscillatory, and channel centerline swimming. A general hydrodynamic model demonstrates that the electrotactic dynamics is governed by the electrical effects due to the swimmer's inherent surface charge, besides its motility, hydrodynamic wall interactions, and relative orientations of the electric field and imposed flow. Our study demonstrates a simple method for controlling active agents in complex geometries for microrobotic applications, like autonomous cargo delivery.
Collapse
|
5
|
Kim KE, Balaj RV, Zarzar LD. Chemical Programming of Solubilizing, Nonequilibrium Active Droplets. Acc Chem Res 2024; 57:2372-2382. [PMID: 39116001 DOI: 10.1021/acs.accounts.4c00299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
ConspectusThe multifunctionality and resilience of living systems has inspired an explosion of interest in creating materials with life-like properties. Just as life persists out-of-equilibrium, we too should try to design materials that are thermodynamically unstable but can be harnessed to achieve desirable, adaptive behaviors. Studying minimalistic chemical systems that exhibit relatively simple emergent behaviors, such as motility, communication, or self-organization, can provide insight into fundamental principles which may enable the design of more complex and life-like synthetic materials in the future.Emulsions, which are composed of liquid droplets dispersed in another immiscible fluid phase, have emerged as fascinating chemically minimal materials in which to study nonequilibrium, life-like properties. As covered in this Account, our group has focused on studying oil-in-water emulsions, specifically those which destabilize by solubilization, a process wherein oil is released into the continuous phase over time to create gradients of oil-filled micelles. These chemical gradients can create interfacial tension gradients that lead to droplet self-propulsion as well as mediate communication between neighboring oil droplets. As such, oil-in-water emulsions present an interesting platform for studying active matter. However, despite being chemically minimal with sometimes as few as three chemicals (oil, water, and a surfactant), emulsions present surprising complexity across the molecular to macroscale. Fundamental processes governing their active behavior, such as micelle-mediated interfacial transport, are still not well understood. This complexity is compounded by the challenges of studying systems out-of-equilibrium which typically require new analytical methods and may break our intuition derived from equilibrium thermodynamics.In this Account, we highlight our group's efforts toward developing chemical frameworks for understanding active and interactive oil-in-water emulsions. How do the chemical properties and physical spatial organization of the oil, water, and surfactant combine to yield colloidal-scale active properties? Our group tackles this question by employing systematic studies of active behavior working across the chemical space of oils and surfactants to link molecular structure to active behavior. The Account begins with an introduction to the self-propulsion of single, isolated droplets and how by applying biases, such as with a gravitational field or interfacially adsorbed particles, drop speeds can be manipulated. Next, we illustrate that some droplets can be attractive, as well as self-propulsive/repulsive, which does not fall in line with the current understanding of the impact of oil-filled micelle gradients on interfacial tensions. The mechanisms by which oil-filled micelles influence interfacial tensions of nonequilibrium interfaces is poorly understood and requires deeper molecular understanding. Regardless, we extend our knowledge of droplet motility to design emulsions with nonreciprocal predator-prey interactions and describe the dynamic self-organization that arises from the combination of reciprocal and nonreciprocal interactions between droplets. Finally, we highlight our group's progress toward answering key chemical questions surrounding nonequilibrium processes in emulsions that remain to be answered. We hope that our progress in understanding the chemical principles governing the dynamic nonequilibrium properties of oil-in-water droplets can help inform research in tangential research areas such as cell biology and origins of life.
Collapse
Affiliation(s)
- Kueyoung E Kim
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16082, United States
| | - Rebecca V Balaj
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16082, United States
| | - Lauren D Zarzar
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16082, United States
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16082, United States
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16082, United States
| |
Collapse
|
6
|
Wang X, Yang Y, Roh S, Hormozi S, Gianneschi NC, Abbott NL. Self-Timed and Spatially Targeted Delivery of Chemical Cargo by Motile Liquid Crystal. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311311. [PMID: 38422370 DOI: 10.1002/adma.202311311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/12/2024] [Indexed: 03/02/2024]
Abstract
A key challenge underlying the design of miniature machines is encoding materials with time- and space-specific functional behaviors that require little human intervention. Dissipative processes that drive materials beyond equilibrium and evolve continuously with time and location represent one promising strategy to achieve such complex functions. This work reports how internal nonequilibrium states of liquid crystal (LC) emulsion droplets undergoing chemotaxis can be used to time the delivery of a chemical agent to a targeted location. During ballistic motion, hydrodynamic shear forces dominate LC elastic interactions, dispersing microdroplet inclusions (microcargo) within double emulsion droplets. Scale-dependent colloidal forces then hinder the escape of dispersed microcargo from the propelling droplet. Upon arrival at the targeted location, a circulatory flow of diminished strength allows the microcargo to cluster within the LC elastic environment such that hydrodynamic forces grow to exceed colloidal forces and thus trigger the escape of the microcargo. This work illustrates the utility of the approach by using microcargo that initiate polymerization upon release through the outer interface of the carrier droplet. These findings provide a platform that utilizes nonequilibrium strategies to design autonomous spatial and temporal functions into active materials.
Collapse
Affiliation(s)
- Xin Wang
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Yu Yang
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Sangchul Roh
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14850, USA
- School of Chemical Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sarah Hormozi
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Nathan C Gianneschi
- Department of Chemistry, Materials Science & Engineering, Biomedical Engineering and Pharmacology, Northwestern University, Evanston, IL, 60208, USA
| | - Nicholas L Abbott
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14850, USA
| |
Collapse
|
7
|
Joy R. An evaluation of the xenobotic cognitive project: Towards Stage 1 of xenobotic cognition. ENDEAVOUR 2024; 48:100927. [PMID: 38679490 DOI: 10.1016/j.endeavour.2024.100927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 10/30/2023] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
Xenobot, the world's first biological robot, puts numerous philosophical riddles before us. One among them pertains to the cognitive status of these entities. Are these biological robots cognitive? To evaluate the cognitive status of xenobots and to resolve the puzzle of a single mind emerging from smaller sub-units, in this article, I juxtapose the cognitive capacities of xenobots with that of two other minimal models of cognition, i.e., basal cognition and nonliving active matter cognition. Further, the article underlines the essential cognitive capabilities that xenobots need to achieve to enter what I call stage 1 of xenobotic cognition. Stage 1 is characterized by numerous cognitive mechanisms, which are integral for the survival and cognition of basal organisms. Finally, I suggest that developing xenobots that can reach Stage 1 can help us achieve sophistication in the areas of evolution of the human mind, robotics, biology and medicine, and artificial intelligence (AI).
Collapse
Affiliation(s)
- Reshma Joy
- Indian Institute of Technology Ropar, India.
| |
Collapse
|
8
|
Zero EN, Crespi VH. Emergence of inertia in the low-Reynolds regime of self-diffusiophoretic motion. Phys Rev E 2024; 109:054602. [PMID: 38907454 DOI: 10.1103/physreve.109.054602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 11/06/2023] [Indexed: 06/24/2024]
Abstract
For isotropic swimming particles driven by self-diffusiophoresis at zero Reynolds number (where particle velocity responds instantaneously to applied force), the diffusive timescale of emitted solute can produce an emergent quasi-inertial behavior. These particles can orbit in a central potential and reorient under second-order dynamics, not the first-order dynamics of classical zero-Reynolds motion. They are described by a simple effective model that embeds their history-dependent behavior as an effective inertia, this being the most primitive expression of memory. The system can be parameterized with dynamic quantities such as particle size and swimming speed, without detailed knowledge of the diffusiophoretic mechanism.
