1
|
Pu H, Tian C, Zhang H. In situ hydrothermal synthesis of visible light active sulfur doped TiO 2 from industrial TiOSO 4 solution. Sci Rep 2024; 14:31258. [PMID: 39732894 DOI: 10.1038/s41598-024-82640-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/06/2024] [Indexed: 12/30/2024] Open
Abstract
A cost-effective industrial TiOSO4 solution was employed to fabricate visible light active sulfur-doped titanium dioxide (S-TiO2) via a facile hydrothermal method. The effect of calcination temperature on morphology, particle size, crystallinity, and photocatalytic property of S-TiO2 was systematically investigated. Successful incorporation of sulfur into TiO2 was confirmed by carbon-sulfur analysis, X-ray photoelectron spectroscopy (XPS), and Energy dispersive spectrometer (EDS). The research results demonstrated that calcination temperature significantly impacted the crystallinity, specific surface area, sulfur content, and light absorption properties of S-TiO2. The catalyst calcined at 400 °C revealed the highest photocatalytic activity, with a rate constant of 0.02408 min-1, approximately 25 times higher than commercial P25 catalyst. The higher activity was attributed to the synergistic effect of well-crystallized anatase phase, specific surface area, and red shift of spectral absorption.
Collapse
Affiliation(s)
- Hong Pu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China.
- College of Vanadium and Titanium, Panzhihua University, Panzhihua, 617000, China.
| | - Congxue Tian
- College of Vanadium and Titanium, Panzhihua University, Panzhihua, 617000, China
| | - Hui Zhang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China.
| |
Collapse
|
2
|
Li J, Zhang C, Fang D, Zheng Z, Zhao Y, Tan P, Fang Q, Chen G. The inhibition mechanism of N 2O generation in NH 3-SCR process by water vapor. JOURNAL OF HAZARDOUS MATERIALS 2024; 485:136881. [PMID: 39706019 DOI: 10.1016/j.jhazmat.2024.136881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
N₂O is a typical by-product in the NH3-SCR process, which requires urgent resolution due to its negative economic and environmental impacts. This study investigates in detail the mechanism of N2O generation on the surface of the Mn-Ce/TiO2 catalyst (Mn-Ce/TiO2-ZS) with anatase {001} facets preferentially exposed. The deep oxidation of NH3 and *NH2 capture of NO via O2 were proved to be the dominant N2O generation pathways. The production of N2O was remarkably reduced by the introduction of a low percentage of water vapor (H2O). The results revealed that low percentage of H2O was capable of enhancing the acid sites on the catalyst surface and facilitating the generation of active hydroxyl species. These active species inhibited the deep dehydrogenation of ammonia and the disintegration of nitrate species on the catalyst surface, as well as suppressing the generation of N2O.
Collapse
Affiliation(s)
- Junchen Li
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Cheng Zhang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| | - Dingli Fang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Zhao Zheng
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yan Zhao
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Peng Tan
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Qingyan Fang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Gang Chen
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
3
|
García-Santos L, Fernández-Catalá J, Berenguer-Murcia Á, Cazorla-Amorós D. Exploring Pt-Impregnated CdS/TiO 2 Heterostructures for CO 2 Photoreduction. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1809. [PMID: 39591050 PMCID: PMC11597567 DOI: 10.3390/nano14221809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024]
Abstract
This work focuses on the production of methane through the photocatalytic reduction of carbon dioxide using Pt-doped CdS/TiO2 heterostructures. The photocatalysts were prepared using P25 commercial titania and CdS synthesized through a solvothermal methodology, followed by the impregnation of Pt onto the surface to enhance the physicochemical properties of the resulting photocatalysts. The pure and heterostructure-based materials were characterized using X-ray diffraction (XRD), inductively coupled plasma optical emission spectroscopy (ICP-OES), scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible spectroscopy (UV-Vis), ultraviolet photoelectron spectroscopy (UPS), and photoluminescence spectroscopy (PL). The obtained results show the successful synthesis of the heterostructure impregnated with Pt. Moreover, the observed key role of CdS and Pt nanoparticles in the final semiconductor is to reduce the electron-hole pair recombination rate by acting as an electron sink, which slows down the recombination process and increases the photocatalyst efficiency. Thus, Pt-doped CdS/TiO2 heterostructures with the best observed composition presents better catalytic activity than P25 titania with methane production values being 460 and 397 µmol CH4/g·h, respectively.
Collapse
Affiliation(s)
| | | | - Ángel Berenguer-Murcia
- Inorganic Chemistry Department, Materials Science Institute, University of Alicante, Ap. 99, 03080 Alicante, Spain; (L.G.-S.); (J.F.-C.); (D.C.-A.)
| | | |
Collapse
|
4
|
Singh K, Abhimanyu, Sonu S, Chaudhary V, Raizada P, Rustagi S, Singh P, Thakur P, Kumar V, Kaushik A. Defect and Heterostructure engineering assisted S-scheme Nb 2O 5 nanosystems-based solutions for environmental pollution and energy conversion. Adv Colloid Interface Sci 2024; 332:103273. [PMID: 39126916 DOI: 10.1016/j.cis.2024.103273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/02/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
This review explores the crystallographic versatility of niobium pentoxide (Nb2O5) at the nanoscale, showcasing enhanced catalytic efficiency for cutting-edge sustainable energy and environmental applications. The synthesis strategies explored encompass defect engineering, doping engineering, s-scheme formation, and heterojunction engineering to fine-tune the physicochemical attributes of diverse dimensional (0-D, 1-D, 2-D, and 3-D) Nb2O5 nanosystems as per targeted application. In addressing escalating environmental challenges, Nb2O5 emerges as a semiconductor photocatalyst with transformative potential, spanning applications from dye degradation to antibiotic and metal removal. Beyond its environmental impact, Nb2O5 is pivotal in sustainable energy applications, specifically in carbon dioxide and hydrogen conversion. However, challenges such as limited light absorption efficiency and scalability in production methods prompt the need for targeted research endeavors. The review details the state-of-the-art Nb2O5 nanosystems engineering, tuning their physicochemical properties employing material engineering, and their high catalytic performance in environment remediation and energy generation. It outlines challenges, potential mitigation strategies, and prospects, urging for developing greener synthesis routes, advanced charge transfer techniques, targeted optimization for specific pollutants, and application for micro/nano plastics photocatalytic reduction. As researchers and environmental stewards collaborate, Nb2O5 stands poised at the intersection of environmental remediation, energy harvesting, and nanomaterial advancements, offering a beacon of progress toward a cleaner, more sustainable future.
Collapse
Affiliation(s)
- Karambir Singh
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India 110067
| | - Abhimanyu
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India 110067
| | - Sonu Sonu
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Vishal Chaudhary
- Physics Department, Bhagini Nivedita College, University of Delhi, New Delhi 110043, India.
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, India
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Pankaj Thakur
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India 110067.
| | - Vinod Kumar
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India 110067.
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL-, USA.
| |
Collapse
|
5
|
Fang X, Qin T, Chen J, Ma Z, Liu X, Tang X. Atom Pairing Enhances Sulfur Resistance in Low-Temperature SCR via Upshifting the Lowest Unoccupied States of Cerium. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12272-12280. [PMID: 38934332 DOI: 10.1021/acs.est.4c02997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Environmentally benign cerium-based catalysts are promising alternatives to toxic vanadium-based catalysts for controlling NOx emissions via selective catalytic reduction (SCR), but conventional cerium-based catalysts unavoidably suffer from SO2 poisoning in low-temperature SCR. We develop a strongly sulfur-resistant Ce1+1/TiO2 catalyst by spatially confining Ce atom pairs to different anchoring sites of anatase TiO2(001) surfaces. Experimental results combined with theoretical calculations demonstrate that strong electronic interactions between the paired Ce atoms upshift the lowest unoccupied states to an energy level higher than the highest occupied molecular orbital (HOMO) of SO2 so as to be catalytically inert in SO2 oxidation but slightly lower than HOMO of NH3 so that Ce1+1/TiO2 has desired ability toward NH3 activation required for SCR. Hence, Ce1+1/TiO2 shows higher SCR activity and excellent stability in the presence of SO2 at low temperatures with respect to supported single Ce atoms. This work provides a general strategy to develop sulfur-resistant catalysts by tuning the electronic states of active sites for low-temperature SCR, which has implications for practical applications with energy-saving requirements.
Collapse
Affiliation(s)
- Xue Fang
- Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Tian Qin
- School of Chemistry and Chemical Engineering, in situ Center for Physical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junxiao Chen
- Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Zhen Ma
- Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xi Liu
- School of Chemistry and Chemical Engineering, in situ Center for Physical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xingfu Tang
- Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, China
- Jiangsu Collaborative Innovation Center of Atmospheric Environment & Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
6
|
Wu Q, Jiang H, Ren H, Wu Y, Zhou Y, Chen J, Xu X, Wu X. Surface CN bonds mediate photocatalytic CO 2 reduction into efficient CH 4 production in TiO 2-decorated g-C 3N 4 nanosheets. J Colloid Interface Sci 2024; 663:825-833. [PMID: 38447397 DOI: 10.1016/j.jcis.2024.02.171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/17/2024] [Accepted: 02/22/2024] [Indexed: 03/08/2024]
Abstract
Graphitic carbon nitride (g-C3N4, CN) has garnered considerable attention in the field of photocatalysis due to its favorable band gap and high specific surface area. However, its primary practical limitation lies in the strong radiative recombination of lone pair (LP) electronic states, leading to limited efficiency in separating photogenerated carriers and subsequently diminishing photocatalytic performance. In this study, we devised and synthesized a heterojunction photocatalytic system comprising TiO2 nanosheets supported on modified g-C3N4 (MCN), designated as MCN/TiO2. The presence of CN functional groups on the tri-s-triazine nitrogen captures photogenerated electrons by modifying LP electronic states, resulting in a reduction in the fluorescence emission intensity of g-C3N4. Simultaneously, it forms chemical bonds with the supported TiO2 nanosheets, creating an efficient electron transfer pathway for the accumulation of photogenerated electrons at the active Ti sites. Experimentally, the MCN/TiO2 photocatalytic system exhibited optimal performance in CO2 reduction. The CH4 production rate reached 26.59 μmol g-1 h-1, surpassing that of TiO2 and CN/TiO2 by approximately 8 and 3 times, respectively. Furthermore, this photocatalytic system demonstrated exceptional photostability over five cycles, each lasting 4 h. This research offers a valuable approach for the efficient separation and transfer of photogenerated carriers in composite materials based on g-C3N4.
