1
|
Salama S, Mostafa HS, Husseiny S, Sebak M. Actinobacteria as Microbial Cell Factories and Biocatalysts in The Synthesis of Chiral Intermediates and Bioactive Molecules; Insights and Applications. Chem Biodivers 2024; 21:e202301205. [PMID: 38155095 DOI: 10.1002/cbdv.202301205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 12/30/2023]
Abstract
Actinobacteria are one of the most intriguing bacterial phyla in terms of chemical diversity and bioactivities of their reported biomolecules and natural products, including various types of chiral molecules. Actinobacterial genera such as Detzia, Mycobacterium, and Streptomyces are among the microbial sources targeted for selective reactions such as asymmetric biocatalysis catalyzed by whole cells or enzymes induced in their cell niche. Remarkably, stereoselective reactions catalyzed by actinobacterial whole cells or their enzymes include stereoselective oxidation, stereoselective reduction, kinetic resolution, asymmetric hydrolysis, and selective transamination, among others. Species of actinobacteria function with high chemo-, regio-, and enantio-selectivity under benign conditions, which could help current industrial processing. Numerous selective enzymes were either isolated from actinobacteria or expressed from actinobacteria in other microbes and hence exploited in the production of pure organic compounds difficult to obtain chemically. In addition, different species of actinobacteria, especially Streptomyces species, function as natural producers of chiral molecules of therapeutic importance. Herein, we discuss some of the most outstanding contributions of actinobacteria to asymmetric biocatalysis, which are important in the organic and/or pharmaceutical industries. In addition, we highlight the role of actinobacteria as microbial cell factories for chiral natural products with insights into their various biological potentialities.
Collapse
Affiliation(s)
- Sara Salama
- Department of Pharmaceutical Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, 62514, Beni-Suef, Egypt
| | - Heba Sayed Mostafa
- Food Science Department, Faculty of Agriculture, Cairo University, 12613, Giza, Egypt
| | - Samah Husseiny
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, 62517, Beni-Suef, Egypt
| | - Mohamed Sebak
- Department of Pharmaceutical Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, 62514, Beni-Suef, Egypt
| |
Collapse
|
2
|
Kong L, Deng Z, You D. Chemistry and biosynthesis of bacterial polycyclic xanthone natural products. Nat Prod Rep 2022; 39:2057-2095. [PMID: 36083257 DOI: 10.1039/d2np00046f] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Covering: up to the end of 2021Bacterial polycyclic xanthone natural products (BPXNPs) are a growing family of natural xanthones featuring a pentangular architecture with various modifications to the tricyclic xanthone chromophore. Their structural diversities and various activities have fueled biosynthetic and chemical synthetic studies. Moreover, their more potent activities than the clinically used drugs make them potential candidates for the treatment of diseases. Future unraveling of structure activity relationships (SARs) will provide new options for the (bio)-synthesis of drug analogues with higher activities. This review summarizes the isolation, structural elucidation and biological activities and more importantly, the recent strategies for the microbial biosynthesis and chemical synthesis of BPXNPs. Regarding their biosynthesis, we discuss the recent progress in enzymes that synthesize tricyclic xanthone, the protein candidates for structural moieties (methylene dioxygen bridge and nitrogen heterocycle), tailoring enzymes for methylation and halogenation. The chemical synthesis part summarizes the recent methodology for the division synthesis and coupling construction of achiral molecular skeletons. Ultimately, perspectives on the biosynthetic study of BPXNPs are discussed.
Collapse
Affiliation(s)
- Lingxin Kong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Delin You
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
3
|
Toplak M, Nagel A, Frensch B, Lechtenberg T, Teufel R. An acetyltransferase controls the metabolic flux in rubromycin polyketide biosynthesis by direct modulation of redox tailoring enzymes. Chem Sci 2022; 13:7157-7164. [PMID: 35799824 PMCID: PMC9215129 DOI: 10.1039/d2sc01952c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/16/2022] [Indexed: 01/14/2023] Open
Abstract
The often complex control of bacterial natural product biosynthesis typically involves global and pathway-specific transcriptional regulators of gene expression, which often limits the yield of bioactive compounds under laboratory conditions. However, little is known about regulation mechanisms on the enzymatic level. Here, we report a novel regulatory principle for natural products involving a dedicated acetyltransferase, which modifies a redox-tailoring enzyme and thereby enables pathway furcation and alternating pharmacophore assembly in rubromycin polyketide biosynthesis. The rubromycins such as griseorhodin (grh) A are complex bioactive aromatic polyketides from Actinobacteria with a hallmark bisbenzannulated [5,6]-spiroketal pharmacophore that is mainly installed by two flavoprotein monooxygenases. First, GrhO5 converts the advanced precursor collinone into the [6,6]-spiroketal containing dihydrolenticulone, before GrhO6 effectuates a ring contraction to afford the [5,6]-spiroketal. Our results show that pharmacophore assembly in addition involves the acetyl-CoA-dependent acetyltransferase GrhJ that activates GrhO6 to allow the rapid generation and release of its labile product, which is subsequently sequestered by ketoreductase GrhO10 and converted into a stable intermediate. Consequently, the biosynthesis is directed to the generation of canonical rubromycins, while the alternative spontaneous [5,6]-spiroketal hydrolysis to a ring-opened pathway product is thwarted. Presumably, this allows the bacteria to rapidly adjust the biosynthesis of functionally distinct secondary metabolites depending on nutrient and precursor (i.e. acetyl-CoA) availability. Our study thus illustrates how natural product biosynthesis can be enzymatically regulated and provides new perspectives for the improvement of in vitro enzyme activities and natural product titers via biotechnological approaches. Characterization of the acetyltransferase GrhJ reveals the surprising acetylation of flavoenzyme GrhO6 in rubromycin polyketide biosynthesis, showcasing a novel principle for the enzymatic regulation of secondary metabolic pathways.![]()
Collapse
Affiliation(s)
- Marina Toplak
- Faculty of Biology, University of Freiburg Schänzlestrasse 1 79104 Freiburg Germany
| | - Adelheid Nagel
- Faculty of Biology, University of Freiburg Schänzlestrasse 1 79104 Freiburg Germany
| | - Britta Frensch
- Faculty of Biology, University of Freiburg Schänzlestrasse 1 79104 Freiburg Germany
| | - Thorsten Lechtenberg
- Faculty of Biology, University of Freiburg Schänzlestrasse 1 79104 Freiburg Germany
| | - Robin Teufel
- Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel Klingelbergstrasse 50 4056 Basel Switzerland
| |
Collapse
|
4
|
Toplak M, Teufel R. Three Rings to Rule Them All: How Versatile Flavoenzymes Orchestrate the Structural Diversification of Natural Products. Biochemistry 2021; 61:47-56. [PMID: 34962769 PMCID: PMC8772269 DOI: 10.1021/acs.biochem.1c00763] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
The structural diversification
of natural products is instrumental
to their versatile bioactivities. In this context, redox tailoring
enzymes are commonly involved in the modification and functionalization
of advanced pathway intermediates en route to the mature natural products.
In recent years, flavoprotein monooxygenases have been shown to mediate
numerous redox tailoring reactions that include not only (aromatic)
hydroxylation, Baeyer–Villiger oxidation, or epoxidation reactions
but also oxygenations that are coupled to extensive remodeling of
the carbon backbone, which are often central to the installment of
the respective pharmacophores. In this Perspective, we will highlight
recent developments and discoveries in the field of flavoenzyme catalysis
in bacterial natural product biosynthesis and illustrate how the flavin
cofactor can be fine-tuned to enable chemo-, regio-, and stereospecific
oxygenations via distinct flavin-C4a-peroxide and flavin-N5-(per)oxide
species. Open questions remain, e.g., regarding the breadth of chemical
reactions enabled particularly by the newly discovered flavin-N5-oxygen
adducts and the role of the protein environment in steering such cascade-like
reactions. Outstanding cases involving different flavin oxygenating
species will be exemplified by the tailoring of bacterial aromatic
polyketides, including enterocin, rubromycins, rishirilides, mithramycin,
anthracyclins, chartreusin, jadomycin, and xantholipin. In addition,
the biosynthesis of tropone natural products, including tropolone
and tropodithietic acid, will be presented, which features a recently
described prototypical flavoprotein dioxygenase that may combine flavin-N5-peroxide
and flavin-N5-oxide chemistry. Finally, structural and mechanistic
features of selected enzymes will be discussed as well as hurdles
for their application in the formation of natural product derivatives
via bioengineering.
Collapse
Affiliation(s)
- Marina Toplak
- Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Robin Teufel
- Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| |
Collapse
|
5
|
Toplak M, Saleem-Batcha R, Piel J, Teufel R. Catalytic Control of Spiroketal Formation in Rubromycin Polyketide Biosynthesis. Angew Chem Int Ed Engl 2021; 60:26960-26970. [PMID: 34652045 PMCID: PMC9299503 DOI: 10.1002/anie.202109384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/07/2021] [Indexed: 12/14/2022]
Abstract
The medically important bacterial aromatic polyketide natural products typically feature a planar, polycyclic core structure. An exception is found for the rubromycins, whose backbones are disrupted by a bisbenzannulated [5,6]‐spiroketal pharmacophore that was recently shown to be assembled by flavin‐dependent enzymes. In particular, a flavoprotein monooxygenase proved critical for the drastic oxidative rearrangement of a pentangular precursor and the installment of an intermediate [6,6]‐spiroketal moiety. Here we provide structural and mechanistic insights into the control of catalysis by this spiroketal synthase, which fulfills several important functions as reductase, monooxygenase, and presumably oxidase. The enzyme hereby tightly controls the redox state of the substrate to counteract shunt product formation, while also steering the cleavage of three carbon‐carbon bonds. Our work illustrates an exceptional strategy for the biosynthesis of stable chroman spiroketals.
