1
|
Medina D, Omanakuttan B, Nguyen R, Alwarsh E, Walgama C. Electrochemical Probing of Human Liver Subcellular S9 Fractions for Drug Metabolite Synthesis. Metabolites 2024; 14:429. [PMID: 39195525 DOI: 10.3390/metabo14080429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024] Open
Abstract
Human liver subcellular fractions, including liver microsomes (HLM), liver cytosol fractions, and S9 fractions, are extensively utilized in in vitro assays to predict liver metabolism. The S9 fractions are supernatants of human liver homogenates that contain both microsomes and cytosol, which include most cytochrome P450 (CYP) enzymes and soluble phase II enzymes such as glucuronosyltransferases and sulfotransferases. This study reports on the direct electrochemistry and biocatalytic features of redox-active enzymes in S9 fractions for the first time. We investigated the electrochemical properties of S9 films by immobilizing them onto a high-purity graphite (HPG) electrode and performing cyclic voltammetry under anaerobic (Ar-saturated) and aerobic (O2-saturated) conditions. The heterogeneous electron transfer rate between the S9 film and the HPG electrode was found to be 14 ± 3 s-1, with a formal potential of -0.451 V vs. Ag/AgCl reference electrode, which confirmed the electrochemical activation of the FAD/FMN cofactor containing CYP450-reductase (CPR) as the electron receiver from the electrode. The S9 films have also demonstrated catalytic oxygen reduction under aerobic conditions, identical to HLM films attached to similar electrodes. Additionally, we investigated CYP activity in the S9 biofilm for phase I metabolism using diclofenac hydroxylation as a probe reaction and identified metabolic products using liquid chromatography-mass spectrometry (LC-MS). Investigating the feasibility of utilizing liver S9 fractions in such electrochemical assays offers significant advantages for pharmacological and toxicological evaluations of new drugs in development while providing valuable insights for the development of efficient biosensor and bioreactor platforms.
Collapse
Affiliation(s)
- Daphne Medina
- Department of Physical & Applied Sciences, University of Houston-Clear Lake, 2700 Bay Area Boulevard, Houston, TX 77058, USA
| | - Bhavana Omanakuttan
- Department of Physical & Applied Sciences, University of Houston-Clear Lake, 2700 Bay Area Boulevard, Houston, TX 77058, USA
| | - Ricky Nguyen
- Department of Physical & Applied Sciences, University of Houston-Clear Lake, 2700 Bay Area Boulevard, Houston, TX 77058, USA
| | - Eman Alwarsh
- Department of Physical & Applied Sciences, University of Houston-Clear Lake, 2700 Bay Area Boulevard, Houston, TX 77058, USA
| | - Charuksha Walgama
- Department of Physical & Applied Sciences, University of Houston-Clear Lake, 2700 Bay Area Boulevard, Houston, TX 77058, USA
| |
Collapse
|
2
|
Kuzikov AV, Masamrekh RA, Filippova TA, Tumilovich AM, Strushkevich NV, Gilep AA, Khudoklinova YY, Shumyantseva VV. Bielectrode Strategy for Determination of CYP2E1 Catalytic Activity: Electrodes with Bactosomes and Voltammetric Determination of 6-Hydroxychlorzoxazone. Biomedicines 2024; 12:152. [PMID: 38255257 PMCID: PMC10812958 DOI: 10.3390/biomedicines12010152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/26/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
We describe a bielectrode system for evaluation of the electrocatalytic activity of cytochrome P450 2E1 (CYP2E1) towards chlorzoxazone. One electrode of the system was employed to immobilize Bactosomes with human CYP2E1, cytochrome P450 reductase (CPR), and cytochrome b5 (cyt b5). The second electrode was used to quantify CYP2E1-produced 6-hydroxychlorzoxazone by its direct electrochemical oxidation, registered using square-wave voltammetry. Using this system, we determined the steady-state kinetic parameters of chlorzoxazone hydroxylation by CYP2E1 of Bactosomes immobilized on the electrode: the maximal reaction rate (Vmax) was 1.64 ± 0.08 min-1, and the Michaelis constant (KM) was 78 ± 9 μM. We studied the electrochemical characteristics of immobilized Bactosomes and have revealed that electron transfer from the electrode occurs both to the flavin prosthetic groups of CPR and the heme iron ions of CYP2E1 and cyt b5. Additionally, it has been demonstrated that CPR has the capacity to activate CYP2E1 electrocatalytic activity towards chlorzoxazone, likely through intermolecular electron transfer from the electrochemically reduced form of CPR to the CYP2E1 heme iron ion.
Collapse
Affiliation(s)
- Alexey V. Kuzikov
- Institute of Biomedical Chemistry, 10, Pogodinskaya Street, 119121 Moscow, Russia; (R.A.M.); (T.A.F.); (A.A.G.); (V.V.S.)
- Department of Biochemistry, Faculty of Biomedicine, Pirogov Russian National Research Medical University, 1, Ostrovityanova Street, 117997 Moscow, Russia;
| | - Rami A. Masamrekh
- Institute of Biomedical Chemistry, 10, Pogodinskaya Street, 119121 Moscow, Russia; (R.A.M.); (T.A.F.); (A.A.G.); (V.V.S.)
- Department of Biochemistry, Faculty of Biomedicine, Pirogov Russian National Research Medical University, 1, Ostrovityanova Street, 117997 Moscow, Russia;
| | - Tatiana A. Filippova
- Institute of Biomedical Chemistry, 10, Pogodinskaya Street, 119121 Moscow, Russia; (R.A.M.); (T.A.F.); (A.A.G.); (V.V.S.)
- Department of Biochemistry, Faculty of Biomedicine, Pirogov Russian National Research Medical University, 1, Ostrovityanova Street, 117997 Moscow, Russia;
| | - Anastasiya M. Tumilovich
- Institute of Bioorganic Chemistry NASB, 5 Building 2, V.F. Kuprevich Street, 220084 Minsk, Belarus; (A.M.T.); (N.V.S.)
| | - Natallia V. Strushkevich
- Institute of Bioorganic Chemistry NASB, 5 Building 2, V.F. Kuprevich Street, 220084 Minsk, Belarus; (A.M.T.); (N.V.S.)
| | - Andrei A. Gilep
- Institute of Biomedical Chemistry, 10, Pogodinskaya Street, 119121 Moscow, Russia; (R.A.M.); (T.A.F.); (A.A.G.); (V.V.S.)
