1
|
Ziebarth JD, Shadman H, Wang Y. Insights from Computational Studies of Polymeric Systems for Nucleic Acid Delivery. Mol Pharm 2025; 22:1160-1173. [PMID: 39957182 DOI: 10.1021/acs.molpharmaceut.4c00994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
The safe and efficient delivery of nucleic acids into cells is a critical step in the success of gene and cell therapies. Although viral vectors are the predominant tools in current gene and cell therapy practices, they present significant challenges including high costs and safety concerns. Nonviral delivery systems for nucleic acids show immense potential for future medicine, particularly as nucleic acid therapeutics continue to be developed for the treatment of a wide range of diseases, including cancer. Significant research efforts, both experimental and computational, have been devoted to the development, characterization, and understanding of nonviral delivery processes. While numerous reviews have documented these research advancements, few have specifically addressed the contributions from computational studies. In this review, we provide an overview of the insights gained from computational and theoretical studies of polymeric systems for nucleic acid delivery. We also highlight future directions where computational and experimental approaches could synergize to advance the field.
Collapse
Affiliation(s)
- Jesse Dylan Ziebarth
- Department of Chemistry, The University of Memphis, Memphis, Tennessee 38152, United States
| | - Hossain Shadman
- Department of Chemistry, The University of Memphis, Memphis, Tennessee 38152, United States
| | - Yongmei Wang
- Department of Chemistry, The University of Memphis, Memphis, Tennessee 38152, United States
| |
Collapse
|
2
|
Jony MJ, Joshi A, Dash A, Shukla S. Non-Viral Delivery Systems to Transport Nucleic Acids for Inherited Retinal Disorders. Pharmaceuticals (Basel) 2025; 18:87. [PMID: 39861150 PMCID: PMC11768406 DOI: 10.3390/ph18010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Inherited retinal disorders (IRDs) represent a group of challenging genetic conditions that often lead to severe visual impairment or blindness. The complexity of these disorders, arising from their diverse genetic causes and the unique structural and functional aspects of retinal cells, has made developing effective treatments particularly challenging. Recent advancements in gene therapy, especially non-viral nucleic acid delivery systems like liposomes, solid lipid nanoparticles, dendrimers, and polymersomes, offer promising solutions. These systems provide advantages over viral vectors, including reduced immunogenicity and enhanced targeting capabilities. This review delves into introduction of common IRDs such as Leber congenital amaurosis, retinitis pigmentosa, Usher syndrome, macular dystrophies, and choroideremia and critically assesses current treatments including neuroprotective agents, cellular therapy, and gene therapy along with their limitations. The focus is on the emerging role of non-viral delivery systems, which promise to address the current limitations of specificity, untoward effects, and immunogenicity in existing gene therapies. Additionally, this review covers recent clinical trial developments in gene therapy for retinal disorders.
Collapse
Affiliation(s)
- Md Jobair Jony
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, Omaha, NE 68178, USA
| | - Ameya Joshi
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, Omaha, NE 68178, USA
| | - Alekha Dash
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, Omaha, NE 68178, USA
| | - Surabhi Shukla
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, Omaha, NE 68178, USA
| |
Collapse
|
3
|
Hansen CB, Janaszewska A, Dąbrzalska M, Marcinkowska M, Klajnert-Maculewicz B, Christensen JB. Core-size and geometry versus toxicity in small amino terminated PAMAM dendrimers. RSC Adv 2024; 14:28684-28692. [PMID: 39257659 PMCID: PMC11384932 DOI: 10.1039/d4ra02020k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 08/30/2024] [Indexed: 09/12/2024] Open
Abstract
A series of 6 small PAMAM dendrimers (G0-dendrimers) differing in the size, polarity and flexibility has been synthesized. The toxicity has been investigated in three different human cancer cell lines (HeLa, MCF-7, THP-1) and the endothelial skin cell line HMEC-1 in order to evaluate their potential as vehicles for drug delivery.
Collapse
Affiliation(s)
- Claus Bøge Hansen
- Department of Chemistry, Faculty of Science, University of Copenhagen Thorvaldsensvej 40 DK-1871 Frederiksberg Denmark
| | - Anna Janaszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz 141/143 Pomorska Street 90-236 Lodz Poland
| | - Monika Dąbrzalska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz 141/143 Pomorska Street 90-236 Lodz Poland
| | - Monika Marcinkowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz 141/143 Pomorska Street 90-236 Lodz Poland
| | - Barbara Klajnert-Maculewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz 141/143 Pomorska Street 90-236 Lodz Poland
| | - Jørn Bolstad Christensen
- Department of Chemistry, Faculty of Science, University of Copenhagen Thorvaldsensvej 40 DK-1871 Frederiksberg Denmark
| |
Collapse
|
4
|
Bae S, Kim JS. Potential of Mean Force for DNA Wrapping Around a Cationic Nanoparticle. J Chem Theory Comput 2021; 17:7952-7961. [PMID: 34792353 DOI: 10.1021/acs.jctc.1c00797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sharp bending and wrapping of DNA around proteins and nanoparticles (NPs) has been of extensive research interest. Here, we present the potential of mean force (PMF) for wrapping a DNA double helix around a cationic NP using coarse-grained models of a double-stranded DNA and a cationic NP. Starting from a NP wrapped around by DNA, the PMF was calculated along the distance between the center of the NP and one end of the DNA molecule. A relationship between the distance and the extent of DNA wrapping is used to calculate the PMF as a function of DNA wrapping around a NP. In particular, the PMF was compared for two DNA sequences of (AT)25/(AT)25 and (AC)25/(GT)25, for which the persistence lengths are different by ∼10 nm. The simulation results provide solid evidence of the thermodynamic preference for complex formation of a cationic NP with more flexible DNA over the less flexible DNA. Furthermore, we estimated the elastic energy of DNA bending, which was in good order-of-magnitude agreement with the theoretical prediction of elastic rods. This work suggests that the variation of sequence-dependent DNA flexibility can be utilized in DNA nanotechnologies, in which the position and dynamics of NPs are regulated on large-scale DNA structures, or the structural transformation of DNA is triggered by the sequence-dependent binding of NPs.
