1
|
Badgandi HB, Weichsel A, Montfort WR. Nitric oxide delivery and heme-assisted S-nitrosation by the bedbug nitrophorin. J Inorg Biochem 2023; 246:112263. [PMID: 37290359 PMCID: PMC10332259 DOI: 10.1016/j.jinorgbio.2023.112263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/10/2023] [Accepted: 05/20/2023] [Indexed: 06/10/2023]
Abstract
Nitrophorins are heme proteins used by blood feeding insects to deliver nitric oxide (NO) to a victim, leading to vasodilation and antiplatelet activity. Cimex lectularius (bedbug) nitrophorin (cNP) accomplishes this with a cysteine ligated ferric (Fe(III)) heme. In the acidic environment of the insect's salivary glands, NO binds tightly to cNP. During a blood meal, cNP-NO is delivered to the feeding site where dilution and increased pH lead to NO release. In a previous study, cNP was shown to not only bind heme, but to also nitrosate the proximal cysteine, leading to Cys-NO (SNO) formation. SNO formation requires oxidation of the proximal cysteine, which was proposed to be metal-assisted through accompanying reduction of ferric heme and formation of Fe(II)-NO. Here, we report the 1.6 Å crystal structure of cNP first chemically reduced and then exposed to NO, and show that Fe(II)-NO is formed but SNO is not, supporting a metal-assisted SNO formation mechanism. Crystallographic and spectroscopic studies of mutated cNP show that steric crowding of the proximal site inhibits SNO formation while a sterically relaxed proximal site enhances SNO formation, providing insight into specificity for this poorly understood modification. Experiments examining the pH dependence for NO implicate direct protonation of the proximal cysteine as the underlying mechanism. At lower pH, thiol heme ligation predominates, leading to a smaller trans effect and 60-fold enhanced NO affinity (Kd = 70 nM). Unexpectedly, we find that thiol formation interferes with SNO formation, suggesting cNP-SNO is unlikely to form in the insect salivary glands.
Collapse
Affiliation(s)
- Hemant B Badgandi
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, United States of America
| | - Andrzej Weichsel
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, United States of America
| | - William R Montfort
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, United States of America.
| |
Collapse
|
2
|
Auerbach H, Faus I, Rackwitz S, Wolny JA, Chumakov AI, Knipp M, Walker FA, Schünemann V. Heme protonation affects iron-NO binding in the NO transport protein nitrophorin. J Inorg Biochem 2023; 246:112281. [PMID: 37352657 DOI: 10.1016/j.jinorgbio.2023.112281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/26/2023] [Accepted: 05/30/2023] [Indexed: 06/25/2023]
Abstract
The nitrophorins (NPs) comprise an unusual group of heme proteins with stable ferric heme iron nitric oxide (Fe-NO) complexes. They are found in the salivary glands of the blood-sucking kissing bug Rhodnius prolixus, which uses the NPs to transport the highly reactive signaling molecule NO. Nuclear resonance vibrational spectroscopy (NRVS) of both isoform NP2 and a mutant NP2(Leu132Val) show, after addition of NO, a strong structured vibrational band at around 600 cm-1, which is due to modes with significant Fe-NO bending and stretching contribution. Based on a hybrid calculation method, which uses density functional theory and molecular mechanics, it is demonstrated that protonation of the heme carboxyl groups does influence both the vibrational properties of the Fe-NO entity and its electronic ground state. Moreover, heme protonation causes a significant increase of the gap between the highest occupied and lowest unoccupied molecular orbital by almost one order of magnitude leading to a stabilization of the Fe-NO bond.
Collapse
Affiliation(s)
- Hendrik Auerbach
- Department of Physics, RPTU Kaiserslautern-Landau, 67663 Kaiserslautern, Germany
| | - Isabelle Faus
- Department of Physics, RPTU Kaiserslautern-Landau, 67663 Kaiserslautern, Germany
| | - Sergej Rackwitz
- Department of Physics, RPTU Kaiserslautern-Landau, 67663 Kaiserslautern, Germany
| | - Juliusz A Wolny
- Department of Physics, RPTU Kaiserslautern-Landau, 67663 Kaiserslautern, Germany
| | | | - Markus Knipp
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany; Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | - F Ann Walker
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721-0041, United States
| | - Volker Schünemann
- Department of Physics, RPTU Kaiserslautern-Landau, 67663 Kaiserslautern, Germany.
| |
Collapse
|
3
|
Lehnert N, Kim E, Dong HT, Harland JB, Hunt AP, Manickas EC, Oakley KM, Pham J, Reed GC, Alfaro VS. The Biologically Relevant Coordination Chemistry of Iron and Nitric Oxide: Electronic Structure and Reactivity. Chem Rev 2021; 121:14682-14905. [PMID: 34902255 DOI: 10.1021/acs.chemrev.1c00253] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule that is involved in a wide range of physiological and pathological events in biology. Metal coordination chemistry, especially with iron, is at the heart of many biological transformations involving NO. A series of heme proteins, nitric oxide synthases (NOS), soluble guanylate cyclase (sGC), and nitrophorins, are responsible for the biosynthesis, sensing, and transport of NO. Alternatively, NO can be generated from nitrite by heme- and copper-containing nitrite reductases (NIRs). The NO-bearing small molecules such as nitrosothiols and dinitrosyl iron complexes (DNICs) can serve as an alternative vehicle for NO storage and transport. Once NO is formed, the rich reaction chemistry of NO leads to a wide variety of biological activities including reduction of NO by heme or non-heme iron-containing NO reductases and protein post-translational modifications by DNICs. Much of our understanding of the reactivity of metal sites in biology with NO and the mechanisms of these transformations has come from the elucidation of the geometric and electronic structures and chemical reactivity of synthetic model systems, in synergy with biochemical and biophysical studies on the relevant proteins themselves. This review focuses on recent advancements from studies on proteins and model complexes that not only have improved our understanding of the biological roles of NO but also have provided foundations for biomedical research and for bio-inspired catalyst design in energy science.