Collapse
Affiliation(s)
- Qifan Wu
- National Laboratory of Solid States Microstructures and School of Physics, Nanjing University, Nanjing 210093, China
| | - Haojie Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School & School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Hengdong Ren
- National Laboratory of Solid States Microstructures and School of Physics, Nanjing University, Nanjing 210093, China
| | - Yin Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School & School of Life Sciences, Nanjing University, Nanjing 210093, China.
| | - Yong Zhou
- National Laboratory of Solid States Microstructures and School of Physics, Nanjing University, Nanjing 210093, China
| | - Jian Chen
- National Laboratory of Solid States Microstructures and Research Institute of Superconductor Electronics, Nanjing University, Nanjing 210093, Jiangsu, China
| | - Xiaobing Xu
- College of Electronic Engineering, Nanjing Xiaozhuang University, Nanjing 211171, China.
| | - Xinglong Wu
- National Laboratory of Solid States Microstructures and School of Physics, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
7
|
Saputera WH, Yuniar G, Sasongko D. Light-driven methane conversion: unveiling methanol using a TiO 2/TiOF 2 photocatalyst. RSC Adv 2024; 14:8740-8751. [PMID: 38495981 PMCID: PMC10938555 DOI: 10.1039/d4ra00353e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024] Open
Abstract
A TiO2/TiOF2 composite has been synthesized through a hydrothermal method and characterized using X-ray diffraction, Raman spectroscopy, UV-vis diffuse reflectance, SEM-EDX, TEM, and N2 adsorption-desorption isotherms. The percentage of exposed facet [001] and the composition of TiO2/TiOF2 in the composite were controlled by adjusting the amount of HF and hydrothermal temperature synthesis. Three crucial factors in the photocatalytic conversion of methane to methanol, including the photocatalyst, electron scavenger (FeCl2), and H2O2 were evaluated using a statistical approach. All factors were found to have a significant impact on the photocatalytic reaction and exhibited a synergistic effect that enhanced methanol production. The highest methanol yield achieved was 0.7257 μmole h-1 gcat-1. The presence of exposed [001] and fluorine (F) in the catalyst is believed to enhance the adsorption of reactant molecules and provide a more oxidative site. The Fenton cycle reaction between FeCl2 and H2O2 was attributed to reducing recombination and extending the charge carrier lifetime. Incorporating Ag into the TiO2/TiOF2 catalyst results in a significant 2.2-fold enhancement in methanol yield. Additionally, the crucial involvement of hydroxyl radicals in the comprehensive reaction mechanism highlights their importance in influencing the process of photocatalytic methane-to-methanol conversion.
Collapse
Affiliation(s)
- Wibawa Hendra Saputera
- Department of Chemical Engineering, Research Group on Sustainable Energy and Technology, Faculty of Industrial Technology, Institut Teknologi Bandung Jl. Ganesha no. 10 Bandung 40132 Indonesia
- Center for Catalysis and Reaction Engineering, Institut Teknologi Bandung Jl. Ganesha no. 10 Bandung 40132 Indonesia
- Research Center for New and Renewable Energy, Institut Teknologi Bandung Jl. Ganesha no. 10 Bandung 40132 Indonesia
| | - Gita Yuniar
- Department of Chemical Engineering, Research Group on Sustainable Energy and Technology, Faculty of Industrial Technology, Institut Teknologi Bandung Jl. Ganesha no. 10 Bandung 40132 Indonesia
| | - Dwiwahju Sasongko
- Department of Chemical Engineering, Research Group on Sustainable Energy and Technology, Faculty of Industrial Technology, Institut Teknologi Bandung Jl. Ganesha no. 10 Bandung 40132 Indonesia
- Research Center for New and Renewable Energy, Institut Teknologi Bandung Jl. Ganesha no. 10 Bandung 40132 Indonesia
| |
Collapse
|
8
|
Wu X, Zhou J, Tan Q, Li K, Li Q, Correia Carabineiro SA, Lv K. Remarkable Enhancement of Photocatalytic Activity of High-Energy TiO 2 Nanocrystals for NO Oxidation through Surface Defluorination. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11479-11488. [PMID: 38386611 DOI: 10.1021/acsami.3c16994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The superior photocatalytic activity of TiO2 nanocrystals with exposed high-energy (001) facets, achieved through the use of hydrofluoric acid as a shape-directing reagent, is widely reported. However, in this study, we report for the first time the detrimental effect of surface fluorination on the photoreactivity of high-energy faceted TiO2 nanocrystals towards NO oxidation (resulting in a NO removal rate of only 5.9%). This study aims to overcome this limitation by exploring surface defluorination as an effective strategy to enhance the photocatalytic oxidation of NO on TiO2 nanocrystals enclosed with (001) facets. We found that surface defluorination, achieved through either NaOH washing (resulting in an improved NO removal rate of 23.2%) or calcination (yielding an enhanced NO removal rate of 52%), leads to a large increase in the photocatalytic oxidation of NO on TiO2 nanocrystals with enclosed (001) facets. Defluorination processes stimulate charge separation, effectively retarding recombination and significantly promoting the production of reactive oxygen species, including superoxide radicals (·O2-), singlet oxygen (1O2), and hydroxyl radicals (·OH). Both in situ diffuse reflectance infrared Fourier-transform spectroscopy and density functional theory calculations confirm the higher adsorption of NO after defluorination, thus facilitating the oxidation of NO on TiO2 nanocrystals.
Collapse
Affiliation(s)
- Xiaofeng Wu
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environment, South-Central Minzu University, Wuhan, Hubei Province 430074, China
- Surface Science Laboratory, Department of Materials and Earth Sciences, Technische Universitat Darmstadt, Otto-Berndt-Strasse 3, Darmstadt 64287, Germany
| | - Jie Zhou
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environment, South-Central Minzu University, Wuhan, Hubei Province 430074, China
- Department of Urology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, China
| | - Qiuyan Tan
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environment, South-Central Minzu University, Wuhan, Hubei Province 430074, China
| | - Kaining Li
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environment, South-Central Minzu University, Wuhan, Hubei Province 430074, China
| | - Qin Li
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environment, South-Central Minzu University, Wuhan, Hubei Province 430074, China
| | - Sónia A Correia Carabineiro
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica 2829-516, Portugal
| | - Kangle Lv
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environment, South-Central Minzu University, Wuhan, Hubei Province 430074, China
| |
Collapse
|
9
|
Zang W, Lee J, Tieu P, Yan X, Graham GW, Tran IC, Wang P, Christopher P, Pan X. Distribution of Pt single atom coordination environments on anatase TiO 2 supports controls reactivity. Nat Commun 2024; 15:998. [PMID: 38307931 PMCID: PMC10837418 DOI: 10.1038/s41467-024-45367-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/18/2024] [Indexed: 02/04/2024] Open
Abstract
Single-atom catalysts (SACs) offer efficient metal utilization and distinct reactivity compared to supported metal nanoparticles. Structure-function relationships for SACs often assume that active sites have uniform coordination environments at particular binding sites on support surfaces. Here, we investigate the distribution of coordination environments of Pt SAs dispersed on shape-controlled anatase TiO2 supports specifically exposing (001) and (101) surfaces. Pt SAs on (101) are found on the surface, consistent with existing structural models, whereas those on (001) are beneath the surface after calcination. Pt SAs under (001) surfaces exhibit lower reactivity for CO oxidation than those on (101) surfaces due to their limited accessibility to gas phase species. Pt SAs deposited on commercial-TiO2 are found both at the surface and in the bulk, posing challenges to structure-function relationship development. This study highlights heterogeneity in SA coordination environments on oxide supports, emphasizing a previously overlooked consideration in the design of SACs.
Collapse
Affiliation(s)
- Wenjie Zang
- Department of Materials Science and Engineering, University of California, Irvine, CA, 92697, USA
| | - Jaeha Lee
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA
| | - Peter Tieu
- Department of Chemistry, University of California, Irvine, CA, 92697, USA
| | - Xingxu Yan
- Department of Materials Science and Engineering, University of California, Irvine, CA, 92697, USA
| | - George W Graham
- Department of Materials Science and Engineering, University of California, Irvine, CA, 92697, USA
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ich C Tran
- Irvine Materials Research Institute, University of California, Irvine, CA, 92697, USA
| | - Peikui Wang
- Department of Chemistry, University of Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Phillip Christopher
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA.
| | - Xiaoqing Pan
- Department of Materials Science and Engineering, University of California, Irvine, CA, 92697, USA.
- Irvine Materials Research Institute, University of California, Irvine, CA, 92697, USA.