Collapse
Affiliation(s)
- Sehui Bae
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jun Soo Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
5
|
Jordan JH, Ashbaugh HS, Mague JT, Gibb BC. Buffer and Salt Effects in Aqueous Host-Guest Systems: Screening, Competitive Binding, or Both? J Am Chem Soc 2021; 143:18605-18616. [PMID: 34704751 PMCID: PMC8587612 DOI: 10.1021/jacs.1c08457] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There are many open questions regarding the supramolecular properties of ions in water, a fact that has ramifications within any field of study involving buffered solutions. Indeed, as Pielak has noted (Buffers, Especially the Good Kind, Biochemistry, 2021, in press. DOI:10.1021/acs.biochem.1c00200) buffers were conceived of with little regard to their supramolecular properties. But there is a difficulty here; the mathematical models supramolecular chemists use for affinity determinations do not account for screening. As a result, there is uncertainty as to the magnitude of any screening effect and how this compares to competitive salt/buffer binding. Here we use a tetra-cation cavitand to compare halide affinities obtained using a traditional unscreened model and a screened (Debye-Hückel) model. The rule of thumb that emerges is that if ionic strength is changed by >1 order of magnitude─either during a titration or if a comparison is sought between two different buffered solutions─screening should be considered. We also build a competitive mathematical model showing that binding attenuation in buffer is largely due to competitive binding to the host by said buffer. For the system at hand, we find that the effect of competition is approximately twice that of the effect of screening (∼RT at 25 °C). Thus, for strong binders it is less important to account for screening than it is to account for competitive complexation, but for weaker binders both effects should be considered. We anticipate these results will help supramolecular chemists unravel the properties of buffers and so help guide studies of biomacromolecules.
Collapse
Affiliation(s)
- Jacobs H Jordan
- Agricultural Research Service Southern Regional Research Center, U.S. Department of Agriculture, New Orleans, Louisiana 70124, United States
| | - Henry S Ashbaugh
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Joel T Mague
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Bruce C Gibb
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
6
|
Arora S, Sharma D, Layek B, Singh J. A Review of Brain-Targeted Nonviral Gene-Based Therapies for the Treatment of Alzheimer's Disease. Mol Pharm 2021; 18:4237-4255. [PMID: 34705472 DOI: 10.1021/acs.molpharmaceut.1c00611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diseases of the central nervous system (CNS) are difficult to treat owing to the complexity of the brain and the presence of a natural blood-brain-barrier (BBB). Alzheimer's disease (AD) is one of the major progressive and currently incurable neurodegenerative disorders of the CNS, which accounts for 60-80% of cases of dementia. The pathophysiology of AD involves the accumulation of amyloid beta (Aβ) plaques and neurofibrillary tangles (NFTs) in the brain. Additionally, synaptic loss and imbalance of neuronal signaling molecules are characterized as important markers of AD. Existing treatments of AD help in the management of its symptoms and aim toward the maintenance of cognitive functions, behavior, and attenuation of gradual memory loss. Over the past decade, nonviral gene therapy has attracted increasing interest due to its various advantages over its viral counterparts. Moreover, advancements in nonviral gene technology have led to their increasing contributions in clinical trials. However, brain-targeted nonviral gene delivery vectors come across various extracellular and intracellular barriers, limiting their ability to transfer the therapeutic gene into the target cells. Chief barriers to nonviral gene therapy have been discussed briefly in this review. We have also highlighted the rapid advancement of several nonviral gene therapies for AD, which are broadly categorized into physical and chemical methods. These methods aim to modulate Aβ, beta-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1), apolipoprotein E, or neurotrophic factors' expression in the CNS. Overall, this review discusses challenges and recent advancements of nonviral gene therapy for AD.