- Institute of Bioorganic Chemistry NASB, 5 Building 2, V.F. Kuprevich Street, 220084 Minsk, Belarus; (A.M.T.); (N.V.S.)
| | - Yulia Yu. Khudoklinova
- Department of Biochemistry, Faculty of Biomedicine, Pirogov Russian National Research Medical University, 1, Ostrovityanova Street, 117997 Moscow, Russia;
| | - Victoria V. Shumyantseva
- Institute of Biomedical Chemistry, 10, Pogodinskaya Street, 119121 Moscow, Russia; (R.A.M.); (T.A.F.); (A.A.G.); (V.V.S.)
- Department of Biochemistry, Faculty of Biomedicine, Pirogov Russian National Research Medical University, 1, Ostrovityanova Street, 117997 Moscow, Russia;
| |
Collapse
|
3
|
Kumar N, He J, Rusling JF. Electrochemical transformations catalyzed by cytochrome P450s and peroxidases. Chem Soc Rev 2023; 52:5135-5171. [PMID: 37458261 DOI: 10.1039/d3cs00461a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Cytochrome P450s (Cyt P450s) and peroxidases are enzymes featuring iron heme cofactors that have wide applicability as biocatalysts in chemical syntheses. Cyt P450s are a family of monooxygenases that oxidize fatty acids, steroids, and xenobiotics, synthesize hormones, and convert drugs and other chemicals to metabolites. Peroxidases are involved in breaking down hydrogen peroxide and can oxidize organic compounds during this process. Both heme-containing enzymes utilize active FeIVO intermediates to oxidize reactants. By incorporating these enzymes in stable thin films on electrodes, Cyt P450s and peroxidases can accept electrons from an electrode, albeit by different mechanisms, and catalyze organic transformations in a feasible and cost-effective way. This is an advantageous approach, often called bioelectrocatalysis, compared to their biological pathways in solution that require expensive biochemical reductants such as NADPH or additional enzymes to recycle NADPH for Cyt P450s. Bioelectrocatalysis also serves as an ex situ platform to investigate metabolism of drugs and bio-relevant chemicals. In this paper we review biocatalytic electrochemical reactions using Cyt P450s including C-H activation, S-oxidation, epoxidation, N-hydroxylation, and oxidative N-, and O-dealkylation; as well as reactions catalyzed by peroxidases including synthetically important oxidations of organic compounds. Design aspects of these bioelectrocatalytic reactions are presented and discussed, including enzyme film formation on electrodes, temperature, pH, solvents, and activation of the enzymes. Finally, we discuss challenges and future perspective of these two important bioelectrocatalytic systems.
Collapse
Affiliation(s)
- Neeraj Kumar
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3136, USA.
| | - Jie He
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3136, USA.
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136, USA
| | - James F Rusling
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3136, USA.
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136, USA
- Department of Surgery and Neag Cancer Center, Uconn Health, Farmington, CT 06030, USA
- School of Chemistry, National University of Ireland at Galway, Galway, Ireland
| |
Collapse
|
4
|
Silveira CM, Rodrigues PR, Ghach W, Pereira SA, Esteves F, Kranendonk M, Etienne M, Almeida MG. Electrochemical Activity of Cytochrome P450 1A2: The Relevance of O
2
Control and the Natural Electron Donor. ChemElectroChem 2020. [DOI: 10.1002/celc.202001255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Célia M. Silveira
- UCIBIO, REQUIMTE, Faculdade de Ciências e Tecnologia Universidade NOVA de Lisboa 2829-516 Monte de Caparica Portugal
- Instituto de Tecnologia Química e Biológica António Xavier ITQB NOVA Universidade NOVA de Lisboa Av. da República 2780-157 Oeiras Portugal
| | - Patrícia R. Rodrigues
- UCIBIO, REQUIMTE, Faculdade de Ciências e Tecnologia Universidade NOVA de Lisboa 2829-516 Monte de Caparica Portugal
- Systems Immunity Research Institute and Division of Infection and Immunity School of Medicine Cardiff University Cardiff CF14 4XN UK
| | - Wissam Ghach
- Chimie et Physique Moléculaires, LCPME CNRS and Université de Lorraine 54000 Nancy France
| | - Sofia A. Pereira
- CEDOC, Chronic Diseases Research Centre NOVA Medical School/Faculty of Medical Sciences Universidade NOVA de Lisboa Campo dos Mártires da Pátria 130 1169-056 Lisboa Portugal
| | - Francisco Esteves
- Center for Toxicogenomics and Human Health (ToxOmics) CEDOC, NOVA Medical School/Faculty of Medical Sciences Universidade NOVA de Lisboa Campo dos Mártires da Pátria 130 1169-056 Lisboa Portugal
| | - Michel Kranendonk
- Center for Toxicogenomics and Human Health (ToxOmics) CEDOC, NOVA Medical School/Faculty of Medical Sciences Universidade NOVA de Lisboa Campo dos Mártires da Pátria 130 1169-056 Lisboa Portugal
| | - Mathieu Etienne
- Chimie et Physique Moléculaires, LCPME CNRS and Université de Lorraine 54000 Nancy France
| | - M. Gabriela Almeida
- UCIBIO, REQUIMTE, Faculdade de Ciências e Tecnologia Universidade NOVA de Lisboa 2829-516 Monte de Caparica Portugal
- Centro de investigação interdisciplinar Egas Moniz (CiiEM) Instituto Universitário Egas Moniz Monte de Caparica 2829-511 Caparica Portugal
| |
Collapse
|
5
|
Electrochemical Biosensors Based on Membrane-Bound Enzymes in Biomimetic Configurations. SENSORS 2020; 20:s20123393. [PMID: 32560121 PMCID: PMC7349357 DOI: 10.3390/s20123393] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 02/07/2023]
Abstract
In nature, many enzymes are attached or inserted into the cell membrane, having hydrophobic subunits or lipid chains for this purpose. Their reconstitution on electrodes maintaining their natural structural characteristics allows for optimizing their electrocatalytic properties and stability. Different biomimetic strategies have been developed for modifying electrodes surfaces to accommodate membrane-bound enzymes, including the formation of self-assembled monolayers of hydrophobic compounds, lipid bilayers, or liposomes deposition. An overview of the different strategies used for the formation of biomimetic membranes, the reconstitution of membrane enzymes on electrodes, and their applications as biosensors is presented.
