1
|
Li J, Zhang C, Fang D, Zheng Z, Zhao Y, Tan P, Fang Q, Chen G. The inhibition mechanism of N 2O generation in NH 3-SCR process by water vapor. JOURNAL OF HAZARDOUS MATERIALS 2024; 485:136881. [PMID: 39706019 DOI: 10.1016/j.jhazmat.2024.136881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
N₂O is a typical by-product in the NH3-SCR process, which requires urgent resolution due to its negative economic and environmental impacts. This study investigates in detail the mechanism of N2O generation on the surface of the Mn-Ce/TiO2 catalyst (Mn-Ce/TiO2-ZS) with anatase {001} facets preferentially exposed. The deep oxidation of NH3 and *NH2 capture of NO via O2 were proved to be the dominant N2O generation pathways. The production of N2O was remarkably reduced by the introduction of a low percentage of water vapor (H2O). The results revealed that low percentage of H2O was capable of enhancing the acid sites on the catalyst surface and facilitating the generation of active hydroxyl species. These active species inhibited the deep dehydrogenation of ammonia and the disintegration of nitrate species on the catalyst surface, as well as suppressing the generation of N2O.
Collapse
Affiliation(s)
- Junchen Li
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Cheng Zhang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| | - Dingli Fang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Zhao Zheng
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yan Zhao
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Peng Tan
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Qingyan Fang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Gang Chen
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
2
|
Montalbano M, Marra G, Longhi M, Prati L, Selli E, Dozzi MV. Combined Role of {001} Facet-Enriched Morphology and Gold Nanoparticle Deposition on Anatase TiO 2 Photoactivity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:60208-60218. [PMID: 39438284 DOI: 10.1021/acsami.4c12465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The interplay on anatase TiO2 photoactivity between particle morphology and gold nanoparticles (NPs) deposition, via either deposition-precipitation (DP) or photodeposition (P), is here investigated by evaluating the photoactivity of Au modified anatase (Au/TiO2) nanocrystals with either a pseudospherical shape or a nanosheet structure in both reduction and oxidation test reactions. The presence of Au NPs on the anatase surface only slightly affects its photoactivity in Cr(VI) reduction, which is kinetically limited by the anodic half-reaction, whereas a larger exposure of highly oxidant {001} facets is beneficial for overcoming this rate-determining step. In the photocatalytic oxidation of both formic acid, proceeding through a direct mechanism, and rhodamine B (RhB) on surface fluorinated photocatalysts, occurring through a hydroxyl-radical-mediated mechanism, the presence of gold NPs produces a significant photoactivity increase only with spherically shaped photocatalysts, mainly exposing {101} facets. These results are rationalized in light of the preferential migration of photogenerated, oppositely charged carriers toward different crystal facets. In fact, when the Au/TiO2 material mainly exposes the more oxidant {001} facets, where photoproduced holes preferentially migrate, recombination between these latter and the electrons captured by Au NPs is favored. Instead, Au NPs on {101} facets efficiently capture photopromoted electrons, preferentially migrating toward such facets with a consequent improvement of photoproduced charge separation.
Collapse
Affiliation(s)
- Marco Montalbano
- Dipartimento di Chimica, Università Degli Studi di Milano, Via C. Golgi 19, 20133 Milano, Italy
| | - Gianluigi Marra
- ENI S.p.A Novara Laboratories (NOLAB), Renewable New Energies and Material Science Research Center, (DE-R&D), Via G. Fauser 4, 28100 Novara, Italy
| | - Mariangela Longhi
- Dipartimento di Chimica, Università Degli Studi di Milano, Via C. Golgi 19, 20133 Milano, Italy
| | - Laura Prati
- Dipartimento di Chimica, Università Degli Studi di Milano, Via C. Golgi 19, 20133 Milano, Italy
- Dipartimento di Energia, Politecnico di Milano, Via Lambruschini 4a, 20156 Milano, Italy
| | - Elena Selli
- Dipartimento di Chimica, Università Degli Studi di Milano, Via C. Golgi 19, 20133 Milano, Italy
| | - Maria Vittoria Dozzi
- Dipartimento di Chimica, Università Degli Studi di Milano, Via C. Golgi 19, 20133 Milano, Italy
| |
Collapse
|
3
|
He T, Zhao Y, Benetti D, Moss B, Tian L, Selim S, Li R, Fan F, Li Q, Wang X, Li C, Durrant JR. Facet-Engineered BiVO 4 Photocatalysts for Water Oxidation: Lifetime Gain Versus Energetic Loss. J Am Chem Soc 2024; 146:27080-27089. [PMID: 39305258 PMCID: PMC11450740 DOI: 10.1021/jacs.4c09219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 10/03/2024]
Abstract
A limiting factor to the efficiency of water Oxygen Evolution Reaction (OER) in metal oxide nanoparticle photocatalysts is the rapid recombination of holes and electrons. Facet-engineering can effectively improve charge separation and, consequently, OER efficiency. However, the kinetics behind this improvement remain poorly understood. This study utilizes photoinduced absorption spectroscopy to investigate the charge yield and kinetics in facet-engineered BiVO4 (F-BiVO4) compared to a non-faceted sample (NF-BiVO4) under operando conditions. A significant influence of preillumination on hole accumulation is observed, linked to the saturation and, thus, passivation of deep and inactive hole traps on the BiVO4 surface. In DI-water, F-BiVO4 shows a 10-fold increase in charge accumulation (∼5 mΔOD) compared to NF-BiVO4 (∼0.5 mΔOD), indicating improved charge separation and stabilization. With the addition of Fe(NO3)3, an efficient electron acceptor, F-BiVO4 demonstrates a 30-fold increase in the accumulation of long-lived holes (∼45 mΔOD), compared to NF-BiVO4 (∼1.5 mΔOD) and an increased half-time, from 2 to 10 s. Based on a simple kinetic model, this increase in hole accumulation suggests that facet-engineering causes at least a 50-100 meV increase in band bending in BiVO4 particles, thereby stabilizing surface holes. This energetic stabilization/loss results in a retardation of OER relative to NF-BiVO4. This slower catalysis is, however, offset by the observed increase in density and lifetime of photoaccumulated holes. Overall, this work quantifies how surface faceting can impact the kinetics of long-lived charge accumulation on metal oxide photocatalysts, highlighting the trade-off between lifetime gain and energetic loss critical to optimizing photocatalytic efficiency.
Collapse
Affiliation(s)
- Tianhao He
- Department
of Chemistry, Centre for Processable Electronics, Imperial College London, London W12 0BZ, U.K.
| | - Yue Zhao
- State
Key Laboratory of Catalysis, Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian National
Laboratory for Clean Energy, Dalian 116023, China
| | - Daniele Benetti
- Department
of Chemistry, Centre for Processable Electronics, Imperial College London, London W12 0BZ, U.K.
| | - Benjamin Moss
- Department
of Chemistry, Centre for Processable Electronics, Imperial College London, London W12 0BZ, U.K.
| | - Lei Tian
- Department
of Chemistry, Centre for Processable Electronics, Imperial College London, London W12 0BZ, U.K.
| | - Shababa Selim
- Department
of Chemistry, Centre for Processable Electronics, Imperial College London, London W12 0BZ, U.K.
| | - Rengui Li
- State
Key Laboratory of Catalysis, Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian National
Laboratory for Clean Energy, Dalian 116023, China
| | - Fengtao Fan
- State
Key Laboratory of Catalysis, Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian National
Laboratory for Clean Energy, Dalian 116023, China
| | - Qian Li
- State
Key Laboratory of Catalysis, Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian National
Laboratory for Clean Energy, Dalian 116023, China
| | - Xiuli Wang
- State
Key Laboratory of Catalysis, Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian National
Laboratory for Clean Energy, Dalian 116023, China
| | - Can Li
- State
Key Laboratory of Catalysis, Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian National
Laboratory for Clean Energy, Dalian 116023, China
| | - James R. Durrant
- Department
of Chemistry, Centre for Processable Electronics, Imperial College London, London W12 0BZ, U.K.
| |
Collapse
|
4
|
Sanchez Monserrate BA, Beauvais ML, Vornholt SM, Chupas PJ, Parise JB, Chapman KW. Real-Time Multiscale Imaging of Heterogeneous Multistage Reactions: Insights into Nanoscale TiO 2 Synthesis. J Am Chem Soc 2024; 146:10745-10752. [PMID: 38584361 DOI: 10.1021/jacs.4c00749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Hydrothermal methods are widely used to synthesize functional inorganic materials. The interplay between the reactive species, solution chemistry, and the nanoscale product makes it challenging to control the reaction pathway to achieve a uniform product. Here, we resolve the heterogeneity that arises during hydrothermal synthesis across different length scales. We combine spatially resolved in situ X-ray pair distribution function (PDF) and small-angle X-ray scattering analysis, which are sensitive to structure on the atomic and nanoscale, with a novel time-lapse optical imaging strategy that reveals heterogeneity and phase separations across the entire reaction. For TiO2 synthesis via hydrothermal hydrolysis of TiCl4, we identify multiple cycles of TiO2 formation and separation that contribute to nonuniformity in the polymorphic product. The PDF data show that the characteristics of TiO2 formed during each formation-separation cycle differ, contributing to the ongoing challenge of precisely identifying reaction controls. The imaging strategy pioneered here provides an efficient in situ means to systematically compare how the reaction evolves under different chemical conditions, thereby advancing our understanding of functional inorganic material synthesis.