Collapse
Affiliation(s)
- Sanjay Arora
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Divya Sharma
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Buddhadev Layek
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Jagdish Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, North Dakota 58105, United States
| |
Collapse
|
7
|
Yang W, Miyazaki T, Chen P, Hong T, Naito M, Miyahara Y, Matsumoto A, Kataoka K, Miyata K, Cabral H. Block catiomer with flexible cationic segment enhances complexation with siRNA and the delivery performance in vitro. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2021; 22:850-863. [PMID: 34658669 PMCID: PMC8519541 DOI: 10.1080/14686996.2021.1976055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 05/14/2023]
Abstract
RNA interference (RNAi) by small interfering RNAs (siRNAs) is a promising therapeutic approach. Because siRNA has limited intracellular access and is rapidly cleared in vivo, the success of RNAi depends on efficient delivery technologies. Particularly, polyion complexation between block catiomers and siRNA is a versatile approach for constructing effective carriers, such as unit polyion complexes (uPIC), core-shell polyion complex (PIC) micelles and vesicular siRNAsomes, by engineering the structure of block catiomers. In this regard, the flexibility of block catiomers could be an important parameter in the formation of PIC nanostructures with siRNA, though its effect remains unknown. Here, we studied the influence of block catiomer flexibility on the assembly of PIC structures with siRNA using a complementary polymeric system, i.e. poly(ethylene glycol)-poly(L-lysine) (PEG-PLL) and PEG-poly(glycidylbutylamine) (PEG-PGBA), which has a relatively more flexible polycation segment than PEG-PLL. Mixing PEG-PGBA with siRNA at molar ratios of primary amines in polymer to phosphates in the siRNA (N/P ratios) higher than 1.5 promoted the multimolecular association of uPICs, whereas PEG-PLL formed uPIC at all N/P ratios higher than 1. Moreover, uPICs from PEG-PGBA were more stable against counter polyanion exchange than uPICs from PEG-PLL, probably due to a favorable complexation process, as suggested by computational studies of siRNA/block catiomer binding. In in vitro experiments, PEG-PGBA uPICs promoted effective intracellular delivery of siRNA and efficient gene knockdown. Our results indicate the significance of polycation flexibility on assembling PIC structures with siRNA, and its potential for developing innovative delivery systems.
Collapse
Affiliation(s)
- Wenqian Yang
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Japan
| | - Takuya Miyazaki
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
- Kanagawa Institute of Industrial Science and Technology, Kanagawa, Japan
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Pengwen Chen
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Japan
| | - Taehun Hong
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Japan
| | - Mitsuru Naito
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuji Miyahara
- Kanagawa Institute of Industrial Science and Technology, Kanagawa, Japan
| | - Akira Matsumoto
- Kanagawa Institute of Industrial Science and Technology, Kanagawa, Japan
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Japan
| | - Kanjiro Miyata
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Japan
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Japan
| |
Collapse
|
8
|
Hua C, Chen K, Guo X. Boronic acid-functionalized spherical polymer brushes for efficient and selective enrichment of glycoproteins. J Mater Chem B 2021; 9:7557-7565. [PMID: 34551054 DOI: 10.1039/d1tb00835h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Glycoproteins are related to many biological activities and diseases, and thereby their efficient capture and enrichment for diagnostics and proteomics have emerged to exhibit great significance. However, the lack of materials with high binding capacity and selectivity is still a big obstacle for further application. Herein, we reported a facile and eco-friendly approach to fabricate spherical polymer brushes with multiple boronic acid groups. Specifically, the whole process can be divided into three steps, the polystyrene (PS) core was obtained by traditional emulsion polymerization, followed by immobilization of a home-made photoinitiator. Subsequently, boronic acid-functionalized polymer chains (PBA) were chemically grafted via photo-emulsion polymerization, leading to spherical polymer brushes (PS-PBA) with boronate affinity. The particle size, morphology, and composition of as-prepared spherical polymer brushes were systematically characterized. The characteristics of glycoproteins binding to the spherical polymer brushes under different conditions, including pH values and ionic strength, were also investigated. PS-PBA brushes possess fast binding speed (30 min) and high binding capacity for glycoprotein ovalbumin (OVA) (377.0 mg g-1) under physiological pH conditions at 25 °C, because the low steric hindrance of flexible polymeric PBA chains facilitates the interaction between boronic acid groups and glycoproteins. Moreover, the binding capacity of PS-PBA brushes for glycoprotein OVA was ∼6.7 times higher than that for non-glycoprotein bovine serum albumin (BSA), indicating the excellent selective adsorption. This study provided a facile and efficient approach for the fabrication of boronic acid-functionalized materials that will be useful in the enrichment and separation of glycoproteins for the diagnosis of diseases.
Collapse
Affiliation(s)
- Chen Hua
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China.
| | - Kaimin Chen
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China.
| | - Xuhong Guo
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China. .,Engineering Research Center of Materials Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Xinjiang 832000, People's Republic of China
| |
Collapse
|
9
|
Bae S, Oh I, Yoo J, Kim JS. Effect of DNA Flexibility on Complex Formation of a Cationic Nanoparticle with Double-Stranded DNA. ACS OMEGA 2021; 6:18728-18736. [PMID: 34337212 PMCID: PMC8319935 DOI: 10.1021/acsomega.1c01709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
We present extensive molecular dynamics simulations of a cationic nanoparticle and a double-stranded DNA molecule to discuss the effect of DNA flexibility on the complex formation of a cationic nanoparticle with double-stranded DNA. Martini coarse-grained models were employed to describe double-stranded DNA molecules with two different flexibilities and cationic nanoparticles with three different electric charges. As the electric charge of a cationic nanoparticle increases, the degree of DNA bending increases, eventually leading to the wrapping of DNA around the nanoparticle at high electric charges. However, a small increase in the persistence length of DNA by 10 nm requires a cationic nanoparticle with a markedly increased electric charge to bend and wrap DNA around. Thus, a more flexible DNA molecule bends and wraps around a cationic nanoparticle with an intermediate electric charge, whereas a less flexible DNA molecule binds to a nanoparticle with the same electric charge without notable bending. This work provides solid evidence that a small difference in DNA flexibility (as small as 10 nm in persistence length) has a substantial influence on the complex formation of DNA with proteins from a biological perspective and suggests that the variation of sequence-dependent DNA flexibility can be utilized in DNA nanotechnology as a new tool to manipulate the structure of DNA molecules mediated by nanoparticle binding.