- Department of Physics and Astronomy, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
10
|
Fu C, Li F, Wu Z, Xiong F, Zhu J, Gong XQ, Huang W. Traces of Potassium Induce Restructuring of the Anatase TiO 2(001)-(1×4) Surface from a Reactive to an Inert Structure. J Phys Chem Lett 2023; 14:8916-8921. [PMID: 37768115 DOI: 10.1021/acs.jpclett.3c02047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Reconstruction of solid surfaces is generally accompanied by changes in surface activities. Here, via a combined experimental and theoretical study, we successfully identified that a trace amount of potassium dopant restructures the mineral anatase TiO2(001) single-crystal surface from an added molecule (ADM) termination to an added oxygen (AOM) one without changing the (1×4) periodicity. The anatase TiO2(001)-(1×4)-ADM surface terminated with 4-fold coordinated Ti4c and 2-fold coordinated O2c sites is (photo)catalytically active, whereas the anatase TiO2(001)-(1×4)-AOM surface terminated with O2c and inaccessible 5-fold coordinated Ti5c sites is inert. These results unveiled a mechanism of dopant-induced transformation from a reactive to an inert TiO2(001)-(1×4) surface, which unifies the existing arguments about the surface structures and (photo)catalytic activity of anatase TiO2(001)-(1×4).
Collapse
Affiliation(s)
- Cong Fu
- Key Laboratory of Precision and Intelligent Chemistry, iChEM, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Fei Li
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Zongfang Wu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Feng Xiong
- Key Laboratory of Precision and Intelligent Chemistry, iChEM, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Junfa Zhu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xue-Qing Gong
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Weixin Huang
- Key Laboratory of Precision and Intelligent Chemistry, iChEM, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
11
|
Wang Z, Shang L, Yang H, Zhao Y, Waterhouse GIN, Li D, Shi R, Zhang T. Titania-Supported Cu-Single-Atom Catalyst for Electrochemical Reduction of Acetylene to Ethylene at Low-Concentrations with Suppressed Hydrogen Evolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303818. [PMID: 37433306 DOI: 10.1002/adma.202303818] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/21/2023] [Accepted: 07/09/2023] [Indexed: 07/13/2023]
Abstract
Electrochemical acetylene reduction (EAR) is a promising strategy for removing acetylene from ethylene-rich gas streams. However, suppressing the undesirable hydrogen evolution is vital for practical applications in acetylene-insufficient conditions. Herein, Cu single atoms are immobilized on anatase TiO2 nanoplates (Cu-SA/TiO2 ) for electrochemical acetylene reduction, achieving an ethylene selectivity of ≈97% with a 5 vol% acetylene gas feed (Ar balance). At the optimal Cu-single-atom loading, Cu-SA/TiO2 is able to effectively suppress HER and ethylene over-hydrogenation even when using dilute acetylene (0.5 vol%) or ethylene-rich gas feeds, delivering a 99.8% acetylene conversion, providing a turnover frequency of 8.9 × 10-2 s-1 , which is superior to other EAR catalysts reported to date. Theoretical calculations show that the Cu single atoms and the TiO2 support acted cooperatively to promote charge transfer to adsorbed acetylene molecules, whilst also inhibiting hydrogen generation in alkali environments, thus allowing selective ethylene production with negligible hydrogen evolution at low acetylene concentrations.
Collapse
Affiliation(s)
- Zeping Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lu Shang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hongzhou Yang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yunxuan Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | | | - Dong Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Run Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Tierui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
12
|
Araújo ES, Pereira MFG, da Silva GMG, Tavares GF, Oliveira CYB, Faia PM. A Review on the Use of Metal Oxide-Based Nanocomposites for the Remediation of Organics-Contaminated Water via Photocatalysis: Fundamentals, Bibliometric Study and Recent Advances. TOXICS 2023; 11:658. [PMID: 37624163 PMCID: PMC10458580 DOI: 10.3390/toxics11080658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023]
Abstract
The improper disposal of toxic and carcinogenic organic substances resulting from the manufacture of dyes, drugs and pesticides can contaminate aquatic environments and potable water resources and cause serious damage to animal and human health and to the ecosystem. In this sense, heterogeneous photocatalysis stand out as one effective and cost-effective water depollution technique. The use of metal oxide nanocomposites (MON), from the mixture of two or more oxides or between these oxides and other functional semiconductor materials, have gained increasing attention from researchers and industrial developers as a potential alternative to produce efficient and environmentally friendly photocatalysts for the remediation of water contamination by organic compounds. Thus, this work presents an updated review of the main advances in the use of metal oxide nanocomposites-based photocatalysts for decontamination of water polluted by these substances. A bibliometric analysis allowed to show the evolution of the importance of this research topic in the literature over the last decade. The results of the study also showed that hierarchical and heterogeneous nanostructures of metal oxides, as well as conducting polymers and carbon materials, currently stand out as the main materials for the synthesis of MON, with better photocatalysis performance in the degradation of dyes, pharmaceuticals and pesticides.
Collapse
Affiliation(s)
- Evando S. Araújo
- Research Group on Electrospinning and Nanotechnology Applications, Department of Materials Science, Federal University of San Francisco Valley, Juazeiro 48902-300, Brazil;
| | - Michel F. G. Pereira
- Research Group on Electrospinning and Nanotechnology Applications, Department of Materials Science, Federal University of San Francisco Valley, Juazeiro 48902-300, Brazil;
| | - Georgenes M. G. da Silva
- Federal Institute of Education, Science and Technology of the Sertão Pernambucano, Petrolina 56314-520, Brazil;
| | - Ginetton F. Tavares
- Research and Extension Center, Laboratory of Fuels and Materials (NPE/LACOM), Department of Chemistry, Federal University of Paraíba, Campus I, João Pessoa 58051-900, Brazil;
| | - Carlos Y. B. Oliveira
- Laboratory of Phycology, Department of Botany, Federal University of Santa Catarina, Florianópolis 88040-535, Brazil;
| | - Pedro M. Faia
- Electrical and Computer Engineering Department, Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), FCTUC, University of Coimbra, Polo 2, Pinhal de Marrocos, 3030-290 Coimbra, Portugal;
| |
Collapse
|
13
|
Qu W, Fang X, Ren Z, Chen J, Liu X, Ma Z, Tang X. NO Selective Catalytic Reduction over Atom-Pair Active Sites Accelerated via In Situ NO Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7858-7866. [PMID: 37161886 DOI: 10.1021/acs.est.3c00461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Selective catalytic reduction (SCR) of NOx with NH3 is the most efficient technology for NOx emissions control, but the activity of catalysts decreases exponentially with the decrease in reaction temperature, hindering the application of the technology in low-temperature SCR to treat industrial stack gases. Here, we present an industrially practicable technology to significantly enhance the SCR activity at low temperatures (<250 °C). By introducing an appropriate amount of O3 into the simulated stack gas, we find that O3 can stoichiometrically oxidize NO to generate NO2, which enables NO reduction to follow the fast SCR mechanism so as to accelerate SCR at low temperatures, and, in particular, an increase in SCR rate by more than four times is observed over atom-pair V1-W1 active sites supported on TiO2(001) at 200 °C. Using operando SCR tests and in situ diffuse reflectance infrared Fourier transform spectra, we reveal that the introduction of O3 allows SCR to proceed along a NH4NO3-mediated Langmuir-Hinshelwood model, in which the adsorbed nitrate species speed up the re-oxidation of the catalytic sites that is the rate-limiting step of SCR, thus leading to the enhancement of activity at low temperatures. This technology could be applicable in the real stack gas conditions because O3 exclusively oxidizes NO even in the co-presence of SO2 and H2O, which provides a general strategy to improve low-temperature SCR efficacy from another perspective beyond designing catalysts.
Collapse
Affiliation(s)
- Weiye Qu
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Xue Fang
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Zhouhong Ren
- School of Chemistry and Chemical Engineering, In-situ Center for Physical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junxiao Chen
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Xi Liu
- School of Chemistry and Chemical Engineering, In-situ Center for Physical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhen Ma
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xingfu Tang
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
- Jiangsu Collaborative Innovation Center of Atmospheric Environment & Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
14
|
Alikarami S, Soltanizadeh A, Rashchi F. Enhancing decomposition of rhodamine (RhB) and methylene blue (MB) using CdS decorated with Ag or Ru driven by visible radiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:62847-62866. [PMID: 36947379 DOI: 10.1007/s11356-023-26542-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/15/2023] [Indexed: 05/10/2023]
Abstract
The development of photocatalysts has an influential role in solving the environmental pollution crisis. Herein, the two different noble metals of silver (Ag)/ruthenium (Ru) were separately decorated on cadmium sulfide (CdS) photocatalysts by novel chemical methods. Characterization tests confirmed the formation of Ag/Ru-decorated CdS with spherical morphologies. According to the DRS and PL experiments, Ru-decorated CdS accounted for the highest light absorbance and the most accelerated transfer and detachment of photoelectrons/holes, followed by Ag-decorated CdS compared to pure CdS, which brought proper optical properties of Ag/Ru-decorated CdS. The photodecomposition of methylene blue (MB)/rhodamine B (RhB) as dyes and phenol as a colorless pollutant in the presence of Ag-decorated CdS (96%, 95%, and 69%) and Ru-decorated CdS (100%, 100%, and 80%) exposed to visible light radiation climbed compared to pure CdS (80%, 67%, and 61%) respectively. The influence of various parameters on the MB/RhB photocatalytic activity was investigated. The quenching experiment determined the functions of active species. Finally, experimental results proved that the MB/RhB photodecomposition by Ag/Ru-decorated CdS followed the pseudo-first-order kinetic model.