Collapse
Affiliation(s)
| | - Michelle L Beauvais
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Simon M Vornholt
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Peter J Chupas
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Geosciences, Stony Brook University, Stony Brook, New York 11794, United States
| | - John B Parise
- Department of Geosciences, Stony Brook University, Stony Brook, New York 11794, United States
| | - Karena W Chapman
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
5
|
Yin S, Liu L, Li J, Wu H, Lv Z, He Y, Zhang JY, Zhang P, Zhao Z, Zhao D, Lan K. Mesoporous TiO 2 Single-Crystal Particles from Controlled Crystallization-Driven Mono-Micelle Assembly as an Efficient Photocatalyst. J Am Chem Soc 2024; 146:1701-1709. [PMID: 38157406 DOI: 10.1021/jacs.3c12727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Mesoporous materials with crystalline frameworks have been widely explored in many fields due to their unique structure and crystalline feature, but accurate manipulations over crystalline scaffolds, mainly composed of uncontrolled polymorphs, are still lacking. Herein, we explored a controlled crystallization-driven monomicelle assembly approach to construct a type of uniform mesoporous TiO2 particles with atomically aligned single-crystal frameworks. The resultant mesoporous TiO2 single-crystal particles possess an angular shape ∼80 nm in diameter, good mesoporosity (a high surface area of 112 m2 g-1 and a mean pore size at 8.3 nm), and highly oriented anatase frameworks. By adjusting the evaporation rate during assembly, such a facile solution-processed strategy further enables the regulation of the particle size and mesopore size without the destruction of the oriented crystallites. Such a combination of ordered mesoporosity and crystalline orientation provides both effective mass and charge transportation, leading to a significant increase in the hydrogen generation rate. A maximum hydrogen evolution rate of 12.5 mmol g-1 h-1 can be realized, along with great stability under solar light. Our study is envisaged to extend the possibility of mesoporous single crystal growth to a range of functional ceramics and semiconductors toward advanced applications.
Collapse
Affiliation(s)
- Sixing Yin
- College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China
| | - Lu Liu
- College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China
| | - Jialong Li
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Hongfei Wu
- College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China
| | - Zirui Lv
- College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China
| | - Yalin He
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Jun-Ye Zhang
- College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China
| | - Pengfei Zhang
- College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Zaiwang Zhao
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Dongyuan Zhao
- College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Kun Lan
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| |
Collapse
|
6
|
Liu T, Miao L, Yao F, Zhang W, Zhao W, Yang D, Feng Q, Hu D. Structure, Properties, Preparation, and Application of Layered Titanates. Inorg Chem 2024; 63:1-26. [PMID: 38109856 DOI: 10.1021/acs.inorgchem.3c03075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
As a typical cation-exchangeable layered compound, layered titanate has a unique open layered structure. Its excellent physical and chemical properties allow its wide use in the energy, environmental protection, electronics, biology, and other fields. This paper reviews the recent progress in the research on the structure, synthesis, properties, and application of layered titanates. Various reactivities, as well as the advantages and disadvantages, of different synthetic methods are discussed. The reaction mechanism and influencing factors of the ion exchange reaction, intercalation reaction, and exfoliation reaction are analyzed. The latest research progress on layered titanates and their modified products in the fields of photocatalysis, adsorption, electrochemistry, and other applications is summarized. Finally, the future development of layered titanate and its exfoliated product two-dimensional nanosheets is proposed.
Collapse
Affiliation(s)
- Tian Liu
- Faculty of Chemistry and Chemical Engineering, Engineering Research Center of Advanced Ferroelectric Functional Materials, Key Laboratory of Functional Materials of Baoji, Baoji University of Arts and Sciences, 1 Hi-Tech Avenue, Baoji, Shaanxi 721013, China
| | - Lei Miao
- Lab of Environmental Inorganic Materials Chemistry, Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai 980-8577, Japan
| | - Fangyi Yao
- Department of Advanced Materials Science, Faculty of Engineering and Design, Kagawa University, 2217-20 Hayashi-cho, Takamatsu 761-0396, Japan
| | - Wenxiong Zhang
- Institute for Solid State Physics (ISSP), The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 227-8581, Japan
| | - Weixing Zhao
- Faculty of Chemistry and Chemical Engineering, Engineering Research Center of Advanced Ferroelectric Functional Materials, Key Laboratory of Functional Materials of Baoji, Baoji University of Arts and Sciences, 1 Hi-Tech Avenue, Baoji, Shaanxi 721013, China
| | - Desuo Yang
- Faculty of Chemistry and Chemical Engineering, Engineering Research Center of Advanced Ferroelectric Functional Materials, Key Laboratory of Functional Materials of Baoji, Baoji University of Arts and Sciences, 1 Hi-Tech Avenue, Baoji, Shaanxi 721013, China
| | - Qi Feng
- Department of Advanced Materials Science, Faculty of Engineering and Design, Kagawa University, 2217-20 Hayashi-cho, Takamatsu 761-0396, Japan
| | - Dengwei Hu
- Faculty of Chemistry and Chemical Engineering, Engineering Research Center of Advanced Ferroelectric Functional Materials, Key Laboratory of Functional Materials of Baoji, Baoji University of Arts and Sciences, 1 Hi-Tech Avenue, Baoji, Shaanxi 721013, China
| |
Collapse
|
7
|
Dudziak S, Gómez-Polo C, Karczewski J, Nikiforow K, Zielińska-Jurek A. Insight into (Electro)magnetic Interactions within Facet-Engineered BaFe 12O 19/TiO 2 Magnetic Photocatalysts. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56511-56525. [PMID: 37990405 DOI: 10.1021/acsami.3c13380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
A series of facet-engineered TiO2/BaFe12O19 composites were synthesized through hydrothermal growth of both phases and subsequent deposition of the different, faceted TiO2 nanoparticles onto BaFe12O19 microplates. The well-defined geometry of the composite and uniaxial magnetic anisotropy of the ferrite allowed alternate interfaces between both phases and fixed the orientation between the TiO2 crystal structure and the remanent magnetic field within BaFe12O19. The morphology and crystal structure of the composites were confirmed by a combination of scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses together with the detailed study of BaFe12O19 electronic and magnetic properties. The photocatalytic activity and magnetic field effect were studied in the reaction of phenol degradation for TiO2/BaFe12O19 and composites of BaFe12O19 covered with a SiO2 protective layer and TiO2. The observed differences in phenol degradation are associated with electron transfer and the contribution of the magnetic field. All obtained magnetic composite materials can be easily separated in an external magnetic field, with efficiencies exceeding 95%, and recycled without significant loss of photocatalytic activity. The highest activity was observed for the composite of BaFe12O19 with TiO2 exposing {1 0 1} facets. However, to prevent electron transfer within the composite structure, this photocatalyst material was additionally coated with a protective SiO2 layer. Furthermore, TiO2 exposing {1 0 0} facets exhibited significant synergy with the BaFe12O19 magnetic field, leading to 2 times higher photocatalytic activity when ferrite was magnetized before the process. The photoluminescence emission study suggests that for this particular combination, the built-in magnetic field of the ferrite suppressed the recombination of the photogenerated charge carriers. Ultimately, possible effects of complex electro/magnetic interactions within the magnetic photocatalyst are shown and discussed for the first time, including the anisotropic properties of both phases.
Collapse
Affiliation(s)
- Szymon Dudziak
- Department of Process Engineering and Chemical Technology, Gdansk University of Technology, G. Narutowicza Street 11/12, 80-233 Gdansk, Poland
| | - Cristina Gómez-Polo
- Institute for Advanced Materials and Mathematics, INAMAT2, Public University of Navarre, Campus de Arrosadía, 31006 Pamplona, Pamplona, Spain
| | - Jakub Karczewski
- Institute of Nanotechnology and Materials Engineering, Gdansk University of Technology, G. Narutowicza Street 11/12, 80-233 Gdansk, Poland
| | - Kostiantyn Nikiforow
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka Street 44/52, 01-224 Warsaw, Poland
| | - Anna Zielińska-Jurek
- Department of Process Engineering and Chemical Technology, Gdansk University of Technology, G. Narutowicza Street 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
8
|
Li H, Lai C, Wei Z, Zhou X, Liu S, Qin L, Yi H, Fu Y, Li L, Zhang M, Xu F, Yan H, Xu M, Ma D, Li Y. Strategies for improving the stability of perovskite for photocatalysis: A review of recent progress. CHEMOSPHERE 2023; 344:140395. [PMID: 37820881 DOI: 10.1016/j.chemosphere.2023.140395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
Photocatalysis is currently a hot research field, which provides promising processes to produce green energy sources and other useful products, thus eventually benefiting carbon emission reduction and leading to a low-carbon future. The development and application of stable and efficient photocatalytic materials is one of the main technical bottlenecks in the field of photocatalysis. Perovskite has excellent performance in the fields of photocatalytic hydrogen evolution reaction (HER), oxygen evolution reaction (OER), carbon dioxide reduction reaction (CO2RR), organic synthesis and pollutant degradation due to its unique structure, flexibility and resulting excellent photoelectric and catalytic properties. The stability problems caused by perovskite's susceptibility to environmental influences hinder its further application in the field of photocatalysis. Therefore, this paper innovatively summarizes and analyzes the existing methods and strategies to improve the stability of perovskite in the field of photocatalysis. Specifically, (i) component engineering, (ii) morphological control, (iii) hybridization and encapsulation are thought to improve the stability of perovskites while improving photocatalytic efficiency. Finally, the challenges and prospects of perovskite photocatalysts are discussed, which provides constructive thinking for the potential application of perovskite photocatalysts.