Collapse
Affiliation(s)
- Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Eunsuk Kim
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Hai T Dong
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jill B Harland
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Andrew P Hunt
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Elizabeth C Manickas
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Kady M Oakley
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - John Pham
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Garrett C Reed
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Victor Sosa Alfaro
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
4
|
Das JK, Roy S. A study on non-synonymous mutational patterns in structural proteins of SARS-CoV-2. Genome 2021; 64:665-678. [PMID: 33788636 DOI: 10.1139/gen-2020-0157] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SARS-CoV-2 is mutating and creating divergent variants across the world. An in-depth investigation of the amino acid substitutions in the genomic signature of SARS-CoV-2 proteins is highly essential for understanding its host adaptation and infection biology. A total of 9587 SARS-CoV-2 structural protein sequences collected from 49 different countries are used to characterize protein-wise variants, substitution patterns (type and location), and major substitution changes. The majority of the substitutions are distinct, mostly in a particular location, and lead to a change in an amino acid's biochemical properties. In terms of mutational changes, envelope (E) and membrane (M) proteins are relatively more stable than nucleocapsid (N) and spike (S) proteins. Several co-occurrence substitutions are observed, particularly in S and N proteins. Substitution specific to active sub-domains reveals that heptapeptide repeat, fusion peptides, transmembrane in S protein, and N-terminal and C-terminal domains in the N protein are remarkably mutated. We also observe a few deleterious mutations in the above domains. The overall study on non-synonymous mutation in structural proteins of SARS-CoV-2 at the start of the pandemic indicates a diversity amongst virus sequences.
Collapse
Affiliation(s)
- Jayanta Kumar Das
- Department of Pediatrics, Johns Hopkins University School of Medicine, Maryland, USA
| | - Swarup Roy
- Network Reconstruction & Analysis (NetRA) Lab, Department of Computer Applications, Sikkim University, Gangtok, India
| |
Collapse
|
5
|
Smith MA, Majer SH, Vilbert AC, Lancaster KM. Controlling a burn: outer-sphere gating of hydroxylamine oxidation by a distal base in cytochrome P460. Chem Sci 2019; 10:3756-3764. [PMID: 31015919 PMCID: PMC6457333 DOI: 10.1039/c9sc00195f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 02/14/2019] [Indexed: 01/19/2023] Open
Abstract
One amino acid makes the difference between a metalloenzyme and a metalloprotein in two otherwise effectively identical cytochrome P460s.
Ammonia oxidizing bacteria (AOB) use the cytotoxic, energetic molecule hydroxylamine (NH2OH) as a source of reducing equivalents for cellular respiration. Despite disproportionation or violent decomposition being typical outcomes of reactions of NH2OH with iron, AOB and anammox heme P460 proteins including cytochrome (cyt) P460 and hydroxylamine oxidoreductase (HAO) effect controlled, stepwise oxidation of NH2OH to nitric oxide (NO). Curiously, a recently characterized cyt P460 variant from the AOB Nitrosomonas sp. AL212 is able to form all intermediates of cyt P460 catalysis, but is nevertheless incompetent for NH2OH oxidation. We now show via site-directed mutagenesis, activity assays, spectroscopy, and structural biology that this lack of activity is attributable to the absence of a critical basic glutamate residue in the distal pocket above the heme P460 cofactor. This substitution is the only distinguishing characteristic of a protein that is otherwise effectively structurally and spectroscopically identical to an active variant. This highlights and reinforces a fundamental principal of metalloenzymology: metallocofactor inner-sphere geometric and electronic structures are in many cases insufficient for imbuing reactivity; a precisely defined outer coordination sphere contributed by the polypeptide matrix can be the key differentiator between a metalloenzyme and an unreactive metalloprotein.
Collapse
Affiliation(s)
- Meghan A Smith
- Department of Chemistry and Chemical Biology , Baker Laboratory , Cornell University , Ithaca , NY 14853 , USA .
| | - Sean H Majer
- Department of Chemistry and Chemical Biology , Baker Laboratory , Cornell University , Ithaca , NY 14853 , USA .
| | - Avery C Vilbert
- Department of Chemistry and Chemical Biology , Baker Laboratory , Cornell University , Ithaca , NY 14853 , USA .
| | - Kyle M Lancaster
- Department of Chemistry and Chemical Biology , Baker Laboratory , Cornell University , Ithaca , NY 14853 , USA .
| |
Collapse
|
6
|
De Simone G, Ascenzi P, di Masi A, Polticelli F. Nitrophorins and nitrobindins: structure and function. Biomol Concepts 2018; 8:105-118. [PMID: 28574374 DOI: 10.1515/bmc-2017-0013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/03/2017] [Indexed: 12/23/2022] Open
Abstract
Classical all α-helical globins are present in all living organisms and are ordered in three lineages: (i) flavohemoglobins and single domain globins, (ii) protoglobins and globin coupled sensors and (iii) truncated hemoglobins, displaying the 3/3 or the 2/2 all α-helical fold. However, over the last two decades, all β-barrel and mixed α-helical-β-barrel heme-proteins displaying heme-based functional properties (e.g. ligand binding, transport and sensing) closely similar to those of all α-helical globins have been reported. Monomeric nitrophorins (NPs) and α1-microglobulin (α1-m), belonging to the lipocalin superfamily and nitrobindins (Nbs) represent prototypical heme-proteins displaying the all β-barrel and mixed α-helical-β-barrel folds. NPs are confined to the Reduviidae and Cimicidae families of Heteroptera, whereas α1-m and Nbs constitute heme-protein families spanning bacteria to Homo sapiens. The structural organization and the reactivity of the stable ferric solvent-exposed heme-Fe atom suggest that NPs and Nbs are devoted to NO transport, storage and sensing, whereas Hs-α1-m participates in heme metabolism. Here, the structural and functional properties of NPs and Nbs are reviewed in parallel with those of sperm whale myoglobin, which is generally taken as the prototype of monomeric globins.