Collapse
Affiliation(s)
- Emmy N Zero
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Vincent H Crespi
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
9
|
Wu X, Xue H, Bordia G, Fink Z, Kim PY, Streubel R, Han J, Helms BA, Ashby PD, Omar AK, Russell TP. Self-Propulsion by Directed Explosive Emulsification. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310435. [PMID: 38386499 DOI: 10.1002/adma.202310435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/15/2024] [Indexed: 02/24/2024]
Abstract
An active droplet system, programmed to repeatedly move autonomously at a specific velocity in a well-defined direction, is demonstrated. Coulombic energy is stored in oversaturated interfacial assemblies of charged nanoparticle-surfactants by an applied DC electric field and can be released on demand. Spontaneous emulsification is suppressed by an increase in the stiffness of the oversaturated assemblies. Rapidly removing the field releases the stored energy in an explosive event that propels the droplet, where thousands of charged microdroplets are ballistically ejected from the surface of the parent droplet. The ejection is made directional by a symmetry breaking of the interfacial assembly, and the combined interaction force of the microdroplet plume on one side of the droplet propels the droplet distances tens of times its size, making the droplet active. The propulsion is autonomous, repeatable, and agnostic to the chemical composition of the nanoparticles. The symmetry-breaking in the nanoparticle assembly controls the microdroplet velocity and direction of propulsion. This mechanism of droplet propulsion will advance soft micro-robotics, establishes a new type of active matter, and introduces new vehicles for compartmentalized delivery.
Collapse
Affiliation(s)
- Xuefei Wu
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Han Xue
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Gautam Bordia
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Zachary Fink
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Polymer Science and Engineering Department, University of Massachusetts, Amherst, MA, 01003, USA
| | - Paul Y Kim
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Robert Streubel
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Jiale Han
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Brett A Helms
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Paul D Ashby
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Ahmad K Omar
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Thomas P Russell
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Polymer Science and Engineering Department, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
10
|
Nguindjel AD, Franssen SCM, Korevaar PA. Reconfigurable Droplet-Droplet Communication Mediated by Photochemical Marangoni Flows. J Am Chem Soc 2024; 146:6006-6015. [PMID: 38391388 PMCID: PMC10921405 DOI: 10.1021/jacs.3c12882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/19/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
Droplets are attractive building blocks for dynamic matter that organizes into adaptive structures. Communication among collectively operating droplets opens untapped potential in settings that vary from sensing, optics, protocells, computing, or adaptive matter. Inspired by the transmission of signals among decentralized units in slime mold Physarum polycephalum, we introduce a combination of surfactants, self-assembly, and photochemistry to establish chemical signal transfer among droplets. To connect droplets that float at an air-water interface, surfactant triethylene glycol monododecylether (C12E3) is used for its ability to self-assemble into wires called myelins. We show how the trajectory of these myelins can be directed toward selected photoactive droplets upon UV exposure. To this end, we developed a strategy for photocontrolled Marangoni flow, which comprises (1) the liquid crystalline coating formed at the surface of an oleic acid/sodium oleate (OA/NaO) droplet when in contact with water, (2) a photoacid generator that protonates sodium oleate upon UV exposure and therefore disintegrates the coating, and (3) the surface tension gradient that is generated upon depletion of the surfactant from the air-water interface by the uncoated droplet. Therefore, localized UV exposure of selected OA/NaO droplets results in attraction of the myelins such that they establish reconfigurable connections that self-organize among the C12E3 and OA/NaO droplets. As an example of communication, we demonstrate how the myelins transfer fluorescent dyes, which are selectively delivered in the droplet interior upon photochemical regulation of the liquid crystalline coating.
Collapse
Affiliation(s)
- Anne-Déborah
C. Nguindjel
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| | - Stan C. M. Franssen
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| | - Peter A. Korevaar
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| |
Collapse
|
11
|
Nomoto T, Kimura H, Chiari L, Toyota T, Fujinami M. Flow-Driven Self-Propulsion of Oil Droplet on a Surfactant Solution Surface, as Observed by Time-Resolved Interfacial Tension and Surface Flow Speed Measurements. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4468-4474. [PMID: 38363648 DOI: 10.1021/acs.langmuir.3c03857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
The imbalanced force of the interfacial tension applied to an object has often been taken into account in the analysis of the motion mechanism of self-propelled systems. However, heterogeneous distributions of the interfacial tension also cause Marangoni flows, and these flows also contribute to the self-propulsion through the viscous force. The contribution of such flows has not been observed directly, while the interfacial tension difference has been measured in some systems. In this study, simultaneous measurements of the interfacial tension and surface flow speed of the unidirectional self-propelled motion of a butyl salicylate (BS) droplet in a circular channel on a sodium dodecyl sulfate (SDS) aqueous solution were achieved by the quasi-elastic laser scattering method. The droplet position was also recorded by observing its fluorescence excited by a UV light. The BS droplet speed dependence of the interfacial tension and surface flow speed were measured by varying the initial BS concentration codissolved in the SDS aqueous solution. As a result, a periodic decrease of the interfacial tension and a periodic increase of the speed of both forward and backward flows were observed when the droplet passed the sampling position of the time-resolved measurements. When they were converted to the distribution in space of the droplet position, no droplet speed dependence of the interfacial tension difference between the front and rear of the droplet was observed. On the other hand, the speed of both forward and backward flows increased as the droplet speed increased. By analysis of the above results with a simplified model, it was clarified that the forward flow driven by the interfacial tension gradient at the droplet front is actually important in the mechanism of the unidirectional self-propelled motion of a droplet.
Collapse
Affiliation(s)
- Tomonori Nomoto
- Department of Applied Chemistry and Biotechnology, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Haruki Kimura
- Department of Applied Chemistry and Biotechnology, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Luca Chiari
- Department of Applied Chemistry and Biotechnology, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Taro Toyota
- Department of Basic Science, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Masanori Fujinami
- Department of Applied Chemistry and Biotechnology, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
12
|
Krishna Mani S, Al-Tooqi S, Song J, Sapre A, Zarzar LD, Sen A. Dynamic Oscillation and Motion of Oil-in-Water Emulsion Droplets. Angew Chem Int Ed Engl 2024; 63:e202316242. [PMID: 37939352 DOI: 10.1002/anie.202316242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/10/2023]
Abstract
The interplay of interfacial tensions on droplets results in a range of self-powered motions that mimic those of living systems and serve as a tunable model to understand their complex non-equilibrium behavior. Spontaneous shape deformations and oscillations are crucial features observed in nature but difficult to incorporate in synthetic artificial systems. Here, we report sessile oil-in-water emulsions that exhibit rapid oscillating behavior. The oscillations depend on the nature and concentration of the surfactant, the chemical composition of the oil, and the wettability of the solid substrate. The rapid changes in the contact angle per oscillation are observed using side-view optical microscopy. We propose that the changes in the interfacial tension of the oil droplets is due to the partitioning of the surfactant into the oil phase and the movement of self-emulsified oil out of the parent droplets giving rise to the rhythmic variation in droplet contact-line. The ability to control and understand droplet oscillation can help model similar oscillations in out-of-equilibrium systems in nature and reproduce biomimetic behavior in artificial systems for various applications, such as microfluidic lab-on-a-chip and adaptive materials.
Collapse
Affiliation(s)
- Sanjana Krishna Mani
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Sulaiman Al-Tooqi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jiaqi Song
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Aditya Sapre
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Lauren D Zarzar
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Material Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ayusman Sen
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
13
|
Osmanović D, Franco E. Chemical reaction motifs driving non-equilibrium behaviours in phase separating materials. J R Soc Interface 2023; 20:20230117. [PMID: 37907095 PMCID: PMC10618056 DOI: 10.1098/rsif.2023.0117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 10/11/2023] [Indexed: 11/02/2023] Open
Abstract
Chemical reactions that couple to systems that phase separate have been implicated in diverse contexts from biology to materials science. However, how a particular set of chemical reactions (chemical reaction network, CRN) would affect the behaviours of a phase separating system is difficult to fully predict theoretically. In this paper, we analyse a mean field theory coupling CRNs to a combined system of phase separating and non-phase separating materials and analyse how the properties of the CRNs affect different classes of non-equilibrium behaviour: microphase separation or temporally oscillating patterns. We examine the problem of achieving microphase separated condensates by statistical analysis of the Jacobians, of which the most important motifs are negative feedback of the phase separating component and combined inhibition/activation by the non-phase separating components. We then identify CRN motifs that are likely to yield microphase by examining randomly generated networks and parameters. Molecular sequestration of the phase separating motif is shown to be the most robust towards yielding microphase separation. Subsequently, we find that dynamics of the phase separating species is promoted most easily by inducing oscillations in the diffusive components coupled to the phase separating species. Our results provide guidance towards the design of CRNs that manage the formation, dissolution and organization of compartments.