Collapse
Affiliation(s)
- Sehui Bae
- Department
of Chemistry and Nanoscience, Ewha Womans
University, Seoul 03760, Republic of Korea
| | - Inrok Oh
- LG
Chem Ltd., LG Science Park, Seoul 07796, Republic of Korea
| | - Jejoong Yoo
- Department
of Physics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jun Soo Kim
- Department
of Chemistry and Nanoscience, Ewha Womans
University, Seoul 03760, Republic of Korea
| |
Collapse
|
10
|
Li H, He H, Liu Z. Recent progress and application of boronate affinity materials in bioanalysis. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116271] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Tsuchido Y, Kojima S, Sugita K, Fujiwara S, Hashimoto T, Hayashita T. Effect of Spacer Length in Pyrene-Modified-Phenylboronic Acid Probe/CyD Complexes on Fluorescence-based Recognition of Monosaccharides in Aqueous Solution. ANAL SCI 2021; 37:721-726. [PMID: 33455966 DOI: 10.2116/analsci.20scp08] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The chemical sensing of saccharides is of importance for the diagnosis of diabetes. Various enzymatic sensors have been developed, but their heat and pH instability issues need to be resolved. In this regard, the development of artificial saccharide sensors with high stability is attracting attention. We have designed a heat- and pH-stable supramolecular inclusion complex system composed of cyclodextrin (CyD) as a host and a phenylboronic acid (PB) probe possessing pyrene as a fluorescent guest. Several probes possessing alkyl spacers having various lengths between the PB and the pyrene moiety, Cn-APB (n = 1 - 4), were newly synthesized and evaluated with respect to their monosaccharide recognition ability on the basis of the fluorescence response through the cyclic esterification of monosaccharide and PB. These Cn-APB/CyD supramolecular inclusion complexes have exhibited a selective fluorescence response towards fructose in aqueous solution based on the photo-induced electron transfer mechanism. The spacer length of the alkyl group in Cn-APB significantly affects the affinity for saccharides. With respect to the complex between C4-APB and PB-modified CyD (3-PB-γ-CyD), it was found that the supramolecular inclusion complexes had high selectivity for glucose with significant fluorescence enhancement. These results indicate that the lengths of the alkyl spacers in the probe molecules are important to control the recognition of saccharides in aqueous solution.
Collapse
Affiliation(s)
- Yuji Tsuchido
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University.,Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns)
| | - Shohei Kojima
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University
| | - Ko Sugita
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University
| | - Shoji Fujiwara
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University.,Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University
| | - Takeshi Hashimoto
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University
| | - Takashi Hayashita
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University
| |
Collapse
|
12
|
Qu X, Shi D, Fu Y, Chu D, Yang Y, Liu Y. Enhanced antitumor activity of polyoxometalates loaded solid lipid nanoparticles. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2020.108411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
13
|
Empereur-Mot C, Pesce L, Doni G, Bochicchio D, Capelli R, Perego C, Pavan GM. Swarm-CG: Automatic Parametrization of Bonded Terms in MARTINI-Based Coarse-Grained Models of Simple to Complex Molecules via Fuzzy Self-Tuning Particle Swarm Optimization. ACS OMEGA 2020; 5:32823-32843. [PMID: 33376921 PMCID: PMC7758974 DOI: 10.1021/acsomega.0c05469] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/26/2020] [Indexed: 05/23/2023]
Abstract
We present Swarm-CG, a versatile software for the automatic iterative parametrization of bonded parameters in coarse-grained (CG) models, ideal in combination with popular CG force fields such as MARTINI. By coupling fuzzy self-tuning particle swarm optimization to Boltzmann inversion, Swarm-CG performs accurate bottom-up parametrization of bonded terms in CG models composed of up to 200 pseudo atoms within 4-24 h on standard desktop machines, using default settings. The software benefits from a user-friendly interface and two different usage modes (default and advanced). We particularly expect Swarm-CG to support and facilitate the development of new CG models for the study of complex molecular systems interesting for bio- and nanotechnology. Excellent performances are demonstrated using a benchmark of 9 molecules of diverse nature, structural complexity, and size. Swarm-CG is available with all its dependencies via the Python Package Index (PIP package: swarm-cg). Demonstration data are available at: www.github.com/GMPavanLab/SwarmCG.