Collapse
|
6
|
Mie Y, Yasutake Y, Takayama H, Tamura T. Electrochemically boosted cytochrome P450 reaction that efficiently produces 25-hydroxyvitamin D3. J Catal 2020. [DOI: 10.1016/j.jcat.2020.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Li Z, Jiang Y, Guengerich FP, Ma L, Li S, Zhang W. Engineering cytochrome P450 enzyme systems for biomedical and biotechnological applications. J Biol Chem 2020; 295:833-849. [PMID: 31811088 PMCID: PMC6970918 DOI: 10.1074/jbc.rev119.008758] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cytochrome P450 enzymes (P450s) are broadly distributed among living organisms and play crucial roles in natural product biosynthesis, degradation of xenobiotics, steroid biosynthesis, and drug metabolism. P450s are considered as the most versatile biocatalysts in nature because of the vast variety of substrate structures and the types of reactions they catalyze. In particular, P450s can catalyze regio- and stereoselective oxidations of nonactivated C-H bonds in complex organic molecules under mild conditions, making P450s useful biocatalysts in the production of commodity pharmaceuticals, fine or bulk chemicals, bioremediation agents, flavors, and fragrances. Major efforts have been made in engineering improved P450 systems that overcome the inherent limitations of the native enzymes. In this review, we focus on recent progress of different strategies, including protein engineering, redox-partner engineering, substrate engineering, electron source engineering, and P450-mediated metabolic engineering, in efforts to more efficiently produce pharmaceuticals and other chemicals. We also discuss future opportunities for engineering and applications of the P450 systems.
Collapse
Affiliation(s)
- Zhong Li
- Shandong Provincial Key Laboratory of Synthetic Biology and CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Jiang
- Shandong Provincial Key Laboratory of Synthetic Biology and CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Li Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 Shandong, China
| | - Wei Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 Shandong, China
| |
Collapse
|
8
|
|
9
|
Affiliation(s)
- Muhammad H. Rahman
- School of PharmacyUniversity of Birmingham Edgbaston B15 2TT United Kingdom
| | - Mandeep K. Bal
- Faculty of Science and EngineeringManchester Metropolitan University Chester Street Manchester M1 5GD United Kingdom
| | - Alan M. Jones
- School of PharmacyUniversity of Birmingham Edgbaston B15 2TT United Kingdom
| |
Collapse
|
10
|
Castrignanò S, Di Nardo G, Sadeghi SJ, Gilardi G. Influence of inter-domain dynamics and surrounding environment flexibility on the direct electrochemistry and electrocatalysis of self-sufficient cytochrome P450 3A4-BMR chimeras. J Inorg Biochem 2018; 188:9-17. [DOI: 10.1016/j.jinorgbio.2018.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/21/2018] [Accepted: 08/02/2018] [Indexed: 12/18/2022]
|
11
|
Kuzikov AV, Masamrekh RA, Archakov AI, Shumyantseva VV. Methods for Determination of Functional Activity of Cytochrome P450 Isoenzymes. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2018. [DOI: 10.1134/s1990750818030046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Nerimetla R, Premaratne G, Liu H, Krishnan S. Improved electrocatalytic metabolite production and drug biosensing by human liver microsomes immobilized on amine-functionalized magnetic nanoparticles. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.05.085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
13
|
Kuzikov AV, Masamrekh RA, Archakov AI, Shumyantseva VV. [Methods for determining of cytochrome P450 isozymes functional activity]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2018; 64:149-168. [PMID: 29723145 DOI: 10.18097/pbmc20186402149] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The review is dedicated to modern methods and technologies for determining of cytochrome P450 isozymes functional activity, such as absorbance and fluorescent spectroscopy, electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR), Raman, Mossbauer, and X-ray spectroscopy, surface plasmon resonance (SPR), atomic force microscopy (AFM). Methods of molecular genetic analysis were reviewed from personalized medicine point of view. The use of chromate-mass-spectrometric methods for cytochrome P450-dependent catalytic reactions' products was discussed. The review covers modern electrochemical systems based on cytochrome P450 isozymes for their catalytic activity analysis, their use in practice and further development perspectives for experimental pharmacology, biotechnology and translational medicine.
Collapse
Affiliation(s)
- A V Kuzikov
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | - R A Masamrekh
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | - A I Archakov
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | - V V Shumyantseva
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| |
Collapse
|
14
|
El Harrad L, Bourais I, Mohammadi H, Amine A. Recent Advances in Electrochemical Biosensors Based on Enzyme Inhibition for Clinical and Pharmaceutical Applications. SENSORS (BASEL, SWITZERLAND) 2018; 18:E164. [PMID: 29315246 PMCID: PMC5795370 DOI: 10.3390/s18010164] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/02/2018] [Accepted: 01/07/2018] [Indexed: 12/22/2022]
Abstract
A large number of enzyme inhibitors are used as drugs to treat several diseases such as gout, diabetes, AIDS, depression, Parkinson's and Alzheimer's diseases. Electrochemical biosensors based on enzyme inhibition are useful devices for an easy, fast and environment friendly monitoring of inhibitors like drugs. In the last decades, electrochemical biosensors have shown great potentials in the detection of different drugs like neostigmine, ketoconazole, donepezil, allopurinol and many others. They attracted increasing attention due to the advantage of being high sensitive and accurate analytical tools, able to reach low detection limits and the possibility to be performed on real samples. This review will spotlight the research conducted in the past 10 years (2007-2017) on inhibition based enzymatic electrochemical biosensors for the analysis of different drugs. New assays based on novel bio-devices will be debated. Moreover, the exploration of the recent graphical approach in diagnosis of reversible and irreversible inhibition mechanism will be discussed. The accurate and the fast diagnosis of inhibition type will help researchers in further drug design improvements and the identification of new molecules that will serve as new enzyme targets.
Collapse
Affiliation(s)
- Loubna El Harrad
- Laboratory of Process Engineering & Environment, Faculty of Sciences and Technology, Hassan II University of Casablanca, Mohammadia B.P.146, Morocco.
| | - Ilhame Bourais
- Laboratory of Process Engineering & Environment, Faculty of Sciences and Technology, Hassan II University of Casablanca, Mohammadia B.P.146, Morocco.
| | - Hasna Mohammadi
- Laboratory of Process Engineering & Environment, Faculty of Sciences and Technology, Hassan II University of Casablanca, Mohammadia B.P.146, Morocco.
| | - Aziz Amine
- Laboratory of Process Engineering & Environment, Faculty of Sciences and Technology, Hassan II University of Casablanca, Mohammadia B.P.146, Morocco.