Collapse
Affiliation(s)
- Dino Osmanović
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles 90095, CA, USA
| | - Elisa Franco
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles 90095, CA, USA
- Department of Bioengineering, University of California, Los Angeles 90095, CA, USA
| |
Collapse
|
14
|
Yang S, Li M, Li C, Yan L, Li Q, Gong Q, Li Y. Droplet-Driven Self-Propelled Devices Fabricated by a Femtosecond Laser. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37469253 PMCID: PMC10401497 DOI: 10.1021/acsami.3c04339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Self-propelled autonomous devices have broad application prospects in energy conservation, environmental protection, and biomedical engineering. Nevertheless, the driving force always consumes external energy or special chemicals. Here, a novel and green droplet-driven device (DDD) consisting of superhydrophilic triangles on a superhydrophobic plate is processed only by a femtosecond laser. The water droplet flows into water along the superhydrophilic channel and forms a jet to provide driving force for the DDD, whose strength can be manipulated by changing the point angle of the triangle and the volume of the droplet. By fabricating multiple or special channels, the DDD can translate and rotate along the designed track and even carry objects. This provides a new route for the fabrication of green self-propelled autonomous devices and their applications in the fields of intelligent systems and environmental protection.
Collapse
Affiliation(s)
- Shuai Yang
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
- Frontiers Science Center for Nano-Optoelectronics, Peking University, Beijing 100871, China
| | - Meng Li
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
- Frontiers Science Center for Nano-Optoelectronics, Peking University, Beijing 100871, China
| | - Chu Li
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
- Frontiers Science Center for Nano-Optoelectronics, Peking University, Beijing 100871, China
| | - Linyu Yan
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
- Frontiers Science Center for Nano-Optoelectronics, Peking University, Beijing 100871, China
| | - Qiang Li
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
- Frontiers Science Center for Nano-Optoelectronics, Peking University, Beijing 100871, China
| | - Qihuang Gong
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
- Frontiers Science Center for Nano-Optoelectronics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Hefei National Laboratory, Hefei 230088, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, China
| | - Yan Li
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
- Frontiers Science Center for Nano-Optoelectronics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Hefei National Laboratory, Hefei 230088, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, China
| |
Collapse
|
15
|
Winkens M, Vilcan A, de Visser PJ, de Graaf FV, Korevaar PA. Orbiting Self-Organization of Filament-Tethered Surface-Active Droplets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206800. [PMID: 36799188 DOI: 10.1002/smll.202206800] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/17/2023] [Indexed: 05/18/2023]
Abstract
Dissipative chemical systems hold the potential to enable life-like behavior in synthetic matter, such as self-organization, motility, and dynamic switching between different states. Here, out-of-equilibrium self-organization is demonstrated by interconnected source and drain droplets at an air-water interface, which display dynamic behavior due to a hydrolysis reaction that generates a concentration gradient around the drain droplets. This concentration gradient interferes with the adhesion of self-assembled amphiphile filaments that grow from a source droplet. The chemical gradient sustains a unique orbiting of the drain droplet, which is proposed to be driven by the selective adhesion of the filaments to the front of the moving droplet, while filaments approaching from behind are destabilized upon contact with the hydrolysis product in the trail of the droplet. Potential applications are foreseen in the transfer of chemical signals amongst communicating droplets in rearranging networks, and the implementation of chemical reactions to drive complex positioning routines in life-like systems.
Collapse
Affiliation(s)
- Mitch Winkens
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Alexandru Vilcan
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Pieter J de Visser
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Freek V de Graaf
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Peter A Korevaar
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| |
Collapse
|
16
|
Löffler RJG, Roliński T, Kitahata H, Koyano Y, Górecki J. New types of complex motion of a simple camphor boat. Phys Chem Chem Phys 2023; 25:7794-7804. [PMID: 36857664 DOI: 10.1039/d2cp05707g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
We discuss the motion of a rectangular camphor boat, considering the position of a camphor pill in relation to the boat's stern as the control parameter. The boat moves because the pill releases surface active molecules that decrease the surface tension and support the motion. We introduce a new experimental system in which the boat rotates on a long arm around the axis located at the centre of a Petri dish; thus, the motion is restricted to a circle and can be studied under stationary conditions for a long time. The experiments confirmed two previously reported modes of motion: continuous motion when the pill was located at the boat edge and pulsating (intermittent) motion if it was close to the boat centre (Suematsu et al., J. Phys. Chem. C, 2010, 114(21), 9876-9882). For intermediate pill locations, we observed a new, unreported type of motion characterised by oscillating speed (i.e. oscillating motion). Different modes of motion can be observed for the same pill location. The experimental results are qualitatively confirmed using a simple reaction-diffusion model of the boat evolution used in the above-mentioned paper.
Collapse
Affiliation(s)
- Richard J G Löffler
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland. .,Division of Astrophysics, Lund Observatory, Lund University, Box 43, SE-221 00 Lund, Sweden
| | - Tomasz Roliński
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| | - Hiroyuki Kitahata
- Department of Physics, Graduate School of Science, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba 263-8522, Japan
| | - Yuki Koyano
- Graduate School of Human Development and Environment, Kobe University, 3-11 Tsurukabuto, Nada-ku, Kobe, Hyogo 657-0011, Japan
| | - Jerzy Górecki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| |
Collapse
|
17
|
Nomoto T, Marumo M, Chiari L, Toyota T, Fujinami M. Time-Resolved Measurements of Interfacial Tension and Flow Speed of the Inclined Water Surface around a Self-propelled Camphor Boat by the Quasi-elastic Laser Scattering Method. J Phys Chem B 2023; 127:2863-2871. [PMID: 36921258 DOI: 10.1021/acs.jpcb.3c00466] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
An inclined liquid surface, such as a meniscus, plays an important role in advection and transport phenomena at a liquid's surface. However, there is no time-resolved measurement method for the interfacial tension of an inclined liquid-air interface. Here, a noninvasive method for simultaneous measurements of the interfacial tension and surface flow speed for an inclined water surface is described. This is an upgrade of the quasi-elastic laser scattering method with a closed-loop control system that introduces the dynamically tracked scattered and referential light into the detector. For the evaluation of the tilt compensation by dynamic tracking, the relationship between the apparent interfacial tension and surface inclination was examined for a water meniscus at 0-5° inclinations. It was also demonstrated that simultaneous measurements of the interfacial tension and surface flow speed around a self-propelled camphor boat on a pure water surface inclined by >3° at the back end of the boat are difficult to conduct accurately without dynamic tracking. Both the interfacial tension difference and the backward flow speed increased as the boat speed increased to 0.1 m/s; that had not been evaluated to date because of the high velocity of the boat and the surface inclination of the water around it. The direct experimental evaluation of the interfacial tension and the flow speed supported the model that the driving force of the camphor boat is the interfacial tension difference and the resistance force proportional to the boat velocity reduces its acceleration.
Collapse
Affiliation(s)
- Tomonori Nomoto
- Department of Applied Chemistry and Biotechnology, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Mizuki Marumo
- Department of Applied Chemistry and Biotechnology, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Luca Chiari
- Department of Applied Chemistry and Biotechnology, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Taro Toyota
- Department of Basic Science, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan
| | - Masanori Fujinami
- Department of Applied Chemistry and Biotechnology, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| |
Collapse
|
18
|
Chaithanya KVS, Shenoy SA, Dayal P. Hydrodynamics of a confined active Belousov-Zhabotinsky droplet. Phys Rev E 2022; 106:065103. [PMID: 36671180 DOI: 10.1103/physreve.106.065103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Self-sustained locomotion of synthetic droplet swimmers has been of great interest due to their ability to mimic the behavior of biological swimmers. Here we harness the Belousov-Zhabotinsky (BZ) reaction to induce Marangoni stresses on the fluid-droplet interface and elucidate the spontaneous locomotion of active BZ droplets in a confined two-dimensional channel. Our approach employs the lattice Boltzmann method to simulate a coupled system of multiphase hydrodynamics and BZ-reaction kinetics. Our investigation reveals the mechanism underlying the propulsion of active BZ droplets, in terms of convective and diffusive fluxes and deformation of the droplets. Furthermore, we demonstrate that by manipulating the degree of confinement, strength, and nature of coupling between surface tension and active species' concentration, the motion of the BZ droplet can be directed. In addition, we are able to capture two different kinds of droplet behaviors, namely, sustained and stationary, and establish conditions for the sustained long-time motion. We envisage that our findings can be used not only to understand the mechanics of biological swimmers but also to design reaction-driven self-propelled systems for a variety of biomimetic applications.