Collapse
Affiliation(s)
- Hanxi Li
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Cui Lai
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China.
| | - Zhen Wei
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China.
| | - Xuerong Zhou
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Shiyu Liu
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Lei Qin
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Huan Yi
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Yukui Fu
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Ling Li
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Mingming Zhang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Fuhang Xu
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Huchuan Yan
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Mengyi Xu
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Dengsheng Ma
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Yixia Li
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| |
Collapse
|
9
|
Rhoomi Z, Ahmed DS, Jabir MS, Balasubramanian B, Al-Garadi MA, Swelum AA. Facile Hydrothermal Synthesis of BiVO 4/MWCNTs Nanocomposites and Their Influences on the Biofilm Formation of Multidrug Resistance Streptococcus mutans and Proteus mirabilis. ACS OMEGA 2023; 8:37147-37161. [PMID: 37841170 PMCID: PMC10569021 DOI: 10.1021/acsomega.3c04722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023]
Abstract
This study utilized a simple hydrothermal technique to prepare pure BiVO4 and tightly bound BiVO4/multiwalled carbon nanotubes (MWCNTs) nanocomposite materials. The surfactant was employed to control the growth, size, and assembly of BiVO4 and the nanocomposite. Various techniques including X-ray diffraction (XRD), Ultraviolet-visible (UV-vis), photoluminescence (PL), Raman, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS) were utilized to analyze and characterize BiVO4 and the BiVO4/MWCNTs nanocomposite. Through XRD analysis, it was found that the carbon nanotubes were effectively embedded within the lattice of BiVO4 without generating any separate impurity phase and had no influence on the BiVO4 monoclinic structure. TEM images confirmed the presence of MWCNTs within BiVO4. Furthermore, adding MWCNTs in the BiVO4/MWCNTs nanocomposite resulted in an effective charge transfer transition and improved carrier separation, as evidenced by PL analysis. The introduction of MWCNTs also led to a significant reduction in the optical band gap due to quantum effects. Finally, the antibacterial activity of pure BiVO4 and the BiVO4/MWCNTs nanocomposite was assessed by exposing Proteus mirabilis and Streptococcus mutans to these materials. Biofilm inhibition and antibiofilm activity were measured using a crystal violet assay and a FilmTracer LIVE/DEAD Biofilm Viability Kit. The results demonstrated that pure BiVO4 and BiVO4/MWCNTs effectively inhibited biofilm formation. In conclusion, both pure BiVO4 and BiVO4/MWCNTs are promising materials for inhibiting the bacterial biofilm during bacterial infections.
Collapse
Affiliation(s)
- Zeena
R. Rhoomi
- Applied
Sciences Department, University of Technology, Baghdad 11231, Iraq
| | - Duha S. Ahmed
- Applied
Sciences Department, University of Technology, Baghdad 11231, Iraq
| | - Majid S. Jabir
- Applied
Sciences Department, University of Technology, Baghdad 11231, Iraq
| | | | - Maged A. Al-Garadi
- Department
of Animal Production, College of Food and Agriculture Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Ayman A. Swelum
- Department
of Animal Production, College of Food and Agriculture Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| |
Collapse
|
10
|
Xue J, Wang P, Cheng W, Shi L, Bi Q. Preparation and performance of aerogel-based BiOI/TiO 2 heterojunction photoelectrocatalytic electrodes. Phys Chem Chem Phys 2023; 25:23761-23769. [PMID: 37615572 DOI: 10.1039/d3cp01213a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
TiO2/BiOI/CA electrodes with improved conductivity, reduced photoelectron-hole recombination rates, and increased reaction sites based on p-n type heterojunctions were constructed on carbon aerogels (CA) as photoelectrode substrates. Characterization based on ultraviolet-visible diffuse reflectance spectroscopy, photocurrent measurements, and impedance analysis showed that the TiO2/BiOI/CA photoelectrode with a Ti/Bi mole ratio of 0.4 exhibited the best visible light absorption, lowest photogenerated electron-hole pair recombination rate, and strongest photocatalytic degradation, with 90.4% degradation of phenol under 120 min of light. Moreover, the stability of this electrode remained at a high level. This was mainly because the energy levels of TiO2 and BiOI matched each other and the p-n heterojunction formed adjusted the energy band structure of the composite material, widened the electron transfer path, formed an internal electric field between the phase interfaces, had a higher electron transfer rate, and reduced the photogenerated electron-hole recombination rate. Since ˙OH and ˙O2- are the main active substances in the degradation of phenol, the TiO2/BiOI/CA photoelectrodes had higher degradation efficiency than BiOI/CA electrodes. This study provides a unique concept for the treatment of organic pollutant wastewater and electrode design for photoelectrocatalysis.
Collapse
Affiliation(s)
- Juanqin Xue
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Peng Wang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Wen Cheng
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Long Shi
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Qiang Bi
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| |
Collapse
|
11
|
Wanwong S, Sangkhun W, Jiamboonsri P, Butburee T. Electrospun silk nanofiber loaded with Ag-doped TiO 2 with high-reactive facet as multifunctional air filter. RSC Adv 2023; 13:25729-25737. [PMID: 37649664 PMCID: PMC10464597 DOI: 10.1039/d3ra04621d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023] Open
Abstract
Particulate matter (PM) and volatile organic compounds (VOCs) are air pollution that can cause high risk to public health. To protect individuals from air pollution exposure, fibrous filters have been widely employed. In this work, we develop silk nanofibers, which are loaded with Ag-doped TiO2 nanoparticles with exposed (001) (assigned as Ag-TiO2-silk), via electrospinning method and utilized them as multifunctional air filters that can efficiently reduce PM2.5, organic pollutants and microbials. The results showed that Ag-TiO2-silk with a loading of 1 wt% (1%Ag-TiO2-silk) exhibited the best performance among various different Ag-doped samples, as it performed the best as an air filter, which had the highest PM2.5 removal efficiency of 99.04 ± 1.70% with low pressure drop of 34.3 Pa, and also exhibited the highest photodegradation efficiency of formaldehyde. In addition, the Ag-TiO2-silk demonstrated antibacterial activity. These properties make silk composite nanofibers attractive for multifunctional and environmentally-friendly air filter application.
Collapse
Affiliation(s)
- Sompit Wanwong
- Materials Technology Program, School of Energy, Environment and Materials, King Mongkut's University of Technology Thonburi 126 Pracha Uthit Road, Bang Mod Thailand
| | - Weradesh Sangkhun
- Materials Technology Program, School of Energy, Environment and Materials, King Mongkut's University of Technology Thonburi 126 Pracha Uthit Road, Bang Mod Thailand
| | - Pimsumon Jiamboonsri
- Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang Bangkok 10520 Thailand
| | - Teera Butburee
- National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park Pathum Thani 12120 Thailand
| |
Collapse
|
12
|
Pourmadadi M, Rajabzadeh-Khosroshahi M, Eshaghi MM, Rahmani E, Motasadizadeh H, Arshad R, Rahdar A, Pandey S. TiO2-based nanocomposites for cancer diagnosis and therapy: A comprehensive review. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
13
|
Wang C, Zhang Q, Yan B, You B, Zheng J, Feng L, Zhang C, Jiang S, Chen W, He S. Facet Engineering of Advanced Electrocatalysts Toward Hydrogen/Oxygen Evolution Reactions. NANO-MICRO LETTERS 2023; 15:52. [PMID: 36795218 PMCID: PMC9935811 DOI: 10.1007/s40820-023-01024-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/04/2023] [Indexed: 05/19/2023]
Abstract
The crystal facets featured with facet-dependent physical and chemical properties can exhibit varied electrocatalytic activity toward hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) attributed to their anisotropy. The highly active exposed crystal facets enable increased mass activity of active sites, lower reaction energy barriers, and enhanced catalytic reaction rates for HER and OER. The formation mechanism and control strategy of the crystal facet, significant contributions as well as challenges and perspectives of facet-engineered catalysts for HER and OER are provided. The electrocatalytic water splitting technology can generate high-purity hydrogen without emitting carbon dioxide, which is in favor of relieving environmental pollution and energy crisis and achieving carbon neutrality. Electrocatalysts can effectively reduce the reaction energy barrier and increase the reaction efficiency. Facet engineering is considered as a promising strategy in controlling the ratio of desired crystal planes on the surface. Owing to the anisotropy, crystal planes with different orientations usually feature facet-dependent physical and chemical properties, leading to differences in the adsorption energies of oxygen or hydrogen intermediates, and thus exhibit varied electrocatalytic activity toward hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). In this review, a brief introduction of the basic concepts, fundamental understanding of the reaction mechanisms as well as key evaluating parameters for both HER and OER are provided. The formation mechanisms of the crystal facets are comprehensively overviewed aiming to give scientific theory guides to realize dominant crystal planes. Subsequently, three strategies of selective capping agent, selective etching agent, and coordination modulation to tune crystal planes are comprehensively summarized. Then, we present an overview of significant contributions of facet-engineered catalysts toward HER, OER, and overall water splitting. In particular, we highlight that density functional theory calculations play an indispensable role in unveiling the structure–activity correlation between the crystal plane and catalytic activity. Finally, the remaining challenges in facet-engineered catalysts for HER and OER are provided and future prospects for designing advanced facet-engineered electrocatalysts are discussed.