| |
Collapse
|
15
|
Wang XY, Yan HM, Han YL, Zhang ZX, Zhang XY, Yang WJ, Guo Z, Li YR. Do two oxidants (ferric-peroxo and ferryl-oxo species) act in the biosynthesis of estrogens? A DFT calculation. RSC Adv 2018; 8:15196-15201. [PMID: 35541322 PMCID: PMC9080039 DOI: 10.1039/c8ra01252k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/06/2018] [Indexed: 11/21/2022] Open
Abstract
Density functional theory calculations were performed in order to reveal the mysterious catalytic step of the biosynthesis of estrogens. The results indicated two reactive oxidants, ferric-peroxo and ferryl-oxo (compound I) species, to participate in the conversion of androgens to estrogens. The ferric-peroxo species was determined, according to our derived mechanism, to act in the oxidation of 19-OH androgen to yield the 19,19-gem-diol intermediate and generate the ferryl-oxo (compound I) species. This species was then modeled to effect, in the final step, an abstraction of H from an O–H group of 19,19-gem-diol to give the experimentally observed products. We considered our new mechanistic scenario to reasonably explain the latest experimental observations and to provide deep insight complementing the newly accepted compound I (Cpd I) mechanism. Density functional theory calculations were performed in order to reveal the mysterious catalytic step of the biosynthesis of estrogens.![]()
Collapse
Affiliation(s)
- Xiang-Yun Wang
- College of Material Science & Engineering
- Key Laboratory of Interface Science and Engineering in Advanced Materials
- Ministry of Education
- Taiyuan University of Technology
- P. R. China
| | - Hui-Min Yan
- College of Material Science & Engineering
- Key Laboratory of Interface Science and Engineering in Advanced Materials
- Ministry of Education
- Taiyuan University of Technology
- P. R. China
| | - Yan-Li Han
- College of Material Science & Engineering
- Key Laboratory of Interface Science and Engineering in Advanced Materials
- Ministry of Education
- Taiyuan University of Technology
- P. R. China
| | - Zhu-Xia Zhang
- College of Material Science & Engineering
- Key Laboratory of Interface Science and Engineering in Advanced Materials
- Ministry of Education
- Taiyuan University of Technology
- P. R. China
| | - Xiao-Yun Zhang
- College of Material Science & Engineering
- Key Laboratory of Interface Science and Engineering in Advanced Materials
- Ministry of Education
- Taiyuan University of Technology
- P. R. China
| | - Wen-Jing Yang
- College of Material Science & Engineering
- Key Laboratory of Interface Science and Engineering in Advanced Materials
- Ministry of Education
- Taiyuan University of Technology
- P. R. China
| | - Zhen Guo
- College of Material Science & Engineering
- Key Laboratory of Interface Science and Engineering in Advanced Materials
- Ministry of Education
- Taiyuan University of Technology
- P. R. China
| | - Yan-Rong Li
- Department of Earth Sciences and Engineering
- Taiyuan University of Technology
- P. R. China
| |
Collapse
|
16
|
Fang X, Duan Y, Liu Y, Adkins G, Zang W, Zhong W, Qiao L, Liu B. Photochemical Bionanoreactor for Efficient Visible-Light-Driven in Vitro Drug Metabolism. Anal Chem 2017; 89:7365-7372. [DOI: 10.1021/acs.analchem.7b00677] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Xiaoni Fang
- Department
of Chemistry, Institute of Biomedical Sciences and State Key Lab of
Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Yaokai Duan
- Department
of Chemistry, University of California, Riverside 92501, United States
| | - Yujie Liu
- Department
of Chemistry, Institute of Biomedical Sciences and State Key Lab of
Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Gary Adkins
- Department
of Chemistry, University of California, Riverside 92501, United States
| | - Weijun Zang
- Department
of Chemistry, Institute of Biomedical Sciences and State Key Lab of
Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Wenwan Zhong
- Department
of Chemistry, University of California, Riverside 92501, United States
| | - Liang Qiao
- Department
of Chemistry, Institute of Biomedical Sciences and State Key Lab of
Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Shanghai
Stomatological Hospital, Fudan University, Shanghai 200433, China
| | - Baohong Liu
- Department
of Chemistry, Institute of Biomedical Sciences and State Key Lab of
Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Shanghai
Stomatological Hospital, Fudan University, Shanghai 200433, China
| |
Collapse
|
17
|
Nerimetla R, Walgama C, Singh V, Hartson SD, Krishnan S. Mechanistic Insights into Voltage-Driven Biocatalysis of a Cytochrome P450 Bactosomal Film on a Self-Assembled Monolayer. ACS Catal 2017. [DOI: 10.1021/acscatal.6b03588] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rajasekhara Nerimetla
- Department
of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Charuksha Walgama
- Department
of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Vini Singh
- Department
of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Steven D. Hartson
- Department
of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Sadagopan Krishnan
- Department
of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| |
Collapse
|
18
|
Behrendorff JBYH, Gillam EMJ. Prospects for Applying Synthetic Biology to Toxicology: Future Opportunities and Current Limitations for the Repurposing of Cytochrome P450 Systems. Chem Res Toxicol 2016; 30:453-468. [DOI: 10.1021/acs.chemrestox.6b00396] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Elizabeth M. J. Gillam
- School
of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane 4072, Australia
| |
Collapse
|
19
|
Ikegami M, Hirano Y, Mie Y, Komatsu Y. Fabrication and characterization of nanoporous gold on microelectrode. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.11.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
|
21
|
Hirano Y, Ikegami M, Kowata K, Komatsu Y. Bienzyme reactions on cross-linked DNA scaffolds for electrochemical analysis. Bioelectrochemistry 2016; 113:15-19. [PMID: 27611764 DOI: 10.1016/j.bioelechem.2016.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 08/16/2016] [Accepted: 08/31/2016] [Indexed: 10/21/2022]
Abstract
Enzymes play an essential role in various detection technologies. We show here that interstrand cross-linked oligodeoxynucleotides (CL-ODNs) can provide stable scaffolds for efficiently coupling two types of enzymatic reactions on an electrode. Glucose can be electrochemically detected using glucose oxidase (GOx) and horseradish peroxidase (HRP). When both GOx and HRP were immobilized on an electrode surface by attachment at the termini of CL-ODNs, the current value was markedly increased compared with that obtained on a standard ODN scaffold. The relative orientation of the enzymes on the electrode strongly affected the current intensities. The CL-ODN also allowed GOx-HRP to form a complex on the tiny surface of a microelectrode, resulting in the imaging of local glucose distribution. These results suggest that CL-ODNs have potential utility in other sensing technologies.