Collapse
|
7
|
Montfort WR, Wales JA, Weichsel A. Structure and Activation of Soluble Guanylyl Cyclase, the Nitric Oxide Sensor. Antioxid Redox Signal 2017; 26:107-121. [PMID: 26979942 PMCID: PMC5240008 DOI: 10.1089/ars.2016.6693] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Soluble guanylyl/guanylate cyclase (sGC) is the primary receptor for nitric oxide (NO) and is central to the physiology of blood pressure regulation, wound healing, memory formation, and other key physiological activities. sGC is increasingly implicated in disease and is targeted by novel therapeutic compounds. The protein displays a rich evolutionary history and a fascinating signal transduction mechanism, with NO binding to an N-terminal heme-containing domain, which activates the C-terminal cyclase domains. Recent Advances: Crystal structures of individual sGC domains or their bacterial homologues coupled with small-angle x-ray scattering, electron microscopy, chemical cross-linking, and Förster resonance energy transfer measurements are yielding insight into the overall structure for sGC, which is elongated and likely quite dynamic. Transient kinetic measurements reveal a role for individual domains in lowering NO affinity for heme. New sGC stimulatory drugs are now in the clinic and appear to function through binding near or directly to the sGC heme domain, relieving inhibitory contacts with other domains. New sGC-activating drugs show promise for recovering oxidized sGC in diseases with high inflammation by replacing lost heme. CRITICAL ISSUES Despite the many recent advances, sGC regulation, NO activation, and mechanisms of drug binding remain unclear. Here, we describe the molecular evolution of sGC, new molecular models, and the linked equilibria between sGC NO binding, drug binding, and catalytic activity. FUTURE DIRECTIONS Recent results and ongoing studies lay the foundation for a complete understanding of structure and mechanism, and they open the door for new drug discovery targeting sGC. Antioxid. Redox Signal. 26, 107-121.
Collapse
Affiliation(s)
- William R Montfort
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona
| | - Jessica A Wales
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona
| | - Andrzej Weichsel
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona
| |
Collapse
|
8
|
He C, Howes BD, Smulevich G, Rumpel S, Reijerse EJ, Lubitz W, Cox N, Knipp M. Nitrite Dismutase Reaction Mechanism: Kinetic and Spectroscopic Investigation of the Interaction between Nitrophorin and Nitrite. J Am Chem Soc 2015; 137:4141-50. [DOI: 10.1021/ja512938u] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Chunmao He
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Barry D. Howes
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino(Fi), Italy
| | - Giulietta Smulevich
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino(Fi), Italy
| | - Sigrun Rumpel
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Edward J. Reijerse
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Nicholas Cox
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Markus Knipp
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
- Faculty
of Chemistry and Biochemistry, Ruhr University, Universitätsstrasse 150, D-44780 Bochum, Germany
| |
Collapse
|
9
|
NMR investigations of nitrophorin 2 belt side chain effects on heme orientation and seating of native N-terminus NP2 and NP2(D1A). J Biol Inorg Chem 2013; 19:577-93. [PMID: 24292244 DOI: 10.1007/s00775-013-1063-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 10/31/2013] [Indexed: 12/21/2022]
Abstract
Nitrophorin 2 (NP2), one of the four NO-storing and NO-releasing proteins found in the saliva of the blood-sucking bug Rhodnius prolixus, has a more ruffled heme and a high preference for a particular heme orientation (B) compared with nitrophorin 1 and nitrophorin 4, which show not a preference (A to B ratio of approximately 1:1), suggesting that it fits more tightly in the β-barrel protein. In this work we have prepared a series of "belt" mutants of NP2(D1A) and (ΔM0)NP2 aimed at reducing the size of aromatic or other residues that surround the heme, and investigated them as the high-spin aqua and low-spin N-methylimidazole complexes. The belt mutants included Y38A, Y38F, F42A, F66A, Y85A, Y85F, Y104A, I120T, and a triple mutant of NP2(D1A), the F42L, L106F, I120T mutant. Although I120 has been mainly considered to be a distal pocket residue, CδH3 of I120 lies directly above the heme 3-methyl, at 2.67 Å, of heme orientation B, or the 2-vinyl of A, and it thus plays a role as a belt mutant, a role that turns out to be extremely important in creating the strong favoring of the B heme orientation [A to B ratio of 1:14 for NP2(D1A) or 1:12 for (ΔM0)NP2]. The results show that the 1D (1)H NMR spectra of the high-spin forms are quite sensitive to changes in the shape of the heme binding cavity. The single mutation I120T eliminates the favorability of the B heme orientation by producing a heme A to B orientation ratio of 1:1, whereas the single mutation F42A reverses the heme orientation from an A to B ratio of 1:14 seen for NP2(D1A) to 10:1 for NP2(D1A,F42A). The most extreme ratio was found for the triple mutant of NP2(D1A), NP2(D1A,F42L,L105F,I120T), in which the A to B ratio is approximately 25:1, a ΔG change of about -3.5 kcal/mol or -14.1 kJ/mol with respect to NP2(D1A). The seating of the heme is modified as well in that mutant and in several others, by rotations of the heme by up to 4° from the seating observed in NP2(D1A), in order to relieve steric interactions between a vinyl β-carbon and a protein side chain, or to fill a cavity created by replacing a large protein side chain by a much smaller one; the latter was observed for all tyrosine to alanine mutants. These relatively small changes in seating have a measurable effect on the NMR spectra of the mutants, but are indeed minor in terms of overall seating and reactivity of the NP2(D1A) protein. The (1)H NMR resonances of the hemin substituents of the low-spin N-methylimidazole complexes of NP2(D1A,F42L,L105F,I120T) as well as NP2(D1A,I120T), NP2(D1A,Y104A), and NP2(D1A,F42A) have been assigned using natural abundance (1)H{(13)C} heteronuclear multiple quantum correlation and (1)H-(1)H nuclear Overhauser effect spectroscopy spectra.