Collapse
Affiliation(s)
- Somayeh Alikarami
- School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Ali Soltanizadeh
- School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Fereshteh Rashchi
- School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| |
Collapse
|
15
|
Zhao B, Zhang X, Mao J, Wang Y, Zhang G, Zhang ZC, Guo X. Crystal-Plane-Dependent Guaiacol Hydrodeoxygenation Performance of Au on Anatase TiO2. Catalysts 2023. [DOI: 10.3390/catal13040699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
TiO2-supported catalysts have been widely used for a range of both liquid-phase and gas-phase hydrogenation reactions. However, little is known about the effect of their different crystalline surfaces on their activity during the hydrodeoxygenation process. In this work, Au supported on anatase TiO2, mainly exposing 101 or 001 facets, was investigated for the hydrodeoxygenation (HDO) of guaiacol. At 300 °C, the strong interaction between the Au and TiO2-101 surface resulted in the facile reduction of the TiO2-101 surface with concomitant formation of oxygen vacancies, as shown by the H2-TPR and H2-TPD profiles. Meanwhile, the formation of Auδ−, as determined by CO-DRIFT spectra and in situ XPS, was found to promote the demethylation of guaiacol producing methane. However, this strong interaction was absent on the Au/TiO2-001 catalyst since TiO2-001 was relatively difficult to be reduced compared with TiO2-101. The Au on TiO2-001 just served as the active site for the dissociation of hydrogen without the formation of Auδ−. The hydrogen atoms spilled over to the surface of TiO2-001 to form a small amount of oxygen vacancies, which resulted in lower activity than that over Au/TiO2-101. The catalytic activity of the Au/TiO2 catalyst for hydrodeoxygenation will be controlled by tuning the crystal plane of the TiO2 support.
Collapse
Affiliation(s)
- Bin Zhao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiaoqiang Zhang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jingbo Mao
- College of Environmental and Chemical Engineering, Dalian University, Dalian 116622, China
| | - Yanli Wang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Guanghui Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zongchao Conrad Zhang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
16
|
Yu F, Wang X, Lu H, Li G, Liao B, Wang H, Duan C, Mao Y, Chen L. Surface Engineering of TiO 2 Nanosheets to Boost Photocatalytic Methanol Dehydrogenation for Hydrogen Evolution. Inorg Chem 2023; 62:5700-5706. [PMID: 36966515 DOI: 10.1021/acs.inorgchem.3c00250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2023]
Abstract
Low-cost high-efficiency H2 evolution is indispensable for its large-scale applications in the future. In the research, we expect to build high active photocatalysts for sunlight-driven H2 production by surface engineering to adjust the work function of photocatalyst surfaces, adsorption/desorption ability of substrates and products, and reaction activation energy barrier. Single-atom Pt-doped TiO2-x nanosheets (NSs), mainly including two facets of (001) and (101), with loading of Pt nanoparticles (NPs) at their edges (Pt/TiO2-x-SAP) are successfully prepared by an oxygen vacancy-engaged synthetic strategy. According to the theoretical simulation, the implanted single-atom Pt can change the surface work function of TiO2, which benefits electron transfer, and electrons tend to gather at Pt NPs adsorbed at (101) facet-related edges of TiO2 NSs for H2 evolution. Pt/TiO2-x-SAP exhibits ultrahigh photocatalytic performance of hydrogen evolution from dry methanol with a quantum yield of 90.8% that is ∼1385 times higher than pure TiO2-x NSs upon 365 nm light irradiation. The high H2 generation rate (607 mmol gcata-1 h-1) of Pt/TiO2-x-SAP is the basis for its potential applications in the transportation field with irradiation of UV-visible light (100 mW cm-2). Finally, lower adsorption energy for HCHO on Ti sites originated from TiO2 (001) doping single-atom Pt is responsible for high selective dehydrogenation of methanol to HCHO, and H tends to favorably gather at Pt NPs on the TiO2 (101) surface to produce H2.
Collapse
Affiliation(s)
- Fengyang Yu
- Department of Pharmaceutical Engineering, Bengbu Medical College, Bengbu, Anhui 233030, P. R. China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116024, P. R. China
| | - Xiaohua Wang
- Department of Pharmaceutical Engineering, Bengbu Medical College, Bengbu, Anhui 233030, P. R. China
| | - Haiyue Lu
- Department of Pharmaceutical Engineering, Bengbu Medical College, Bengbu, Anhui 233030, P. R. China
| | - Gen Li
- Department of Pharmaceutical Engineering, Bengbu Medical College, Bengbu, Anhui 233030, P. R. China
| | - Baicheng Liao
- Department of Pharmaceutical Engineering, Bengbu Medical College, Bengbu, Anhui 233030, P. R. China
| | - Hanqing Wang
- Hunan Engineering Research Centre of Full Life-cycle Energy-efficient Buildings and Environmental Health, Central South University of Forestry and Technology, Changsha, Hunan 410004, P. R. China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116024, P. R. China
| | - Yu Mao
- Hunan Engineering Research Centre of Full Life-cycle Energy-efficient Buildings and Environmental Health, Central South University of Forestry and Technology, Changsha, Hunan 410004, P. R. China
| | - Liyong Chen
- Department of Pharmaceutical Engineering, Bengbu Medical College, Bengbu, Anhui 233030, P. R. China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116024, P. R. China
| |
Collapse
|
17
|
He P, Zhang L, Xiao S, Jiang W, Wu Y, Yan C, Li X, Chen Z, Wu L, Duan T. Dual Charge-Transfer Channels Harmonize Carrier Separation for Efficient U(VI) Photoreduction. Inorg Chem 2023; 62:4705-4715. [PMID: 36880867 DOI: 10.1021/acs.inorgchem.3c00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
The low efficient transfer of photogenerated electrons to an active catalytic site is a pivotal problem for the photoreduction of highly soluble hexavalent uranium [U(VI)] to low soluble tetravalent uranium [U(IV)]. Herein, we successfully synthesized a TiO2-x/1T-MoS2/reduced graphene oxide heterojunction (T2-xTMR) with dual charge-transfer channels by exploiting the difference in Fermi levels between the heterojunction interfaces, which induced multilevel separation of photogenerated carriers. Theoretical and experimental results demonstrate that the presence of the electron buffer layer promoted the efficient migration of photogenerated electrons between the dual charge-transfer channels, which achieved effective separation of photogenerated carriers in physical/spatial dimensions and significantly extended the lifetime of photogenerated electrons. The migration of photogenerated electrons to the active catalytic site after multilevel spatial separation enabled the T2-xTMR dual co-photocatalyst to remove 97.4% of the high concentration of U(VI) from the liquid-phase system within 80 min. This work provides a practical reference for utilizing multiple co-catalysts to accomplish directed spatial separation of photogenerated carriers.
Collapse
Affiliation(s)
- Pan He
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Ling Zhang
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Shunhong Xiao
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Wenyi Jiang
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Yiquan Wu
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Chenhui Yan
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Xiaoan Li
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang, Sichuan 621099, China
| | - Zhengguo Chen
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang, Sichuan 621099, China
| | - Linzhen Wu
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China.,Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, Sichuan 621900, China
| | - Tao Duan
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| |
Collapse
|
18
|
Zhang X, Shi W, Li Y, Zhao W, Han S, Shen W. Pt 3Ti Intermetallic Alloy Formed by Strong Metal–Support Interaction over Pt/TiO 2 for the Selective Hydrogenation of Acetophenone. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Affiliation(s)
- Xixiong Zhang
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Catalysis, Dalian Institution of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wen Shi
- State Key Laboratory of Catalysis, Dalian Institution of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yong Li
- State Key Laboratory of Catalysis, Dalian Institution of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wenning Zhao
- State Key Laboratory of Catalysis, Dalian Institution of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shaobo Han
- State Key Laboratory of Catalysis, Dalian Institution of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wenjie Shen
- State Key Laboratory of Catalysis, Dalian Institution of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
19
|
Qaid SMH, Ghaithan HM, Bawazir HS, Bin Ajaj AF, AlHarbi KK, Aldwayyan AS. Successful Growth of TiO 2 Nanocrystals with {001} Facets for Solar Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:928. [PMID: 36903806 PMCID: PMC10005624 DOI: 10.3390/nano13050928] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
The growth of nanocrystals (NCs) from metal oxide-based substrates with exposed high-energy facets is of particular importance for many important applications, such as solar cells as photoanodes due to the high reactivity of these facets. The hydrothermal method remains a current trend for the synthesis of metal oxide nanostructures in general and titanium dioxide (TiO2) in particular since the calcination of the resulting powder after the completion of the hydrothermal method no longer requires a high temperature. This work aims to use a rapid hydrothermal method to synthesize numerous TiO2-NCs, namely, TiO2 nanosheets (TiO2-NSs), TiO2 nanorods (TiO2-NRs), and nanoparticles (TiO2-NPs). In these ideas, a simple non-aqueous one-pot solvothermal method was employed to prepare TiO2-NSs using tetrabutyl titanate Ti(OBu)4 as a precursor and hydrofluoric acid (HF) as a morphology control agent. Ti(OBu)4 alone was subjected to alcoholysis in ethanol, yielding only pure nanoparticles (TiO2-NPs). Subsequently, in this work, the hazardous chemical HF was replaced by sodium fluoride (NaF) as a means of controlling morphology to produce TiO2-NRs. The latter method was required for the growth of high purity brookite TiO2 NRs structure, the most difficult TiO2 polymorph to synthesize. The fabricated components are then morphologically evaluated using equipment, such as transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), electron diffraction (SAED), and X-ray diffraction (XRD). In the results, the TEM image of the developed NCs shows the presence of TiO2-NSs with an average side length of about 20-30 nm and a thickness of 5-7 nm. In addition, the image TEM shows TiO2-NRs with diameters between 10 and 20 nm and lengths between 80 and 100 nm, together with crystals of smaller size. The phase of the crystals is good, confirmed by XRD. The anatase structure, typical of TiO2-NS and TiO2-NPs, and the high-purity brookite-TiO2-NRs structure, were evident in the produced nanocrystals, according to XRD. SAED patterns confirm that the synthesis of high quality single crystalline TiO2-NSs and TiO2-NRs with the exposed {001} facets are the exposed facets, which have the upper and lower dominant facets, high reactivity, high surface energy, and high surface area. TiO2-NSs and TiO2-NRs could be grown, corresponding to about 80% and 85% of the {001} outer surface area in the nanocrystal, respectively.