Collapse
Affiliation(s)
- K V S Chaithanya
- Polymer Engineering Research Laboratory, Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, Gujarat 382055, India
| | - Shreyas A Shenoy
- Polymer Engineering Research Laboratory, Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, Gujarat 382055, India
| | - Pratyush Dayal
- Polymer Engineering Research Laboratory, Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, Gujarat 382055, India
| |
Collapse
|
19
|
Sugawara T, Matsuo M, Suzuki K. Construction of Artificial Cell as an Autonomous Supramolecular Machine. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.1149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Muneyuki Matsuo
- Department of Chemistry, Graduate School of Integrated Science for Life, Hiroshima University
| | | |
Collapse
|
20
|
Li T, Liu Z, Hu J, Chen L, Chen T, Tang Q, Yu B, Zhao B, Mao C, Wan M. A Universal Chemotactic Targeted Delivery Strategy for Inflammatory Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206654. [PMID: 36122571 DOI: 10.1002/adma.202206654] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/13/2022] [Indexed: 06/15/2023]
Abstract
Above 50% of deaths can be attributed to chronic inflammatory diseases; thus, the construction of drug delivery systems based on effective interaction of inflammatory factors with chemotactic nanoparticles is meaningful. Herein, a zwitterion-based artificial chemotactic nanomotor is proposed for universal precise targeting strategy in vivo, where the high level of reactive oxygen species (ROS) and inducible nitric oxide synthase (iNOS) in inflammatory sites are used as a chemoattractant. Multidimensional static models, dynamic models, and in vivo models are established to evaluate chemotactic performance. The results show that the upregulated ROS and iNOS can induce the chemotaxis of nanomotors to diseased tissues in inflammation-related disease models. Further, mesoscale hydrodynamics simulations are performed to explain the chemotactic behavior of the nanomotors. Such a chemotactic delivery strategy is expected to improve delivery efficiency and may be applicable to a variety of inflammatory diseases.
Collapse
Affiliation(s)
- Ting Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Zhiyong Liu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Jinglei Hu
- Kuang Yaming Honors School, Nanjing University, Nanjing, 210023, China
| | - Lin Chen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Tiantian Chen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Qianqian Tang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Bixia Yu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Bo Zhao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
21
|
Matsuo M, Toyota T, Suzuki K, Sugawara T. Evolution of Proliferative Model Protocells Highly Responsive to the Environment. Life (Basel) 2022; 12:1635. [PMID: 36295070 PMCID: PMC9605134 DOI: 10.3390/life12101635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 12/02/2022] Open
Abstract
In this review, we discuss various methods of reproducing life dynamics using a constructive approach. An increase in the structural complexity of a model protocell is accompanied by an increase in the stage of reproduction of a compartment (giant vesicle; GV) from simple reproduction to linked reproduction with the replication of information molecules (DNA), and eventually to recursive proliferation of a model protocell. An encounter between a plural protic catalyst (C) and DNA within a GV membrane containing a plural cationic lipid (V) spontaneously forms a supramolecular catalyst (C@DNA) that catalyzes the production of cationic membrane lipid V. The local formation of V causes budding deformation of the GV and equivolume divisions. The length of the DNA strand influences the frequency of proliferation, associated with the emergence of a primitive information flow that induces phenotypic plasticity in response to environmental conditions. A predominant protocell appears from the competitive proliferation of protocells containing DNA with different strand lengths, leading to an evolvable model protocell. Recently, peptides of amino acid thioesters have been used to construct peptide droplets through liquid-liquid phase separation. These droplets grew, owing to the supply of nutrients, and were divided repeatedly under a physical stimulus. This proposed chemical system demonstrates a new perspective of the origins of membraneless protocells, i.e., the "droplet world" hypothesis. Proliferative model protocells can be regarded as autonomous supramolecular machines. This concept of this review may open new horizons of "evolution" for intelligent supramolecular machines and robotics.
Collapse
Affiliation(s)
- Muneyuki Matsuo
- Department of Chemistry, Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Taro Toyota
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Kentaro Suzuki
- Department of Chemistry, Faculty of Science, Kanagawa University, Tsuchiya, Hiratsuka 259-1293, Japan
| | - Tadashi Sugawara
- Department of Chemistry, Faculty of Science, Kanagawa University, Tsuchiya, Hiratsuka 259-1293, Japan
| |
Collapse
|
22
|
We the Droplets: A Constitutional Approach to Active and Self-Propelled Emulsions. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Aoyama T, Yamada S, Suematsu NJ, Takeuchi M, Hasegawa Y. Visual Sensing System to Investigate Self-Propelled Motion and Internal Color of Multiple Aqueous Droplets. SENSORS (BASEL, SWITZERLAND) 2022; 22:6309. [PMID: 36016069 PMCID: PMC9414911 DOI: 10.3390/s22166309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
This study proposes a visual sensing system to investigate the self-propelled motions of droplets. In the visual sensing of self-propelled droplets, large field-of-view and high-resolution images are both required to investigate the behaviors of multiple droplets as well as chemical reactions in the droplets. Therefore, we developed a view-expansive microscope system using a color camera head to investigate these chemical reactions; in the system, we implemented an image processing algorithm to detect the behaviors of droplets over a large field of view. We conducted motion tracking and color identification experiments on the self-propelled droplets to verify the effectiveness of the proposed system. The experimental results demonstrate that the proposed system is able to detect the location and color of each self-propelled droplet in a large-area image.
Collapse
Affiliation(s)
- Tadayoshi Aoyama
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Nagoya 464-8601, Japan
| | - Shoki Yamada
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Nagoya 464-8601, Japan
| | - Nobuhiko J. Suematsu
- School of Interdisciplenaly Mathematical Sciences and Meiji Institute for Advanced Study of Mathemtical Sciences (MIMS), Meiji University, Tokyo 101-8301, Japan
| | - Masaru Takeuchi
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Nagoya 464-8601, Japan
| | - Yasuhisa Hasegawa
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
24
|
Wentworth CM, Castonguay AC, Moerman PG, Meredith CH, Balaj RV, Cheon SI, Zarzar LD. Chemically Tuning Attractive and Repulsive Interactions between Solubilizing Oil Droplets. Angew Chem Int Ed Engl 2022; 61:e202204510. [PMID: 35678216 DOI: 10.1002/anie.202204510] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Indexed: 11/09/2022]
Abstract
Micellar solubilization is a transport process occurring in surfactant-stabilized emulsions that can lead to Marangoni flow and droplet motility. Active droplets exhibit self-propulsion and pairwise repulsion due to solubilization processes and/or solubilization products raising the droplet's interfacial tension. Here, we report emulsions with the opposite behavior, wherein solubilization decreases the interfacial tension and causes droplets to attract. We characterize the influence of oil chemical structure, nonionic surfactant structure, and surfactant concentration on the interfacial tensions and Marangoni flows of solubilizing oil-in-water drops. Three regimes corresponding to droplet "attraction", "repulsion" or "inactivity" are identified. We believe these studies contribute to a fundamental understanding of solubilization processes in emulsions and provide guidance as to how chemical parameters can influence the dynamics and chemotactic interactions between active droplets.