Collapse
|
10
|
Muthu D, Berry RE, Zhang H, Walker FA. NMR studies of the dynamics of nitrophorin 2 bound to nitric oxide. Biochemistry 2013; 52:7910-25. [PMID: 24116947 PMCID: PMC3947638 DOI: 10.1021/bi4010396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Rhodnius nitrophorins are β-barrel proteins of the lipocalin fold with a heme protruding from the open end of the barrel. They are found in the saliva of the blood-sucking insect Rhodnius prolixus, which synthesizes and stores nitric oxide (NO) in the salivary glands, where NO is bound to iron. NO is released by dilution and an increase in pH when the insect spits its saliva into the tissues of a victim, to aid in obtaining a blood meal. In the adult insect, there are four nitrophorins, NP1-NP4. At pH 7.3, NP4 releases NO 17 times faster than NP2 does, as measured by stopped-flow kinetics. A number of crystal structures of the least abundant protein, NP4, are available. These structures have been used to propose that two loops between adjacent β-strands at the front opening of the protein, the A-B and G-H loops, determine the rate of NO release. To learn how the protein loops contribute to the release of NO for each of the nitrophorins, the dynamics of these proteins are being studied in our laboratory. In this work, the NP2-NO complex has been investigated by nuclear magnetic resonance relaxation measurements to probe the picosecond-to-nanosecond and microsecond-to-millisecond time scale motions at three pH values, 5.0, 6.5, and 7.3. It is found that at pH 5.0 and 6.5, the NP2-NO complex is rigid and only a few residues in the loop regions show dynamics, while at pH 7.3, somewhat more dynamics, particularly of the A-B loop, are observed. Comparison to other lipocalins shows that all are relatively rigid, and that the dynamics of lipocalins in general are much more subtle than those of mainly α-helical proteins.
Collapse
Affiliation(s)
- Dhanasekaran Muthu
- Department of Chemistry and Biochemistry, The University of Arizona, 1306 E. University Boulevard, Tucson, AZ 85721-0041
| | - Robert E. Berry
- Department of Chemistry and Biochemistry, The University of Arizona, 1306 E. University Boulevard, Tucson, AZ 85721-0041
| | - Hongjun Zhang
- Department of Chemistry and Biochemistry, The University of Arizona, 1306 E. University Boulevard, Tucson, AZ 85721-0041
| | - F. Ann Walker
- Department of Chemistry and Biochemistry, The University of Arizona, 1306 E. University Boulevard, Tucson, AZ 85721-0041
| |
Collapse
|
11
|
Complexes of ferriheme nitrophorin 4 with low-molecular weight thiol(ate)s occurring in blood plasma. J Inorg Biochem 2013; 122:38-48. [DOI: 10.1016/j.jinorgbio.2013.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 01/14/2013] [Accepted: 01/14/2013] [Indexed: 11/17/2022]
|
12
|
Oliveira A, Allegri A, Bidon-Chanal A, Knipp M, Roitberg AE, Abbruzzetti S, Viappiani C, Luque FJ. Kinetics and computational studies of ligand migration in nitrophorin 7 and its Δ1-3 mutant. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1711-21. [PMID: 23624263 DOI: 10.1016/j.bbapap.2013.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/25/2013] [Accepted: 04/11/2013] [Indexed: 11/18/2022]
Abstract
Nitrophorins (NPs) are nitric oxide (NO)-carrying heme proteins found in the saliva of the blood-sucking insect Rhodnius prolixus. Though NP7 exhibits a large sequence resemblance with other NPs, two major differential features are the ability to interact with negatively charged cell surfaces and the presence of a specific N-terminus composed of three extra residues (Leu1-Pro2-Gly3). The aim of this study is to examine the influence of the N-terminus on the ligand binding, and the topological features of inner cavities in closed and open states of NP7, which can be associated to the protein structure at low and high pH, respectively. Laser flash photolysis measurements of the CO rebinding kinetics to NP7 and its variant NP7(Δ1-3), which lacks the three extra residues at the N-terminus, exhibit a similar pattern and support the existence of a common kinetic mechanism for ligand migration and binding. This is supported by the existence of a common topology of inner cavities, which consists of two docking sites in the heme pocket and a secondary site at the back of the protein. The ligand exchange between these cavities is facilitated by an additional site, which can be transiently occupied by the ligand in NP7, although it is absent in NP4. These features provide a basis to explain the enhanced internal gas hosting capacity found experimentally in NP7 and the absence of ligand rebinding from secondary sites in NP4. The current data allow us to speculate that the processes of docking to cell surfaces and NO release may be interconnected in NP7, thereby efficiently releasing NO into a target cell. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.