Collapse
Affiliation(s)
- Marina Toplak
- Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Raspudin Saleem-Batcha
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstr. 25, 79104, Freiburg, Germany
| | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, 8093, Zürich, Switzerland
| | - Robin Teufel
- Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| |
Collapse
|
6
|
Toplak M, Saleem‐Batcha R, Piel J, Teufel R. Catalytic Control of Spiroketal Formation in Rubromycin Polyketide Biosynthesis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Marina Toplak
- Faculty of Biology University of Freiburg Schänzlestrasse 1 79104 Freiburg Germany
| | - Raspudin Saleem‐Batcha
- Institute of Pharmaceutical Sciences University of Freiburg Albertstr. 25 79104 Freiburg Germany
| | - Jörn Piel
- Institute of Microbiology Eidgenössische Technische Hochschule (ETH) Zürich 8093 Zürich Switzerland
| | - Robin Teufel
- Faculty of Biology University of Freiburg Schänzlestrasse 1 79104 Freiburg Germany
| |
Collapse
|
7
|
Nie QY, Ji ZY, Hu Y, Tang GL. Characterization of Highly Reductive Modification of Tetracycline D-Ring Reveals Enzymatic Conversion of Enone to Alkane. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Qiu-Yue Nie
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Zhen-Yu Ji
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Yu Hu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Gong-Li Tang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, People’s Republic of China
| |
Collapse
|
8
|
Zhu HJ, Zhang B, Wang L, Wang W, Liu SH, Igarashi Y, Bashiri G, Tan RX, Ge HM. Redox Modifications in the Biosynthesis of Alchivemycin A Enable the Formation of Its Key Pharmacophore. J Am Chem Soc 2021; 143:4751-4757. [PMID: 33736434 DOI: 10.1021/jacs.1c00516] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Redox enzymes play a critical role in transforming nascent scaffolds into structurally complex and biologically active natural products. Alchivemycin A (AVM, 1) is a highly oxidized polycyclic compound with potent antimicrobial activity and features a rare 2H-tetrahydro-4,6-dioxo-1,2-oxazine (TDO) ring system. The scaffold of AVM has previously been shown to be biosynthesized by a hybrid polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS) pathway. In this study, we present a postassembly secondary metabolic network involving six redox enzymes that leads to AVM formation. We characterize this complex redox network using in vivo gene deletions, in vitro biochemical assays, and one-pot enzymatic total synthesis. Importantly, we show that an FAD-dependent monooxygenase catalyzes oxygen insertion into an amide bond to form the key TDO ring in AVM, an unprecedented function of flavoenzymes. We also show that the TDO ring is essential to the antimicrobial activity of AVM, likely through targeting the β-subunit of RNA polymerase. As further evidence, we show that AvmK, a β-subunit of RNA synthase, can confer self-resistance to AVM via target modification. Our findings expand the repertoire of functions of flavoenzymes and provide insight into antimicrobial and biocatalyst development based on AVM.
Collapse
Affiliation(s)
- Hong Jie Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Bo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Lan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Wen Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Shuang He Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Yasuhiro Igarashi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Toyama 939-0398, Japan
| | - Ghader Bashiri
- Laboratory of Molecular and Microbial Biochemistry, School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Ren Xiang Tan
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Hui Ming Ge
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| |
Collapse
|
9
|
Yi L, Kong J, Xiong Y, Yi S, Gan T, Huang C, Duan Y, Zhu X. Genome mining of Streptomyces sp. CB00271 as a natural high-producer of β-rubromycin and the resulting discovery of β-rubromycin acid. Biotechnol Bioeng 2021; 118:2243-2254. [PMID: 33629382 DOI: 10.1002/bit.27732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 11/06/2022]
Abstract
β-rubromycin (β-RUB) (1) is an efficient inhibitor of human telomerase possessing a unique spiroketal moiety as a potential pharmacophore and regarded as a promising anticancer drug lead. But the development of (β-RUB) (1) has long been hampered by its low titer and very poor water solubility. By adopting a genome mining strategy, an FAD-dependent monooxygenase RubN involving with the formation of the spiro system was applied as the probe and Streptomyces sp. CB00271 was screened out from our strain collection as an alternative natural high producer of β-RUB (1). After a series of fermentation optimizations, CB00271 could produce 124.8 ± 3.4 mg/L β-RUB (1), which was the highest titer up to now. Moreover, the enhanced production of β-RUB (1) in fermentation broth also led to the discovery of a new congener β-RUB acid (7), which was structurally elucidated as the acid form of β-RUB (1). Comparing to β-RUB (1), the substituted carboxyl group endowed β-RUB acid (7) much better solubility in serum and resulted in its higher activity towards tumor cells. Our work set up a solid base for the pilot-scale production of β-RUB (1) and its congeners to facilitate their future development as promising anticancer drug leads, and also provide an alternative and practical strategy for the exploitation of other important microbial natural products.
Collapse
Affiliation(s)
- Liwei Yi
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, China
| | - Jieqian Kong
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, China
| | - Yi Xiong
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, China
| | - Sirui Yi
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, China
| | - Ting Gan
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, China
| | - Chengshuang Huang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, China
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, China.,National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan, China.,Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, Hunan, China
| | - Xiangcheng Zhu
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, China.,National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan, China.,Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, Hunan, China
| |
Collapse
|
10
|
Frensch B, Lechtenberg T, Kather M, Yunt Z, Betschart M, Kammerer B, Lüdeke S, Müller M, Piel J, Teufel R. Enzymatic spiroketal formation via oxidative rearrangement of pentangular polyketides. Nat Commun 2021; 12:1431. [PMID: 33664266 PMCID: PMC7933358 DOI: 10.1038/s41467-021-21432-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/11/2021] [Indexed: 12/15/2022] Open
Abstract
The structural complexity and bioactivity of natural products often depend on enzymatic redox tailoring steps. This is exemplified by the generation of the bisbenzannulated [5,6]-spiroketal pharmacophore in the bacterial rubromycin family of aromatic polyketides, which exhibit a wide array of bioactivities such as the inhibition of HIV reverse transcriptase or DNA helicase. Here we elucidate the complex flavoenzyme-driven formation of the rubromycin pharmacophore that is markedly distinct from conventional (bio)synthetic strategies for spiroketal formation. Accordingly, a polycyclic aromatic precursor undergoes extensive enzymatic oxidative rearrangement catalyzed by two flavoprotein monooxygenases and a flavoprotein oxidase that ultimately results in a drastic distortion of the carbon skeleton. The one-pot in vitro reconstitution of the key enzymatic steps as well as the comprehensive characterization of reactive intermediates allow to unravel the intricate underlying reactions, during which four carbon-carbon bonds are broken and two CO2 become eliminated. This work provides detailed insight into perplexing redox tailoring enzymology that sets the stage for the (chemo)enzymatic production and bioengineering of bioactive spiroketal-containing polyketides. Rubromycin family of natural products belongs to aromatic polyketides with diverse bioactivities, but details of their biosynthesis are limited. Here, the authors report the complete in vitro reconstitution of enzymatic formation of the spiroketal moiety of rubromycin polyketides, driven by flavin-dependent enzymes, and characterize reaction intermediates.
Collapse
Affiliation(s)
- Britta Frensch
- Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Thorsten Lechtenberg
- Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Michel Kather
- BIOSS Center for Biological Signaling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Zeynep Yunt
- Department of Molecular Biology and Genetics, Koç University, Istanbul, 34450, Turkey
| | - Martin Betschart
- Institute of Pharmaceutical Sciences, University of Freiburg, 79104, Freiburg, Germany
| | - Bernd Kammerer
- BIOSS Center for Biological Signaling Studies, University of Freiburg, 79104, Freiburg, Germany.,Hermann Staudinger Graduate School, University of Freiburg, 79104, Freiburg, Germany
| | - Steffen Lüdeke
- Institute of Pharmaceutical Sciences, University of Freiburg, 79104, Freiburg, Germany
| | - Michael Müller
- Institute of Pharmaceutical Sciences, University of Freiburg, 79104, Freiburg, Germany
| | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, 8093, Zürich, Switzerland
| | - Robin Teufel
- Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany.
| |
Collapse
|
11
|
Duan Y, Petzold M, Saleem‐Batcha R, Teufel R. Bacterial Tropone Natural Products and Derivatives: Overview of their Biosynthesis, Bioactivities, Ecological Role and Biotechnological Potential. Chembiochem 2020; 21:2384-2407. [PMID: 32239689 PMCID: PMC7497051 DOI: 10.1002/cbic.201900786] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/02/2020] [Indexed: 12/05/2022]
Abstract
Tropone natural products are non-benzene aromatic compounds of significant ecological and pharmaceutical interest. Herein, we highlight current knowledge on bacterial tropones and their derivatives such as tropolones, tropodithietic acid, and roseobacticides. Their unusual biosynthesis depends on a universal CoA-bound precursor featuring a seven-membered carbon ring as backbone, which is generated by a side reaction of the phenylacetic acid catabolic pathway. Enzymes encoded by separate gene clusters then further modify this key intermediate by oxidation, CoA-release, or incorporation of sulfur among other reactions. Tropones play important roles in the terrestrial and marine environment where they act as antibiotics, algaecides, or quorum sensing signals, while their bacterial producers are often involved in symbiotic interactions with plants and marine invertebrates (e. g., algae, corals, sponges, or mollusks). Because of their potent bioactivities and of slowly developing bacterial resistance, tropones and their derivatives hold great promise for biomedical or biotechnological applications, for instance as antibiotics in (shell)fish aquaculture.