Collapse
Affiliation(s)
- Changshui Wang
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Qian Zhang
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| | - Bing Yan
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China.
| | - Jiaojiao Zheng
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Li Feng
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 2150009, People's Republic of China
| | - Shaohua Jiang
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Wei Chen
- Guangxi Key Laboratory of Low Carbon Energy Materials, College of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China.
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People's Republic of China.
- University of Science and Technology of China, Hefei, 230026, People's Republic of China.
| | - Shuijian He
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| |
Collapse
|
14
|
Lu W, Zhu H, Birmingham B, Craft N, Hu J, Park K, Zhang Z. Phase transition of individual anatase TiO 2 microcrystals with large percentage of (001) facets: a Raman mapping and SEM study. Phys Chem Chem Phys 2023; 25:3199-3210. [PMID: 36625155 DOI: 10.1039/d2cp04882e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
TiO2 has been extensively studied in many fields including photocatalysis, electrochemistry, optics, etc. Understanding the mechanism of the anatase-rutile phase transition (ART) process is critical for the design of TiO2-based high-activity photocatalysts and tuning its properties for other applications. In this work, the ART process using individual anatase micro-particles with a large percentage of (001) facets was monitored and studied. Phase concentration evolution obtained via Raman microscopy was correlated with the morphological evolution observed in scanning electron microscope (SEM) images. The ART of anatase microcrystals is dominated by surface nucleation and growth, but the ART processes of individual anatase particles are distinctive and depend on the various rutile nucleation sites. Two types of transformation pathways are observed. In one type of ART pathway, the rutile phase nucleated at a corner of an anatase microcrystal and grew in one direction along the edge of the crystal firstly followed by propagation over the rest of the microcrystal in the orthogonal direction on the surface and to the bulk of the crystal. The kinetics of the ART follows the first-order model with two distinct rate constants. The fast reaction rate is from the surface nucleation and growth, and the slow rate is from the bulk nucleation and growth. In the other type of ART pathway, multiple rutile nucleation sites formed simultaneously on different edges and corners of the microcrystal. The rutile phase spread over the whole crystal from these nucleation sites with a small contribution of bulk nucleation. Our study on the ART of individual micro-sized crystals bridges the material gap between bulk crystals and nano-sized TiO2 particles. The anatase/rutile co-existing particle will provide a perfect platform to study the synergistic effect between the anatase phase and the rutile phase in their catalytic performances.
Collapse
Affiliation(s)
- Weigang Lu
- Department of Physics, Baylor University, Waco, Texas, 76798, USA.
| | - Hao Zhu
- Department of Physics, Baylor University, Waco, Texas, 76798, USA.
| | - Blake Birmingham
- Department of Physics, Baylor University, Waco, Texas, 76798, USA.
| | - Nolan Craft
- Department of Physics, Baylor University, Waco, Texas, 76798, USA.
| | - Jonathan Hu
- Department of Electrical and Computer Engineering, Baylor University, Waco, Texas, 76798, USA
| | - Kenneth Park
- Department of Physics, Baylor University, Waco, Texas, 76798, USA.
| | - Zhenrong Zhang
- Department of Physics, Baylor University, Waco, Texas, 76798, USA.
| |
Collapse
|
15
|
Karawek A, Kittipoom K, Tansuthepverawongse L, Kitjanukit N, Neamsung W, Lertthanaphol N, Chanthara P, Ratchahat S, Phadungbut P, Kim-Lohsoontorn P, Srinives S. The Photocatalytic Conversion of Carbon Dioxide to Fuels Using Titanium Dioxide Nanosheets/Graphene Oxide Heterostructure as Photocatalyst. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:320. [PMID: 36678074 PMCID: PMC9860753 DOI: 10.3390/nano13020320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Carbon dioxide (CO2) photoreduction to high-value products is a technique for dealing with CO2 emissions. The method involves the molecular transformation of CO2 to hydrocarbon and alcohol-type chemicals, such as methane and methanol, relying on a photocatalyst, such as titanium dioxide (TiO2). In this research, TiO2 nanosheets (TNS) were synthesized using a hydrothermal technique in the presence of a hydrofluoric acid (HF) soft template. The nanosheets were further composited with graphene oxide and doped with copper oxide in the hydrothermal process to create the copper-TiO2 nanosheets/graphene oxide (CTNSG). The CTNSG exhibited outstanding photoactivity in converting CO2 gas to methane and acetone. The production rate for methane and acetone was 12.09 and 0.75 µmol h-1 gcat-1 at 100% relative humidity, providing a total carbon consumption of 71.70 µmol gcat-1. The photoactivity of CTNSG was attributed to the heterostructure interior of the two two-dimensional nanostructures, the copper-TiO2 nanosheets and graphene oxide. The nanosheets-graphene oxide interfaces served as the n-p heterojunctions in holding active radicals for subsequent reactions. The heterostructure also directed the charge transfer, which promoted electron-hole separation in the photocatalyst.
Collapse
Affiliation(s)
- Apisit Karawek
- Nanocomposite Engineering Laboratory (NanoCEN), Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Kittipad Kittipoom
- Nanocomposite Engineering Laboratory (NanoCEN), Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Labhassiree Tansuthepverawongse
- Nanocomposite Engineering Laboratory (NanoCEN), Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Nutkamol Kitjanukit
- Nanocomposite Engineering Laboratory (NanoCEN), Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Wannisa Neamsung
- Nanocomposite Engineering Laboratory (NanoCEN), Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Napat Lertthanaphol
- Nanocomposite Engineering Laboratory (NanoCEN), Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Prowpatchara Chanthara
- Nanocomposite Engineering Laboratory (NanoCEN), Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Sakhon Ratchahat
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Poomiwat Phadungbut
- Nanocomposite Engineering Laboratory (NanoCEN), Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Pattaraporn Kim-Lohsoontorn
- Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sira Srinives
- Nanocomposite Engineering Laboratory (NanoCEN), Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand
| |
Collapse
|
16
|
Huang CY, Li H, Wu Y, Lin CH, Guan X, Hu L, Kim J, Zhu X, Zeng H, Wu T. Inorganic Halide Perovskite Quantum Dots: A Versatile Nanomaterial Platform for Electronic Applications. NANO-MICRO LETTERS 2022; 15:16. [PMID: 36580150 PMCID: PMC9800676 DOI: 10.1007/s40820-022-00983-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/31/2022] [Indexed: 05/19/2023]
Abstract
Metal halide perovskites have generated significant attention in recent years because of their extraordinary physical properties and photovoltaic performance. Among these, inorganic perovskite quantum dots (QDs) stand out for their prominent merits, such as quantum confinement effects, high photoluminescence quantum yield, and defect-tolerant structures. Additionally, ligand engineering and an all-inorganic composition lead to a robust platform for ambient-stable QD devices. This review presents the state-of-the-art research progress on inorganic perovskite QDs, emphasizing their electronic applications. In detail, the physical properties of inorganic perovskite QDs will be introduced first, followed by a discussion of synthesis methods and growth control. Afterwards, the emerging applications of inorganic perovskite QDs in electronics, including transistors and memories, will be presented. Finally, this review will provide an outlook on potential strategies for advancing inorganic perovskite QD technologies.
Collapse
Affiliation(s)
- Chien-Yu Huang
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Hanchen Li
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Ye Wu
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics and Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Chun-Ho Lin
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Xinwei Guan
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Long Hu
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Jiyun Kim
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Xiaoming Zhu
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Haibo Zeng
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics and Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China.
| | - Tom Wu
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia.
| |
Collapse
|
17
|
Sayegh S, Abid M, Tanos F, Cretin M, Lesage G, Zaviska F, Petit E, Navarra B, Iatsunskyi I, Coy E, Viter R, Fedorenko V, Ramanavicius A, Razzouk A, Stephan J, Bechelany M. N-doped TiO2 nanotubes synthesized by atomic layer deposition for acetaminophen degradation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Zhu Z, Jin H, Xie K, Dai S, Luo Y, Qi B, Wang Z, Zhuang X, Liu K, Hu B, Huang L, Zhou J. Molecular-Level Zn-Ion Transfer Pump Specifically Functioning on (002) Facets Enables Durable Zn Anodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204713. [PMID: 36285726 DOI: 10.1002/smll.202204713] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Indexed: 06/16/2023]
Abstract
The modification of metallic Zn anode contributes to solving the cycling issue of Zn-ion batteries (ZIBs) by restraining the dendrite growth and side reactions. In this regard, modulating (002) Zn is an effective way to prolong the lifespan of ZIBs with a parallel arrangement of Zn deposition. Herein, the authors propose to add trace amounts of Zn(BF4 )2 additive in 3 M ZnSO4 to promote in-plane Zn deposition by forming a BF4 - -[Zn(H2 O)6 ]2+ -[Zn(BF4 )3 ]- transfer process and specifically functioning on (002) facets. In this way, the optimized electrolyte highly boosts the cycling stability of Zn anodes with a long lifespan at 34.2% Zn utilization (500 h/10 mA cm-2 ) and 51.3% Zn utilization (360 h/10 mA cm-2 ; 834 h/1 mA cm-2 ). Moreover, the electroplated Zn on Cu substrate exhibits a competitive cumulative plating capacity (CPC) of 2.87 Ah cm-2 under harsh conditions. The assembled Zn|(NH4 )2 V6 O16 ·3H2 O full cells with a high cathode loading of 29.12 mg cm-2 also realizes almost no capacity degradation even after 2000 cycles at 2 A g-1 . With this cost-effective strategy, it is promising to push the development of aqueous ZIBs as well as provide inspiration for metal anode optimization in other energy storage systems.