Collapse
Affiliation(s)
- Ana Oliveira
- Departament de Fisicoquímica and Institut de Biomedicina, Universitat de Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Berry RE, Muthu D, Shokhireva TK, Garrett SA, Zhang H, Walker FA. Native N-terminus nitrophorin 2 from the kissing bug: similarities to and differences from NP2(D1A). Chem Biodivers 2013; 9:1739-55. [PMID: 22976966 DOI: 10.1002/cbdv.201100449] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The first amino acid of mature native nitrophorin 2 is aspartic acid, and when expressed in E. coli, the wild-type gene of the mature protein retains the methionine-0, which is produced by translation of the start codon. This form of NP2, (M0)NP2, has been found to have different properties from its D1A mutant, for which the Met0 is cleaved by the methionine aminopeptidase of E. coli (R. E. Berry, T. K. Shokhireva, I. Filippov, M. N. Shokhirev, H. Zhang, F. A. Walker, Biochemistry 2007, 46, 6830). Native N-terminus nitrophorin 2 ((ΔM0)NP2) has been prepared by employing periplasmic expression of NP2 in E. coli using the pelB leader sequence from Erwinia carotovora, which is present in the pET-26b expression plasmid (Novagen). This paper details the similarities and differences between the three different N-terminal forms of nitrophorin 2, (M0)NP2, NP2(D1A), and (ΔM0)NP2. It is found that the NMR spectra of high- and low-spin (ΔM0)NP2 are essentially identical to those of NP2(D1A), but the rate and equilibrium constants for histamine and NO dissociation/association of the two are different.
Collapse
Affiliation(s)
- Robert E Berry
- Department of Chemistry and Biochemistry, The University of Arizona, P.O. Box 210041, Tucson, AZ 85721-0041, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Xu X, Chang BW, Mans BJ, Ribeiro JMC, Andersen JF. Structure and ligand-binding properties of the biogenic amine-binding protein from the saliva of a blood-feeding insect vector of Trypanosoma cruzi. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:105-13. [PMID: 23275168 PMCID: PMC3532134 DOI: 10.1107/s0907444912043326] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 10/18/2012] [Indexed: 11/10/2022]
Abstract
Proteins that bind small-molecule mediators of inflammation and hemostasis are essential for blood-feeding by arthropod vectors of infectious disease. In ticks and triatomine insects, the lipocalin protein family is greatly expanded and members have been shown to bind biogenic amines, eicosanoids and ADP. These compounds are potent mediators of platelet activation, inflammation and vascular tone. In this paper, the structure of the amine-binding protein (ABP) from Rhodnius prolixus, a vector of the trypanosome that causes Chagas disease, is described. ABP binds the biogenic amines serotonin and norepinephrine with high affinity. A complex with tryptamine shows the presence of a binding site for a single ligand molecule in the central cavity of the β-barrel structure. The cavity contains significant additional volume, suggesting that this protein may have evolved from the related nitrophorin proteins, which bind a much larger heme ligand in the central cavity.
Collapse
Affiliation(s)
- Xueqing Xu
- Laboratory of Malaria and Vector Research, NIH/NIAID, 12735 Twinbrook Parkway, Rockville, MD 20852, USA
| | - Bianca W. Chang
- Laboratory of Malaria and Vector Research, NIH/NIAID, 12735 Twinbrook Parkway, Rockville, MD 20852, USA
| | - Ben J. Mans
- Laboratory of Malaria and Vector Research, NIH/NIAID, 12735 Twinbrook Parkway, Rockville, MD 20852, USA
- Onderstepoort Veterinary Institute, Agricultural Research Council, Onderstepoort 0110, South Africa
| | - Jose M. C. Ribeiro
- Laboratory of Malaria and Vector Research, NIH/NIAID, 12735 Twinbrook Parkway, Rockville, MD 20852, USA
| | - John F. Andersen
- Laboratory of Malaria and Vector Research, NIH/NIAID, 12735 Twinbrook Parkway, Rockville, MD 20852, USA
| |
Collapse
|
15
|
Di Russo NV, Estrin DA, Martí MA, Roitberg AE. pH-Dependent conformational changes in proteins and their effect on experimental pK(a)s: the case of Nitrophorin 4. PLoS Comput Biol 2012; 8:e1002761. [PMID: 23133364 PMCID: PMC3486867 DOI: 10.1371/journal.pcbi.1002761] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 09/13/2012] [Indexed: 11/21/2022] Open
Abstract
The acid-base behavior of amino acids is an important subject of study due to their prominent role in enzyme catalysis, substrate binding and protein structure. Due to interactions with the protein environment, their pKas can be shifted from their solution values and, if a protein has two stable conformations, it is possible for a residue to have different “microscopic”, conformation-dependent pKa values. In those cases, interpretation of experimental measurements of the pKa is complicated by the coupling between pH, protonation state and protein conformation. We explored these issues using Nitrophorin 4 (NP4), a protein that releases NO in a pH sensitive manner. At pH 5.5 NP4 is in a closed conformation where NO is tightly bound, while at pH 7.5 Asp30 becomes deprotonated, causing the conformation to change to an open state from which NO can easily escape. Using constant pH molecular dynamics we found two distinct microscopic Asp30 pKas: 8.5 in the closed structure and 4.3 in the open structure. Using a four-state model, we then related the obtained microscopic values to the experimentally observed “apparent” pKa, obtaining a value of 6.5, in excellent agreement with experimental data. This value must be interpreted as the pH at which the closed to open population transition takes place. More generally, our results show that it is possible to relate microscopic structure dependent pKa values to experimentally observed ensemble dependent apparent pKas and that the insight gained in the relatively simple case of NP4 can be useful in several more complex cases involving a pH dependent transition, of great biochemical interest. The interaction of an amino acid with its protein environment can result in an acid-base behavior that is very different from what would be observed in solution. This environment can be greatly altered when the protein changes conformation. As a result, the amino acid will have two different “microscopic” pKa values. Nitrophorin 4 is a good case study to explore this behavior, because it undergoes a pH-dependent conformational change that is well characterized experimentally. Using computer simulation tools, we found that the key titratable Aspartic acid 30, has two very different microscopic pKas: 4.3 and 8.5, which are significantly different to the observed transition pKa in solution. However, using a simple model, we were able to understand how this causes the conformational change to take place at pH∼6.5, as measured experimentally. The insight gained in this relatively simple case can be useful in other more complex cases where the apparent pKa is also a result of the interplay of different conformations where some amino acids experience very different environments.