Collapse
Affiliation(s)
- Ying Duan
- Faculty of BiologyUniversity of Freiburg79104FreiburgGermany
| | - Melanie Petzold
- Faculty of BiologyUniversity of Freiburg79104FreiburgGermany
| | | | - Robin Teufel
- Faculty of BiologyUniversity of Freiburg79104FreiburgGermany
| |
Collapse
|
12
|
Mnguni FC, Padayachee T, Chen W, Gront D, Yu JH, Nelson DR, Syed K. More P450s Are Involved in Secondary Metabolite Biosynthesis in Streptomyces Compared to Bacillus, Cyanobacteria, and Mycobacterium. Int J Mol Sci 2020; 21:ijms21134814. [PMID: 32646068 PMCID: PMC7369989 DOI: 10.3390/ijms21134814] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 12/18/2022] Open
Abstract
Unraveling the role of cytochrome P450 monooxygenases (CYPs/P450s), heme-thiolate proteins present in living and non-living entities, in secondary metabolite synthesis is gaining momentum. In this direction, in this study, we analyzed the genomes of 203 Streptomyces species for P450s and unraveled their association with secondary metabolism. Our analyses revealed the presence of 5460 P450s, grouped into 253 families and 698 subfamilies. The CYP107 family was found to be conserved and highly populated in Streptomyces and Bacillus species, indicating its key role in the synthesis of secondary metabolites. Streptomyces species had a higher number of P450s than Bacillus and cyanobacterial species. The average number of secondary metabolite biosynthetic gene clusters (BGCs) and the number of P450s located in BGCs were higher in Streptomyces species than in Bacillus, mycobacterial, and cyanobacterial species, corroborating the superior capacity of Streptomyces species for generating diverse secondary metabolites. Functional analysis via data mining confirmed that many Streptomyces P450s are involved in the biosynthesis of secondary metabolites. This study was the first of its kind to conduct a comparative analysis of P450s in such a large number (203) of Streptomyces species, revealing the P450s’ association with secondary metabolite synthesis in Streptomyces species. Future studies should include the selection of Streptomyces species with a higher number of P450s and BGCs and explore the biotechnological value of secondary metabolites they produce.
Collapse
Affiliation(s)
- Fanele Cabangile Mnguni
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (F.C.M.); (T.P.)
| | - Tiara Padayachee
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (F.C.M.); (T.P.)
| | - Wanping Chen
- Department of Molecular Microbiology and Genetics, University of Göttingen, 37077 Göttingen, Germany;
| | - Dominik Gront
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland;
| | - Jae-Hyuk Yu
- Department of Bacteriology, University of Wisconsin-Madison, 3155 MSB, 1550 Linden Drive, Madison, WI 53706, USA;
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - David R. Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Correspondence: (D.R.N.); (K.S.)
| | - Khajamohiddin Syed
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (F.C.M.); (T.P.)
- Correspondence: (D.R.N.); (K.S.)
| |
Collapse
|
13
|
Guo H, Schwitalla JW, Benndorf R, Baunach M, Steinbeck C, Görls H, de Beer ZW, Regestein L, Beemelmanns C. Gene Cluster Activation in a Bacterial Symbiont Leads to Halogenated Angucyclic Maduralactomycins and Spirocyclic Actinospirols. Org Lett 2020; 22:2634-2638. [PMID: 32193935 DOI: 10.1021/acs.orglett.0c00601] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Growth from spores activated a biosynthetic gene cluster in Actinomadura sp. RB29, resulting in the identification of two novel groups of halogenated polyketide natural products, named maduralactomycins and actinospirols. The unique tetracyclic and spirocyclic structures were assigned based on a combination of NMR analysis, chemoinformatic calculations, X-ray crystallography, and 13C labeling studies. On the basis of HRMS2 data, genome mining, and gene expression studies, we propose an underlying noncanonical angucycline biosynthesis and extensive post-polyketide synthase (PKS) oxidative modifications.
Collapse
Affiliation(s)
- Huijuan Guo
- Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Beutenbergstraße 11a, 07745 Jena, Germany
| | - Jan W Schwitalla
- Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Beutenbergstraße 11a, 07745 Jena, Germany
| | - René Benndorf
- Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Beutenbergstraße 11a, 07745 Jena, Germany
| | - Martin Baunach
- University of Potsdam, Institute for Biochemistry and Biology, Karl-Liebknecht Str. 24-25, 14476 Potsdam, Germany
| | - Christoph Steinbeck
- Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller-University, Lessingstr. 8, 07743 Jena, Germany
| | - Helmar Görls
- Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller-University, Lessingstr. 8, 07743 Jena, Germany
| | - Z Wilhelm de Beer
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Hatfield, 0002 Pretoria, South Africa
| | - Lars Regestein
- Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Beutenbergstraße 11a, 07745 Jena, Germany
| | - Christine Beemelmanns
- Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Beutenbergstraße 11a, 07745 Jena, Germany
| |
Collapse
|
14
|
Characterization of Streptomyces piniterrae sp. nov. and Identification of the Putative Gene Cluster Encoding the Biosynthesis of Heliquinomycins. Microorganisms 2020; 8:microorganisms8040495. [PMID: 32244447 PMCID: PMC7232196 DOI: 10.3390/microorganisms8040495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 01/29/2023] Open
Abstract
A novel actinomycete producing heliquinomycin and 9’-methoxy-heliquinomycin, designated strain jys28T, was isolated from rhizosphere soil of Pinus yunnanensis and characterized using a polyphasic approach. The strain had morphological characteristics and chemotaxonomic properties identical to those of members of the genus Streptomyces. It formed spiral chains of spores with spiny surfaces. The menaquinones detected were MK-9(H6), MK-9(H8) and MK-9(H4). The major fatty acids were iso-C16:0, C15:0, C16:1ω7с and anteiso-C15:0. The phospholipids were diphosphatidylglycerol, phosphatidylmethylethanolamine, phosphatidylethanolamine and phosphatidylinositol mannoside. The DNA G + C content of the draft genome sequence, consisting of 8.5 Mbp, was 70.6%. Analysis of the 16S rRNA gene sequence showed that strain jys28T belongs to the genus Streptomyces with the highest sequence similarities to Streptomyces chattanoogensis NBRC 13058T (99.2%) and Streptomyces lydicus DSM 40002T (99.2%) and phylogenetically clustered with them. Multilocus sequence analysis based on five other house-keeping genes (atpD, gyrB, rpoB, recA and trpB) and the low level of DNA–DNA relatedness and phenotypic differences allowed the novel isolate to be differentiated from its most closely related strains. Therefore, the strain is concluded to represent a novel species of the genus Streptomyces, for which the name Streptomycespiniterrae sp. nov. is proposed. Furthermore, the putative biosynthetic gene cluster of heliquinomycins was identified and the biosynthetic pathway was discussed. The type strain is jys28T (=CCTCC AA 2018051T =DSM 109823T).
Collapse
|
15
|
Tsypik O, Makitrynskyy R, Frensch B, Zechel DL, Paululat T, Teufel R, Bechthold A. Oxidative Carbon Backbone Rearrangement in Rishirilide Biosynthesis. J Am Chem Soc 2020; 142:5913-5917. [PMID: 32182053 DOI: 10.1021/jacs.9b12736] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The structural diversity of type II polyketides is largely generated by tailoring enzymes. In rishirilide biosynthesis by Streptomyces bottropensis, 13C-labeling studies previously implied extraordinary carbon backbone and side-chain rearrangements. In this work, we employ gene deletion experiments and in vitro enzyme studies to identify key biosynthetic intermediates and expose intricate redox tailoring steps for the formation of rishirilides A, B, and D and lupinacidin A. First, the flavin-dependent RslO5 reductively ring-opens the epoxide moiety of an advanced polycyclic intermediate to form an alcohol. Flavin monooxygenase RslO9 then oxidatively rearranges the carbon backbone, presumably via lactone-forming Baeyer-Villiger oxidation and subsequent intramolecular aldol condensation. While RslO9 can further convert the rearranged intermediate to rishirilide D and lupinacidin A, an additional ketoreductase RslO8 is required for formation of the main products rishirilide A and rishirilide B. This work provides insight into the structural diversification of aromatic polyketide natural products via unusual redox tailoring reactions that appear to defy biosynthetic logic.