Collapse
Affiliation(s)
- Ciera M Wentworth
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Alexander C Castonguay
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Pepijn G Moerman
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Caleb H Meredith
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Rebecca V Balaj
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Seong Ik Cheon
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Lauren D Zarzar
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.,Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA.,Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
25
|
|
26
|
Menzel AM. Statistics for an object actively driven by spontaneous symmetry breaking into reversible directions. J Chem Phys 2022; 157:011102. [DOI: 10.1063/5.0093598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Propulsion of otherwise passive objects is achieved by mechanisms of active driving. We concentrate on cases in which the direction of active drive is subject to spontaneous symmetry breaking. In our case, this direction will be maintained until a large enough impulse by an additional stochastic force reverses it. Examples may be provided by self-propelled droplets, gliding bacteria stochastically reversing their propulsion direction, or nonpolar vibrated hoppers. The magnitude of active forcing is regarded as constant, and we include the effect of inertial contributions. Interestingly, this situation can formally be mapped to stochastic motion under (dry, solid) Coulomb friction, however, with a negative friction parameter. Diffusion coefficients are calculated by formal mapping to the situation of a quantum-mechanical harmonic oscillator exposed to an additional repulsive delta-potential. Results comprise a ditched or double-peaked velocity distribution and spatial statistics showing outward propagating maxima when starting from initially concentrated arrangements.
Collapse
Affiliation(s)
- Andreas M. Menzel
- Institut für Physik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| |
Collapse
|
27
|
Wentworth CM, Castonguay AC, Moerman PG, Meredith CH, Balaj RV, Cheon SI, Zarzar LD. Chemically Tuning Attractive and Repulsive Interactions between Solubilizing Oil Droplets. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ciera M. Wentworth
- Department of Chemistry The Pennsylvania State University University Park PA 16802 USA
| | | | - Pepijn G. Moerman
- Department of Chemical and Biomolecular Engineering Johns Hopkins University Baltimore MD 21218 USA
| | - Caleb H. Meredith
- Department of Materials Science and Engineering The Pennsylvania State University University Park PA 16802 USA
| | - Rebecca V. Balaj
- Department of Chemistry The Pennsylvania State University University Park PA 16802 USA
| | - Seong Ik Cheon
- Department of Chemistry The Pennsylvania State University University Park PA 16802 USA
| | - Lauren D. Zarzar
- Department of Chemistry The Pennsylvania State University University Park PA 16802 USA
- Department of Materials Science and Engineering The Pennsylvania State University University Park PA 16802 USA
- Materials Research Institute The Pennsylvania State University University Park PA 16802 USA
| |
Collapse
|
28
|
Gao C, Feng Y, Wilson DA, Tu Y, Peng F. Micro-Nano Motors with Taxis Behavior: Principles, Designs, and Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106263. [PMID: 35032145 DOI: 10.1002/smll.202106263] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/13/2021] [Indexed: 06/14/2023]
Abstract
As a novel mobile nanodevice, micro-nano motors (MNMs) can convert the energy of the surrounding environment into mechanical motion. With this unique ability, they promise revolutionary potential in bio-applications including precise drug delivery, bio-sensing, and noninvasive surgery. Yet for practically reaching the target and fulfilling these tasks in dynamically changing bio-environment, environment adaptivity beyond propulsion is important yet challenging. MNMs with taxis behavior/autonomous target-seeking ability offer a desirable solution. These motors can adaptively move to the target location and complete the task. Thanks to the persistent efforts of researchers, tactic MNMs have shown automatic navigation to target under various energy fields, not only in static environments, but also in shear rheological conditions that simulate blood flow. Therefore, tactic motors with self-targeting capability lay a concrete foundation for targeted drug delivery, cell transplantation, and thrombus ablation. This review systematically presents the moving principle, design, and biological applications of tactic MNMs under different energy fields. Through in-depth analysis of state-of-art progress, the obstacles of the field and possible solutions are discussed. With the continuous innovation and breakthroughs of multi-disciplinary researchers, MNMs with taxis behavior are expected to provide a revolutionary solution for cancer and other major diseases in the biomedical field.
Collapse
Affiliation(s)
- Chao Gao
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ye Feng
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Daniela A Wilson
- Institute for Molecules and Materials, Radboud University, Nijmegen, 6525 XZ, The Netherlands
| | - Yingfeng Tu
- School of Pharmaceutical Science, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China
| | - Fei Peng
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
29
|
Banno T, Sawada D, Toyota T. Construction of Supramolecular Systems That Achieve Lifelike Functions. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2391. [PMID: 35407724 PMCID: PMC8999524 DOI: 10.3390/ma15072391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 12/04/2022]
Abstract
The Nobel Prize in Chemistry was awarded in 1987 and 2016 for research in supramolecular chemistry on the "development and use of molecules with structure-specific interactions of high selectivity" and the "design and production of molecular machines", respectively. This confirmed the explosive development of supramolecular chemistry. In addition, attempts have been made in systems chemistry to embody the complex functions of living organisms as artificial non-equilibrium chemical systems, which have not received much attention in supramolecular chemistry. In this review, we explain recent developments in supramolecular chemistry through four categories: stimuli-responsiveness, time evolution, dissipative self-assembly, and hierarchical expression of functions. We discuss the development of non-equilibrium supramolecular systems, including the use of molecules with precisely designed properties, to achieve functions found in life as a hierarchical chemical system.
Collapse
Affiliation(s)
- Taisuke Banno
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan; (T.B.); (D.S.)
| | - Daichi Sawada
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan; (T.B.); (D.S.)
| | - Taro Toyota
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
- Universal Biology Institute, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
30
|
Khodarahmian K, Ghiasvand A. Mimic Nature Using Chemotaxis of Ionic Liquid Microdroplets for Drug Delivery Purposes. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030786. [PMID: 35164048 PMCID: PMC8839142 DOI: 10.3390/molecules27030786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022]
Abstract
Due to the growing prevalence of incurable diseases, such as cancer, worldwide, nowadays, the development of smart drug delivery systems is an inevitable necessity. Chemotaxis-driven movement of ionic liquid microdroplets containing therapeutic compounds is a well-known example of a smart drug delivery system. This review aims to classify, summarize, and compare ionic liquid-based chemotaxis systems in an easily understandable article. Chemotaxis is the basis of the movement of cells and microorganisms in biological environments, which is the cause of many vital biochemical and biological processes. This review attempts to summarize the available literature on single-component biomimetic and self-propelling microdroplet systems based on ionic liquids, which exhibit chemotaxis and spontaneously move in a determined direction by an external gradient, particularly a chemical change. It also aims to review artificial ionic liquid-based chemotaxis systems that can be used as drug carriers for medical purposes. The various ionic liquids used for this purpose are discussed, and different forms of chemical gradients and mechanisms that cause movement in microfluidic channels will be reviewed.
Collapse
|
31
|
Noguchi M, Yamada M, Sawada H. Analysis of different self-propulsion types of oil droplets based on electrostatic interaction effects. RSC Adv 2022; 12:18354-18362. [PMID: 35799924 PMCID: PMC9214862 DOI: 10.1039/d2ra02076a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/15/2022] [Indexed: 11/21/2022] Open
Abstract
We found that the correlated motion of two oil droplets was classified into three self-propelled motions (follow-up motion, parallel motion, and repulsive motion) depending on the pH of the aqueous solution.
Collapse
Affiliation(s)
- Mika Noguchi
- Department of Applied Physics, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Masato Yamada
- Department of Applied Physics, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Hideyuki Sawada
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|
32
|
Krist KT, Sen A, Noid WG. A simple theory for molecular chemotaxis driven by specific binding interactions. J Chem Phys 2021; 155:164902. [PMID: 34717356 DOI: 10.1063/5.0061376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Recent experiments have suggested that enzymes and other small molecules chemotax toward their substrates. However, the physical forces driving this chemotaxis are currently debated. In this work, we consider a simple thermodynamic theory for molecular chemotaxis that is based on the McMillan-Mayer theory of dilute solutions and Schellman's theory for macromolecular binding. Even in the absence of direct interactions, the chemical binding equilibrium introduces a coupling term into the relevant free energy, which then reduces the chemical potential of both enzymes and their substrates. Assuming a local thermodynamic equilibrium, this binding contribution to the chemical potential generates an effective thermodynamic force that promotes chemotaxis by driving each solute toward its binding partner. Our numerical simulations demonstrate that, although small, this thermodynamic force is qualitatively consistent with several experimental studies. Thus, our study may provide additional insight into the role of the thermodynamic binding free energy for molecular chemotaxis.