Collapse
Affiliation(s)
- Saif M. H. Qaid
- Department of Physics & Astronomy, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- K. A. CARE Energy Research and Innovation Center, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hamid M. Ghaithan
- Department of Physics & Astronomy, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Huda S. Bawazir
- Department of Physics & Astronomy, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- K. A. CARE Energy Research and Innovation Center, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abrar F. Bin Ajaj
- Department of Physics & Astronomy, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- K. A. CARE Energy Research and Innovation Center, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khulod K. AlHarbi
- Department of Physics & Astronomy, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- K. A. CARE Energy Research and Innovation Center, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah S. Aldwayyan
- Department of Physics & Astronomy, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- K. A. CARE Energy Research and Innovation Center, King Saud University, Riyadh 11451, Saudi Arabia
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
20
|
Wang C, Zhang Q, Yan B, You B, Zheng J, Feng L, Zhang C, Jiang S, Chen W, He S. Facet Engineering of Advanced Electrocatalysts Toward Hydrogen/Oxygen Evolution Reactions. NANO-MICRO LETTERS 2023; 15:52. [PMID: 36795218 PMCID: PMC9935811 DOI: 10.1007/s40820-023-01024-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/04/2023] [Indexed: 05/19/2023]
Abstract
The crystal facets featured with facet-dependent physical and chemical properties can exhibit varied electrocatalytic activity toward hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) attributed to their anisotropy. The highly active exposed crystal facets enable increased mass activity of active sites, lower reaction energy barriers, and enhanced catalytic reaction rates for HER and OER. The formation mechanism and control strategy of the crystal facet, significant contributions as well as challenges and perspectives of facet-engineered catalysts for HER and OER are provided. The electrocatalytic water splitting technology can generate high-purity hydrogen without emitting carbon dioxide, which is in favor of relieving environmental pollution and energy crisis and achieving carbon neutrality. Electrocatalysts can effectively reduce the reaction energy barrier and increase the reaction efficiency. Facet engineering is considered as a promising strategy in controlling the ratio of desired crystal planes on the surface. Owing to the anisotropy, crystal planes with different orientations usually feature facet-dependent physical and chemical properties, leading to differences in the adsorption energies of oxygen or hydrogen intermediates, and thus exhibit varied electrocatalytic activity toward hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). In this review, a brief introduction of the basic concepts, fundamental understanding of the reaction mechanisms as well as key evaluating parameters for both HER and OER are provided. The formation mechanisms of the crystal facets are comprehensively overviewed aiming to give scientific theory guides to realize dominant crystal planes. Subsequently, three strategies of selective capping agent, selective etching agent, and coordination modulation to tune crystal planes are comprehensively summarized. Then, we present an overview of significant contributions of facet-engineered catalysts toward HER, OER, and overall water splitting. In particular, we highlight that density functional theory calculations play an indispensable role in unveiling the structure–activity correlation between the crystal plane and catalytic activity. Finally, the remaining challenges in facet-engineered catalysts for HER and OER are provided and future prospects for designing advanced facet-engineered electrocatalysts are discussed.
Collapse
Affiliation(s)
- Changshui Wang
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Qian Zhang
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| | - Bing Yan
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China.
| | - Jiaojiao Zheng
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Li Feng
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 2150009, People's Republic of China
| | - Shaohua Jiang
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Wei Chen
- Guangxi Key Laboratory of Low Carbon Energy Materials, College of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China.
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People's Republic of China.
- University of Science and Technology of China, Hefei, 230026, People's Republic of China.
| | - Shuijian He
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| |
Collapse
|
21
|
Cako E, Dudziak S, Głuchowski P, Trykowski G, Pisarek M, Fiszka Borzyszkowska A, Sikora K, Zielińska-Jurek A. Heterojunction of (P, S) co-doped g-C3N4 and 2D TiO2 for improved carbamazepine and acetaminophen photocatalytic degradation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
22
|
Gao C, Wang Y, Zhang H, Hang W. Titania Nanosheet as a Matrix for Surface-Assisted Laser Desorption/Ionization Mass Spectrometry Analysis and Imaging. Anal Chem 2023; 95:650-658. [PMID: 36577518 DOI: 10.1021/acs.analchem.2c01878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Surface-assisted laser desorption/ionization (SALDI) acts as a soft desorption/ionization technique, which has been widely recognized in small-molecule analysis owing to eliminating the requirement of the organic matrix. Herein, titania nanosheets (TiO2 NSs) were applied as novel substrates for simultaneous analysis and imaging of low-mass molecules and lipid species. A wide variety of representative analytes containing amino acids, bases, drugs, peptides, endogenous small molecules, and saccharide-spiked urine were examined by the TiO2 NS-assisted LDI mass spectrometry (MS). Compared with conventional organic matrices and substrates [Ag nanoparticles (NPs), Au NPs, carbon nanotubes, carbon NPs, CeO2 microparticles, and P25 TiO2], the TiO2 NS-assisted LDI MS method shows higher sensitivity and less spectral interference. Repeatability was evaluated with batch-to-batch relative standard deviations for 5-hydroxytryptophan, glucose-spiked urine, and glucose with addition of internal standard, which were 17.4, 14.9, and 2.8%, respectively. The TiO2 NS-assisted LDI MS method also allows the determination of blood glucose levels in mouse serum with a linear range of 0.5-10 mM. Owing to the nanoscale size and uniform deposition of the TiO2 NS matrix, spatial distributions of 16 endogenous small molecules and 16 lipid species from the horizontal section of the mouse brain tissue can be visualized at a 50 μm spatial resolution. These successful applications confirm that the TiO2-assisted LDI MS method has promising prospects in the field of life science.
Collapse
Affiliation(s)
- Chaohong Gao
- Department of Chemistry, MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yubing Wang
- Department of Chemistry, MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Heng Zhang
- Department of Chemistry, MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Wei Hang
- Department of Chemistry, MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
23
|
Karawek A, Kittipoom K, Tansuthepverawongse L, Kitjanukit N, Neamsung W, Lertthanaphol N, Chanthara P, Ratchahat S, Phadungbut P, Kim-Lohsoontorn P, Srinives S. The Photocatalytic Conversion of Carbon Dioxide to Fuels Using Titanium Dioxide Nanosheets/Graphene Oxide Heterostructure as Photocatalyst. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:320. [PMID: 36678074 PMCID: PMC9860753 DOI: 10.3390/nano13020320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Carbon dioxide (CO2) photoreduction to high-value products is a technique for dealing with CO2 emissions. The method involves the molecular transformation of CO2 to hydrocarbon and alcohol-type chemicals, such as methane and methanol, relying on a photocatalyst, such as titanium dioxide (TiO2). In this research, TiO2 nanosheets (TNS) were synthesized using a hydrothermal technique in the presence of a hydrofluoric acid (HF) soft template. The nanosheets were further composited with graphene oxide and doped with copper oxide in the hydrothermal process to create the copper-TiO2 nanosheets/graphene oxide (CTNSG). The CTNSG exhibited outstanding photoactivity in converting CO2 gas to methane and acetone. The production rate for methane and acetone was 12.09 and 0.75 µmol h-1 gcat-1 at 100% relative humidity, providing a total carbon consumption of 71.70 µmol gcat-1. The photoactivity of CTNSG was attributed to the heterostructure interior of the two two-dimensional nanostructures, the copper-TiO2 nanosheets and graphene oxide. The nanosheets-graphene oxide interfaces served as the n-p heterojunctions in holding active radicals for subsequent reactions. The heterostructure also directed the charge transfer, which promoted electron-hole separation in the photocatalyst.
Collapse
Affiliation(s)
- Apisit Karawek
- Nanocomposite Engineering Laboratory (NanoCEN), Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Kittipad Kittipoom
- Nanocomposite Engineering Laboratory (NanoCEN), Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Labhassiree Tansuthepverawongse
- Nanocomposite Engineering Laboratory (NanoCEN), Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Nutkamol Kitjanukit
- Nanocomposite Engineering Laboratory (NanoCEN), Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Wannisa Neamsung
- Nanocomposite Engineering Laboratory (NanoCEN), Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Napat Lertthanaphol
- Nanocomposite Engineering Laboratory (NanoCEN), Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Prowpatchara Chanthara
- Nanocomposite Engineering Laboratory (NanoCEN), Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Sakhon Ratchahat
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Poomiwat Phadungbut
- Nanocomposite Engineering Laboratory (NanoCEN), Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Pattaraporn Kim-Lohsoontorn
- Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sira Srinives
- Nanocomposite Engineering Laboratory (NanoCEN), Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand
| |
Collapse
|
24
|
Gold nanoparticles decorated two-dimensional TiO2 nanosheets as effective catalyst for nitroarenes and rhodamine B dye reduction in batch and continuous flow methods. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
25
|
Wu X, Liu CJ, Wang H, Ge Q, Zhu X. Origin of strong metal-support interactions between Pt and anatase TiO2 facets for hydrodeoxygenation of m-cresol on Pt/TiO2 catalysts. J Catal 2023. [DOI: 10.1016/j.jcat.2023.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
26
|
Qu W, Yuan H, Ren Z, Qi J, Xu D, Chen J, Chen L, Yang H, Ma Z, Liu X, Wang H, Tang X. An Atom-Pair Design Strategy for Optimizing the Synergistic Electron Effects of Catalytic Sites in NO Selective Reduction. Angew Chem Int Ed Engl 2022; 61:e202212703. [PMID: 36321806 DOI: 10.1002/anie.202212703] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Indexed: 11/30/2022]
Abstract
Effective adsorption and speedy surface reactions are vital requirements for efficient active sites in catalysis, but it remains challenging to maximize these two functions simultaneously. We present a solution to this issue by designing a series of atom-pair catalytic sites with tunable electronic interactions. As a case study, NO selective reduction occurring on V1 -W1 /TiO2 is chosen. Experimental and theoretical results reveal that the synergistic electron effect present between the paired atoms enriches high-energy spin charge around the Fermi level, simultaneously rendering reactant (NH3 or O2 ) adsorption more effective and subsequent surface reactions speedier as compared with single V or W atom alone, and hence higher reaction rates. This strategy enables us to rationally design a high-performance V1 -Mo1 /TiO2 catalyst with optimized vanadium(IV)-molybdenum(V) electronic interactions, which has exceptional activity significantly higher than the commercial or reported catalysts.