Collapse
Affiliation(s)
- Yu Hirano
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira, Sapporo, Japan
| | - Masiki Ikegami
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira, Sapporo, Japan
| | - Keiko Kowata
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira, Sapporo, Japan
| | - Yasuo Komatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira, Sapporo, Japan.
| |
Collapse
|
22
|
Holtmann D, Hollmann F. The Oxygen Dilemma: A Severe Challenge for the Application of Monooxygenases? Chembiochem 2016; 17:1391-8. [PMID: 27194219 PMCID: PMC5096067 DOI: 10.1002/cbic.201600176] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Indexed: 12/12/2022]
Abstract
Monooxygenases are promising catalysts because they in principle enable the organic chemist to perform highly selective oxyfunctionalisation reactions that are otherwise difficult to achieve. For this, monooxygenases require reducing equivalents, to allow reductive activation of molecular oxygen at the enzymes' active sites. However, these reducing equivalents are often delivered to O2 either directly or via a reduced intermediate (uncoupling), yielding hazardous reactive oxygen species and wasting valuable reducing equivalents. The oxygen dilemma arises from monooxygenases' dependency on O2 and the undesired uncoupling reaction. With this contribution we hope to generate a general awareness of the oxygen dilemma and to discuss its nature and some promising solutions.
Collapse
Affiliation(s)
- Dirk Holtmann
- DECHEMA Research Institute, Theodor-Heuss-Allee 25, 60486, Frankfurt am Main, Germany
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Julianalaan 136, 2628BL, Delft, The Netherlands.
| |
Collapse
|
23
|
Direct electrochemistry and electrocatalysis of cytochrome P450s immobilized on gold/graphene-based nanocomposites. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.04.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Mie Y, Ikegami M, Komatsu Y. Nanoporous Structure of Gold Electrode Fabricated by Anodization and Its Efficacy for Direct Electrochemistry of Human Cytochrome P450. CHEM LETT 2016. [DOI: 10.1246/cl.160164] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yasuhiro Mie
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Masiki Ikegami
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Yasuo Komatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| |
Collapse
|
25
|
Yuan T, Permentier H, Bischoff R. Surface-modified electrodes in the mimicry of oxidative drug metabolism. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2015.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
Nerimetla R, Krishnan S. Electrocatalysis by subcellular liver fractions bound to carbon nanostructures for stereoselective green drug metabolite synthesis. Chem Commun (Camb) 2015; 51:11681-4. [PMID: 26103056 DOI: 10.1039/c5cc03364k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A novel, reusable, cofactor-free, and mediator-free human liver microsomal bioreactor constructed on carbon nanostructure electrodes for stereoselective green syntheses of drug metabolites and specialty chemicals is reported here for the first time. Drug metabolites are useful for examining pharmaceutical and pharmacological properties of new drugs under development.
Collapse
|
27
|
Baj-Rossi C, Müller C, von Mandach U, De Micheli G, Carrara S. Faradic Peaks Enhanced by Carbon Nanotubes in Microsomal Cytochrome P450 Electrodes. ELECTROANAL 2015. [DOI: 10.1002/elan.201400726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Walgama C, Nerimetla R, Materer NF, Schildkraut D, Elman JF, Krishnan S. A Simple Construction of Electrochemical Liver Microsomal Bioreactor for Rapid Drug Metabolism and Inhibition Assays. Anal Chem 2015; 87:4712-8. [DOI: 10.1021/ac5044362] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Charuksha Walgama
- Department
of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Rajasekhara Nerimetla
- Department
of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Nicholas F. Materer
- Department
of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Deniz Schildkraut
- Filmetrics Application Lab—Rochester, 250 Packett’s Landing, Fairport, New York 14450, United States
| | - James F. Elman
- Filmetrics Application Lab—Rochester, 250 Packett’s Landing, Fairport, New York 14450, United States
| | - Sadagopan Krishnan
- Department
of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| |
Collapse
|
29
|
Wang N, Gao C, Xue F, Han Y, Li T, Cao X, Zhang X, Zhang Y, Wang ZL. Piezotronic-effect enhanced drug metabolism and sensing on a single ZnO nanowire surface with the presence of human cytochrome P450. ACS NANO 2015; 9:3159-3168. [PMID: 25758259 DOI: 10.1021/acsnano.5b00142] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cytochromes P450 (CYPs) enzymes are involved in catalyzing the metabolism of various endogenous and exogenous compounds. A rapid analysis of drug metabolism reactions by CYPs is required because they can metabolize 95% of current drugs in drug development and effective therapies. Here, we describe a study of piezotronic-effect enhanced drug metabolism and sensing by utilizing a single ZnO nanowire (ZnO NW) device. Owing to the unique hydrophobic feature of a ZnO NW that provides a desirable "microenvironment" for the immobilization of biomolecules, our device can effectively stimulate the tolbutamide metabolism by decorating a ZnO NW with cytochrome P4502C9/CYPs reductase (CYP2C9/CPR) microsomes. By applying an external compressive strain to the ZnO nanowire, the piezotronic effect, which plays a primary role in tuning the transport behavior of a ZnO NW utilizing the created piezoelectric polarization charges at the local interface, can effectively enhance the performance of the device. A theoretical model is proposed using an energy band diagram to explain the experimental data. This study provides a potential approach to study drug metabolism and trace drug detection based on the piezotronic effect.
Collapse
Affiliation(s)
- Ning Wang
- †School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- §School of Chemistry and Environment, Beijing University of Aeronautics and Astronautics, Beijing, 100191, China
| | - Caizhen Gao
- †School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- §School of Chemistry and Environment, Beijing University of Aeronautics and Astronautics, Beijing, 100191, China
| | - Fei Xue
- ‡Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
| | - Yu Han
- ‡Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- §School of Chemistry and Environment, Beijing University of Aeronautics and Astronautics, Beijing, 100191, China
| | - Tao Li
- ‡Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
| | - Xia Cao
- †School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- ‡Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
| | - Xueji Zhang
- †School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yue Zhang
- †School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhong Lin Wang
- ‡Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- ∥School of Material Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| |
Collapse
|
30
|
Rusling JF, Wasalathanthri DP, Schenkman JB. Thin multicomponent films for functional enzyme devices and bioreactor particles. SOFT MATTER 2014; 10:8145-8156. [PMID: 25209428 PMCID: PMC4183705 DOI: 10.1039/c4sm01679c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Complex functional films containing enzymes and other biomolecules are easily fabricated in nm-scale thicknesses by using layer-by-layer (LbL) methodologies first popularized by Lvov and Decher. In this review, we highlight the high level functional capabilities possible with LbL films of biomolecules based on our own research experiences. We first describe the basics of enzyme film fabrication by LbL alternate electrostatic adsorption, then discuss how to make functional enzyme-polyion films of remarkably high stability. Focusing on cytochrome P450s, we discuss films developed to electrochemically activate the natural catalytic cycle of these key metabolic enzymes. We then describe multifunctional, multicomponent DNA/enzyme/polyion films on arrays and particle surfaces for high throughput metabolic toxicity screening using electrochemiluminescence and LC-MS/MS. Using multicomponent LbL films, complex functionality for bioanalytical and biochemical purposes can be achieved that is difficult or impossible using conventional approaches.