Collapse
Affiliation(s)
- Charly Empereur-Mot
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Galleria 2, Via Cantonale 2c, CH-6928 Manno, Switzerland
| | - Luca Pesce
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Galleria 2, Via Cantonale 2c, CH-6928 Manno, Switzerland
| | - Giovanni Doni
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Galleria 2, Via Cantonale 2c, CH-6928 Manno, Switzerland
| | - Davide Bochicchio
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Galleria 2, Via Cantonale 2c, CH-6928 Manno, Switzerland
| | - Riccardo Capelli
- Department of Applied Science and Techology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Claudio Perego
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Galleria 2, Via Cantonale 2c, CH-6928 Manno, Switzerland
| | - Giovanni M. Pavan
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Galleria 2, Via Cantonale 2c, CH-6928 Manno, Switzerland
- Department of Applied Science and Techology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
14
|
Stojceski F, Grasso G, Pallante L, Danani A. Molecular and Coarse-Grained Modeling to Characterize and Optimize Dendrimer-Based Nanocarriers for Short Interfering RNA Delivery. ACS OMEGA 2020; 5:2978-2986. [PMID: 32095720 PMCID: PMC7033960 DOI: 10.1021/acsomega.9b03908] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
Dendrimer nanocarriers are unique hyper-branched polymers with biomolecule-like properties, representing a promising prospect as a nucleic acid delivery system. The design of effective dendrimer-based gene carriers requires considering several parameters, such as carrier morphology, size, molecular weight, surface chemistry, and flexibility/rigidity. In detail, the rational design of the dendrimer surface chemistry has been ascertained to play a crucial role on the efficiency of interaction with nucleic acids. Within this framework, advances in the field of organic chemistry have allowed us to design dendrimers with even small difference in the chemical structure of their surface terminals. In this study, we have selected two different cationic phosphorus dendrimers of generation 3 functionalized, respectively, with pyrrolidinium (DP) and morpholinium (DM) surface groups, which have demonstrated promising potential for short interfering RNA (siRNA) delivery. Despite DP and DM differing only for one atom in their chemical structure, in vitro and in vivo experiments have highlighted several differences between them in terms of siRNA complexation properties. In this context, we have employed coarse-grained molecular dynamics simulation techniques to shed light on the supramolecular characteristics of dendrimer-siRNA complexation, the so-called dendriplex formations. Our data provide important information on self-assembly dynamics driven by surface chemistry and competition mechanisms.
Collapse
Affiliation(s)
- Filip Stojceski
- Istituto
Dalle Molle di Studi sull’Intelligenza Artificiale (IDSIA), Scuola Universitaria Professionale della Svizzera
Italiana (SUPSI), Università della Svizzera Italiana (USI), Centro Galleria 2, Manno CH-6928, Switzerland
| | - Gianvito Grasso
- Istituto
Dalle Molle di Studi sull’Intelligenza Artificiale (IDSIA), Scuola Universitaria Professionale della Svizzera
Italiana (SUPSI), Università della Svizzera Italiana (USI), Centro Galleria 2, Manno CH-6928, Switzerland
| | - Lorenzo Pallante
- PolitoBIOMed
Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy
| | - Andrea Danani
- Istituto
Dalle Molle di Studi sull’Intelligenza Artificiale (IDSIA), Scuola Universitaria Professionale della Svizzera
Italiana (SUPSI), Università della Svizzera Italiana (USI), Centro Galleria 2, Manno CH-6928, Switzerland
| |
Collapse
|
15
|
Su D, Coste M, Diaconu A, Barboiu M, Ulrich S. Cationic dynamic covalent polymers for gene transfection. J Mater Chem B 2020; 8:9385-9403. [DOI: 10.1039/d0tb01836h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dynamic covalent polymers have revealed strong potential in gene delivery, thanks to their versatile self-assembly, adaptive and responsive behaviors.
Collapse
Affiliation(s)
- Dandan Su
- Institut Européen des Membranes
- Adaptive Supramolecular Nanosystems Group
- University of Montpellier
- ENSCM
- CNRS
| | - Maëva Coste
- Institut des Biomolécules Max Mousseron (IBMM)
- CNRS
- Université of Montpellier
- ENSCM
- Montpellier
| | - Andrei Diaconu
- Petru Poni” Institute of Macromolecular Chemistry of Romanian Academy
- Iasi
- Romania
| | - Mihail Barboiu
- Institut Européen des Membranes
- Adaptive Supramolecular Nanosystems Group
- University of Montpellier
- ENSCM
- CNRS
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM)
- CNRS
- Université of Montpellier
- ENSCM
- Montpellier
| |
Collapse
|
16
|
Zhang Y, Wang F, Zhang H, Wang H, Liu Y. Multivalency Interface and g-C3N4 Coated Liquid Metal Nanoprobe Signal Amplification for Sensitive Electrogenerated Chemiluminescence Detection of Exosomes and Their Surface Proteins. Anal Chem 2019; 91:12100-12107. [DOI: 10.1021/acs.analchem.9b03427] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yimeng Zhang
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Feng Wang
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Huixin Zhang
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Hongye Wang
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Yang Liu
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, China
| |
Collapse
|
17
|
Gorzkiewicz M, Deriu MA, Studzian M, Janaszewska A, Grasso G, Pułaski Ł, Appelhans D, Danani A, Klajnert-Maculewicz B. Fludarabine-Specific Molecular Interactions with Maltose-Modified Poly(propyleneimine) Dendrimer Enable Effective Cell Entry of the Active Drug Form: Comparison with Clofarabine. Biomacromolecules 2019; 20:1429-1442. [PMID: 30707833 DOI: 10.1021/acs.biomac.9b00010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Fludarabine is an anticancer antimetabolite essential for modern chemotherapy, but its efficacy is limited due to the complex pharmacokinetics. We demonstrated the potential use of maltose-modified poly(propyleneimine) dendrimer as drug delivery agent to improve the efficiency of therapy with fludarabine. In this study, we elaborated a novel synthesis technique for radioactively labeled fludarabine triphosphate to prove for the first time the direct ability of nucleotide-glycodendrimer complex to enter and kill leukemic cells, without the involvement of membrane nucleoside transporters and intracellular kinases. This will potentially allow to bypass the most common drug resistance mechanisms observed in the clinical setting. Further, we applied surface plasmon resonance and molecular modeling to elucidate the properties of the drug-dendrimer complexes. We showed that clofarabine, a more toxic nucleoside analogue drug, is characterized by significantly different molecular interactions with poly(propyleneimine) dendrimers than fludarabine, leading to different cellular outcomes (decreased rather than increased treatment efficiency). The most probable mechanistic explanation of uniquely dendrimer-enhanced fludarabine toxicity points to a crucial role of both an alternative cellular uptake pathway and the avoidance of intracellular phosphorylation of nucleoside drug form.