Collapse
Affiliation(s)
- Olga Tsypik
- Department of Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Straße 19, 79104 Freiburg, Germany
| | - Roman Makitrynskyy
- Department of Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Straße 19, 79104 Freiburg, Germany
| | - Britta Frensch
- Faculty of Biology, Schänzlestraße 1, 79104 Freiburg, Germany
| | - David L Zechel
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston K7L 3N6, Ontario, Canada
| | - Thomas Paululat
- Organic Chemistry, University of Siegen, Adolf-Reichwein-Straße 2, 57068 Siegen, Germany
| | - Robin Teufel
- Faculty of Biology, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Andreas Bechthold
- Department of Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Straße 19, 79104 Freiburg, Germany
| |
Collapse
|
16
|
Synergistic anti-methicillin-resistant Staphylococcus aureus (MRSA) activity and absolute stereochemistry of 7,8-dideoxygriseorhodin C. J Antibiot (Tokyo) 2020; 73:290-298. [PMID: 31992865 PMCID: PMC7125055 DOI: 10.1038/s41429-019-0275-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/16/2019] [Accepted: 12/20/2019] [Indexed: 02/07/2023]
Abstract
The emergence of antibiotic resistance necessitates not only the identification of new compounds with antimicrobial properties, but also new strategies and combination therapies to circumvent this growing problem. Here, we report synergistic activity against methicillin-resistant Staphylococcus aureus (MRSA) of the β-lactam antibiotic oxacillin combined with 7,8-dideoxygriseorhodin C in vitro. Ongoing efforts to identify antibiotics from marine mollusk-associated bacteria resulted in the isolation of 7,8-dideoxygriseorhodin C from a Streptomyces sp. strain cultivated from a marine gastropod tissue homogenate. Despite the long history of 7,8-dideoxygriseorhodin C in the literature, the absolute configuration has never been previously reported. A comparison of measured and calculated ECD spectra resolved the configuration of the spiroketal carbon C6, and 2D ROESY NMR spectroscopy established the absolute configuration as 6s,6aS. The compound is selective against Gram-positive bacteria including MRSA and Enterococcus faecium with an MIC range of 0.125-0.5 μg ml-1. Moreover, the compound synergizes with oxacillin against MRSA as observed in the antimicrobial microdilution and time-kill assays. Simultaneous treatment of the compound with oxacillin resulted in an approximately tenfold decrease in MIC with a combination index of <0.5, indicating synergistic anti-MRSA activity.
Collapse
|
17
|
Harunari E, Imada C, Igarashi Y. Konamycins A and B and Rubromycins CA1 and CA2, Aromatic Polyketides from the Tunicate-Derived Streptomyces hyaluromycini MB-PO13 T. JOURNAL OF NATURAL PRODUCTS 2019; 82:1609-1615. [PMID: 31181919 DOI: 10.1021/acs.jnatprod.9b00107] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Four new aromatic polyketides, konamycins A (1) and B (2) and rubromycins CA1 (3) and CA2 (4), were isolated from the culture extract of the tunicate-derived Streptomyces hyaluromycini MB-PO13T. Compounds 1 and 2 possess a benzo[ b]fluorene aglycon modified by C-glycosylation with l-amicetose. Compounds 3 and 4 are the new congeners of rubromycin in which a naphthoquinone and carboxylated isocoumarin are joined through a spiroketal carbon. The structures of these compounds were determined by extensive analysis of 1D and 2D NMR spectroscopic data. Compound 1 showed radical scavenging activity in DPPH and superoxide quenching assays, and 3 and 4 displayed antimicrobial activity against Gram-positive bacteria.
Collapse
Affiliation(s)
- Enjuro Harunari
- Biotechnology Research Center and Department of Biotechnology , Toyama Prefectural University , 5180 Kurokawa , Imizu , Toyama 939-0398 , Japan
| | - Chiaki Imada
- Graduate School of Marine Science and Technology , Tokyo University of Marine Science and Technology , 4-5-7 Konan, Minato-ku , Tokyo 108-8477 , Japan
| | - Yasuhiro Igarashi
- Biotechnology Research Center and Department of Biotechnology , Toyama Prefectural University , 5180 Kurokawa , Imizu , Toyama 939-0398 , Japan
| |
Collapse
|
18
|
Tolmie C, Smit MS, Opperman DJ. Native roles of Baeyer–Villiger monooxygenases in the microbial metabolism of natural compounds. Nat Prod Rep 2019; 36:326-353. [DOI: 10.1039/c8np00054a] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Baeyer–Villiger monooxygenases function in the primary metabolism of atypical carbon sources, as well as the synthesis of complex microbial metabolites.
Collapse
Affiliation(s)
- Carmien Tolmie
- Department of Biotechnology
- University of the Free State
- Bloemfontein
- South Africa
| | - Martha S. Smit
- Department of Biotechnology
- University of the Free State
- Bloemfontein
- South Africa
| | | |
Collapse
|
19
|
Meng S, Tang GL, Pan HX. Enzymatic Formation of Oxygen-Containing Heterocycles in Natural Product Biosynthesis. Chembiochem 2018; 19:2002-2022. [PMID: 30039582 DOI: 10.1002/cbic.201800225] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Indexed: 01/12/2023]
Abstract
Oxygen-containing heterocycles are widely encountered in natural products that display diverse pharmacological properties and have potential benefits to human health. The formation of O-heterocycles catalyzed by different types of enzymes in the biosynthesis of natural products not only contributes to the structural diversity of these compounds, but also enriches our understanding of nature's ability to construct complex molecules. This minireview focuses on the various modes of enzymatic O-heterocyclization identified in natural product biosynthesis and summarizes the possible mechanisms involved in ring closure.
Collapse
Affiliation(s)
- Song Meng
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of the Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Gong-Li Tang
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of the Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Hai-Xue Pan
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of the Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
20
|
Wang YS, Zhang B, Zhu J, Yang CL, Guo Y, Liu CL, Liu F, Huang H, Zhao S, Liang Y, Jiao RH, Tan RX, Ge HM. Molecular Basis for the Final Oxidative Rearrangement Steps in Chartreusin Biosynthesis. J Am Chem Soc 2018; 140:10909-10914. [PMID: 30067334 DOI: 10.1021/jacs.8b06623] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Oxidative rearrangements play key roles in introducing structural complexity and biological activities of natural products biosynthesized by type II polyketide synthases (PKSs). Chartreusin (1) is a potent antitumor polyketide that contains a unique rearranged pentacyclic aromatic bilactone aglycone derived from a type II PKS. Herein, we report an unprecedented dioxygenase, ChaP, that catalyzes the final α-pyrone ring formation in 1 biosynthesis using flavin-activated oxygen as an oxidant. The X-ray crystal structures of ChaP and two homologues, docking studies, and site-directed mutagenesis provided insights into the molecular basis of the oxidative rearrangement that involves two successive C-C bond cleavage steps followed by lactonization. ChaP is the first example of a dioxygenase that requires a flavin-activated oxygen as a substrate despite lacking flavin binding sites, and represents a new class in the vicinal oxygen chelate enzyme superfamily.
Collapse
Affiliation(s)
- Yi Shuang Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences , Nanjing University , Nanjing 210023 , China
| | - Bo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences , Nanjing University , Nanjing 210023 , China
| | - Jiapeng Zhu
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Medicine and Life Sciences , Nanjing University of Chinese Medicine , Nanjing 210023 , China
| | - Cheng Long Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences , Nanjing University , Nanjing 210023 , China
| | - Yu Guo
- iHuman Institute , Shanghai Tech University , Shanghai 201210 , China
| | - Cheng Li Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences , Nanjing University , Nanjing 210023 , China
| | - Fang Liu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Huiqin Huang
- Institute of Tropical Biosciences and Biotechnology, Key Laboratory of Biology and Genetic Resources of Tropical Crops of Ministry of Agriculture, Chinese Academy of Tropical Agricultural Sciences , Haikou 571101 , China
| | - Suwen Zhao
- iHuman Institute , Shanghai Tech University , Shanghai 201210 , China
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Rui Hua Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences , Nanjing University , Nanjing 210023 , China
| | - Ren Xiang Tan
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences , Nanjing University , Nanjing 210023 , China.,State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Medicine and Life Sciences , Nanjing University of Chinese Medicine , Nanjing 210023 , China
| | - Hui Ming Ge
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences , Nanjing University , Nanjing 210023 , China
| |
Collapse
|
21
|
Wakita F, Ando Y, Ohmori K, Suzuki K. Model Reactions for the Enantioselective Synthesis of γ-Rubromycin: Stereospecific Intramolecular Photoredox Cyclization of an ortho-Quinone Ether to a Spiroacetal. Org Lett 2018; 20:3928-3932. [DOI: 10.1021/acs.orglett.8b01475] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Fumihiro Wakita
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Yoshio Ando
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Ken Ohmori
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Keisuke Suzuki
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| |
Collapse
|
22
|
Ortega HE, Batista JM, Melo WG, Clardy J, Pupo MT. Corrigendum to “Absolute configurations of griseorhodins A and C” [Tetrahedron Lett. 58 (50) (2017) 4721–4723]. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.02.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Qiu JK, Hao WJ, Li G, Jiang B. Oxidative Catalytic Spiroketalization Leading to Diastereoselective Synthesis of Spiro[benzofuran-2,1′-isochromene]s. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201701149] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jiang-Kai Qiu
- Institute of Chemistry & BioMedical Sciences; Nanjing University; Nanjing 210023 People's Republic of China
- Department of Chemistry and Biochemistry; Texas Tech University; Lubbock, Texas 79409-1061 United States
| | - Wen-Juan Hao
- School of Chemistry and Material Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials; Jiangsu Normal University; Xuzhou 211116 People's Republic of China
| | - Guigen Li
- Institute of Chemistry & BioMedical Sciences; Nanjing University; Nanjing 210023 People's Republic of China
- Department of Chemistry and Biochemistry; Texas Tech University; Lubbock, Texas 79409-1061 United States
| | - Bo Jiang
- Department of Chemistry and Biochemistry; Texas Tech University; Lubbock, Texas 79409-1061 United States
- School of Chemistry and Material Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials; Jiangsu Normal University; Xuzhou 211116 People's Republic of China
| |
Collapse
|
24
|
Harunari E, Komaki H, Ichikawa N, Hosoyama A, Kimura A, Hamada M, Igarashi Y. Draft genome sequence of Streptomyces hyaluromycini MB-PO13 T, a hyaluromycin producer. Stand Genomic Sci 2018; 13:2. [PMID: 29371910 PMCID: PMC5765640 DOI: 10.1186/s40793-017-0286-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/23/2017] [Indexed: 11/10/2022] Open
Abstract
Streptomyces hyaluromycini MB-PO13T (=NBRC 110483T = DSM 100105T) is type strain of the species, which produces a hyaluronidase inhibitor, hyaluromycin. Here, we report the draft genome sequence of this strain together with features of the organism and generation, annotation and analysis of the genome sequence. The 11.5 Mb genome of Streptomyces hyaluromycini MB-PO13T encoded 10,098 putative ORFs, of which 5317 were assigned with COG categories. The genome harbored at least six type I PKS clusters, three type II PKS gene clusters, two type III PKS gene clusters, six NRPS gene clusters, and one hybrid PKS/NRPS gene cluster. The type II PKS gene cluster including 2-amino-3-hydroxycyclopent-2-enone synthetic genes was identified to be responsible for hyaluromycin synthesis. We propose the biosynthetic pathway based on bioinformatic analysis.