Collapse
Affiliation(s)
- Weiye Qu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China
| | - Haiyang Yuan
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis and Centre for Computational Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhouhong Ren
- In situ Center for Physical Sciences, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jizhen Qi
- i-Lab, CAS Center for Excellence in Nanoscience Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, China
| | - Dongrun Xu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China
| | - Junxiao Chen
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China
| | - Liwei Chen
- In situ Center for Physical Sciences, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.,i-Lab, CAS Center for Excellence in Nanoscience Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, China.,Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Huagui Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhen Ma
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China.,Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Xi Liu
- In situ Center for Physical Sciences, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haifeng Wang
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis and Centre for Computational Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xingfu Tang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China.,Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| |
Collapse
|
27
|
Zhang Y, Jia A, Li Z, Yuan Z, Huang W. Titania-Morphology-Dependent Pt–TiO 2 Interfacial Catalysis in Water-Gas Shift Reaction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yunshang Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Aiping Jia
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, People’s Republic of China
| | - Zhaorui Li
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Zhenxuan Yuan
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Weixin Huang
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| |
Collapse
|
28
|
Wu SM, Hwang I, Osuagwu B, Will J, Wu Z, Sarma BB, Pu FF, Wang LY, Badura Z, Zoppellaro G, Spiecker E, Schmuki P. Fluorine Aided Stabilization of Pt Single Atoms on TiO 2 Nanosheets and Strongly Enhanced Photocatalytic H 2 Evolution. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Si-Ming Wu
- Department of Materials Science WW4-LKO, University of Erlangen-Nuremberg, Martensstraße 7, 91058 Erlangen, Germany
| | - Imgon Hwang
- Department of Materials Science WW4-LKO, University of Erlangen-Nuremberg, Martensstraße 7, 91058 Erlangen, Germany
| | - Benedict Osuagwu
- Department of Materials Science WW4-LKO, University of Erlangen-Nuremberg, Martensstraße 7, 91058 Erlangen, Germany
| | - Johannes Will
- Institute of Micro- and Nanostructure Research & Center for Nanoanalysis and Electron Microscopy (CENEM), University of Erlangen-Nuremberg, IZNF, Cauerstraße 3, 91058 Erlangen, Germany
| | - Zhenni Wu
- Department of Materials Science WW4-LKO, University of Erlangen-Nuremberg, Martensstraße 7, 91058 Erlangen, Germany
| | - Bidyut Bikash Sarma
- Institute of Catalysis Research and Technology (IKFT) and Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Fu-Fei Pu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Li-Ying Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, The Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zdenek Badura
- Regional Centre of Advanced Technologies and Materials, Šlechtitelů 27, Olomouc 78371, Czech Republic
| | - Giorgio Zoppellaro
- Regional Centre of Advanced Technologies and Materials, Šlechtitelů 27, Olomouc 78371, Czech Republic
| | - Erdmann Spiecker
- Institute of Micro- and Nanostructure Research & Center for Nanoanalysis and Electron Microscopy (CENEM), University of Erlangen-Nuremberg, IZNF, Cauerstraße 3, 91058 Erlangen, Germany
| | - Patrik Schmuki
- Department of Materials Science WW4-LKO, University of Erlangen-Nuremberg, Martensstraße 7, 91058 Erlangen, Germany
- Regional Centre of Advanced Technologies and Materials, Šlechtitelů 27, Olomouc 78371, Czech Republic
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21569, Saudi Arabia
| |
Collapse
|
29
|
Jin F, Zhao Z. Reactivity of anatase (001) surface from first-principles many-body Green's function theory. RSC Adv 2022; 12:28178-28184. [PMID: 36320267 PMCID: PMC9530998 DOI: 10.1039/d2ra05058g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/16/2022] [Indexed: 11/06/2022] Open
Abstract
The anatase (001) surface has attracted a lot of interest in surface science due to its excellent performance. However, its reactivity is under debate since it can undergo a (1 × 4) reconstruction. Herein, we applied the many-body Green's function theory to investigate the electronic properties and excitons as well as the water adsorption behavior of the (1 × 4) unreconstructed anatase (001) surface and two reconstructed patterns, namely ADM and AOM. Our results revealed that the high reactivity of the (001) surface is probably not relevant to the reconstructed shape. The unreconstructed (001) surface and reconstructed ADM surface were very reactive for dissociating H2O molecules among three surfaces, but the lower-energy singlet exciton for ADM was completely confined within the inner atomic layers in TiO2, which is unfavorable for hole transfer to the reactant on the surface. Also, the required photon energy for initiating photochemical reactions on the reconstructed ADM surface should be higher than for the unreconstructed (001) surface, implying it is more difficult for the reaction to happen on the former surface. The unreconstructed (001) surface exhibited the highest reactivity due to the smaller optical absorption edge and the photoholes distributed on surface sites. The unreconstructed (001) surface seems to have superior reactivity than the reconstructed shapes.![]()
Collapse
Affiliation(s)
- Fan Jin
- Department of Applied Chemistry, Yuncheng UniversityYuncheng 044000China
| | - Zhichao Zhao
- Department of Science Technology and Industry, Yuncheng UniversityYuncheng 044000China
| |
Collapse
|
30
|
Zhang N, Wu X, Lv K, Chu Y, Qin H, Zhang D, Wang G, Niu J. Ultrathin Niobate Nanosheet Assembly with Au NPs and CdS QDs as a Highly Efficient Photocatalyst. Chemistry 2022; 28:e202202256. [DOI: 10.1002/chem.202202256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Niuniu Zhang
- Henan Key Laboratory of Polyoxometalate Chemistry College of Chemistry and Chemical Engineering Henan University Kaifeng Henan 475000 China
| | - Xia Wu
- Henan Key Laboratory of Polyoxometalate Chemistry College of Chemistry and Chemical Engineering Henan University Kaifeng Henan 475000 China
| | - Kangjia Lv
- Henan Key Laboratory of Polyoxometalate Chemistry College of Chemistry and Chemical Engineering Henan University Kaifeng Henan 475000 China
| | - Yujie Chu
- Henan Key Laboratory of Polyoxometalate Chemistry College of Chemistry and Chemical Engineering Henan University Kaifeng Henan 475000 China
| | - Haimei Qin
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 China
| | - Dongdi Zhang
- Henan Key Laboratory of Polyoxometalate Chemistry College of Chemistry and Chemical Engineering Henan University Kaifeng Henan 475000 China
| | - Guan Wang
- Henan Key Laboratory of Polyoxometalate Chemistry College of Chemistry and Chemical Engineering Henan University Kaifeng Henan 475000 China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry College of Chemistry and Chemical Engineering Henan University Kaifeng Henan 475000 China
| |
Collapse
|
31
|
Cui Z, Zhao M, Li S, Wang J, Xu Y, Ghazzal MN, Colbeau-Justin C, Pan D, Wu W. Facile Vacuum Annealing of TiO 2 with Ethanol-Induced Enhancement of Its Photocatalytic Performance under Visible Light. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhenpeng Cui
- Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Min Zhao
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Shuyang Li
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Jingjing Wang
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Yang Xu
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Mohamed Nawfal Ghazzal
- Institue de Chimie Physique, UMR 8000 CNRS, Université Paris-Saclay, Orsay 91405, France
| | | | - Duoqiang Pan
- Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Wangsuo Wu
- Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
32
|
Qu J, Wang Y, Mu X, Hu J, Zeng B, Lu Y, Sui M, Li R, Li C. Determination of Crystallographic Orientation and Exposed Facets of Titanium Oxide Nanocrystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203320. [PMID: 35916758 DOI: 10.1002/adma.202203320] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Titanium dioxide (TiO2 ) nanocrystals have attracted great attention in heterogeneous photocatalysis and photoelectricity fields for decades. However, contradicting conclusions on the crystallographic orientation and exposed facets of TiO2 nanocrystals frequently appear in the literature. Herein, using anatase TiO2 nanocrystals with highly exposed {001} facets as a model, the misleading conclusions that exist on anatase nanocrystals are clarified. Although TiO2 -001 nanocrystals are recognized to be dominated by {001} facets, in fact, anatase nanocrystals with both dominant {001} and {111} facets always co-exist due to the similarities in the lattice fringes and intersection angles between the two types of facets (0.38 nm and 90° in the [001] direction, 0.35 nm and 82° in the [111] direction). A paradigm for determining the crystallographic orientation and exposed facets based on transmission electron microscopy (TEM) analysis, which provides a universal methodology to nanomaterials for determining the orientation and exposed facets, is also given.
Collapse
Affiliation(s)
- Jiangshan Qu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yueshuai Wang
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Xulin Mu
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Jingcong Hu
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Bin Zeng
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yue Lu
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Manling Sui
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Rengui Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
| | - Can Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
33
|
Li L, Xia Y, Zeng M, Fu L. Facet engineering of ultrathin two-dimensional materials. Chem Soc Rev 2022; 51:7327-7343. [PMID: 35924550 DOI: 10.1039/d2cs00067a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ultrathin two-dimensional (2D) materials exhibit broad application prospects in many fields due to the enhanced specific surface area to volume ratio and quantum confinement effect. Because of the atomic thickness and various orientations, ultrathin 2D materials exposing specific facets have drawn great attention for various applications in catalysis, batteries, optoelectronics, magnetism, epitaxial template for material growth, etc. Though maintaining the atomic thickness of 2D materials while controlling crystal facets is an enormous challenge, breakthroughs are being made. This review provides a comprehensive overview of the recent advances in the facet engineering of 2D materials, ranging from a basic understanding of facets and the corresponding approaches and the significance of facet engineering. We also propose current challenges and forecast future development directions including the establishment of a facet database, the fabrication of new 2D materials, the design of specific substrates, and the introduction of theoretical calculations and in situ characterization techniques. This review can guide researchers to design ultrathin 2D materials with unique and distinct facets and provide an insight into the applications of energy, magnetism, optics, biomedicine, and other fields.