Collapse
Affiliation(s)
- James F Rusling
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA.
| | | | | |
Collapse
|
31
|
Fang X, Zhang P, Qiao L, Feng X, Zhang X, Girault HH, Liu B. Efficient Drug Metabolism Strategy Based on Microsome–Mesoporous Organosilica Nanoreactors. Anal Chem 2014; 86:10870-6. [DOI: 10.1021/ac503024h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Xiaoni Fang
- Department
of Chemistry, Institutes of Biomedical Sciences, and State Key Laboratory
of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Peng Zhang
- Department
of Chemistry, Institutes of Biomedical Sciences, and State Key Laboratory
of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Liang Qiao
- Laboratoire
d’Electrochimie Physique et Analytique, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Xiaoyan Feng
- Department
of Chemistry, Institutes of Biomedical Sciences, and State Key Laboratory
of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Xiangmin Zhang
- Department
of Chemistry, Institutes of Biomedical Sciences, and State Key Laboratory
of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Hubert H. Girault
- Laboratoire
d’Electrochimie Physique et Analytique, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Baohong Liu
- Department
of Chemistry, Institutes of Biomedical Sciences, and State Key Laboratory
of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| |
Collapse
|
32
|
Cui D, Mi L, Xu X, Lu J, Qian J, Liu S. Nanocomposites of graphene and cytochrome P450 2D6 isozyme for electrochemical-driven tramadol metabolism. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:11833-11840. [PMID: 25222611 DOI: 10.1021/la502699m] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Cytochrome P450 enzymes (cyt P450s) with an active center of iron protoheme are involved in most clinical drugs metabolism process. Herein, an electrochemical platform for the investigation of drug metabolism in vitro was constructed by immobilizing cytochrome P450 2D6 (CYP2D6) with cyt P450 reductase (CPR) on graphene modified glass carbon electrode. Direct and reversible electron transfer of the immobilized CYP2D6 with the direct electron transfer constant of 0.47 s(-1) and midpoint potential of -0.483 V was obtained. In the presence of substrate tramadol, the electrochemical-driven CYP2D6 mediated catalytic behavior toward the conversion of tramadol to o-demethyl-tramadol was confirmed. The Michaelis-Menten constant (Km(app)) and heterogeneous reaction rate constant during the metabolism of tramadol were calculated to be 23.85 μM and 1.96 cm s(-1), respectively. The inhibition effect of quinidine on CYP2D6 catalyze-cycle was also investigated. Furthermore, this system was applied to studying the metabolism of other drugs.
Collapse
Affiliation(s)
- Dongmei Cui
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University , Jiangning District 211189, Nanjing, Jiangsu Province, People's Republic of China
| | | | | | | | | | | |
Collapse
|
33
|
|
34
|
p-Aminothiophenol modification on gold surface improves stability for electrochemically driven cytochrome P450 microsome activity. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2013.10.170] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Yoshioka K, Kato D, Kamata T, Niwa O. Cytochrome P450 modified polycrystalline indium tin oxide film as a drug metabolizing electrochemical biosensor with a simple configuration. Anal Chem 2013; 85:9996-9. [PMID: 24117377 DOI: 10.1021/ac402661w] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of a biocatalytic electrode consisting of cytochrome P450 (CYP) proteins would be a key technology with which to establish simple drug metabolizing biosensors or screening devices for drug inhibitors. We have successfully detected the direct electron transfer (DET) from a human CYP layer or a CYP microsome adsorbed on a bare indium tin oxide (ITO) film electrode without any modification layers and applied it to drug metabolism evaluation. We compared the electrocatalytic properties of the two ITO films with different surface nanostructures (polycrystalline or amorphous). CYP on polycrystalline ITO film enhanced the electron transfer rate of oxygen reduction about fifteen times more than with amorphous film. The polycrystalline ITO film was a suitable electrode for the adsorption of CYP proteins while maintaining efficient DET and enzymatic activity, probably because of its larger surface area and negatively charged surface. The oxygen reduction current at the polycrystalline ITO film electrodes had increased 3- to 4-fold, specifically coupled with the oxidation of drugs (testosterone and quinidine) by the monooxygenase activity of CYP. In contrast, the oxygen reduction current completely disappeared in the presence of the CYP inhibitor (ketoconazole). Similar results could be obtained from the CYP microsome with sufficiently clear responses. These results indicate that the CYP modified polycrystalline ITO electrode offers the potential for electrochemically evaluating CYP activity for drug metabolism with a simple configuration.
Collapse
Affiliation(s)
- Kyoko Yoshioka
- National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1, Higashi, Tsukuba, Ibaraki, 305-8566 Japan
| | | | | | | |
Collapse
|
36
|
Baj-Rossi C, Rezzonico Jost T, Cavallini A, Grassi F, De Micheli G, Carrara S. Continuous monitoring of Naproxen by a cytochrome P450-based electrochemical sensor. Biosens Bioelectron 2013; 53:283-7. [PMID: 24144559 DOI: 10.1016/j.bios.2013.09.058] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 09/23/2013] [Accepted: 09/24/2013] [Indexed: 11/16/2022]
Abstract
This paper reports the characterization of an electrochemical biosensor for the continuous monitoring of Naproxen based on cytochrome P450. The electrochemical biosensor is based on the drop-casting of multi-walled carbon-nanotubes (MWCNTs) and microsomal cytochrome P4501A2 (msCYP1A2) on a graphite screen-printed electrode (SPE). The proposed biosensor was employed to monitor Naproxen (NAP), a well-known anti-inflammatory compound, through cyclic voltammetry. The dynamic linear range for the amperometric detection of NAP had an upper limit of 300 µM with a corresponding limit of detection (LOD) of 16 ± 1 µM (S/N=3), which is included in NAP physiological range (9-300 µM). The MWCNT/msCYP1A2-SPE sensor was also calibrated for NAP detection in mouse serum that was previously extracted from mice, showing a slightly higher LOD (33 ± 18 µM). The stability of the msCYP1A2-based biosensor was assessed by longtime continuous cyclic voltammetric measurements. The ability of the sensor to monitor drug delivery was investigated by using a commercial micro-osmotic pump. Results show that the MWCNT/msCYP1A2-SPE sensor is capable of precisely monitoring the real-time delivery of NAP for 16 h. This work proves that the proposed electrochemical sensor might represent an innovative point-of-care solution for the personalization of drug therapies, as well as for pharmacokinetic studies in both animals and humans.