Collapse
Affiliation(s)
- Enjuro Harunari
- 1Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Toyama, Japan
| | - Hisayuki Komaki
- 2Biological Resource Center, National Institute of Technology and Evaluation (NBRC), Chiba, Japan
| | | | | | | | - Moriyuki Hamada
- 2Biological Resource Center, National Institute of Technology and Evaluation (NBRC), Chiba, Japan
| | - Yasuhiro Igarashi
- 1Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Toyama, Japan
| |
Collapse
|
25
|
Abstract
The known antibiotic and cytotoxic compounds griseorhodin A (1) and griseorhodin C (2) were produced in solid culture by Streptomyces puniceus AB10, which was isolated from the leaf-cutter ant Acromyrmex rugosus rugosus. Their absolute configurations were unambiguously established as 6S,6aR,7S,8S and 6R,6aR,7S,8R, respectively, using vibrational circular dichroism (VCD) and density functional theory (DFT) calculations.
Collapse
|
26
|
Kong L, Zhang W, Chooi YH, Wang L, Cao B, Deng Z, Chu Y, You D. A Multifunctional Monooxygenase XanO4 Catalyzes Xanthone Formation in Xantholipin Biosynthesis via a Cryptic Demethoxylation. Cell Chem Biol 2017; 23:508-16. [PMID: 27105283 DOI: 10.1016/j.chembiol.2016.03.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 02/19/2016] [Accepted: 03/17/2016] [Indexed: 11/24/2022]
Abstract
Xantholipin and several related polycyclic xanthone antibiotics feature a unique xanthone ring nucleus within a highly oxygenated, angular, fused hexacyclic system. In this study, we demonstrated that a flavin-dependent monooxygenase (FMO) XanO4 catalyzes the oxidative transformation of an anthraquinone to a xanthone system during the biosynthesis of xantholipin. In vitro isotopic labeling experiments showed that the reaction involves sequential insertion of two oxygen atoms, accompanied by an unexpected cryptic demethoxylation reaction. Moreover, characterizations of homologous FMOs of XanO4 suggested the generality of the XanO4-like-mediated reaction for the assembly of a xanthone ring in the biosynthesis of polycyclic xanthone antibiotics. These findings not only expand the repertoire of FMO activities but also reveal a novel mechanism for xanthone ring formation.
Collapse
Affiliation(s)
- Lingxin Kong
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Weike Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yit Heng Chooi
- School of Chemistry and Biochemistry, University of Western Australia, Perth, WA 6009, Australia
| | - Lu Wang
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China
| | - Bo Cao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yiwen Chu
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China
| | - Delin You
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
27
|
Rudolf JD, Chang CY, Ma M, Shen B. Cytochromes P450 for natural product biosynthesis in Streptomyces: sequence, structure, and function. Nat Prod Rep 2017; 34:1141-1172. [PMID: 28758170 PMCID: PMC5585785 DOI: 10.1039/c7np00034k] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: up to January 2017Cytochrome P450 enzymes (P450s) are some of the most exquisite and versatile biocatalysts found in nature. In addition to their well-known roles in steroid biosynthesis and drug metabolism in humans, P450s are key players in natural product biosynthetic pathways. Natural products, the most chemically and structurally diverse small molecules known, require an extensive collection of P450s to accept and functionalize their unique scaffolds. In this review, we survey the current catalytic landscape of P450s within the Streptomyces genus, one of the most prolific producers of natural products, and comprehensively summarize the functionally characterized P450s from Streptomyces. A sequence similarity network of >8500 P450s revealed insights into the sequence-function relationships of these oxygen-dependent metalloenzymes. Although only ∼2.4% and <0.4% of streptomycete P450s have been functionally and structurally characterized, respectively, the study of streptomycete P450s involved in the biosynthesis of natural products has revealed their diverse roles in nature, expanded their catalytic repertoire, created structural and mechanistic paradigms, and exposed their potential for biomedical and biotechnological applications. Continued study of these remarkable enzymes will undoubtedly expose their true complement of chemical and biological capabilities.
Collapse
Affiliation(s)
- Jeffrey D Rudolf
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | | | | |
Collapse
|
28
|
Yin GP, Wu YR, Yang MH, Li TX, Wang XB, Zhou MM, Lei JL, Kong LY. Citrifurans A-D, Four Dimeric Aromatic Polyketides with New Carbon Skeletons from the Fungus Aspergillus sp. Org Lett 2017; 19:4058-4061. [PMID: 28726414 DOI: 10.1021/acs.orglett.7b01823] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Citrifurans A-D (1-4), metabolized by an Aspergillus sp., are unusual dimers of azaphilone and furanone derivatives. Michael addition was thought to be the pivotal procedure in their biosynthesis, and different addition sites generated two new different carbon skeletons. Their structures were elucidated on the basis of spectroscopic methods, single-crystal X-ray diffraction, chemical conversion, and electronic circular dichroism analyses. Compounds 1-3 showed moderate inhibitory activities against LPS-induced NO production in RAW 264.7 macrophages with IC50 values of 18.3, 22.6, and 25.3 μM, respectively.
Collapse
Affiliation(s)
- Guo-Ping Yin
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University , 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Ya-Rong Wu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University , 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Ming-Hua Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University , 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Tian-Xiao Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University , 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Xiao-Bing Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University , 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Miao-Miao Zhou
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University , 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Jian-Li Lei
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University , 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University , 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| |
Collapse
|
29
|
Schmidt ML, Engeser M. Gas-phase fragmentations of N-methylimidazolidin-4-one organocatalysts. JOURNAL OF MASS SPECTROMETRY : JMS 2017; 52:367-371. [PMID: 28423220 DOI: 10.1002/jms.3935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 06/07/2023]
Abstract
N-methylimidazolidin-4-one organocatalysts were studied in the gas phase. Protonated and sodium-cationized (sodiated) molecules are conveniently accessible by electrospray mass spectrometry. Protonation enables three different closed-shell paths of ring cleavage leading to iminium ions. The fragmentation pattern is largely unaffected by exocyclic substituents and thus is valuable to characterize the substance type as N-methylimidazolidin-4-ones. Sodiated species show a distinctly different fragmentation that is less useful for characterization purposes: apart from signal loss due to dissociation of Na+ , the observation of benzyl radical loss is by far predominant. Only in absence of a benzyl substituent, an analogue of the third ring cleavage (loss of [C2 H5 NO]) is observed. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- M L Schmidt
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Str. 1, Bonn, 53121, Germany
| | - M Engeser
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Str. 1, Bonn, 53121, Germany
| |
Collapse
|
30
|
Abstract
Oxidative cyclizations are important transformations that occur widely during natural product biosynthesis. The transformations from acyclic precursors to cyclized products can afford morphed scaffolds, structural rigidity, and biological activities. Some of the most dramatic structural alterations in natural product biosynthesis occur through oxidative cyclization. In this Review, we examine the different strategies used by nature to create new intra(inter)molecular bonds via redox chemistry. This Review will cover both oxidation- and reduction-enabled cyclization mechanisms, with an emphasis on the former. Radical cyclizations catalyzed by P450, nonheme iron, α-KG-dependent oxygenases, and radical SAM enzymes are discussed to illustrate the use of molecular oxygen and S-adenosylmethionine to forge new bonds at unactivated sites via one-electron manifolds. Nonradical cyclizations catalyzed by flavin-dependent monooxygenases and NAD(P)H-dependent reductases are covered to show the use of two-electron manifolds in initiating cyclization reactions. The oxidative installations of epoxides and halogens into acyclic scaffolds to drive subsequent cyclizations are separately discussed as examples of "disappearing" reactive handles. Last, oxidative rearrangement of rings systems, including contractions and expansions, will be covered.