Collapse
Affiliation(s)
- Natali V. Di Russo
- Quantum Theory Project and Department of Chemistry, University of Florida, Gainesville, Florida, United States of America
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Dario A. Estrin
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Marcelo A. Martí
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
- * E-mail: (MAM); (AER)
| | - Adrian E. Roitberg
- Quantum Theory Project and Department of Chemistry, University of Florida, Gainesville, Florida, United States of America
- * E-mail: (MAM); (AER)
| |
Collapse
|
16
|
Siebel JF, Kosinsky RL, Åkerström B, Knipp M. Insertion of heme b into the structure of the Cys34-carbamidomethylated human lipocalin α(1)-microglobulin: formation of a [(heme)(2) (α(1)-Microglobulin)](3) complex. Chembiochem 2012; 13:879-87. [PMID: 22492620 DOI: 10.1002/cbic.201100808] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
α(1)-Microglobulin (α(1)m) is a 26 kDa plasma and tissue protein belonging to the lipocalin protein family. Previous investigations indicate that the protein interacts with heme and suggest that it has a function in heme metabolism. However, detailed characterizations of the α(1)m-heme interactions are lacking. Here, we report for the first time the preparation and analysis of a stable α(1)m-heme complex upon carbamidomethylation of the reactive Cys34 by using recombinantly expressed human α(1)m. Analytical size-exclusion chromatography coupled with a diode-array absorbance spectrophotometry demonstrates that at first an α(1)m-heme monomer is formed. Subsequently, a second heme triggers oligomerization that leads to trimerization. The resulting (α(1)m[heme](2))(3) complex was characterized by resonance Raman and EPR spectroscopy, which support the presence of two ferrihemes, thus indicating an unusual spin-state admixed ground state with S=(3)/(2), (5)/(2).
Collapse
Affiliation(s)
- Judith F Siebel
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | | | | | | |
Collapse
|
17
|
Abbruzzetti S, He C, Ogata H, Bruno S, Viappiani C, Knipp M. Heterogeneous kinetics of the carbon monoxide association and dissociation reaction to nitrophorin 4 and 7 coincide with structural heterogeneity of the gate-loop. J Am Chem Soc 2012; 134:9986-98. [PMID: 22594621 DOI: 10.1021/ja2121662] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
NO is an important signaling molecule in human tissue. However, the mechanisms by which this molecule is controlled and directed are currently little understood. Nitrophorins (NPs) comprise a group of ferriheme proteins originating from blood-sucking insects that are tailored to protect and deliver NO via coordination to and release from the heme iron. Therefore, the kinetics of the association and dissociation reactions were studied in this work using the ferroheme-CO complexes of NP4, NP4(D30N), and NP7 as isoelectronic models for the ferriheme-NO complexes. The kinetic measurements performed by nanosecond laser-flash-photolysis and stopped-flow are accompanied by resonance Raman and FT-IR spectroscopy to characterize the carbonyl species. Careful analysis of the CO rebinding kinetics reveals that in NP4 and, to a larger extent, NP7 internal gas binding cavities are located, which temporarily trap photodissociated ligands. Moreover, changes in the free energy barriers throughout the rebinding and release pathway upon increase of the pH are surprisingly small in case of NP4. Also in case of NP4, a heterogeneous kinetic trace is obtained at pH 7.5, which corresponds to the presence of two carbonyl species in the heme cavity that are seen in vibrational spectroscopy and that are due to the change of the distal heme pocket polarity. Quantification of the two species from FT-IR spectra allowed the fitting of the kinetic traces as two processes, corresponding to the previously reported open and closed conformation of the A-B and G-H loops. With the use of the A-B loop mutant NP4(D30N), it was confirmed that the kinetic heterogeneity is controlled by pH through the disruption of the H-bond between the Asp30 side chain and the Leu130 backbone carbonyl. Overall, this first study on the slow phase of the dynamics of diatomic gas molecule interaction with NPs comprises an important experimental contribution for the understanding of the dynamics involved in the binding/release processes of NO/CO in NPs.
Collapse
Affiliation(s)
- Stefania Abbruzzetti
- Dipartimento di Fisica, Università degli Studi di Parma, viale delle Scienze 7A, I-43124, Parma, Italy
| | | | | | | | | | | |
Collapse
|
18
|
Knipp M, Taing JJ, He C, Viappiani C. A caged cyanide. Photochem Photobiol Sci 2012; 11:620-2. [PMID: 22406687 DOI: 10.1039/c2pp05359d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A photoactivatable caged cyanide, 1-(2-nitrophenyl)ethyl (NPE) cyanide, was synthesized, which upon irradiation in the near UV releases cyanide. It is demonstrated that the compound can be used to induce formation of the Fe(III)-CN(-) complex in the heme protein nitrophorin 4 from Rhodnius prolixus.
Collapse
Affiliation(s)
- Markus Knipp
- Max-Planck-Institut für Bioanorganische Chemie, Stifstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany.
| | | | | | | |
Collapse
|
19
|
Moeser B, Janoschka A, Wolny JA, Paulsen H, Filippov I, Berry RE, Zhang H, Chumakov AI, Walker FA, Schünemann V. Nuclear inelastic scattering and Mössbauer spectroscopy as local probes for ligand binding modes and electronic properties in proteins: vibrational behavior of a ferriheme center inside a β-barrel protein. J Am Chem Soc 2012; 134:4216-28. [PMID: 22295945 DOI: 10.1021/ja210067t] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this work, we present a study of the influence of the protein matrix on its ability to tune the binding of small ligands such as NO, cyanide (CN(-)), and histamine to the ferric heme iron center in the NO-storage and -transport protein Nitrophorin 2 (NP2) from the salivary glands of the blood-sucking insect Rhodnius prolixus. Conventional Mössbauer spectroscopy shows a diamagnetic ground state of the NP2-NO complex and Type I and II electronic ground states of the NP2-CN(-) and NP2-histamine complex, respectively. The change in the vibrational signature of the protein upon ligand binding has been monitored by Nuclear Inelastic Scattering (NIS), also called Nuclear Resonant Vibrational Spectroscopy (NRVS). The NIS data thus obtained have also been calculated by quantum mechanical (QM) density functional theory (DFT) coupled with molecular mechanics (MM) methods. The calculations presented here show that the heme ruffling in NP2 is a consequence of the interaction with the protein matrix. Structure optimizations of the heme and its ligands with DFT retain the characteristic saddling and ruffling only if the protein matrix is taken into account. Furthermore, simulations of the NIS data by QM/MM calculations suggest that the pH dependence of the binding of NO, but not of CN(-) and histamine, might be a consequence of the protonation state of the heme carboxyls.