Collapse
Affiliation(s)
- C Baj-Rossi
- Laboratory of Integrated Systems, EPFL - École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | | | | | | | | | | |
Collapse
|
37
|
Self assembly of iron protoporphyrin and its binding with carbon monoxide on dithiol modified gold electrode as probed by in situ ATR-SEIRAS. J Electroanal Chem (Lausanne) 2013. [DOI: 10.1016/j.jelechem.2012.08.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Xue Q, Kato D, Kamata T, Guo Q, You T, Niwa O. Human cytochrome P450 3A4 and a carbon nanofiber modified film electrode as a platform for the simple evaluation of drug metabolism and inhibition reactions. Analyst 2013; 138:6463-8. [DOI: 10.1039/c3an01313h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Mie Y, Kowata K, Kojima N, Komatsu Y. Electrochemical properties of interstrand cross-linked DNA duplexes labeled with Nile blue. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:17211-17216. [PMID: 23153070 DOI: 10.1021/la3036538] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
DNA molecules have attracted considerable attention as functional materials in various fields such as electrochemical sensors with redox-labeled DNA. However, the recently developed interstrand cross-link (ICL) technique for double-stranded DNA can adequately modify the electronic properties inside the duplex. Hence, the electrochemical investigation of ICL-DNA helps us to understand the electron transfer of redox-labeled DNA at an electrode surface, which would develop useful sensors. In this study, the first insight into this matter is presented. We prepared 17-mer DNA duplexes incorporating Nile blue (NB-DNA) at one end as a redox marker and a disulfide tether at the other end for immobilization onto an electrode. The duplexes were covalently cross-linked by bifunctional cross-linkers that utilize either a propyl or naphthalene residue to replace a base pair. Their electrochemical responses at the electrode surface were compared to evaluate the effect of the ICL on the electron-transfer reactions of the redox-labeled DNA duplexes. A direct transfer of electrons between NB and the electrode was observed for a standard DNA, as previously reported, whereas interstrand cross-linked DNA (CL-DNA) strands showed a decrease in the direct electron-transfer pathway. This is expected to result from constraining the elastic bending/flexibility of the duplex caused by the covalent cross-links. Interestingly, the CL-DNA incorporating naphthalene residues exhibited additional voltammetric peaks derived from DNA-mediated electron transfer (through base π stacking), which was not observed in the mismatched CL-DNA. The present results indicate that the ICL significantly affects electron transfer in the redox-labeled DNA at the electrode and can be an important determinant for electrochemical signaling in addition to its role in stabilizing the duplex structure.
Collapse
Affiliation(s)
- Yasuhiro Mie
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-higashi, Toyohira, Sapporo 062-8517, Japan
| | | | | | | |
Collapse
|
40
|
Jackman JA, Cho NJ. Model membrane platforms for biomedicine: case study on antiviral drug development. Biointerphases 2012; 7:18. [PMID: 22589061 PMCID: PMC7099340 DOI: 10.1007/s13758-011-0018-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 12/29/2011] [Indexed: 01/28/2023] Open
Abstract
As one of the most important interfaces in cellular systems, biological membranes have essential functions in many activities such as cellular protection and signaling. Beyond their direct functions, they also serve as scaffolds to support the association of proteins involved in structural support, adhesion, and transport. Unfortunately, biological processes sometimes malfunction and require therapeutic intervention. For those processes which occur within or upon membranes, it is oftentimes difficult to study the mechanism in a biologically relevant, membranous environment. Therefore, the identification of direct therapeutic targets is challenging. In order to overcome this barrier, engineering strategies offer a new approach to interrogate biological activities at membrane interfaces by analyzing them through the principles of the interfacial sciences. Since membranes are complex biological interfaces, the development of simplified model systems which mimic important properties of membranes can enable fundamental characterization of interaction parameters for such processes. We have selected the hepatitis C virus (HCV) as a model viral pathogen to demonstrate how model membrane platforms can aid antiviral drug discovery and development. Responsible for generating the genomic diversity that makes treating HCV infection so difficult, viral replication represents an ideal step in the virus life cycle for therapeutic intervention. To target HCV genome replication, the interaction of viral proteins with model membrane platforms has served as a useful strategy for target identification and characterization. In this review article, we demonstrate how engineering approaches have led to the discovery of a new functional activity encoded within the HCV nonstructural 5A protein. Specifically, its N-terminal amphipathic, α-helix (AH) can rupture lipid vesicles in a size-dependent manner. While this activity has a number of exciting biotechnology and biomedical applications, arguably the most promising one is in antiviral medicine. Based on the similarities between lipid vesicles and the lipid envelopes of virus particles, experimental findings from model membrane platforms led to the prediction that a range of medically important viruses might be susceptible to rupturing treatment with synthetic AH peptide. This hypothesis was tested and validated by molecular virology studies. Broad-spectrum antiviral activity of the AH peptide has been identified against HCV, HIV, herpes simplex virus, and dengue virus, and many more deadly pathogens. As a result, the AH peptide is the first in class of broad-spectrum, lipid envelope-rupturing antiviral agents, and has entered the drug pipeline. In summary, engineering strategies break down complex biological systems into simplified biomimetic models that recapitulate the most important parameters. This approach is particularly advantageous for membrane-associated biological processes because model membrane platforms provide more direct characterization of target interactions than is possible with other methods. Consequently, model membrane platforms hold great promise for solving important biomedical problems and speeding up the translation of biological knowledge into clinical applications.
Collapse
Affiliation(s)
- Joshua A. Jackman
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
- Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, Singapore, 637553 Singapore
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore
- Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, Singapore, 637553 Singapore
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University, 269 Campus Drive, Stanford, CA 94305 USA
| |
Collapse
|
41
|
Jahn S, Karst U. Electrochemistry coupled to (liquid chromatography/) mass spectrometry—Current state and future perspectives. J Chromatogr A 2012; 1259:16-49. [DOI: 10.1016/j.chroma.2012.05.066] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 05/09/2012] [Accepted: 05/19/2012] [Indexed: 02/04/2023]
|
42
|
Study of drug metabolism by xanthine oxidase. Int J Mol Sci 2012; 13:4873-4879. [PMID: 22606015 PMCID: PMC3344251 DOI: 10.3390/ijms13044873] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 03/31/2012] [Accepted: 04/16/2012] [Indexed: 01/05/2023] Open
Abstract
In this work, we report the studies of drug metabolism by xanthine oxidase (XOD) with electrochemical techniques. Firstly, a pair of stable, well-defined and quasi-reversible oxidation/reduction peaks is obtained with the formal potential at -413.1 mV (vs. SCE) after embedding XOD in salmon sperm DNA membrane on the surface of pyrolytic graphite electrode. Then, a new steady peak can be observed at -730 mV (vs. SCE) upon the addition of 6-mercaptopurine (6-MP) to the electrochemical system, indicating the metabolism of 6-MP by XOD. Furthermore, the chronoamperometric response shows that the current of the catalytic peak located at -730 mV increases with addition of 6-MP in a concentration-dependent manner, and the increase of the chronoamperometric current can be inhibited by an XOD inhibitor, quercetin. Therefore, our results prove that XOD/DNA modified electrode can be efficiently used to study the metabolism of 6-MP, which may provide a convenient approach for in vitro studies on enzyme-catalyzed drug metabolism.