Collapse
Affiliation(s)
- Zehao Zhu
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Hongrun Jin
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Kefeng Xie
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, P. R. China
| | - Simin Dai
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yongxin Luo
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Bei Qi
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zidong Wang
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xinyan Zhuang
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Kaisi Liu
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Bin Hu
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Liang Huang
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jun Zhou
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
19
|
Alves Melo ACC, de Jesus RA, Olivera ACDM, Salazar-Banda GR, Andrade HMC, Yerga RMN, Fierro JLG, Bilal M, Iqbal HMN, Ferreira LFR, Figueiredo RT. Effect of non-ionic surfactant in the solvothermal synthesis of anatase TiO 2 nanoplates with a high percentage of exposed {001} facets and its role in the photocatalytic degradation of methylene blue dye. ENVIRONMENTAL RESEARCH 2022; 214:114094. [PMID: 36029840 DOI: 10.1016/j.envres.2022.114094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/22/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
The synthesis of anatase TiO2 nanoparticles with controlled morphology and increased {001} facets exposed without the presence of fluorine-derived substances is a challenge. Herein, we report a highly effective approach to fabricate anatase TiO2 nanoplates with exposed {001} facets and their exploitation as robust photocatalytic materials for dye remediation. These materials were synthesized under controlled hydrolysis and condensation reactions, using titanium (IV) n-butoxide in an ethanolic solution, with acetic and sulfuric acids, by a solvothermal method at 190 °C with or without the presence of the non-ionic surfactant Triton® X-100 and then characterized. During TiO2 crystal synthesis, the effect of a non-ionic surfactant on the TiO2 particle growth was investigated. Our results demonstrate that the proposed method can synthesize pure and crystalline anatase TiO2 square nanoplates that form nanostructured spheres with high surface area, uniformly sized mesopores, and exposed {001} facets. The presence of non-ionic surfactant increased the exposed {001} facets percentage of the formed nanoplates from 69 to 80%, decreased the crystallite thickness, but unaffected its crystalline phase and band gap energy. The kinetic constants (Ka e Kb) for the synthesized TiO2 anatase nanoplates are considerably higher than the commercial TiO2 anatase constant (Kc). The synthesized photocatalysts show higher efficiency in the photocatalytic removal of methylene blue (MB) than commercial TiO2 (for t = 120 min).
Collapse
Affiliation(s)
| | | | | | - Giancarlo R Salazar-Banda
- Graduate Program in Process Engineering (PEP), Tiradentes University (UNIT), 49032-490, Aracaju, Brazil; Institute of Technology and Research (ITP), 49032-490, Aracaju, Brazil
| | | | | | - J L G Fierro
- Instituto de Catálisis y Petroleoquímica - ICP/CSI, 28049, Madrid, Spain
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| | - Luiz Fernando Romanholo Ferreira
- Graduate Program in Process Engineering (PEP), Tiradentes University (UNIT), 49032-490, Aracaju, Brazil; Institute of Technology and Research (ITP), 49032-490, Aracaju, Brazil
| | - Renan Tavares Figueiredo
- Graduate Program in Process Engineering (PEP), Tiradentes University (UNIT), 49032-490, Aracaju, Brazil; Institute of Technology and Research (ITP), 49032-490, Aracaju, Brazil.
| |
Collapse
|
20
|
Kowalkińska M, Sikora K, Łapiński M, Karczewski J, Zielińska-Jurek A. Non-toxic fluorine-doped TiO2 nanocrystals from TiOF2 for facet-dependent naproxen degradation. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
He X, Guo H, Liu X, Wen J, Ren G, Ma X. TiO 2 nanosheet supported MnCeO x: a remarkable catalyst with enhanced low-temperature catalytic activity in o-DCB oxidation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:63533-63544. [PMID: 35460000 DOI: 10.1007/s11356-022-20065-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Morphology engineering was an effective strategy for 1,2-dichlorobenzene (o-DCB) oxidation. Herein, TiO2 nanosheet supported MnCeOx (TiMn15Ce30-NS) showed excellent catalytic activity with T50% = 156 °C and T90% = 238 °C, which was better than the T50% = 213 °C and T90% = 247 °C for TiO2 nano truncated octahedron supported MnCeOx (TiMn15Ce30-NTO). TiMn15Ce30-NS also exhibited enhanced water resistance (T50% = 179 °C, T90% = 240 °C), and good stability with the o-DCB conversion retained at 98.9% for 12 h at 350 °C. The excellent catalytic activity of TiMn15Ce30-NS could be mainly ascribed to the preferentially exposed {001} crystal plane and Ce addition which favored the higher concentration of Mn4+ and surface active oxygen, along with stronger interaction between MnOx and CeOx. The present results deepen the understanding of the morphology-dependent effect on o-DCB oxidation.
Collapse
Affiliation(s)
- Xu He
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
- School of Chemistry and Chemical Engineering, Xingtai University, Xingtai, 054000, China
| | - Haiwei Guo
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Xiaoyao Liu
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Jiaxin Wen
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Gengbo Ren
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Xiaodong Ma
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| |
Collapse
|
22
|
Qu J, Wang Y, Mu X, Hu J, Zeng B, Lu Y, Sui M, Li R, Li C. Determination of Crystallographic Orientation and Exposed Facets of Titanium Oxide Nanocrystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203320. [PMID: 35916758 DOI: 10.1002/adma.202203320] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Titanium dioxide (TiO2 ) nanocrystals have attracted great attention in heterogeneous photocatalysis and photoelectricity fields for decades. However, contradicting conclusions on the crystallographic orientation and exposed facets of TiO2 nanocrystals frequently appear in the literature. Herein, using anatase TiO2 nanocrystals with highly exposed {001} facets as a model, the misleading conclusions that exist on anatase nanocrystals are clarified. Although TiO2 -001 nanocrystals are recognized to be dominated by {001} facets, in fact, anatase nanocrystals with both dominant {001} and {111} facets always co-exist due to the similarities in the lattice fringes and intersection angles between the two types of facets (0.38 nm and 90° in the [001] direction, 0.35 nm and 82° in the [111] direction). A paradigm for determining the crystallographic orientation and exposed facets based on transmission electron microscopy (TEM) analysis, which provides a universal methodology to nanomaterials for determining the orientation and exposed facets, is also given.
Collapse
Affiliation(s)
- Jiangshan Qu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yueshuai Wang
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Xulin Mu
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Jingcong Hu
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Bin Zeng
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yue Lu
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Manling Sui
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Rengui Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
| | - Can Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
23
|
Niu X, Du Y, He J, Li X, Wen G. Hydrothermal Synthesis of Co-Exposed-Faceted WO 3 Nanocrystals with Enhanced Photocatalytic Performance. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12162879. [PMID: 36014744 PMCID: PMC9415315 DOI: 10.3390/nano12162879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 06/12/2023]
Abstract
In this paper, rod-shaped, cuboid-shaped, and irregular WO3 nanocrystals with different co-exposed crystal facets were prepared for the first time by a simple hydrothermal treatment of tungstic acid colloidal suspension with desired pH values. The crystal structure, morphology, specific surface area, pore size distribution, chemical composition, electronic states of the elements, optical properties, and charge migration behavior of as-obtained WO3 products were characterized by powder X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), fully automatic specific surface area and porosity analyzer, UV-vis absorption spectra, photoluminescence (PL) spectra, and electrochemical impedance spectroscopy (EIS). The photocatalytic performances of the synthesized pHx-WO3 nanocrystals (x = 0.0, 1.5, 3.0, 5.0, and 7.0) were evaluated and compared with the commercial WO3 (CM-WO3) nanocrystals. The pH7.0-WO3 nanocrystals with co-exposed {202} and {020} facets exhibited highest photocatalytic activity for the degradation of methylene blue solution, which can be attributed to the synergistic effects of the largest specific surface area, the weakest luminescence peak intensity and the smallest arc radius diameter.