Collapse
Affiliation(s)
- Man-Cheng Tang
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Yi Zou
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Kenji Watanabe
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Christopher T. Walsh
- Stanford University Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, 443 Via Ortega, Stanford, CA 94305
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, USA
| |
Collapse
|
31
|
Donner CD. Naphthopyranones--isolation, bioactivity, biosynthesis and synthesis. Nat Prod Rep 2015; 32:578-604. [PMID: 25531639 DOI: 10.1039/c4np00127c] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The 1H-naphtho[2,3-c]pyran-1-one (naphthopyranone) moiety forms the structural framework of a group of secondary metabolites that have been isolated from a range of organisms including fungi, bacteria, lichen and plants. This review documents the known naturally occurring naphthopyranones - their isolation, biosynthesis and biological activity. A survey of methods reported for the synthesis of naphthopyranone natural products is presented.
Collapse
|
32
|
Maier S, Heitzler T, Asmus K, Brötz E, Hardter U, Hesselbach K, Paululat T, Bechthold A. Functional characterization of different ORFs including luciferase-like monooxygenase genes from the mensacarcin gene cluster. Chembiochem 2015; 16:1175-82. [PMID: 25907804 DOI: 10.1002/cbic.201500048] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Indexed: 11/06/2022]
Abstract
The biologically active compound mensacarcin is produced by Streptomyces bottropensis. The cosmid cos2 contains a large part of the mensacarcin biosynthesis gene cluster. Heterologous expression of this cosmid in Streptomyces albus J1074 led to the production of the intermediate didesmethylmensacarcin (DDMM). In order to gain more insights into the biosynthesis, gene inactivation experiments were carried out by λ-Red/ET-mediated recombination, and the deletion mutants were introduced into the host S. albus. In total, 23 genes were inactivated. Analysis of the metabolic profiles of the mutant strains showed the complete collapse of DDMM biosynthesis, but upon overexpression of the SARP regulatory gene msnR1 in each mutant new intermediates were detected. The compounds were isolated, and their structures were elucidated. Based on the results the specific functions of several enzymes were determined, and a pathway for mensacarcin biosynthesis is proposed.
Collapse
Affiliation(s)
- Sarah Maier
- Institut für Pharmazeutische Biologie und Biotechnologie, Albert-Ludwigs Universität, Stefan-Meier-Strasse 19, 79104 Freiburg (Germany)
| | - Tanja Heitzler
- Institut für Pharmazeutische Biologie und Biotechnologie, Albert-Ludwigs Universität, Stefan-Meier-Strasse 19, 79104 Freiburg (Germany)
| | - Katharina Asmus
- Institut für Pharmazeutische Biologie und Biotechnologie, Albert-Ludwigs Universität, Stefan-Meier-Strasse 19, 79104 Freiburg (Germany)
| | - Elke Brötz
- Organic Chemsitry II, Universität Siegen, Adolf-Reichwein-Strasse 2, 57068 Siegen (Germany).,Present address: Helmholtz Institut für Pharmazeutische Forschung Saarland, Postfach 151150, 66041 Saarbrücken (Germany)
| | - Uwe Hardter
- Institut für Pharmazeutische Biologie und Biotechnologie, Albert-Ludwigs Universität, Stefan-Meier-Strasse 19, 79104 Freiburg (Germany)
| | - Katharina Hesselbach
- Institut für Pharmazeutische Biologie und Biotechnologie, Albert-Ludwigs Universität, Stefan-Meier-Strasse 19, 79104 Freiburg (Germany)
| | - Thomas Paululat
- Organic Chemsitry II, Universität Siegen, Adolf-Reichwein-Strasse 2, 57068 Siegen (Germany)
| | - Andreas Bechthold
- Institut für Pharmazeutische Biologie und Biotechnologie, Albert-Ludwigs Universität, Stefan-Meier-Strasse 19, 79104 Freiburg (Germany).
| |
Collapse
|
33
|
Atkinson DJ, Brimble MA. Isolation, biological activity, biosynthesis and synthetic studies towards the rubromycin family of natural products. Nat Prod Rep 2015; 32:811-40. [DOI: 10.1039/c4np00153b] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The rubromycins are a unique family of natural products. This review covers their isolation, biological activity, biosynthesis and a detailed discussion of the diverse chemistry employed for total synthesis.
Collapse
Affiliation(s)
- Darcy J. Atkinson
- School of Chemical Sciences, The University of Auckland
- Auckland
- New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland
- Auckland
| | - Margaret A. Brimble
- School of Chemical Sciences, The University of Auckland
- Auckland
- New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland
- Auckland
| |
Collapse
|
34
|
|
35
|
Moody SC, Loveridge EJ. CYP105-diverse structures, functions and roles in an intriguing family of enzymes in Streptomyces. J Appl Microbiol 2014; 117:1549-63. [PMID: 25294646 PMCID: PMC4265290 DOI: 10.1111/jam.12662] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 09/24/2014] [Accepted: 10/03/2014] [Indexed: 11/29/2022]
Abstract
The cytochromes P450 (CYP or P450) are a large superfamily of haem-containing enzymes found in all domains of life. They catalyse a variety of complex reactions, predominantly mixed-function oxidations, often displaying highly regio- and/or stereospecific chemistry. In streptomycetes, they are predominantly associated with secondary metabolite biosynthetic pathways or with xenobiotic catabolism. Homologues of one family, CYP105, have been found in all Streptomyces species thus far sequenced. This review looks at the diverse biological functions of CYP105s and the biosynthetic/catabolic pathways they are associated with. Examples are presented showing a range of biotransformative abilities and different contexts. As biocatalysts capable of some remarkable chemistry, CYP105s have great biotechnological potential and merit detailed study. Recent developments in biotechnological applications which utilize CYP105s are described, alongside a brief overview of the benefits and drawbacks of using P450s in commercial applications. The role of CYP105s in vivo is in many cases undefined and provides a rich source for further investigation into the functions these enzymes fulfil and the metabolic pathways they participate in, in the natural environment.
Collapse
Affiliation(s)
- Suzy C Moody
- Department of Biosciences, College of Science, Swansea University, Swansea, UK
| | | |
Collapse
|
36
|
Lin Z, Zachariah M, Marett L, Hughen RW, Teichert RW, Concepcion GP, Haygood MG, Olivera BM, Light AR, Schmidt EW. Griseorhodins D-F, neuroactive intermediates and end products of post-PKS tailoring modification in Griseorhodin biosynthesis. JOURNAL OF NATURAL PRODUCTS 2014; 77:1224-1230. [PMID: 24786728 PMCID: PMC4039362 DOI: 10.1021/np500155d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Indexed: 06/03/2023]
Abstract
The griseorhodins belong to a family of extensively modified aromatic polyketides that exhibit activities such as inhibition of HIV reverse transcriptase and human telomerase. The vast structural diversity of this group of polyketides is largely introduced by enzymatic oxidations, which can significantly influence the bioactivity profile. Four new compounds, griseorhodins D-F, were isolated from a griseorhodin producer, Streptomyces sp. CN48+, based upon their enhancement of calcium uptake in a mouse dorsal root ganglion primary cell culture assay. Two of these compounds, griseorhodins D1 and D2, were shown to be identical to the major, previously uncharacterized products of a grhM mutant in an earlier griseorhodin biosynthesis study. Their structures enabled the establishment of a more complete hypothesis for the biosynthesis of griseorhodins and related compounds. The other two compounds, griseorhodins E and F, represent new products of post-polyketide synthase tailoring in griseorhodin biosynthesis and showed significant binding activity in a human dopamine active transporter assay.