Collapse
|
43
|
Ménard A, Huang Y, Karam P, Cosa G, Auclair K. Site-specific fluorescent labeling and oriented immobilization of a triple mutant of CYP3A4 via C64. Bioconjug Chem 2012; 23:826-36. [PMID: 22433037 DOI: 10.1021/bc200672s] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The generation of site-specific bioconjugates of proteins is highly desired for a number of biophysical and nanotechnological applications. To this end, many strategies have been developed that allow the specific modification of certain canonical amino acids and, more recently, noncanonical functional groups. P450 enzymes are heme-dependent monooxygenases involved in xenobiotic metabolism and in the biosynthesis of a variety of secondary metabolites. We became interested in the site-specific modification of these enzymes, CYP3A4 in particular, through our studies of their in vitro biocatalytic properties and our desire to exploit their remarkable ability to oxidize unactivated C-H bonds in a regio- and stereospecific manner. Obtained via a partial cysteine-depletion approach, a functional triple mutant of CYP3A4 (C98S/C239S/C468G) is reported here which is singly modified at C64 by maleimide-containing groups. While cysteine-labeling of the wild-type enzyme abolished >90% of its enzymatic activity, this mutant retained ≥75% of the activity of the unmodified wild-type enzyme with 9 of the 18 maleimides that were tested. These included both fluorescent and solid-supported maleimides. The loss of activity observed after labeling with some maleimides is attributed to direct enzyme inhibition rather than to steric effects. We also demonstrate the functional immobilization of this mutant on maleimide-functionalized agarose resin and silica microspheres.
Collapse
Affiliation(s)
- Amélie Ménard
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec, Canada, H3A 0B8
| | | | | | | | | |
Collapse
|
44
|
Mie Y, Kojima N, Kowata K, Komatsu Y. End-tether Structure of DNA Alters Electron-transfer Pathway of Redox-labeled Oligo-DNA Duplex at Electrode Surface. CHEM LETT 2012. [DOI: 10.1246/cl.2012.62] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yasuhiro Mie
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Naoshi Kojima
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Keiko Kowata
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Yasuo Komatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| |
Collapse
|
45
|
Affiliation(s)
- Toshiyuki Sakaki
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University
| |
Collapse
|
46
|
Xu X, Wei W, Huang M, Yao L, Liu S. Electrochemically driven drug metabolism via cytochrome P450 2C9 isozyme microsomes with cytochrome P450 reductase and indium tin oxide nanoparticle composites. Chem Commun (Camb) 2012; 48:7802-4. [DOI: 10.1039/c2cc33575a] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Huang M, Xu X, Yang H, Liu S. Electrochemically-driven and dynamic enhancement of drug metabolism via cytochrome P450 microsomes on colloidal gold/graphene nanocomposites. RSC Adv 2012. [DOI: 10.1039/c2ra22014h] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
48
|
Size-controlled fabrication of gold nanodome arrays and its application to enzyme electrodes. Colloids Surf A Physicochem Eng Asp 2011. [DOI: 10.1016/j.colsurfa.2011.04.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
49
|
Krishnan S, Schenkman JB, Rusling JF. Bioelectronic delivery of electrons to cytochrome P450 enzymes. J Phys Chem B 2011; 115:8371-80. [PMID: 21591685 DOI: 10.1021/jp201235m] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cytochrome P450s (cyt P450s) are the major oxidative enzymes in human oxidative metabolism of drugs and xenobiotic chemicals. In nature, the iron heme cyt P450s utilize oxygen and electrons delivered from NADPH by a reductase enzyme to oxidize substrates stereo- and regioselectively. Significant research has been directed toward achieving these events electrochemically. This Feature Article discusses the direct electrochemistry of cyt P450s in thin films and the utilization of such films for electrochemically driven biocatalysis. Maintaining and confirming structural integrity and catalytic activity of cyt P450s in films is an essential feature of these efforts. We highlight here our efforts to elucidate the influence of iron heme spin state and secondary structure of human cyt P450s on voltammetric and biocatalytic properties, using methodologies to quantitatively describe the dynamics of these processes in thin films. We also describe the first cyt P450/reductase films that accurately mimic the natural biocatalytic pathway and show how they can be used with voltammetry to elucidate key mechanistic features. Such bioelectronic cyt P450 systems have high value for future drug development, toxicity screening, fundamental investigations, and chemical synthesis systems.
Collapse
Affiliation(s)
- Sadagopan Krishnan
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | | | | |
Collapse
|
50
|
Fantuzzi A, Mak LH, Capria E, Dodhia V, Panicco P, Collins S, Gilardi G. A New Standardized Electrochemical Array for Drug Metabolic Profiling with Human Cytochromes P450. Anal Chem 2011; 83:3831-9. [DOI: 10.1021/ac200309q] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andrea Fantuzzi
- Division of Molecular Biosciences, Imperial College London, Biochemistry Building, South Kensington, London, SW7 2AY, United Kingdom
| | - Lok Hang Mak
- Division of Molecular Biosciences, Imperial College London, Biochemistry Building, South Kensington, London, SW7 2AY, United Kingdom
| | - Ennio Capria
- Division of Molecular Biosciences, Imperial College London, Biochemistry Building, South Kensington, London, SW7 2AY, United Kingdom
| | - Vikash Dodhia
- Division of Molecular Biosciences, Imperial College London, Biochemistry Building, South Kensington, London, SW7 2AY, United Kingdom
| | - Paola Panicco
- Division of Molecular Biosciences, Imperial College London, Biochemistry Building, South Kensington, London, SW7 2AY, United Kingdom
| | - Stephen Collins
- NanoBioDesign Ltd., Woodstock House, Winch Road, Kent Science Park, Sittingbourne, Kent, ME9 8EF, United Kingdom
| | - Gianfranco Gilardi
- Department of Human and Animal Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy
| |
Collapse
|