Collapse
Affiliation(s)
- Kathleen T Krist
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Ayusman Sen
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - W G Noid
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
33
|
Imamura S, Kawakatsu T. Modeling of chemically active particles at an air-liquid interface. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:127. [PMID: 34655360 DOI: 10.1140/epje/s10189-021-00132-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
The collective motion of chemically active particles at an air-liquid interface is studied theoretically as a dynamic self-organization problem. Based on a physical consideration, we propose a minimal model for self-propelled particles by combining hydrodynamic interaction, capillary interaction, driving force by Marangoni effect, and Marangoni flow. Our model has successfully captured the features of chemically active particles, that represent dynamic self-organized states such as crystalline, chain, liquid-like and spreading states.
Collapse
Affiliation(s)
- Shun Imamura
- Department of Physics, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan.
- Mathematics for Advanced Materials-OIL, AIST-Tohoku University, Sendai, 980-8577, Japan.
- Department of Chemical Engineering, Kyoto University, Kyoto, 615-8510, Japan.
| | - Toshihiro Kawakatsu
- Department of Physics, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
| |
Collapse
|
34
|
Matsuo M, Kurihara K. Proliferating coacervate droplets as the missing link between chemistry and biology in the origins of life. Nat Commun 2021; 12:5487. [PMID: 34561428 PMCID: PMC8463549 DOI: 10.1038/s41467-021-25530-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 08/12/2021] [Indexed: 02/08/2023] Open
Abstract
The hypothesis that prebiotic molecules were transformed into polymers that evolved into proliferating molecular assemblages and eventually a primitive cell was first proposed about 100 years ago. To the best of our knowledge, however, no model of a proliferating prebiotic system has yet been realised because different conditions are required for polymer generation and self-assembly. In this study, we identify conditions suitable for concurrent peptide generation and self-assembly, and we show how a proliferating peptide-based droplet could be created by using synthesised amino acid thioesters as prebiotic monomers. Oligopeptides generated from the monomers spontaneously formed droplets through liquid-liquid phase separation in water. The droplets underwent a steady growth-division cycle by periodic addition of monomers through autocatalytic self-reproduction. Heterogeneous enrichment of RNA and lipids within droplets enabled RNA to protect the droplet from dissolution by lipids. These results provide experimental constructs for origins-of-life research and open up directions in the development of peptide-based materials.
Collapse
Affiliation(s)
- Muneyuki Matsuo
- Department of Chemistry, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo, Japan
- Department of Creative Research, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi, Japan
| | - Kensuke Kurihara
- Department of Creative Research, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi, Japan.
- Institute of Laser Engineering, Osaka University, Suita, Osaka, Japan.
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa, Japan.
- Faculty of Education, Utsunomiya University, Utsumomiya, Tochigi, Japan.
- Department of Life and Coordination-Complex Molecular Science, Biomolecular Functions, Institute for Molecular Science, National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi, Japan.
| |
Collapse
|
35
|
Cheon SI, Silva LBC, Khair AS, Zarzar LD. Interfacially-adsorbed particles enhance the self-propulsion of oil droplets in aqueous surfactant. SOFT MATTER 2021; 17:6742-6750. [PMID: 34223843 DOI: 10.1039/d0sm02234a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Understanding the chemo-mechanical mechanisms that direct the motion of self-propulsive colloids is important for the development of active materials and exploration of dynamic, collective phenomena. Here, we demonstrate that the adsorption of solid particles on the surface of solubilizing oil droplets can significantly enhance the droplets' self-propulsion speeds. We investigate the relationship between the self-propulsion of bromodecane oil droplets containing silica particles of varying concentration in Triton X-100 surfactant, noting up to order of magnitude increases in propulsion speeds. Using fluorescently labeled silica, we observe packing of the particles at the oil-water interfaces of the rear pole of the moving droplets. For bromodecane oil droplets in Triton X-100, the highest droplet speeds were achieved at approximately 40% particle surface coverage of the droplet interface. We find particle-assisted propulsion enhancement in ionic surfactants and different oil droplet compositions as well, demonstrating the breadth of this effect. While a precise mechanism for the propulsion enhancement remains unclear, the simple addition of silica particles to droplet oil-water interfaces provides a straightforward route to tune active droplet dynamics.
Collapse
Affiliation(s)
- Seong Ik Cheon
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | - Aditya S Khair
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Lauren D Zarzar
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA. and Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA and Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
36
|
Pavel IA, Salinas G, Mierzwa M, Arnaboldi S, Garrigue P, Kuhn A. Cooperative Chemotaxis of Magnesium Microswimmers for Corrosion Spotting. Chemphyschem 2021; 22:1321-1325. [PMID: 33939868 DOI: 10.1002/cphc.202100236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/03/2021] [Indexed: 01/02/2023]
Abstract
Numerous artificial micro- and nanomotors, as well as various swimmers have been inspired by living organisms that are able to move in a coordinated manner. Their cooperation has also gained a lot of attention because the resulting clusters are able to adapt to changes in their environment and to perform complex tasks. However, mimicking such a collective behavior remains a challenge. In the present work, magnesium microparticles are used as chemotactic swimmers with pronounced collective features, allowing the gradual formation of macroscopic agglomerates. The formed clusters act like a single swimmer able to follow pH gradients. This dynamic behavior can be used to spot localized corrosion events in a straightforward way. The autonomous docking of the swimmers to the corrosion site leads to the formation of a local protection layer, thus increasing corrosion resistance and triggering partial self-healing.
Collapse
Affiliation(s)
| | - Gerardo Salinas
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 33607, Pessac, France
| | - Maciej Mierzwa
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 33607, Pessac, France
| | - Serena Arnaboldi
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 33607, Pessac, France
| | - Patrick Garrigue
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 33607, Pessac, France
| | - Alexander Kuhn
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 33607, Pessac, France
| |
Collapse
|
37
|
Wang Z, Wang X, Miao Q, Gao F, Zhao YP. Spontaneous Motion and Rotation of Acid Droplets on the Surface of a Liquid Metal. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4370-4379. [PMID: 33792321 DOI: 10.1021/acs.langmuir.1c00455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Self-propulsion of droplets is of great significance in many fields. The spontaneous horizontal motion and self-jumping of droplets have been well realized in various ways. However, there is still a lack of an effective method to enable a droplet to rotate spontaneously and steadily. In this paper, by employing an acid droplet and a liquid metal, the spontaneous and steady rotation of droplets is achieved. For an acid droplet, it may spontaneously move when it is deposited on the surface of the liquid metal. By adjusting experimental parameters to the proper range, the self-rotation of droplet happens. This phenomenon originates from the fluctuation of the droplet boundary and the collective movement of bubbles that are generated by the chemical reactions between the acid droplet and liquid metal. This rotation has a simpler implementation method and more steady rotation state. Its angular velocity is much higher than that driven by other mechanisms. Moreover, the movements of acid droplets on the liquid metal are classified according to experimental conditions. The internal flow fields, the movements and distribution of bubbles, and the fluctuation of the droplet boundary are also explored and discussed. The theoretical model describing the rotational droplet is given. Our work may deepen the understanding of the physical system transition affected by chemical reactions and provide a new way for the design of potential applications, e.g., micro- and nanodevices.