Collapse
Affiliation(s)
- Beate Moeser
- Technische Universität Kaiserslautern, Fachbereich Physik, Erwin-Schrödinger-Str. 56, D-67663 Kaiserslautern, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Reduction of the lipocalin type heme containing protein nitrophorin — Sensitivity of the fold-stabilizing cysteine disulfides toward routine heme-iron reduction. J Inorg Biochem 2011; 105:1405-12. [DOI: 10.1016/j.jinorgbio.2011.07.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 07/19/2011] [Accepted: 07/20/2011] [Indexed: 11/23/2022]
|
21
|
He C, Neya S, Knipp M. Breaking the Proximal FeII–NHis Bond in Heme Proteins through Local Structural Tension: Lessons from the Heme b Proteins Nitrophorin 4, Nitrophorin 7, and Related Site-Directed Mutant Proteins. Biochemistry 2011; 50:8559-75. [DOI: 10.1021/bi201073t] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Chunmao He
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470
Mülheim an der Ruhr, Germany
| | - Saburo Neya
- Department of Physical Chemistry, Graduate School of Pharmaceutical
Sciences, Chiba University, Image-Yayoi,
Chiba 263-8522, Japan
| | - Markus Knipp
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470
Mülheim an der Ruhr, Germany
| |
Collapse
|
22
|
NMR studies of nitrophorin distal pocket side chain effects on the heme orientation and seating of NP2 as compared to NP1. J Inorg Biochem 2011; 105:1238-57. [PMID: 21767470 DOI: 10.1016/j.jinorgbio.2011.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 06/03/2011] [Accepted: 06/08/2011] [Indexed: 11/23/2022]
Abstract
The nitrophorins (NP) of the adult blood-sucking insect Rhodnius prolixus fall into two pairs based on sequence identity (NP1,4 (90%) and NP2,3 (79%)), which differ significantly in the size of side chains of residues which contact the heme. These residues include those in the distal pocket of NP2 (I120) and NP1 (T121) and the "belt" that surrounds the heme of NP2 (S40, F42), and NP1(A42, L44). To determine the importance of these residues and others conserved or very similar for the two pairs, including L122(123), L132(133), appropriate mutants of NP2 and NP1 have been prepared and studied by (1)H NMR spectroscopy. Wild-type NP2 has heme orientation ratio (A:B) of 1:8 at equilibrium, while wild-type NP1 has A:B ~1:1 at equilibrium. Another difference between NP2 and NP1 is in the heme seating with regard to His57(59). It is found that among the distal pocket residues investigated, the residue most responsible for heme orientation and seating is I120(T121). F42(L44) and L106(F107) may also be important, but must be investigated in greater detail.
Collapse
|
23
|
Fritz BG, Hu X, Brailey JL, Berry RE, Walker FA, Montfort WR. Oxidation and loss of heme in soluble guanylyl cyclase from Manduca sexta. Biochemistry 2011; 50:5813-5. [PMID: 21639146 DOI: 10.1021/bi200794c] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oxidation and loss of heme in soluble guanylyl/guanylate cyclase (sGC), the nitric oxide receptor, is thought to be a major contributor to cardiovascular disease and is the target of compounds BAY 58-2667 and HMR1766. Using spectroelectrochemical titration, we found a truncated sGC to be highly stable in the ferrous state (234 mV) and to bind ferrous heme tightly even in the presence of NO, despite the NO-induced release of the proximal histidine. In contrast, oxidized sGC readily loses ferric heme to myoglobin (0.47 ± 0.02 h(-1)). Peroxynitrite, the presumed cellular oxidant, readily oxidizes sGC in 5 mM glutathione.
Collapse
Affiliation(s)
- Bradley G Fritz
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | | | | | | | | | | |
Collapse
|
24
|
Knipp M, He C. Nitrophorins: nitrite disproportionation reaction and other novel functionalities of insect heme-based nitric oxide transport proteins. IUBMB Life 2011; 63:304-12. [PMID: 21491557 DOI: 10.1002/iub.451] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 02/15/2011] [Indexed: 01/14/2023]
Abstract
Nitrophorins (NPs) comprise a unique class of heme proteins used by the blood-sucking insect Rhodnius prolixus to deliver the signaling gas molecule NO into the blood vessel of a host during feeding. Upon NO release, histamine can be scavenged by coordination to the heme iron. Although the protein is of similar size as the mammalian globin monomers and shares the same cofactor and proximal histidine coordination, nitrophorin structure, in contrast, is almost entirely composed of a β-barrel. Comparison of the NO and histamine association constants with the concentrations of both compounds invivo raises concerns about the very simple ligand release model in case of at least some of the NPs. Therefore, novel functionalities of the NPs were sought. As a result, catalysis of the nitrite disproportionation reaction was found, which leads to the formation of NO with nitrite as the sole substrate. This is the first example of a ferriheme protein that can perform this reaction. Furthermore, although NPs stabilize the ferriheme state, a peroxidase reactivity of the cofactor involving the higher oxidation state iron (Compound I/II) was studied with the potential to catalyze the oxidation of histamine and norepinephrine. In contrast to many other heme proteins including the globins, the ferroheme state was found to be extremely sensitive to O(2) , which is a consequence of the much lower reduction potential of the NPs, so that the 1-electron reduction of O(2) to O (•-)(2) becomes a thermodynamically favored process. Altogether, the detailed study of the NPs gives insight into the structure-function relationships required for the targeted delivery of diatomic gas molecules in biology. Moreover, the comparison of the structure-function relationships of the NPs (NO transporters) with those of the globins (O(2) transporters) will help to elucidate the architectural requirement for the respective tasks.