Collapse
Affiliation(s)
- Xianjun Niu
- Department of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong 030619, China
| | - Yien Du
- Department of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong 030619, China
| | - Jing He
- Department of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong 030619, China
| | - Xiaodong Li
- Department of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong 030619, China
| | - Guangming Wen
- Department of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong 030619, China
- Department of Scientific Research, Jinzhong University, Jinzhong 030619, China
| |
Collapse
|
24
|
Constructing porous carbon nitride nanosheets for efficient visible-light-responsive photocatalytic hydrogen evolution. J Colloid Interface Sci 2022; 628:214-221. [PMID: 35988516 DOI: 10.1016/j.jcis.2022.08.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/24/2022]
Abstract
The photocatalytic performance of polymeric carbon nitride (CN) is mainly restricted by the poor mass charge separation efficiency and poor light absorption due to its polymeric nature. The conventional strategies to address these problems involved constructing a nanosheets structure would result in a blue shifted light absorption and increased exciton binding energy. Here, with combination of ammonia etching and selectively hydrogen-bond breaking, holey carbon nitride nanosheets (hCNNS) were constructed, thus widening the light absorption range, and spontaneously shortening the migration distance of electrons and holes in the lateral and vertical directions, respectively. Further analysis also found out the reserved atomic structure order endowed hCNNS with the relatively high redox potential. When irradiated with visible light (λ > 420 nm) and loaded with 3 wt% Pt as the cocatalyst, the hydrogen evolution rate of hCNNS was about 40 times higher than the bulk CN, and the apparent quantum yield (AQY) of hCNNS is 1.47% at 435 ± 15 nm. We expect this research can provide a new sight for achieving highly efficient solar utilization of CN-based photocatalysts.
Collapse
|
25
|
Polidoro D, Espro C, Lazaro N, Trentin O, Perosa A, Osman SM, Rodríguez-Padrón D, Luque R, Selva M. Catalytic screening of the cascade reductive amination reaction of furfural and acetonitrile. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
26
|
Tu Y, Chu W, Shi Y, Zhu W, Zheng Q, Zhao J. High Photoreactivity on a Reconstructed Anatase TiO 2(001) Surface Predicted by Ab Initio Nonadiabatic Molecular Dynamics. J Phys Chem Lett 2022; 13:5766-5775. [PMID: 35723976 DOI: 10.1021/acs.jpclett.2c01417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Anatase TiO2(001) surface with (4 × 1) reconstruction is proposed to be a highly active catalytic surface. In this work, using time-domain ab initio nonadiabatic molecular dynamics, we reveal that the ridge structure formed by anatase(001) surface reconstruction is the photoreactive site for hole migration and trapping. Moreover, the ridge structure is destroyed by low-coverage CH3OH adsorption, leading to the suppression of its high photoreactivity. However, when the CH3OH coverage is increased and intermolecular hydrogen bonds (H-bonds) form, the ridge structure and its high photoreactivity are restored. Furthermore, the hole trapping dynamics is strongly coherent with intermolecular proton transfer in structures with intermolecular H-bonds. Our study proves that anatase TiO2(001)-(4 × 1) is a highly photoreactive surface where the ridge is the photoreactive site for hole trapping, which is coherent with the proton transfer process.
Collapse
Affiliation(s)
- Youyou Tu
- Department of Physics and ICQD/Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Weibin Chu
- Key Laboratory of Computational Physical Sciences (Ministry of Education), Institute of Computational Physical Sciences, Fudan University, Shanghai 200433, People's Republic of China
| | - Yongliang Shi
- Center for Spintronics and Quantum Systems, State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shanxi 710049, China
| | - Wenguang Zhu
- Department of Physics and ICQD/Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qijing Zheng
- Department of Physics and ICQD/Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jin Zhao
- Department of Physics and ICQD/Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Physics and ICQD/Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
27
|
Electrochemical cholesterol sensors based on nanostructured metal oxides: Current progress and future perspectives. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-022-02605-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
28
|
Lan K, Wei Q, Zhao D. Versatile Synthesis of Mesoporous Crystalline TiO 2 Materials by Monomicelle Assembly. Angew Chem Int Ed Engl 2022; 61:e202200777. [PMID: 35194915 DOI: 10.1002/anie.202200777] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Indexed: 11/10/2022]
Abstract
Mesoscale TiO2 structures have realized many technological applications-ranging from catalysis and biomedicine to energy storage and conversion-because of their large mesoporosities offering desirable accessibility and mass transport. Tailoring mesoporous TiO2 structures with novel mesoscopic and microscopic configurations is envisaged to offer ample opportunities for further applications. In this Review, we explain how to synthesize novel mesoporous TiO2 materials and present recent examples. An emphasis is placed on a "monomicelle assembly" strategy as an emerging and powerful approach to direct the formation of mesostructured TiO2 with precise control over its structural orientations and architectures. Furthermore, typical examples of mesoporous TiO2 for applications in batteries and photocatalysis are highlighted. The Review ends with an outlook towards the synthesis of mesoporous TiO2 with tailored architectures by self-assembly, which could pave the way for developing advanced energy conversion and storage devices.
Collapse
Affiliation(s)
- Kun Lan
- Laboratory of Advanced Materials, Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, P. R. China
| | - Qiulong Wei
- Department of Materials Science and Engineering, Fujian Key Laboratory of Materials Genome, Xiamen Key Laboratory of High Performance Metals and Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Dongyuan Zhao
- Laboratory of Advanced Materials, Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
29
|
High power impulse magnetron sputtering (HiPIMS) for the fabrication of antimicrobial and transparent TiO2 thin films. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2021.100782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Lan K, Wei Q, Zhao D. Versatile Synthesis of Mesoporous Crystalline TiO
2
Materials by Monomicelle Assembly. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kun Lan
- Laboratory of Advanced Materials Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Fudan University Shanghai 200433 P. R. China
| | - Qiulong Wei
- Department of Materials Science and Engineering Fujian Key Laboratory of Materials Genome Xiamen Key Laboratory of High Performance Metals and Materials College of Materials Xiamen University Xiamen 361005 P. R. China
| | - Dongyuan Zhao
- Laboratory of Advanced Materials Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Fudan University Shanghai 200433 P. R. China
| |
Collapse
|
31
|
Wang D, Yang Z, Lu X, Wang L, Song S, Ma J. 催化臭氧净水过程中催化材料晶面的作用. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
Zhong Y, Wang R, Chen J, Duan C, Huang Z, Yu S, Guo H, Zhou Y. Surface-Terminated Hydroxyl Groups for Deciphering the Facet-Dependent Photocatalysis of Anatase TiO 2. ACS APPLIED MATERIALS & INTERFACES 2022; 14:17601-17609. [PMID: 35380775 DOI: 10.1021/acsami.2c04302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Understanding the relation between a crystal facet and photocatalytic performance is of great importance for the development of effective catalysts. In this work, we focus on anatase TiO2 with controllable exposed facets toward photocatalytic hydrogen evolution by water splitting. By combining temperature-programmed desorption (TPD) and diffuse reflectance infrared spectroscopy (DRIFTS), we obtain that the adsorption of hydroxyl groups and the photo-driven breaking of hydroxyl groups depend strongly on the exposed facets. As a result, the higher catalytic hydrogen evolution activity of TiO2 enclosed with (101) facets than that of (001) facets should be ascribed to the more favorable depletion of hydroxyl groups. Moreover, graphene quantum dots (GQDs) with rich surface functional groups are deliberately deposited on the TiO2 surface. The determination of the states and dynamics of surface hydroxyl groups suggests that GQDs facilitate the reaction of hydroxyl groups on (001)TiO2, thus leading to the activity enhancement. By contrast, the already active (101)TiO2 become apparently less efficient after GQD deposition due to the restricted reaction of hydroxyl groups. Overall, our findings not only provide a unique guidance for understanding the crystal-plane-dependent photocatalysis but also present a powerful approach by which to tailor the photocatalytic performance.
Collapse
Affiliation(s)
- Yunqian Zhong
- Institute of Carbon Neutrality & School of New Energy and Materials, Southwest Petroleum University, Chengdu, Sichuan 610500, China
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China
| | - Rui Wang
- Institute of Carbon Neutrality & School of New Energy and Materials, Southwest Petroleum University, Chengdu, Sichuan 610500, China
| | - Jiahao Chen
- Institute of Carbon Neutrality & School of New Energy and Materials, Southwest Petroleum University, Chengdu, Sichuan 610500, China
| | - Chao Duan
- Institute of Carbon Neutrality & School of New Energy and Materials, Southwest Petroleum University, Chengdu, Sichuan 610500, China
| | - Zhengyue Huang
- Institute of Carbon Neutrality & School of New Energy and Materials, Southwest Petroleum University, Chengdu, Sichuan 610500, China
| | - Shan Yu
- Institute of Carbon Neutrality & School of New Energy and Materials, Southwest Petroleum University, Chengdu, Sichuan 610500, China
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China
| | - Heng Guo
- Institute of Carbon Neutrality & School of New Energy and Materials, Southwest Petroleum University, Chengdu, Sichuan 610500, China
| | - Ying Zhou
- Institute of Carbon Neutrality & School of New Energy and Materials, Southwest Petroleum University, Chengdu, Sichuan 610500, China
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China
| |
Collapse
|
33
|
Development of Monodisperse Mesoporous Microballs Composed of Decahedral Anatase Nanocrystals. Catalysts 2022. [DOI: 10.3390/catal12040408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Mesoporous monodisperse microballs of amorphous titania were prepared from solution of absolute ethanol, tetrabutyl titanate (TBOT) and potassium chloride via a sub-zero sol–gel route. The as-obtained microballs were used as the precursor in an alcohothermal (ethanol with a small amount of water) process to synthesize monodisperse mesoporous microballs built of decahedral anatase nanocrystals. FE-SEM observation and XRD analysis have confirmed that the formed decahedral anatase-rich powder retained the original spherical morphology of the precursor. Importantly, a hierarchical structure composed of faceted anatase has been achieved under “green” conditions, i.e., fluorine-free. Additionally, the hysteresis loops (BET results) have confirmed the existence of mesopores. Interestingly, faceted microballs show noticeable photocatalytic activity under UV/vis irradiation for hydrogen generation without any co-catalyst use, reaching almost forty times higher activity than that by famous commercial titania photocatalyst—P25. It has been proposed that enhanced photocatalytic performance is caused by mesoporous structure and co-existence of two kinds of facets, i.e., {001} and {101}, and thus hindered charge carriers’ recombination.