Collapse
Affiliation(s)
- Zhanlong Wang
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Xiaohe Wang
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Qing Miao
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Feifei Gao
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Ya-Pu Zhao
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| |
Collapse
|
38
|
Yamada M, Shigemune H, Maeda S, Sawada H. Temperature and Humidity Dependence of Marangoni Convection and Its Effect on the Self-propulsion of an Oil Droplet. CHEM LETT 2021. [DOI: 10.1246/cl.200842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Masato Yamada
- Department of Applied Physics, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Hiroki Shigemune
- Department of Electrical Engineering, School of Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan
| | - Shingo Maeda
- Department of Engineering Science and Mechanics, School of Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan
| | - Hideyuki Sawada
- Department of Applied Physics, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|
39
|
Abstract
Field-assisted self-assembly, motion, and manipulation of droplets have gained much attention in the past decades. We exhibit an electric field manipulation of the motion of a liquid metal (mercury) droplet submerged in a conductive liquid medium (a solution of sulfuric acid). A mercury droplet moves toward the cathode and its path selection is always given by the steepest descent of the local electric field potential. Utilizing this unique behavior, we present several examples of droplet motions, including maze solving, electro-levitation, and motion on a diverted path between parallel electrodes by controlling the conductivity of the medium. We also present an experimental demonstration of Fermat's principle in a non-optical system, namely a mercury droplet moving along a refracted path between electrodes in a domain having two different conductivities.
Collapse
|
40
|
Koyano Y, Kitahata H. Imperfect bifurcation in the rotation of a propeller-shaped camphor rotor. Phys Rev E 2021; 103:012202. [PMID: 33601587 DOI: 10.1103/physreve.103.012202] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/14/2020] [Indexed: 01/25/2023]
Abstract
We investigated the bifurcation structure on the self-propelled motion of a camphor rotor at a water surface. The center of the camphor rotor was fixed by the axis, and it showed rotational motion around it. Due to the chiral asymmetry of its shape, the absolute values of the angular velocities in clockwise and counterclockwise directions were different. This asymmetry in the angular velocities implies an imperfect bifurcation. From the numerical simulation results, we discuss the condition for the occurrence of the imperfect bifurcation.
Collapse
Affiliation(s)
- Yuki Koyano
- Department of Physics, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Hiroyuki Kitahata
- Department of Physics, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| |
Collapse
|
41
|
Tiwari I, Parmananda P, Chelakkot R. Periodic oscillations in a string of camphor infused disks. SOFT MATTER 2020; 16:10334-10344. [PMID: 33237113 DOI: 10.1039/d0sm01393e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The rhythmic beating motion of autonomously motile filaments has many practical applications. Here, we present an experimental study on a filament made of camphor infused paper disks, stitched together adjacent to each other using nylon thread. The filament displays spontaneous translatory motion when it is placed on the surface of water due to the surface tension gradients created by camphor molecules on the water surface. When this filament is clamped on one end, we obtain regular oscillatory motion instead of translation. The filament shows qualitatively different dynamics at different activity levels, which is controlled by the amount of camphor infused into the paper disks. For a better physical understanding of the filament dynamics, we develop a minimal numerical model involving a semi-flexible filament made of active polar disks, where the polarity is coupled to the instantaneous velocity of the particle. This model qualitatively reproduces different oscillatory modes of the filament. Moreover, our model reveals a rich dynamical state diagram of the system, as a function of filament activity and the coupling strength.
Collapse
Affiliation(s)
- Ishant Tiwari
- Department of Physics, Indian Institute of Technology - Bombay, Mumbai, Maharashtra 400076, India.
| | | | | |
Collapse
|
42
|
Tanabe T, Ogasawara T, Suematsu NJ. Effect of a product on spontaneous droplet motion driven by a chemical reaction of surfactant. Phys Rev E 2020; 102:023102. [PMID: 32942422 DOI: 10.1103/physreve.102.023102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
We focus on the self-propelled motion of an oil droplet within an aqueous phase or an aqueous droplet within an oil phase, which originates from an interfacial chemical reaction of surfactant. The droplet motion has been explained by mathematical models, which require the assumption that the chemical reaction increases the interfacial tension. However, several experimental reports have demonstrated self-propelled motion with the chemical reaction decreasing the interfacial tension. Our motivation is to construct an improved mathematical model, which explains these experimental observations. In this process, we consider the concentrations of the reactant and product on the interface and of the reactant in the bulk. Our numerical calculations indicate that the droplet potentially moves in the cases of both an increase and a decrease in the interfacial tension. In addition, the reaction rate and size dependencies of the droplet speed observed in experiments were well reproduced using our model. These results indicate the potential of our model as a universal one for droplet motion.
Collapse
Affiliation(s)
- Takahiro Tanabe
- Meiji Institute for Advanced Study of Mathematical Sciences (MIMS), Meiji University, 4-21-1 Nakano, Nakano-ku, Tokyo 164-8252, Japan
| | - Takuto Ogasawara
- Graduate School of Advanced Mathematical Sciences, Meiji University, 4-21-1 Nakano, Nakano-ku, Tokyo 164-8525, Japan
| | - Nobuhiko J Suematsu
- Meiji Institute for Advanced Study of Mathematical Sciences (MIMS), Meiji University, 4-21-1 Nakano, Nakano-ku, Tokyo 164-8252, Japan
- Graduate School of Advanced Mathematical Sciences, Meiji University, 4-21-1 Nakano, Nakano-ku, Tokyo 164-8525, Japan
| |
Collapse
|
43
|
Arrabito G, Ferrara V, Bonasera A, Pignataro B. Artificial Biosystems by Printing Biology. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907691. [PMID: 32511894 DOI: 10.1002/smll.201907691] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/09/2020] [Indexed: 05/09/2023]
Abstract
The continuous progress of printing technologies over the past 20 years has fueled the development of a plethora of applications in materials sciences, flexible electronics, and biotechnologies. More recently, printing methodologies have started up to explore the world of Artificial Biology, offering new paradigms in the direct assembly of Artificial Biosystems (small condensates, compartments, networks, tissues, and organs) by mimicking the result of the evolution of living systems and also by redesigning natural biological systems, taking inspiration from them. This recent progress is reported in terms of a new field here defined as Printing Biology, resulting from the intersection between the field of printing and the bottom up Synthetic Biology. Printing Biology explores new approaches for the reconfigurable assembly of designed life-like or life-inspired structures. This work presents this emerging field, highlighting its main features, i.e., printing methodologies (from 2D to 3D), molecular ink properties, deposition mechanisms, and finally the applications and future challenges. Printing Biology is expected to show a growing impact on the development of biotechnology and life-inspired fabrication.
Collapse
Affiliation(s)
- Giuseppe Arrabito
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Viale delle Scienze, Building 17, Palermo, 90128, Italy
| | - Vittorio Ferrara
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Viale delle Scienze, Building 17, Palermo, 90128, Italy
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria, 6, Catania, 95125, Italy
| | - Aurelio Bonasera
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Viale delle Scienze, Building 17, Palermo, 90128, Italy
| | - Bruno Pignataro
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Viale delle Scienze, Building 17, Palermo, 90128, Italy
| |
Collapse
|
44
|
Galy PE, Rudiuk S, Morel M, Baigl D. Self-Propelled Water Drops on Bare Glass Substrates in Air: Fast, Controllable, and Easy Transport Powered by Surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6916-6923. [PMID: 32074453 DOI: 10.1021/acs.langmuir.9b03727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Self-propelled drops are capable of motion without external intervention. As such, they constitute attractive entities for fundamental investigations in active soft matter, hydrodynamics, and surface sciences, as well as promising systems for autonomous microfluidic operations. In contrast with most of the examples relying on organic drops or specifically treated substrates, here we describe the first system of nonreactive water drops in air that can propel themselves on a commercially available ordinary glass substrate that was used as received. This is achieved by exploiting the dynamic adsorption behavior of common n-alkyltrimethylammonium bromide (CnTAB) surfactants added to the drop. We precisely analyze the drop motion for a broad series of surfactants carrying n = 6 to 18 carbon atoms in their tail and establish how the motion characteristics (speed, probability of motion) are tuned by both the hydrophobicity and the concentration of the surfactant. We show that motion occurs regardless of the n value but only in a specific concentration range with a maximum speed at around one tenth of the critical micelle concentration (CMC/10) for most of the tested surfactants. Surfactants of intermediate hydrophobicity are shown to be the best candidates to power drops that can move at a high speed (1-10 cm s-1), the optimal performance being reached with [C12TAB] = 800 μM. We propose a mechanism where the motion originates from the anisotropic wettability of the substrate created by the electrostatic adsorption of surfactants beneath the moving drop. Simply drawing lines with a marker pen allows us to create guiding paths for drop motion and to achieve operations such as complex trajectory control, programmed drop fusion, drop refilling, as well as drop moving vertically against gravity. This work revisits the role of surfactants in dynamic wetting and self-propelled motion as well as brings an original strategy to build the future of microfluidics with lower-cost, simpler, and more autonomous portable devices that could be made available to everyone and everywhere.