Collapse
Affiliation(s)
- Markus Knipp
- Max-Planck-Institut für Bioanorganische Chemie, Mülheim an der Ruhr, Germany.
| | | |
Collapse
|
25
|
Smith LJ, Kahraman A, Thornton JM. Heme proteins--diversity in structural characteristics, function, and folding. Proteins 2010; 78:2349-68. [PMID: 20544970 DOI: 10.1002/prot.22747] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The characteristics of heme prosthetic groups and their binding sites have been analyzed in detail in a data set of nonhomologous heme proteins. Variations in the shape, volume, and chemical composition of the binding site, in the mode of heme binding and in the number and nature of heme-protein interactions are found to result in significantly different heme environments in proteins with different functions in biology. Differences are also seen in the properties of the apo states of the proteins. The apo states of proteins that bind heme permanently in their functional form show some disorder, ranging from local unfolding in the heme binding pocket to complete unfolding to give a random coil. In contrast, proteins that bind heme transiently are fully folded in their apo and holo states, presumably allowing both apo and holo forms to remain biologically active resisting aggregation or proteolysis. The principles identified here provide a framework for the design of de novo proteins that will exhibit tight heme ligand binding and for the identification of the function of structural genomic target proteins with heme ligands.
Collapse
Affiliation(s)
- Lorna J Smith
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, Oxford OX1 3QR, United Kingdom.
| | | | | |
Collapse
|
26
|
Unprecedented Peroxidase-like Activity of Rhodnius prolixus Nitrophorin 2: Identification of the [FeIV═O Por•]+ and [FeIV═O Por](Tyr38•) Intermediates and Their Role(s) in Substrate Oxidation. Biochemistry 2010; 49:8857-72. [DOI: 10.1021/bi100499a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
He C, Ogata H, Knipp M. Formation of the Complex of Nitrite with the Ferriheme b β-Barrel Proteins Nitrophorin 4 and Nitrophorin 7,. Biochemistry 2010; 49:5841-51. [DOI: 10.1021/bi100324z] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Chunmao He
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Hideaki Ogata
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Markus Knipp
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
28
|
Andersen JF. Structure and mechanism in salivary proteins from blood-feeding arthropods. Toxicon 2009; 56:1120-9. [PMID: 19925819 DOI: 10.1016/j.toxicon.2009.11.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 11/09/2009] [Indexed: 10/20/2022]
Abstract
The saliva of blood-feeding arthropods contains rich mixtures of ligand binding proteins targeted at inhibiting hemostasis and inflammation in the host. Since blood feeding has evolved many times, different taxonomic groups utilize completely different families of proteins to perform similar tasks. Structural studies performed on a number of these proteins have revealed biologically novel and sophisticated mechanisms used to perform their functions. Here, the results of these structural and mechanistic studies are reviewed.
Collapse
Affiliation(s)
- John F Andersen
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 2E-32B Twinbrook 3 Bldg, 12735 Twinbrook Parkway, Rockville, MD 20852, USA.
| |
Collapse
|
29
|
1H and 13C NMR spectroscopic studies of the ferriheme resonances of three low-spin complexes of wild-type nitrophorin 2 and nitrophorin 2(V24E) as a function of pH. J Biol Inorg Chem 2009; 14:1077-95. [PMID: 19517143 PMCID: PMC2847153 DOI: 10.1007/s00775-009-0551-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 05/24/2009] [Indexed: 11/19/2022]
Abstract
The ferriheme resonances of the low-spin (S = 1/2) complexes of wild-type (wt) nitrophorin 2 (NP2) and its heme pocket mutant NP2(V24E) with imidazole (ImH), histamine (Hm), and cyanide (CN−) as the sixth ligand have been investigated by NMR spectroscopy as a function of pH (4.0–7.5). For the three wt NP2 complexes, the ratio of the two possible heme orientational isomers, A and B, remains almost unchanged (ratio of A:B approximately 1:6 to 1:5) over this wide pH range. However, strong chemical exchange cross peaks appear in the nuclear Overhauser effect spectroscopy/exchange spectroscopy (NOESY/EXSY) spectra for the heme methyl resonances at low pH (pH* 4.0–5.5), which indicate chemical exchange between two species. We have shown these to be two different exogenous ImH or Hm orientations that are denoted B and B′, with the ImH plane nearly parallel and perpendicular to the ImH plane of the protein-provided His57, respectively. The wt NP2–CN complex also shows EXSY cross peaks due to chemical exchange, which is shown to be a result of interchange between two ruffling distortions of the heme. The same ruffling distortion interchange is also responsible for the ImH and Hm chemical exchange. For the three NP2(V24E) ligand complexes, no EXSY cross peaks are observed, but the A:B ratios change dramatically with pH. The fact that heme favors the A orientation highly for NP2(V24E) at low pH as compared with wt NP2 is believed to be due to the steric effect of the V24E mutation. The existence of the B′ species at lower pH for wt NP2 complexes and the increase in A heme orientation at lower pH for NP2(V24E) are believed to be a result of a change in structure near Glu53 when it is protonated at low pH. 1H{13C} heteronuclear multiple quantum coherence (HMQC) spectra are very helpful for the assignment of heme and nearby protein side chain resonances.
Collapse
|