Collapse
Affiliation(s)
- Zhenjian Lin
- Department of Medicinal
Chemistry, L.S. Skaggs Pharmacy Institute,
University of Utah, Salt Lake City, Utah 84112, United States
| | - Malcolm
M. Zachariah
- Department of Medicinal
Chemistry, L.S. Skaggs Pharmacy Institute,
University of Utah, Salt Lake City, Utah 84112, United States
| | - Lenny Marett
- Department of Medicinal
Chemistry, L.S. Skaggs Pharmacy Institute,
University of Utah, Salt Lake City, Utah 84112, United States
- Department of Anesthesiology, University
of Utah, Salt Lake City, Utah 84112, United
States
| | - Ronald W. Hughen
- Department of Anesthesiology, University
of Utah, Salt Lake City, Utah 84112, United
States
| | - Russell W. Teichert
- Department of Biology, University
of Utah, Salt Lake City, Utah 84112, United
States
| | - Gisela P. Concepcion
- Marine Science Institute, University of the Philippines, Diliman, Quezon City 1101, Philippines
| | - Margo G. Haygood
- Department of Environmental and Biomolecular Systems,
OGI School of Science & Engineering, Oregon Health & Science University, Beaverton, Oregon 97006, United States
| | - Baldomero M. Olivera
- Department of Biology, University
of Utah, Salt Lake City, Utah 84112, United
States
| | - Alan R. Light
- Department of Anesthesiology, University
of Utah, Salt Lake City, Utah 84112, United
States
| | - Eric W. Schmidt
- Department of Medicinal
Chemistry, L.S. Skaggs Pharmacy Institute,
University of Utah, Salt Lake City, Utah 84112, United States
- Department of Biology, University
of Utah, Salt Lake City, Utah 84112, United
States
| |
Collapse
|
37
|
Harunari E, Imada C, Igarashi Y, Fukuda T, Terahara T, Kobayashi T. Hyaluromycin, a new hyaluronidase inhibitor of polyketide origin from marine Streptomyces sp. Mar Drugs 2014; 12:491-507. [PMID: 24451191 PMCID: PMC3917283 DOI: 10.3390/md12010491] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 12/28/2013] [Accepted: 12/31/2013] [Indexed: 11/24/2022] Open
Abstract
Hyaluromycin (1), a new member of the rubromycin family of antibiotics, was isolated from the culture extract of a marine-derived Streptomyces sp. as a HAase inhibitor on the basis of HAase activity screening. The structure of 1 was elucidated through the interpretation of NMR data for the compound and its 3″-O-methyl derivative in combination with an incorporation experiment with [1,2-13C2]acetate. The compound’s absolute configuration was determined by the comparison of its circular dichroism (CD) spectrum with those of other rubromycins. Hyaluromycin (1) consists of a γ-rubromycin core structure possessing a 2-amino-3-hydroxycyclopent-2-enone (C5N) unit as an amide substituent of the carboxyl function; both structural units have been reported only from actinomycetes. Hyaluromycin (1) displayed approximately 25-fold more potent hyaluronidase inhibitory activity against hyaluronidase than did glycyrrhizin, a known inhibitor of plant origin.
Collapse
Affiliation(s)
- Enjuro Harunari
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan.
| | - Chiaki Imada
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan.
| | - Yasuhiro Igarashi
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.
| | - Takao Fukuda
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.
| | - Takeshi Terahara
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan.
| | - Takeshi Kobayashi
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan.
| |
Collapse
|
38
|
Biodiversity in production of antibiotics and other bioactive compounds. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 147:37-58. [PMID: 24840777 DOI: 10.1007/10_2014_268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Microbes continue to play a highly considerable role in the drug discovery and development process. Nevertheless, the number of new chemical entities (NCEs) of microbial origin that has been approved by the Food and Drug Administration (FDA) has been reduced in the past decade. This scarcity can be partly attributed to the redundancy in the discovered molecules from microbial isolates, which are isolated from common terrestrial ecological units. However, this situation can be partly overcome by exploring rarely exploited ecological niches as the source of microbes, which reduces the chances of isolating compounds similar to existing ones. The use of modern and advanced isolation techniques, modification of the existing fermentation methods, genetic modifications to induce expression of silent genes, analytical tools for the detection and identification of new chemical entities, use of polymers in fermentation to enhance yield of fermented compounds, and so on, have all aided in enhancing the frequency of acquiring novel compounds. These compounds are representative of numerous classes of diverse compounds. Thus, compounds of microbial origin and their analogues undergoing clinical trials continue to demonstrate the importance of compounds from microbial sources in modern drug discovery.
Collapse
|
39
|
Bruhn T, Schaumlöffel A, Hemberger Y, Bringmann G. SpecDis: quantifying the comparison of calculated and experimental electronic circular dichroism spectra. Chirality 2013; 25:243-9. [PMID: 23532998 DOI: 10.1002/chir.22138] [Citation(s) in RCA: 1020] [Impact Index Per Article: 92.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/30/2012] [Accepted: 11/08/2012] [Indexed: 01/22/2023]
Abstract
This article outlines theory and practice of the comparison of calculated and experimental electronic circular dichroism (ECD) curves to determine the absolute configuration of chiral molecules. The focus is on the evaluation of excited-state calculations giving hints at the identification of the correct bandwidth and the application of the so-called "UV shift" as a correction factor. A similarity factor is introduced, which helps to quantify the degree of matching of curves. In addition, a few common errors are described that can be made during the measurements of ECD and UV spectra-and advice is given of how to avoid these mistakes. All equations mentioned in the article are implemented in our SpecDis software, which has been developed to rapidly compare calculated ECD and UV curves with experimental ones, and to produce graphics in publication quality.
Collapse
Affiliation(s)
- Torsten Bruhn
- Institute of Organic Chemistry, University of Würzburg, Würzburg, Germany.
| | | | | | | |
Collapse
|
40
|
Abstract
Riboflavin-based coenzymes, tightly bound to enzymes catalyzing substrate oxidations and reductions, enable an enormous range of chemical transformations in biosynthetic pathways. Flavoenzymes catalyze substrate oxidations involving amine and alcohol oxidations and desaturations to olefins, the latter setting up Diels-Alder cyclizations in lovastatin and solanapyrone biosyntheses. Both C(4a) and N(5) of the flavin coenzymes are sites for covalent adduct formation. For example, the reactivity of dihydroflavins with molecular oxygen leads to flavin-4a-OOH adducts which then carry out a diverse range of oxygen transfers, including Baeyer-Villiger type ring expansions, olefin epoxidations, halogenations via transient HOCl generation, and an oxidative Favorskii rerrangement during enterocin assembly.
Collapse
Affiliation(s)
- Christopher T Walsh
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA.
| | | |
Collapse
|
41
|
Wang P, Gao X, Tang Y. Complexity generation during natural product biosynthesis using redox enzymes. Curr Opin Chem Biol 2012; 16:362-9. [PMID: 22564679 PMCID: PMC3415589 DOI: 10.1016/j.cbpa.2012.04.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 04/11/2012] [Accepted: 04/15/2012] [Indexed: 11/24/2022]
Abstract
Redox enzymes such as FAD-dependent and cytochrome P450 oxygenases play indispensible roles in generating structural complexity during natural product biosynthesis. In the pre-assembly steps, redox enzymes can convert garden variety primary metabolites into unique starter and extender building blocks. In the post-assembly tailoring steps, redox cascades can transform nascent scaffolds into structurally complex final products. In this review, we will discuss several recently characterized redox enzymes in the biosynthesis of polyketides and nonribosomal peptides.
Collapse
Affiliation(s)
- Peng Wang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles
| | - Xue Gao
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles
- Department of Chemistry and Biochemistry, University of California, Los Angeles
| |
Collapse
|
42
|
Zhang W, Wang L, Kong L, Wang T, Chu Y, Deng Z, You D. Unveiling the post-PKS redox tailoring steps in biosynthesis of the type II polyketide antitumor antibiotic xantholipin. ACTA ACUST UNITED AC 2012; 19:422-32. [PMID: 22444597 DOI: 10.1016/j.chembiol.2012.01.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 01/12/2012] [Accepted: 01/17/2012] [Indexed: 11/25/2022]
Abstract
Xantholipin from Streptomyces flavogriseus is a curved hexacyclic aromatic polyketide antitumor antibiotic. The entire 52 kb xantholipin (xan) biosynthetic gene cluster was sequenced, and bioinformatic analysis revealed open reading frames encoding type II polyketide synthases, regulators, and polyketide tailoring enzymes. Individual in-frame mutagenesis of five tailoring enzymes lead to the production of nine xantholipin analogs, revealing that the xanthone scaffold formation was catalyzed by the FAD binding monooxygenase XanO4, the δ-lactam formation by the asparagine synthetase homolog XanA, the methylenedioxy bridge generation by the P450 monooxygenase XanO2 and the hydroxylation of the carbon backbone by the FAD binding monooxygenase XanO5. These findings may also apply to other polycyclic xanthone antibiotics, and they form the basis for genetic engineering of the xantholipin and similar biosynthetic gene clusters for the generation of compounds with improved antitumor activities.
Collapse
Affiliation(s)
- Weike Zhang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | | | | | | | | | | | | |
Collapse
|
43
|
Yan X, Probst K, Linnenbrink A, Arnold M, Paululat T, Zeeck A, Bechthold A. Cloning and heterologous expression of three type II PKS gene clusters from Streptomyces bottropensis. Chembiochem 2011; 13:224-30. [PMID: 22162248 DOI: 10.1002/cbic.201100574] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Indexed: 11/05/2022]
Abstract
Mensacarcin is a potent cytotoxic agent isolated from Streptomyces bottropensis. It possesses a high content of oxygen atoms and two epoxide groups, and shows cytostatic and cytotoxic activity comparable to that of doxorubicin, a widely used drug for antitumor therapy. Another natural compound, rishirilide A, was also isolated from the fermentation broth of S. bottropensis. Screening a cosmid library of S. bottropensis with minimal PKS-gene-specific primers revealed the presence of three different type II polyketide synthase (PKS) gene clusters in this strain: the msn cluster (mensacarcin biosynthesis), the rsl cluster (rishirilide biosynthesis), and the mec cluster (putative spore pigment biosynthesis). Interestingly, luciferase-like oxygenases, which are very rare in Streptomyces species, are enriched in both the msn cluster and the rsl cluster. Three cosmids, cos2 (containing the major part of the msn cluster), cos3 (harboring the mec cluster), and cos4 (spanning probably the whole rsl cluster) were introduced into the general heterologous host Streptomyces albus by intergeneric conjugation. Expression of cos2 and cos4 in S. albus led to the production of didesmethylmensacarcin (DDMM, a precursor of mensacarcin) and the production of rishirilide A and B (a precursor of rishirilide A), respectively. However, no product was detected from the expression of cos3. In addition, based on the results of isotope-feeding experiments in S. bottropensis, a putative biosynthesis pathway for mensacarcin is proposed.