Collapse
|
34
|
Wang K, He S, Lin Y, Chen X, Dai W, Fu X. Photo-enhanced thermal catalytic CO2 methanation activity and stability over oxygen-deficient Ru/TiO2 with exposed TiO2 {001} facets: Adjusting photogenerated electron behaviors by metal-support interactions. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63825-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
35
|
Shekhar M, Lee WS, Akatay MC, Maciel L, Tang W, Miller JT, Stach EA, Neurock M, Delgass WN, Ribeiro FH. Water-gas shift reaction over supported Au nanoparticles. J Catal 2022. [DOI: 10.1016/j.jcat.2021.12.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
36
|
Wang C, Wang S, Kong F, Chen N. Ferrocene-Sensitized Titanium-Oxo Clusters with Effective Visible Light Absorption and Excellent Photoelectrochemical Activity. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01410b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sensitized Ti-oxo clusters have attracted growing attention as analogous molecular mode compounds of dye-sensitized titanium dioxide solar cells. However, reports on the introduction of metal complexes as photosensitizers into Ti-oxo...
Collapse
|
37
|
Ahmed K, Wang Y, Bai Y, Sekar K, Li W. A carbon nanowire-promoted Cu 2O/TiO 2 nanocomposite for enhanced photoelectrochemical performance. NEW J CHEM 2022. [DOI: 10.1039/d2nj03116g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We started with earth abundant materials to design a heterojunction nanocomposite with excellent visible light photoelectrochemical performance and enhanced durability.
Collapse
Affiliation(s)
- Kassam Ahmed
- School of Engineering and Applied Science, Aston University, Birmingham B4 7ET, UK
| | - Yuyin Wang
- Institute for Materials and Processes, School of Engineering, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JL, UK
| | - Yang Bai
- Institute for Materials and Processes, School of Engineering, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JL, UK
| | - Karthikeyan Sekar
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Wei Li
- Institute for Materials and Processes, School of Engineering, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JL, UK
| |
Collapse
|
38
|
Li J, Li H, Niu X, Wang Z. Low-Dimensional In 2Se 3 Compounds: From Material Preparations to Device Applications. ACS NANO 2021; 15:18683-18707. [PMID: 34870407 DOI: 10.1021/acsnano.1c03836] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanostructured In2Se3 compounds have been widely used in electronics, optoelectronics, and thermoelectrics. Recently, the revelation of ferroelectricity in low-dimensional (low-D) In2Se3 has caused a new upsurge of scientific interest in nanostructured In2Se3 and advanced functional devices. The ferroelectric, thermoelectric, and optoelectronic properties of In2Se3 are highly correlated with the crystal structure. In this review, we summarize the crystal structures and electronic band structures of the widely interested members of the In2Se3 compound family. Recent achievements in the preparation of low-D In2Se3 with controlled phases are discussed in detail. General principles for obtaining pure-phased In2Se3 nanostructures are described. The excellent ferroelectric, optoelectronic, and thermoelectric properties having been demonstrated using nanostructured and heterostructured In2Se3 with different phases are also summarized. Progress and challenges on the applications of In2Se3 nanostructures in nonvolatile memories, photodetectors, gas sensors, strain sensors, and photovoltaics are discussed in detail. In the last part of this review, perspectives on the challenges and opportunities in the preparation and applications of In2Se3 materials are presented.
Collapse
Affiliation(s)
- Junye Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Handong Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xiaobin Niu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zhiming Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
39
|
Gas sensors based on TiO2 nanostructured materials for the detection of hazardous gases: A review. NANO MATERIALS SCIENCE 2021. [DOI: 10.1016/j.nanoms.2021.05.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Shang Q, Fang Y, Yin X, Kong X. Structure modulation of g-C 3N 4 in TiO 2{001}/g-C 3N 4 hetero-structures for boosting photocatalytic hydrogen evolution. RSC Adv 2021; 11:37089-37102. [PMID: 35496402 PMCID: PMC9043575 DOI: 10.1039/d1ra07691d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/11/2021] [Indexed: 01/17/2023] Open
Abstract
Structure design of photocatalysts is highly desirable for taking full advantage of their abilities for H2 evolution. Herein, the highly-efficient TiO2{001}/g-C3N4 (TCN) heterostructures have been fabricated successfully via an in situ ethanol-thermal method. And the structure of g-C3N4 in the TCN heterostructures could be exfoliated from bulk g-C3N4 to nanosheets, nanocrystals and quantum dots with the increase of the synthetic temperature. Through detailed characterization, the structural evolution of g-C3N4 could be attributed to the enhanced temperature of the ethanol-thermal treatment with the shear effects of HF acid. As expected, the optimal TCN-2 heterostructure shows excellent photocatalytic H2 evolution efficiency (1.78 mmol h-1 g-1) under visible-light irradiation. Except for the formed built-in electric field, the significantly enhanced photocatalytic activity of TCN-2 could be ascribed to the enhanced crystallinity of TiO2{001} nanosheets and the formed g-C3N4 nanocrystals with large surface area, which could extend the visible light absorption, and expedite the transfer of photo-generated charge carriers further. Our work could provide guidance on designing TCN heterostructures with the desired structure for highly-efficient photocatalytic water splitting.
Collapse
Affiliation(s)
- Qianqian Shang
- College of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252000 China
| | - Yuzhen Fang
- College of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252000 China
| | - Xingliang Yin
- College of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252000 China
| | - Xiangjin Kong
- College of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252000 China
| |
Collapse
|
41
|
Abstract
Decahedral anatase particles (DAPs) have been prepared by the gas-phase method, characterized, and analyzed for property-governed photocatalytic activity. It has been found that depending on the reaction systems, different properties control the photocatalytic activity, that is, the particle aspect ratio, the density of electron traps and the morphology seem to be responsible for the efficiency of water oxidation, methanol dehydrogenation and oxidative decomposition of acetic acid, respectively. For the discussion on the dependence of the photocatalytic activity on the morphology and/or the symmetry other titania-based photocatalysts have also been analyzed, that is, octahedral anatase particles (OAP), commercial titania P25, inverse opal titania with and without incorporated gold NPs in void spaces and plasmonic photocatalysts (titania with deposits of gold). It has been concluded that though the morphology governs photocatalytic activity, the symmetry (despite its importance in many cases) rather does not control the photocatalytic performance.
Collapse
|
42
|
Photocatalysis and Li-Ion Battery Applications of {001} Faceted Anatase TiO2-Based Composites. J 2021. [DOI: 10.3390/j4030038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Anatase TiO2 are the most widely used photocatalysts because of their unique electronic, optical and catalytic properties. Surface chemistry plays a very important role in the various applications of anatase TiO2 especially in the catalysis, photocatalysis, energy conversion and energy storage. Control of the surface structure by crystal facet engineering has become an important strategy for tuning and optimizing the physicochemical properties of TiO2. For anatase TiO2, the {001} crystal facets are the most reactive because they exhibit unique surface characteristics such as visible light responsiveness, dissociative adsorption, efficient charge separation capabilities and photocatalytic selectivity. In this review, a concise survey of the literature in the field of {001} dominated anatase TiO2 crystals and their composites is presented. To begin, the existing strategies for the synthesis of {001} dominated anatase TiO2 and their composites are discussed. These synthesis strategies include both fluorine-mediated and fluorine-free synthesis routes. Then, a detailed account of the effect of {001} facets on the physicochemical properties of TiO2 and their composites are reviewed, with a particular focus on photocatalysis and Li-ion batteries applications. Finally, an outlook is given on future strategies discussing the remaining challenges for the development of {001} dominated TiO2 nanomaterials and their potential applications.