Collapse
Affiliation(s)
- Linyang Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Yabei Xia
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Mengqi Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Lei Fu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China. .,The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, China.
| |
Collapse
|
34
|
Constructing porous carbon nitride nanosheets for efficient visible-light-responsive photocatalytic hydrogen evolution. J Colloid Interface Sci 2022; 628:214-221. [PMID: 35988516 DOI: 10.1016/j.jcis.2022.08.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/24/2022]
Abstract
The photocatalytic performance of polymeric carbon nitride (CN) is mainly restricted by the poor mass charge separation efficiency and poor light absorption due to its polymeric nature. The conventional strategies to address these problems involved constructing a nanosheets structure would result in a blue shifted light absorption and increased exciton binding energy. Here, with combination of ammonia etching and selectively hydrogen-bond breaking, holey carbon nitride nanosheets (hCNNS) were constructed, thus widening the light absorption range, and spontaneously shortening the migration distance of electrons and holes in the lateral and vertical directions, respectively. Further analysis also found out the reserved atomic structure order endowed hCNNS with the relatively high redox potential. When irradiated with visible light (λ > 420 nm) and loaded with 3 wt% Pt as the cocatalyst, the hydrogen evolution rate of hCNNS was about 40 times higher than the bulk CN, and the apparent quantum yield (AQY) of hCNNS is 1.47% at 435 ± 15 nm. We expect this research can provide a new sight for achieving highly efficient solar utilization of CN-based photocatalysts.
Collapse
|
35
|
Zhang X, Zhang S, Cui X, Zhou W, Cao W, Cheng D, Sun Y. Recent Advances in TiO2-based Photoanodes for Photoelectrochemical Water Splitting. Chem Asian J 2022; 17:e202200668. [PMID: 35925726 DOI: 10.1002/asia.202200668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/31/2022] [Indexed: 11/12/2022]
Abstract
Photoelectrochemical (PEC) water splitting has attracted a great attention in the past several decades which holds great promise to address global energy and environmental issues by converting solar energy into hydrogen. However, its low solar-to-hydrogen (STH) conversion efficiency remains a bottleneck for practical application. Developing efficient photoelectrocatalysts with high stability and high STH conversion efficiency is one of the key challenges. As a typical n-type semiconductor, titanium dioxide (TiO 2 ) exhibits high PEC water splitting performance, especially high chemical and photo stability. But, TiO 2 has also disadvantages such as wide band gap and fast electron-hole recombination rate, which seriously hinder its PEC performance. This review focuses on recent development in TiO 2 -based photoanodes as well as some key fundamentals. The corresponding mechanisms and key factors for high STH, and controllable synthesis and modification strategies are highlighted in this review. We conclude finally with an outlook providing a critical perspective on future trends on TiO 2 -based photoanodes for PEC water splitting.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Shanghai University, Department of chemistry, No. 99, Road Shangda, 200444, Shanghai, CHINA
| | | | - Xiaoli Cui
- Fudan University, Department of Materials Science, CHINA
| | - Wei Zhou
- Shanghai University, Department of Chemistry, CHINA
| | - Weimin Cao
- Shanghai University, Department of Chemistry, CHINA
| | | | - Yi Sun
- Shanghai Aerospace Hydrogen Energy Technology Co. Ltd, Department of R & D, CHINA
| |
Collapse
|
36
|
Tailoring Ir-FeOx interactions and catalytic performance in preferential oxidation of CO in H2 via the morphology engineering of anatase TiO2 over Ir-FeOx/TiO2 catalysts. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
37
|
Facile synthesis of copper oxide nanoparticles (CuONPs) using green method to promote photocatalytic and biocidal applications. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
38
|
Aguilar-Ferrer D, Szewczyk J, Coy E. Recent developments in polydopamine-based photocatalytic nanocomposites for energy production: Physico-chemical properties and perspectives. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.08.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
39
|
Zarattini M, Dun C, Isherwood LH, Felten A, Filippi J, Gordon MP, Zhang L, Kassem O, Song X, Zhang W, Ionescu R, Wittkopf JA, Baidak A, Holder H, Santoro C, Lavacchi A, Urban JJ, Casiraghi C. Synthesis of 2D anatase TiO 2 with highly reactive facets by fluorine-free topochemical conversion of 1T-TiS 2 nanosheets. JOURNAL OF MATERIALS CHEMISTRY. A 2022; 10:13884-13894. [PMID: 35872702 PMCID: PMC9255669 DOI: 10.1039/d1ta06695a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/26/2021] [Indexed: 06/15/2023]
Abstract
Two-dimensional (2D) anatase titanium dioxide (TiO2) is expected to exhibit different properties as compared to anatase nanocrystallites, due to its highly reactive exposed facets. However, access to 2D anatase TiO2 is limited by the non-layered nature of the bulk crystal, which does not allow use of top-down chemical exfoliation. Large efforts have been dedicated to the growth of 2D anatase TiO2 with high reactive facets by bottom-up approaches, which relies on the use of harmful chemical reagents. Here, we demonstrate a novel fluorine-free strategy based on topochemical conversion of 2D 1T-TiS2 for the production of single crystalline 2D anatase TiO2, exposing the {001} facet on the top and bottom and {100} at the sides of the nanosheet. The exposure of these faces, with no additional defects or doping, gives rise to a significant activity enhancement in the hydrogen evolution reaction, as compared to commercially available Degussa P25 TiO2 nanoparticles. Because of the strong potential of TiO2 in many energy-based applications, our topochemical approach offers a low cost, green and mass scalable route for production of highly crystalline anatase TiO2 with well controlled and highly reactive exposed facets.
Collapse
Affiliation(s)
- Marco Zarattini
- Department of Chemistry, University of Manchester Oxford Road Manchester UK M13 9PL
| | - Chaochao Dun
- The Molecular Foundry, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Liam H Isherwood
- Department of Chemistry, University of Manchester Oxford Road Manchester UK M13 9PL
- Dalton Cumbrian Facility, University of Manchester, Westlakes Science and Technology Park Moor Row Cumbria UK CA24 3HA, UK
| | - Alexandre Felten
- Physics Department, Université de Namur Rue de Bruxelles Namur Belgium
| | - Jonathan Filippi
- ICCOM-CNR Via Madonna del Piano 10 50019 Sesto Fiorentino (FI) Italy
| | - Madeleine P Gordon
- The Molecular Foundry, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
- Applied Science and Technology Graduate Group, University of California Berkeley CA 94720 USA
| | - Linfei Zhang
- School of Automotive Engineering, Guangdong Polytechnic of Science and Technology Zhuhai P. R. China
| | - Omar Kassem
- Department of Chemistry, University of Manchester Oxford Road Manchester UK M13 9PL
| | - Xiuju Song
- Department of Chemistry, University of Manchester Oxford Road Manchester UK M13 9PL
| | - Wenjing Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University Shenzhen 518060 P. R. China
| | - Robert Ionescu
- HP Laboratories 1501 Page Mill Road Palo Alto California 94304 USA
| | | | - Aliaksandr Baidak
- Department of Chemistry, University of Manchester Oxford Road Manchester UK M13 9PL
- Dalton Cumbrian Facility, University of Manchester, Westlakes Science and Technology Park Moor Row Cumbria UK CA24 3HA, UK
| | - Helen Holder
- HP Laboratories 1501 Page Mill Road Palo Alto California 94304 USA
| | - Carlo Santoro
- Department of Materials Science, University of Milano-Bicocca Via Cozzi 5 20125 Milano Italy
| | | | - Jeffrey J Urban
- The Molecular Foundry, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Cinzia Casiraghi
- Department of Chemistry, University of Manchester Oxford Road Manchester UK M13 9PL
| |
Collapse
|
40
|
Pugazhenthiran N, Valdés H, Mangalaraja RV, Sathishkumar P, Murugesan S. Graphene modified “black {0 0 1}TiO2” nanosheets for photocatalytic oxidation of ethylene: The implications of chemical surface characteristics in the reaction mechanism. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
41
|
Chen X, Sun B, Chu J, Han Z, Wang Y, Du Y, Han X, Xu P. Oxygen Vacancy-Induced Construction of CoO/h-TiO 2 Z-Scheme Heterostructures for Enhanced Photocatalytic Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28945-28955. [PMID: 35723439 DOI: 10.1021/acsami.2c06622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Environmentally friendly catalysts with excellent performance and low cost are critical for photocatalysis. Herein, using hydrogenated TiO2 (h-TiO2) nanosheets with enriched oxygen vacancies as the support, two-dimensional CoO/h-TiO2 Z-scheme heterostructures are fabricated for hydrogen production through photocatalytic water splitting. It is revealed that the oxygen vacancies in h-TiO2 can inhibit the oxidation of Co2+ into high-valence Co3+ during the hydrothermal reaction and thermal treatment processes. A CoO/h-TiO2 Z-scheme heterostructure possesses a space charge region and a built-in electric field at the interface, and oxygen vacancies in h-TiO2 can provide more reactive sites, which synergistically improve the separation and transportation of photogenerated carriers. As a result, the photocatalytic hydrogen evolution rate achieves 129.75 μmol·h-1 (with 50 mg of photocatalysts) on the optimized CoO/h-TiO2 heterostructures. This work provides a new design idea for the preparation of excellent TiO2-based photocatalysts.