Collapse
Affiliation(s)
- Michał Gorzkiewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection , University of Lodz , 141/143 Pomorska Street , 90-236 Lodz , Poland
| | - Marco A Deriu
- SUPSI-DTI IDSIA-Dalle Molle Institute for Artificial Intelligence , CH-6928 Manno , Switzerland
| | - Maciej Studzian
- Department of General Biophysics, Faculty of Biology and Environmental Protection , University of Lodz , 141/143 Pomorska Street , 90-236 Lodz , Poland.,Department of Molecular Biophysics, Faculty of Biology and Environmental Protection , University of Lodz , 141/143 Pomorska Street , 90-236 Lodz , Poland
| | - Anna Janaszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection , University of Lodz , 141/143 Pomorska Street , 90-236 Lodz , Poland
| | - Gianvito Grasso
- SUPSI-DTI IDSIA-Dalle Molle Institute for Artificial Intelligence , CH-6928 Manno , Switzerland
| | - Łukasz Pułaski
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection , University of Lodz , 141/143 Pomorska Street , 90-236 Lodz , Poland.,Laboratory of Transcriptional Regulation , Institute of Medical Biology PAS , 106 Lodowa Street , 93-232 Lodz , Poland
| | - Dietmar Appelhans
- Leibniz Institute of Polymer Research Dresden , Hohe Straße 6 , 01069 Dresden , Germany
| | - Andrea Danani
- SUPSI-DTI IDSIA-Dalle Molle Institute for Artificial Intelligence , CH-6928 Manno , Switzerland
| | - Barbara Klajnert-Maculewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection , University of Lodz , 141/143 Pomorska Street , 90-236 Lodz , Poland.,Leibniz Institute of Polymer Research Dresden , Hohe Straße 6 , 01069 Dresden , Germany
| |
Collapse
|
18
|
Jiang L, Zhou S, Zhang X, Wu W, Jiang X. Dendrimer-based nanoparticles in cancer chemotherapy and gene therapy. SCIENCE CHINA MATERIALS 2018; 61:1404-1419. [DOI: 10.1007/s40843-018-9242-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/05/2018] [Indexed: 01/06/2025]
|
19
|
Deriu MA, Tsapis N, Noiray M, Grasso G, El Brahmi N, Mignani S, Majoral JP, Fattal E, Danani A. Elucidating the role of surface chemistry on cationic phosphorus dendrimer-siRNA complexation. NANOSCALE 2018; 10:10952-10962. [PMID: 29850714 DOI: 10.1039/c8nr01928b] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In the field of dendrimers targeting small interfering RNA (siRNA) delivery, dendrimer structural properties, such as the flexibility/rigidity ratio, play a crucial role in the efficiency of complexation. However, advances in organic chemistry have enabled the development of dendrimers that differ only by a single atom on their surface terminals. This is the case for cationic phosphorus dendrimers functionalized with either pyrrolidinium (DP) or morpholinium (DM) terminal groups. This small change was shown to strongly affect the dendrimer-siRNA complexation, leading to more efficient anti-inflammatory effects in the case of DP. Reasons for this different behavior can hardly be inferred only by biological in vitro and in vivo experiments due to the high number of variables and complexity of the investigated biological system. However, an understanding of how small chemical surface changes may completely modify the overall dendrimer-siRNA complexation is a significant breakthrough towards the design of efficient dendrimers for nucleic acid delivery. Herein, we present experimental and computational approaches based on isothermal titration calorimetry and molecular dynamics simulations to elucidate the molecular reasons behind different efficiencies and activities of DP and DM. Results of the present research highlight how chemical surface modifications may drive the overall dendrimer-siRNA affinity by influencing enthalpic and entropic contributions of binding free energy. Moreover, this study elucidates molecular reasons related to complexation stoichiometry that may be crucial in determining the dendrimer complexation efficiency.