Collapse
Affiliation(s)
- Pauline E Galy
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Sergii Rudiuk
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Mathieu Morel
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Damien Baigl
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
45
|
Encarnación Escobar JM, Nieland J, van Houselt A, Zhang X, Lohse D. Marangoni puffs: dramatically enhanced dissolution of droplets with an entrapped bubble. SOFT MATTER 2020; 16:4520-4527. [PMID: 32352141 DOI: 10.1039/d0sm00093k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We present a curious effect observed during the dissolution process of water-immersed long-chain alcohol drops with an entrapped air bubble. These droplets dissolve while entrapping an air bubble pinned at the substrate. We qualitatively describe and explain four different phases that are found during the dissolution of this kind of system. The dissolution rate in the four phases differ dramatically. When the drop-water interface and the air bubble contact each other, rapid cyclic changes of the morphology are found: The breakage of the thin alcohol layer in between the bubble and the water leads to the formation of a three phase contact line. If the surface tension of the water-air interface supersedes those of the alcohol-water and alcohol-air interfaces, alcohol from the droplet is pulled upwards, leading to a closure of the air-water interface and the formation of a new thin alcohol film, which then dissolves again, leading to a repetition of the series of events. We call this sequence of events Marangoni puffing. This only happen for alcohols of appropriate surface tension. The Marangoni puffing is an intermediate state. In the final dissolution phases the Marangoni forces dramatically accelerate the dissolution rate, which then becomes one order of magnitude faster than the purely buoyancy-convective driven dissolution. Our results have bearing on various dissolution processes in multicomponent droplet systems.
Collapse
Affiliation(s)
- José M Encarnación Escobar
- Physics of Fluids Group, Max Planck Center Twente for Complex Fluid Dynamics, JM Burgers Center for Fluid Dynamics, Mesa+, Department of Science and Technology, University of Twente, Enschede 7522 NB, The Netherlands.
| | - Jaap Nieland
- Physics of Interfaces and Nanomaterials, MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, 7500AE, Enschede, The Netherlands
| | - Arie van Houselt
- Physics of Interfaces and Nanomaterials, MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, 7500AE, Enschede, The Netherlands
| | - Xuehua Zhang
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta, Canada.
| | - Detlef Lohse
- Physics of Fluids Group, Max Planck Center Twente for Complex Fluid Dynamics, JM Burgers Center for Fluid Dynamics, Mesa+, Department of Science and Technology, University of Twente, Enschede 7522 NB, The Netherlands.
| |
Collapse
|
46
|
Nawa-Okita E, Nakao Y, Yamamoto D, Shioi A. A Molecular Assembly Machine Working under a Quasi-Steady State pH Gradient. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20190348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Erika Nawa-Okita
- Organization for Research Initiatives and Development, Faculty of Science and Engineering, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto 610-0321, Japan
| | - Yuki Nakao
- Department of Chemical Engineering & Materials Science, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto 610-0321, Japan
| | - Daigo Yamamoto
- Department of Chemical Engineering & Materials Science, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto 610-0321, Japan
| | - Akihisa Shioi
- Department of Chemical Engineering & Materials Science, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto 610-0321, Japan
| |
Collapse
|
47
|
Liu M, Tu B, Liu L, Chen B, Tu Y. [Application of self-propelled micro-/nanomotors in active targeted drug delivery]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:445-452. [PMID: 32376586 DOI: 10.12122/j.issn.1673-4254.2020.03.25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
As a new type of micro-/nanomachines, self-propelled micro-/nanomotors (MNMs) can convert chemical or external energies from the surrounding environment into mechanical forces to produce autonomous motion. The ability of autonomous movement allows these MNMs to move actively to the targeted locations, and thus confers great potentials on the MNMs for applications in biomedicine, especially in drug delivery. MNMs have been shown to effectively load therapeutic payloads for active delivery to the disease site, which greatly improves the therapeutic efficacy and reduces side effects compared with the traditional nanodrugs. In this review, we provide an overview of different propulsion mechanisms of MNMs, including chemical propulsion based on redox reaction and external field propulsion driven by external energy such as light, magnetic field, electric field and ultrasound, followed by a review of the recent progress in active drug delivery based on MNMs in the past decade. We also discuss the current challenges and future perspectives of the application of the MNMs.
Collapse
Affiliation(s)
- Meihuan Liu
- School of Pharmaceutical Science, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Binbin Tu
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, Chin
| | - Lu Liu
- School of Pharmaceutical Science, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Bin Chen
- School of Pharmaceutical Science, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Yingfeng Tu
- School of Pharmaceutical Science, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
48
|
Adamatzky A, Chiolerio A, Szaciłowski K. Liquid metal droplet solves maze. SOFT MATTER 2020; 16:1455-1462. [PMID: 31976998 DOI: 10.1039/c9sm01806a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A room temperature liquid metal features a melting point around room temperature. We use liquid metal gallium due to its non-toxicity. A physical maze is a connected set of Euclidean domains separated by impassable walls. We demonstrate that a maze filled with sodium hydroxide solution is solved by a gallium droplet when direct current is applied between start and destination loci. During the maze solving the droplet stays compact due to its large surface tension, navigates along lines of the highest electrical current density due its high electrical conductivity, and goes around corners of the maze's corridors due to its high conformability. The droplet maze solver has a long life-time due to the negligible vapour tension of liquid gallium and its corrosion resistance and its operation enables computational schemes based on liquid state devices.
Collapse
Affiliation(s)
- Andrew Adamatzky
- Unconventional Computing Laboratory, Department of Computer Science and Creative Technologies, University of the West of England, Bristol BS16 1QY, UK.
| | | | | |
Collapse
|
49
|
Koyano Y, Kitahata H, Nakata S, Gorecki J. On a simple model that explains inversion of a self-propelled rotor under periodic stop-and-release-operations. CHAOS (WOODBURY, N.Y.) 2020; 30:023105. [PMID: 32113248 DOI: 10.1063/1.5140626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/08/2020] [Indexed: 06/10/2023]
Abstract
We propose a simple mathematical model that describes the time evolution of a self-propelled object on a liquid surface using variables such as object location, surface concentration of active molecules, and hydrodynamic surface flow. The model is applied to simulate the time evolution of a rotor composed of a polygonal plate with camphor pills at its corners. We have qualitatively reproduced results of experiments, in which the inversion of rotational direction under periodic stop-and-release-operations was investigated. The model correctly describes the probability of the inversion as a function of the duration of the phase when the rotor is stopped. Moreover, the model allows to introduce the rotor asymmetry unavoidable in real experiments and study its influence on the studied phenomenon. Our numerical simulations have revealed that the probability of the inversion of rotational direction is determined by the competition among the transport of the camphor molecules by the flow, the intrinsic asymmetry of the rotor, and the noise amplitude.
Collapse
Affiliation(s)
- Yuki Koyano
- Department of Physics, Graduate School of Science, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Hiroyuki Kitahata
- Department of Physics, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Satoshi Nakata
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Jerzy Gorecki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
50
|
Wang H, Pumera M. Coordinated behaviors of artificial micro/nanomachines: from mutual interactions to interactions with the environment. Chem Soc Rev 2020; 49:3211-3230. [DOI: 10.1039/c9cs00877b] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The interactions leading to coordinated behaviors of artificial micro/nanomachines are reviewed.
Collapse
Affiliation(s)
- Hong Wang
- School of Chemical Engineering & Technology
- China University of Mining and Technology
- Xuzhou
- P. R. China
| | - Martin Pumera
- Center for Advanced Functional Nanorobots
- Department of Inorganic Chemistry
- University of Chemistry and Technology Prague
- CZ-166 28 Prague
- Czech Republic
| |
Collapse
|