Collapse
Affiliation(s)
- Xiaoyu Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Bojing Sun
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Jiayu Chu
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Zhi Han
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yu Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yunchen Du
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xijiang Han
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Ping Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
42
|
Influence of Conditions of Preparation of C,N,F-TiO2 Nanostructures on Their Photocatalytic Activity in Doxycycline Photodegradation Process. THEOR EXP CHEM+ 2022. [DOI: 10.1007/s11237-022-09720-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Li X, Anwer S, Guan Q, Anjum DH, Palmisano G, Zheng L. Coupling Long-Range Facet Junction and Interfacial Heterojunction via Edge-Selective Deposition for High-Performance Z-Scheme Photocatalyst. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200346. [PMID: 35466563 PMCID: PMC9218749 DOI: 10.1002/advs.202200346] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/04/2022] [Indexed: 05/19/2023]
Abstract
The construction of photocatalytic systems that have strong redox capability, effective charge separation, and large reactive surfaces is of great scientific and practical interest. Herein, an edge-connected 2D/2D Z-scheme system that combines the facet junction and the interfacial heterojunction to achieve effective long-range charge separation and large reactive surface exposure is designed and fabricated. The heterostructure is realized by the selective growth of 2D-layered MoS2 nanoflakes on the edge-sites of thin TiO2 nanosheets via an Au-promoted photodeposition method. Attributed to the synergetic coupling of the facet junction and the interfacial heterojunction that assures the effective charge separation, and the tremendous but physically separated reactive sites offered by layered MoS2 and highly-exposed (001) facets of TiO2 , respectively, the artificial Z-scheme exhibits excellent photocatalytic performance in photodegradation tests. Moreover, the junctional plasmonic Au nanoclusters not only act as electron traps to promote the edge-selective synthesis but also generate "hot electrons" to further boost photocatalytic performance. The Z-scheme charge-flow direction in the heterostructure and the roles of electrons and holes are comprehensively studied using in situ irradiated X-ray photoelectron spectroscopy and photodegradation tests. This work offers a new insight into designing high-performance Z-scheme photocatalytic systems.
Collapse
Affiliation(s)
- Xuan Li
- Department of Mechanical EngineeringKhalifa University of Science and TechnologyAbu Dhabi127788United Arab Emirates
- Research and Innovation on CO2 and H2 (RICH) CenterKhalifa University of Science and TechnologyAbu Dhabi127788United Arab Emirates
| | - Shoaib Anwer
- Department of Mechanical EngineeringKhalifa University of Science and TechnologyAbu Dhabi127788United Arab Emirates
| | - Qiangshun Guan
- Department of Mechanical EngineeringKhalifa University of Science and TechnologyAbu Dhabi127788United Arab Emirates
| | - Dalaver H. Anjum
- Department of PhysicsKhalifa University of Science and TechnologyAbu Dhabi127788United Arab Emirates
| | - Giovanni Palmisano
- Research and Innovation on CO2 and H2 (RICH) CenterKhalifa University of Science and TechnologyAbu Dhabi127788United Arab Emirates
- Department of Chemical EngineeringKhalifa University of Science and TechnologyAbu Dhabi127788United Arab Emirates
| | - Lianxi Zheng
- Department of Mechanical EngineeringKhalifa University of Science and TechnologyAbu Dhabi127788United Arab Emirates
| |
Collapse
|
44
|
Fang X, Qu W, Qin T, Hu X, Chen L, Ma Z, Liu X, Tang X. Abatement of Nitrogen Oxides via Selective Catalytic Reduction over Ce 1-W 1 Atom-Pair Sites. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6631-6638. [PMID: 35500091 DOI: 10.1021/acs.est.2c00482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Environmentally benign CeO2-WO3/TiO2 catalysts are promising alternatives to commercial toxic V2O5-WO3/TiO2 for controlling NOx emission via selective catalytic reduction (SCR), but the insufficient catalytic activity of CeO2-WO3/TiO2 catalysts is one of the obstacles in their applications because of a lack of an in-depth understanding of the CeO2-WO3 interactions. Herein, we design a Ce1-W1/TiO2 model catalyst by anchoring Ce1-W1 atom pairs on anatase TiO2(001) to investigate the synergy between Ce and W in SCR. A series of characterizations combined with density functional theory calculations and in situ diffuse-reflectance infrared Fourier-transform experiments reveal that there exists a strong electronic interaction within Ce1-W1 atom pairs, leading to a much better SCR performance of Ce1-W1/TiO2 compared with that of Ce1/TiO2 and W1/TiO2. The Ce1-W1 synergy not only shifts down the lowest unoccupied states of Ce1 near the Fermi level, thus enhancing the abilities in adsorbing and oxidizing NH3 but also makes the frontier orbital electrons of W1 delocalized, thus accelerating the activation of O2. The deep insight of the Ce-W synergy may assist in the design and development of efficient catalysts with an SCR activity as high as or even higher than V2O5-WO3/TiO2.
Collapse
Affiliation(s)
- Xue Fang
- Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Weiye Qu
- Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Tian Qin
- School of Chemistry and Chemical Engineering, In Situ Center for Physical Science, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaolei Hu
- Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Liwei Chen
- School of Chemistry and Chemical Engineering, In Situ Center for Physical Science, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhen Ma
- Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xi Liu
- School of Chemistry and Chemical Engineering, In Situ Center for Physical Science, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xingfu Tang
- Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, China
- Jiangsu Collaborative Innovation Center of Atmospheric Environment & Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
45
|
Fu C, Li F, Yang J, Xie J, Zhang Y, Sun X, Zheng X, Liu Y, Zhu J, Tang J, Gong XQ, Huang W. Spontaneous Bulk-Surface Charge Separation of TiO 2-{001} Nanocrystals Leads to High Activity in Photocatalytic Methane Combustion. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cong Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Fei Li
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jianlong Yang
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, the Energy and Catalysis Hub, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Jijia Xie
- Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K
| | - Yunshang Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xiao Sun
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yuanxu Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, P. R. China
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, P. R. China
| | - Junfa Zhu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Junwang Tang
- Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K
| | - Xue-Qing Gong
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Weixin Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, P. R. China
- Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023, P. R. China
| |
Collapse
|
46
|
Sadovnikov AA, Naranov ER, Maksimov AL, Baranchikov AE, Ivanov VK. Photocatalytic Activity of Fluorinated Titanium Dioxide in Ozone Decomposition. RUSS J APPL CHEM+ 2022. [DOI: 10.1134/s1070427222010153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Development of Monodisperse Mesoporous Microballs Composed of Decahedral Anatase Nanocrystals. Catalysts 2022. [DOI: 10.3390/catal12040408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Mesoporous monodisperse microballs of amorphous titania were prepared from solution of absolute ethanol, tetrabutyl titanate (TBOT) and potassium chloride via a sub-zero sol–gel route. The as-obtained microballs were used as the precursor in an alcohothermal (ethanol with a small amount of water) process to synthesize monodisperse mesoporous microballs built of decahedral anatase nanocrystals. FE-SEM observation and XRD analysis have confirmed that the formed decahedral anatase-rich powder retained the original spherical morphology of the precursor. Importantly, a hierarchical structure composed of faceted anatase has been achieved under “green” conditions, i.e., fluorine-free. Additionally, the hysteresis loops (BET results) have confirmed the existence of mesopores. Interestingly, faceted microballs show noticeable photocatalytic activity under UV/vis irradiation for hydrogen generation without any co-catalyst use, reaching almost forty times higher activity than that by famous commercial titania photocatalyst—P25. It has been proposed that enhanced photocatalytic performance is caused by mesoporous structure and co-existence of two kinds of facets, i.e., {001} and {101}, and thus hindered charge carriers’ recombination.
Collapse
|
48
|
Promoting mechanism of SO2 resistance performance by anatase TiO2 {0 0 1} facets on Mn-Ce/TiO2 catalysts during NH3-SCR reaction. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
49
|
Chen J, Wang M, Hu J, Han J, Yu H, Guo R. TiO2 nanosheet/NiO nanorod/poly(dopamine) ternary hybrids towards efficient visible light photocatalysis. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
50
|
Lai XM, Xiao Q, Ma C, Wang WW, Jia CJ. Heterostructured Ceria-Titania-Supported Platinum Catalysts for the Water Gas Shift Reaction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:8575-8586. [PMID: 35124965 DOI: 10.1021/acsami.1c22795] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The water gas shift (WGS) reaction is a key process in the industrial hydrogen production and the development and application of the proton exchange membrane fuel cell. Metal oxide-supported highly dispersed Pt has been proved as an efficient catalyst for the WGS reaction. In this work, a series of supported 0.5Pt/xCe-10Ti (x = 1, 3, or 5) catalysts with different Ce/Ti molar ratios were prepared by a simple deposition-precipitation method. Compared with single TiO2- or CeO2-supported Pt catalysts, it was found that the 0.5Pt/3Ce-10Ti catalyst showed an obvious advantage in activity for the WGS reaction. In this catalyst, dispersed CeO2 nanoparticles were supported on the TiO2 sheets, and Pt single atoms and nanoparticles were located on CeO2 and at the boundary of TiO2 and CeO2, respectively. It found that the reduction ability of the supported Pt catalyst was remarkably improved; meanwhile, the adsorption strength of CO on the surface of 0.5Pt/3Ce-10Ti was moderate. The heterostructured CeO2-TiO2 support gave an effective regulation on the Pt status and further influenced the CO adsorption ability, inducing excellent WGS reaction activity. This work provides a reference for the development and application of heterostructured materials in heterogeneous catalysis.
Collapse
Affiliation(s)
- Xiao-Meng Lai
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Qi Xiao
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Chao Ma
- College of Materials Science and Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Wei-Wei Wang
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Chun-Jiang Jia
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| |
Collapse
|