Collapse
Affiliation(s)
- Marco A Deriu
- Istituto Dalle Molle di studi sull'Intelligenza Artificiale (IDSIA), Scuola universitaria professionale della Svizzera italiana (SUPSI), Università della Svizzera italiana (USI), Centro Galleria 2, Manno, CH-6928, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Smith DK. From fundamental supramolecular chemistry to self-assembled nanomaterials and medicines and back again – how Sam inspired SAMul. Chem Commun (Camb) 2018; 54:4743-4760. [DOI: 10.1039/c8cc01753k] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Personal inspiration led to the development of a programme of research targeting the use of self-assembled systems in nanomedicine, which in the process of approaching a range of applications has uncovered new fundamental concepts in supramolecular science.
Collapse
|
21
|
Wu D, Shen J, Bai H, Yu G. Supramolecular self-assemblies for bacterial cell agglutination driven by directional charge-transfer interactions. Chem Commun (Camb) 2018; 54:2922-2925. [DOI: 10.1039/c8cc00645h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Two supramolecular amphiphiles are fabricated through directional charge-transfer interactions, which self-assemble into nanofibers and nanoribbons. Due to the existence of galactose on their surface, these self-assemblies act as a cell glue to agglutinate E. coli, benefiting from multivalent interactions.
Collapse
Affiliation(s)
- Dan Wu
- Institute of Chemical Biology and Pharmaceutical Chemistry
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Jie Shen
- School of Medicine
- Zhejiang University City College
- Hangzhou 310015
- P. R. China
| | - Hongzhen Bai
- Institute of Chemical Biology and Pharmaceutical Chemistry
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Guocan Yu
- Laboratory of Molecular Imaging and Nanomedicine
- National Institute of Biomedical Imaging and Bioengineering
- National Institutes of Health
- Bethesda
- USA
| |
Collapse
|
22
|
Zhang C, Zhao DX, Wang Q, Yu L, Li GH, Yang ZZ. A salt-bridge switch in the molecular recognition between RS receptor and RGD ligand from the ABEEM σπmolecular dynamics simulations. MOLECULAR SIMULATION 2017. [DOI: 10.1080/08927022.2017.1350660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Chao Zhang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, China
| | - Dong-Xia Zhao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, China
| | - Qian Wang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, China
| | - Ling Yu
- Liaoning Panjin Fine Chemical Industrial Park Administrative Committee, Panjin, China
| | - Guo-Hui Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Zhong-Zhi Yang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, China
| |
Collapse
|
23
|
Grasso G, Deriu MA, Patrulea V, Borchard G, Möller M, Danani A. Free energy landscape of siRNA-polycation complexation: Elucidating the effect of molecular geometry, polymer flexibility, and charge neutralization. PLoS One 2017; 12:e0186816. [PMID: 29088239 PMCID: PMC5663398 DOI: 10.1371/journal.pone.0186816] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 10/09/2017] [Indexed: 12/16/2022] Open
Abstract
The success of medical threatments with DNA and silencing interference RNA is strongly related to the design of efficient delivery technologies. Cationic polymers represent an attractive strategy to serve as nucleic-acid carriers with the envisioned advantages of efficient complexation, low cost, ease of production, well-defined size, and low polydispersity index. However, the balance between efficacy and toxicity (safety) of these polymers is a challenge and in need of improvement. With the aim of designing more effective polycationic-based gene carriers, many parameters such as carrier morphology, size, molecular weight, surface chemistry, and flexibility/rigidity ratio need to be taken into consideration. In the present work, the binding mechanism of three cationic polymers (polyarginine, polylysine and polyethyleneimine) to a model siRNA target is computationally investigated at the atomistic level. In order to better understand the polycationic carrier-siRNA interactions, replica exchange molecular dynamic simulations were carried out to provide an exhaustive exploration of all the possible binding sites, taking fully into account the siRNA flexibility together with the presence of explicit solvent and ions. Moreover, well-tempered metadynamics simulations were employed to elucidate how molecular geometry, polycation flexibility, and charge neutralization affect the siRNA-polycations free energy landscape in term of low-energy binding modes and unbinding free energy barriers. Significant differences among polymer binding modes have been detected, revealing the advantageous binding properties of polyarginine and polylysine compared to polyethyleneimine.