Collapse
|
43
|
Kakil SA, Abdullah HY, Abdullah TG. Electronic properties of (TiO 2) 33 nanocrystals with nitrogen impurities at different facets: a DFT study. MOLECULAR SIMULATION 2021. [DOI: 10.1080/08927022.2021.1962010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Shaida Anwer Kakil
- Department of Physics, College of Science Salahaddin University Erbil, Iraq
- Research Center, Salahaddin University, Erbil, Iraq
| | - Hewa Y. Abdullah
- Research Center, Salahaddin University, Erbil, Iraq
- Physics Education Department, Faculty of Education, Tishk International University, Erbil, Iraq
| | | |
Collapse
|
44
|
Wang C, Zhong W, Peng S, Zhang J, Shu R, Tian Z, Song Q, Chen Y. Robust Hydrogen Production via Pickering Interfacial Catalytic Photoreforming of n-Octanol-Water Biphasic System. Front Chem 2021; 9:712453. [PMID: 34368083 PMCID: PMC8339705 DOI: 10.3389/fchem.2021.712453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/09/2021] [Indexed: 11/13/2022] Open
Abstract
Pickering emulsion offers a promising platform for conducting interfacial reactions between immiscible reagents; it is particularly suitable for hydrogen production by photoreforming of non-water soluble biomass liquid and water. Herein, Pt-promoted (001)-facet-dominated anatase TiO2 nanosheets were synthesized by a hydrothermal route associated with microfluidic technology for high activity and metal dispersion, and selective surface modification was carried out for preparing Janus particles. Photoreforming hydrogen production through n-octanol and water that formed O/W microemulsion with an average diameter of 540 µm was achieved to obtain amphiphilic catalyst. The as-prepared 2D Janus-type catalysts exhibited remarkably stable emulsification performance as well as photocatalytic activity. This finding indicates that triethoxyfluorosilane had negligible impact on the catalytic performance, yet provided a remarkable benefit to large specific surface area at microemulsion interface, thereby enhancing the H2 yield up to 2003 μmol/g. The cyclic experiments indicate that the decrease in cyclic performance was more likely to be caused by the coalescence of the microemulsion rather than the decrease in catalytic activity, and the microemulsion could be easily recovered by simply hand shaking to more than 96% of the initial performance.
Collapse
Affiliation(s)
- Chao Wang
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, China
| | - Weilin Zhong
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, China
| | - Suqing Peng
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, China
| | - Jingtao Zhang
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, China
| | - Riyang Shu
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, China
| | - Zhipeng Tian
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, China
| | - Qingbin Song
- Macau Environmental Research Institute, Macau University of Science and Technology, Macau, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, China
| |
Collapse
|
45
|
Wang Q, Yi X, Chen Y, Xiao Y, Zheng A, Chen JL, Peng Y. Electronic‐State Manipulation of Surface Titanium Activates Dephosphorylation Over TiO
2
Near Room Temperature. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Quan Wang
- Department of Chemistry City University of Hong Kong Hong Kong SAR China
| | - Xianfeng Yi
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics National Center for Magnetic Resonance in Wuhan Key Laboratory of Magnetic Resonance in Biological Systems Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 China
| | - Yu‐Cheng Chen
- Department of Mechanical Engineering City University of Hong Kong Hong Kong SAR China
| | - Yao Xiao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics National Center for Magnetic Resonance in Wuhan Key Laboratory of Magnetic Resonance in Biological Systems Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 China
| | - Anmin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics National Center for Magnetic Resonance in Wuhan Key Laboratory of Magnetic Resonance in Biological Systems Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 China
| | - Jian Lin Chen
- Department of Science School of Science and Technology The Open University of Hong Kong Hong Kong SAR China
| | - Yung‐Kang Peng
- Department of Chemistry City University of Hong Kong Hong Kong SAR China
- City University of Hong Kong Shenzhen Research Institute Shenzhen 518057 China
| |
Collapse
|
46
|
Wang Q, Yi X, Chen YC, Xiao Y, Zheng A, Chen JL, Peng YK. Electronic-State Manipulation of Surface Titanium Activates Dephosphorylation Over TiO 2 Near Room Temperature. Angew Chem Int Ed Engl 2021; 60:16149-16155. [PMID: 33977664 DOI: 10.1002/anie.202104397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/11/2021] [Indexed: 11/10/2022]
Abstract
Dephosphorylation that removes a phosphate group from substrates is an important reaction for living organisms and environmental protection. Although CeO2 has been shown to catalyze this reaction, cerium is low in natural abundance and has a narrow global distribution (>90 % of these reserves are located within six countries). It is thus imperative to find another element/material with high worldwide abundance that can also efficiently extract the phosphate out of agricultural waste for phosphorus recycle. Using para-nitrophenyl phosphate (p-NPP) as a model compound, we demonstrate that TiO2 with a F-modified (001) surface can activate p-NPP dephosphorylation at temperatures as low as 40 °C. By probe-assisted nuclear magnetic resonance (NMR), it was revealed that the strong electron-withdrawing effect of fluorine makes Ti atoms (the active sites) on the (001) surface very acidic. The bidentate adsorption of p-NPP on this surface further promotes its subsequent activation with a barrier ≈20 kJ mol-1 lower than that of the pristine (001) and (101) surfaces, allowing the activation of this reaction near room temperature (from >80 °C).
Collapse
Affiliation(s)
- Quan Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Xianfeng Yi
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yu-Cheng Chen
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Yao Xiao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Anmin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jian Lin Chen
- Department of Science, School of Science and Technology, The Open University of Hong Kong, Hong Kong SAR, China
| | - Yung-Kang Peng
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
47
|
Paumo HK, Dalhatou S, Katata-Seru LM, Kamdem BP, Tijani JO, Vishwanathan V, Kane A, Bahadur I. TiO2 assisted photocatalysts for degradation of emerging organic pollutants in water and wastewater. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115458] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
48
|
Wang L, Zhang K, Luo J, Ma JY, Ji W, Hong Q, Xu H, Huang W, Yan N, Qu Z. Metastable Facet-Controlled Cu 2WS 4 Single Crystals with Enhanced Adsorption Activity for Gaseous Elemental Mercury. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5347-5356. [PMID: 33724005 DOI: 10.1021/acs.est.0c07275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Purposively designing environmental advanced materials and elucidating the underlying reactivity mechanism at the atomic level allows for the further optimization of the removal performance for contaminants. Herein, using well facet-controlled I-Cu2WS4 single crystals as a model transition metal chalcogenide sorbent, we investigated the adsorption performance of the exposed facets toward gaseous elemental mercury (Hg0). We discovered that the decahedron exhibited not only facet-dependent adsorption properties for Hg0 but also recrystallization along the preferential [001] growth direction from a metastable state to the steady state. Besides, the metastable crystals with a predominant exposure of {101} facets dominated the promising adsorption efficiency (about 99% at 75 °C) while the saturated adsorption capacity was evaluated to be 2.35 mg·g-1. Subsequently, comprehensive characterizations and X-ray adsorption fine structure (XAFS), accompanied by density functional theory (DFT) calculations, revealed that it might be owing to the coordinatively unsaturated local environment of W atoms with S defects and the surface relative stability of different facets, which could be affected by the change in surface atom configuration. Hence, the new insight into the facet-dependent adsorption property of transition metal chalcogenide for Hg0 may have important implications, and the atomic-level study directly provides instructions for development and design of highly efficient functional materials.
Collapse
Affiliation(s)
- Longlong Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ke Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jinming Luo
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jing-Yuan Ma
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied of Physics, Chinese Academy of Sciences, Zhangheng Road 239, Pudong, Shanghai 201204, China
| | - Wenxin Ji
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Qinyuan Hong
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Haomiao Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wenjun Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Naiqiang Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zan Qu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
49
|
Shao C, Lin L, Duan L, Jiang Y, Shao Q, Cao H. Nickel-enhanced electrochemical activities of shape-tailored TiO2{001} nanocrystals for water treatment: A combined experimental and DFT studies. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
Jiang K, Zhang J, Luo R, Wan Y, Liu Z, Chen J. A facile synthesis of Zn-doped TiO 2 nanoparticles with highly exposed (001) facets for enhanced photocatalytic performance. RSC Adv 2021; 11:7627-7632. [PMID: 35423233 PMCID: PMC8694940 DOI: 10.1039/d0ra09318a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/22/2021] [Indexed: 02/05/2023] Open
Abstract
It is a great challenge to simultaneously improve the visible light absorption capacity and enhance photon-generated carrier separation efficiency of photocatalysts. Herein, Zn-doped TiO2 nanoparticles with high exposure of the (001) crystal face were prepared via a one-step hydrothermal decomposition method. A detailed analysis reveals that the electronic structures were modulated by Zn doping; thus, the responsive wavelength was extended to 600 nm, which effectively improved the visible light absorption of TiO2. More importantly, the surface heterojunction of TiO2 was created because of the co-existing specific facets of (101) and (001). Therefore, the surface separation efficiency of photogenerated electron and hole pairs was greatly enhanced. So, the optimal TiO2 photocatalyst exhibited excellent photocatalytic activity, in which the Rhodamine B (RhB) degradation efficiency was 98.7% in 60 min, under the irradiation of visible light. This study is expected to provide guidance for the rational design of TiO2 photocatalysts.
Collapse
Affiliation(s)
- Kun Jiang
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University Chengdu 610041 PR China
- College of Materials Science and Engineering, Sichuan University Chengdu 610065 PR China +86-28-8541-8786
| | - Jin Zhang
- College of Materials Science and Engineering, Sichuan University Chengdu 610065 PR China +86-28-8541-8786
| | - Rui Luo
- College of Materials Science and Engineering, Sichuan University Chengdu 610065 PR China +86-28-8541-8786
| | - Yingfei Wan
- College of Materials Science and Engineering, Sichuan University Chengdu 610065 PR China +86-28-8541-8786
| | - Zengjian Liu
- College of Materials Science and Engineering, Sichuan University Chengdu 610065 PR China +86-28-8541-8786
| | - Jinwei Chen
- College of Materials Science and Engineering, Sichuan University Chengdu 610065 PR China +86-28-8541-8786
| |
Collapse
|