Collapse
Affiliation(s)
- Xiaohui Yan
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität, Pharmazeutische Biologie und Biotechnologie, Stefan-Meier-Strasse 19, 79104 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
44
|
Scherlach K, Sarkar A, Schroeckh V, Dahse HM, Roth M, Brakhage AA, Horn U, Hertweck C. Two induced fungal polyketide pathways converge into antiproliferative spiroanthrones. Chembiochem 2011; 12:1836-9. [PMID: 21698737 DOI: 10.1002/cbic.201100132] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Indexed: 12/19/2022]
Affiliation(s)
- Kirstin Scherlach
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Beutenbergstrasse 11a, 07745 Jena, Germany
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Lucas SD, Costa E, Guedes RC, Moreira R. Targeting COPD: advances on low-molecular-weight inhibitors of human neutrophil elastase. Med Res Rev 2011; 33 Suppl 1:E73-101. [PMID: 21681767 DOI: 10.1002/med.20247] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a major increasing health problem and the World Health Organization (WHO) reports COPD as the fifth leading cause of death worldwide. COPD refers to a condition of inflammation and progressive weakening of the structure of the lung as well as irreversible narrowing of the airways. Current treatment is only palliative and no available drug halts the progression of the disease. Human neutrophil elastase (HNE) is a serine protease, which plays a major role in the COPD inflammatory process. The protease/anti-protease imbalance leads to an excess of extracellular HNE hydrolyzing elastin, the structural protein that confers elasticity to the lung tissue. Although HNE was identified as a therapeutic target for COPD more than 30 years ago, only Sivelestat (ONO-5046), an HNE inhibitor from Ono Pharmaceutical, has been approved for clinical use. Nevertheless, Sivelestat is only approved in Japan and its development in the USA was terminated in 2003. Other inhibitors in pre-clinical or phase I trials were discontinued for various reasons. Hence, there is an urgent need for low-molecular-weight synthetic elastase inhibitors and the present review discusses the recent advances on this field covering acylating agents, transition-state inhibitors, mechanism-based inhibitors, relevant natural products, and major patent disclosures.
Collapse
Affiliation(s)
- Susana D Lucas
- Research Institute for Medicines and Pharmaceutical Sciences, iMed UL, Faculty of Pharmacy, University of Lisbon, Av Prof Gama Pinto, 1649-003 Lisbon, Portugal
| | | | | | | |
Collapse
|
46
|
Kallio P, Patrikainen P, Suomela JP, Mäntsälä P, Metsä-Ketelä M, Niemi J. Flavoprotein hydroxylase PgaE catalyzes two consecutive oxygen-dependent tailoring reactions in angucycline biosynthesis. Biochemistry 2011; 50:5535-43. [PMID: 21595438 DOI: 10.1021/bi200600k] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A simplified model system composed of a NADPH-dependent flavoprotein hydroxylase PgaE and a short-chain alcohol dehydrogenase/reductase (SDR) CabV was used to dissect a multistep angucycline modification redox cascade into several subreactions in vitro. We demonstrate that the two enzymes are sufficient for the conversion of angucycline substrate 2,3-dehydro-UWM6 to gaudimycin C. The flavoenzyme PgaE is shown to be responsible for two consecutive NADPH- and O(2)-dependent reactions, consistent with the enzyme-catalyzed incorporation of oxygen atoms at C-12 and C-12b in gaudimycin C. The two reactions do not significantly overlap, and the second catalytic cycle is initiated only after the original substrate 2,3-dehydro-UWM6 is nearly depleted. This allowed us to isolate the product of the first reaction at limiting NADPH concentrations and allowed the study of the qualitative and kinetic properties of the separated reactions. Dissection of the reaction cascade also allowed us to establish that the SDR reductase CabV catalyzes the final biosynthetic step, which is closely coupled to the second PgaE reaction. In the absence of CabV, the complete PgaE reaction leads invariably to product degradation, whereas in its presence, the reaction yields the final product, gaudimycin C. The result implies that the C-6 ketoreduction step catalyzed by CabV is required for stabilization of a reactive intermediate. The close relationship between PgaE and CabV would explain previous in vivo observations: why the absence of a reductase gene may result in the lack of C-12b-oxygenated species and, vice versa, why all C-12b-oxygenated angucyclines appear to have undergone reduction at position C-6.
Collapse
Affiliation(s)
- Pauli Kallio
- Department of Biochemistry and Food Chemistry, University of Turku, FIN-20014 Turku, Finland
| | | | | | | | | | | |
Collapse
|
47
|
Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR. Marine natural products. Nat Prod Rep 2010; 28:196-268. [PMID: 21152619 DOI: 10.1039/c005001f] [Citation(s) in RCA: 343] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
48
|
Chen Y, Wendt-Pienkowski E, Ju J, Lin S, Rajski SR, Shen B. Characterization of FdmV as an amide synthetase for fredericamycin A biosynthesis in Streptomyces griseus ATCC 43944. J Biol Chem 2010; 285:38853-60. [PMID: 20926388 DOI: 10.1074/jbc.m110.147744] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fredericamycin (FDM) A is a pentadecaketide natural product that features an amide linkage. Analysis of the fdm cluster from Streptomyces griseus ATCC 43944, however, failed to reveal genes encoding the types of amide synthetases commonly seen in natural product biosynthesis. Here, we report in vivo and in vitro characterizations of FdmV, an asparagine synthetase (AS) B-like protein, as an amide synthetase that catalyzes the amide bond formation in FDM A biosynthesis. This is supported by the findings that (i) inactivation of fdmV in vivo afforded the ΔfdmV mutant strain SB4027 that abolished FDM A and FDM E production but accumulated FDM C, a biosynthetic intermediate devoid of the characteristic amide linkage; (ii) FdmV in vitro catalyzes conversion of FDM C to FDM B, a known intermediate for FDM A biosynthesis (apparent K(m) = 162 ± 67 μM and k(cat) = 0.11 ± 0.02 min(-1)); and (iii) FdmV also catalyzes the amidation of FDM M-3, a structural analog of FDM C, to afford amide FDM M-6 in vitro, albeit at significantly reduced efficiency. Preliminary enzymatic studies revealed that, in addition to the common nitrogen sources (L-Gln and free amine) of class II glutamine amidotransferases (to which AS B belongs), FdmV can also utilize L-Asn as a nitrogen donor. The amide bond formation in FDM A biosynthesis is proposed to occur after C-8 hydroxylation but before the carbaspirocycle formation.
Collapse
Affiliation(s)
- Yihua Chen
- Division of Pharmaceutical Sciences, University of Wisconsin, Madison, Wisconsin 53705-2222, USA
| | | | | | | | | | | |
Collapse
|
49
|
Lopez P, Hornung A, Welzel K, Unsin C, Wohlleben W, Weber T, Pelzer S. Isolation of the lysolipin gene cluster of Streptomyces tendae Tü 4042. Gene 2010; 461:5-14. [PMID: 20399259 DOI: 10.1016/j.gene.2010.03.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 03/31/2010] [Accepted: 03/31/2010] [Indexed: 11/24/2022]
Abstract
Streptomyces tendae Tü 4042 produces the aromatic polyketide antibiotic lysolipin. Lysolipin has strong antibacterial activity against a variety of multidrug-resistant pathogens. The complete lysolipin biosynthetic gene cluster was isolated and fully sequenced. Within a 42-kb genomic region, 42 genes were identified that code for a type II polyketide synthase (llpF, E, and D), cyclases (llpCI-CIII), methyltransferases (llpMI-MVI), a halogenase (llpH), an amidotransferase (llpA), a ferredoxin (llpK), a transporter (llpN) and regulatory proteins (llpRI-RV). In addition, 15 genes encoding enzymes involved in redox modifications of the polyketide precursor molecule (llpOI-OVIII, ZI-ZIV, U, L, and S) were present in the lysolipin biosynthetic gene cluster. With this high number of oxidoreductases, lysolipin is among the most highly modified aromatic polyketides known to date. The heterologous expression of the cluster in Streptomyces albus led to lysolipin production with a yield comparable to that of wild-type, indicating that all biosynthetic genes were successfully cloned.
Collapse
Affiliation(s)
- Patricio Lopez
- Mikrobiologie/Biotechnologie, Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
50
|
Zhou H, Li Y, Tang Y. Cyclization of aromatic polyketides from bacteria and fungi. Nat Prod Rep 2010; 27:839-68. [PMID: 20358042 DOI: 10.1039/b911518h] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hui Zhou
- Department of Chemical and Biomolecular Engineering, University of California, Los Angles, 420 Westwood Plaza, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|