Collapse
Affiliation(s)
- Gianvito Grasso
- Istituto Dalle Molle di Studi Sull'Intelligenza Artificiale (IDSIA), Scuola Universitaria Professionale della Svizzera Italiana (SUPSI), Università della Svizzera Italiana (USI), Centro Galleria 2, Manno, Switzerland
| | - Marco Agostino Deriu
- Istituto Dalle Molle di Studi Sull'Intelligenza Artificiale (IDSIA), Scuola Universitaria Professionale della Svizzera Italiana (SUPSI), Università della Svizzera Italiana (USI), Centro Galleria 2, Manno, Switzerland
| | - Viorica Patrulea
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, Geneva, Switzerland
| | - Gerrit Borchard
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, Geneva, Switzerland
| | - Michael Möller
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, Geneva, Switzerland
| | - Andrea Danani
- Istituto Dalle Molle di Studi Sull'Intelligenza Artificiale (IDSIA), Scuola Universitaria Professionale della Svizzera Italiana (SUPSI), Università della Svizzera Italiana (USI), Centro Galleria 2, Manno, Switzerland
| |
Collapse
|
24
|
Otremba T, Ravoo BJ. Dynamic multivalent interaction of phenylboronic acid functionalized dendrimers with vesicles. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.04.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Jiang L, Messing ME, Ye L. Temperature and pH Dual-Responsive Core-Brush Nanocomposite for Enrichment of Glycoproteins. ACS APPLIED MATERIALS & INTERFACES 2017; 9:8985-8995. [PMID: 28240025 DOI: 10.1021/acsami.6b15326] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this report, we present a novel modular approach to the immobilization of a high density of boronic acid ligands on thermoresponsive block copolymer brushes for effective enrichment of glycoproteins via their synergistic multiple covalent binding with the immobilized boronic acids. Specifically, a two-step, consecutive surface-initiated atom transfer radical polymerization (SI-ATRP) was employed to graft a flexible block copolymer brush, pNIPAm-b-pGMA, from an initiator-functionalized nanosilica surface, followed by postpolymerization modification of the pGMA moiety with sodium azide. Subsequently, an alkyne-tagged boronic acid (PCAPBA) was conjugated to the polymer brush via a Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click reaction, leading to a silica-supported polymeric hybrid material, Si@pNIPAm-b-pBA, with a potent glycol binding affinity. The obtained core-brush nanocomposite was systematically characterized with regard to particle size, morphology, organic content, brush density, and number of immobilized boronic acids. We also studied the characteristics of glycoprotein binding of the nanocomposite under different conditions. The nanocomposite showed high binding capacities for ovalbumin (OVA) (98.0 mg g-1) and horseradish peroxidase (HRP) (26.8 mg g-1) in a basic buffer (pH 9.0) at 20 °C. More importantly, by adjusting the pH and temperature, the binding capacities of the nanocomposite can be tuned, which is meaningful for the separation of biological molecules. In general, the synthetic approach developed for the fabrication of block copolymer brushes in the nanocomposite opened new opportunities for the design of more functional hybrid materials that will be useful in bioseparation and biomedical applications.
Collapse
Affiliation(s)
- Lingdong Jiang
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University , Box 124, 221 00 Lund, Sweden
| | - Maria E Messing
- Division of Solid State Physics and NanoLund, Department of Physics, Lund University , Box 118, 221 00 Lund, Sweden
| | - Lei Ye
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University , Box 124, 221 00 Lund, Sweden
| |
Collapse
|
26
|
Rodrigo AC, Laurini E, Vieira VMP, Pricl S, Smith DK. Effect of buffer at nanoscale molecular recognition interfaces – electrostatic binding of biological polyanions. Chem Commun (Camb) 2017; 53:11580-11583. [DOI: 10.1039/c7cc07413a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The electrostatic binding of polyanionic heparin by cationic receptors is highly dependent on the buffer in which the binding assay is carried out.
Collapse
Affiliation(s)
| | - Erik Laurini
- Simulation Engineering (MOSE) Laboratory
- Department of Engineering and Architectures (DEA)
- University of Trieste
- Trieste
- Italy
| | | | - Sabrina Pricl
- Simulation Engineering (MOSE) Laboratory
- Department of Engineering and Architectures (DEA)
- University of Trieste
- Trieste
- Italy
| | | |
Collapse
|
27
|
Han Y, Zhu B, Chen Y, Bo Z, Chen Y. Amphiphilic dendrons with a pyrene functional group at the focal point: synthesis, self-assembly and generation-dependent DNA condensation. Polym Chem 2017. [DOI: 10.1039/c7py01052d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Dendritic amphiphiles with a dual-functional pyrene as a fluorescent probe and hydrophobe at the focal point exhibited generation-dependent self-assembly and DNA condensation.
Collapse
Affiliation(s)
- Yi Han
- Tianjin Key Laboratory of Molecular Optoelectronic Science
- Department of Chemistry
- Tianjin University
- Tianjin
- P. R. China
| | - Bo Zhu
- Beijing Key Laboratory of Energy Conversion and Storage Materials
- College of Chemistry
- Beijing Normal University
- Beijing
- P. R. China
| | - Ying Chen
- Tianjin Key Laboratory of Molecular Optoelectronic Science
- Department of Chemistry
- Tianjin University
- Tianjin
- P. R. China
| | - Zhishan Bo
- Beijing Key Laboratory of Energy Conversion and Storage Materials
- College of Chemistry
- Beijing Normal University
- Beijing
- P. R. China
| | - Yulan Chen
- Tianjin Key Laboratory of Molecular Optoelectronic Science
- Department of Chemistry
- Tianjin University
- Tianjin
- P. R. China
| |
Collapse
|
28
|
Affiliation(s)
- Ching W. Chan
- Department of Chemistry, University of York, York, UK
| | | |
Collapse
|
29
|
Bartolami E, Bouillon C, Dumy P, Ulrich S. Bioactive clusters promoting cell penetration and nucleic acid complexation for drug and gene delivery applications: from designed to self-assembled and responsive systems. Chem Commun (Camb) 2016; 52:4257-73. [DOI: 10.1039/c5cc09715k] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recent developments in the (self-)assembly of cationic clusters promoting nucleic acids complexation and cell penetration open the door to applications in drug and gene delivery.
Collapse
Affiliation(s)
- Eline Bartolami
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Camille Bouillon
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Pascal Dumy
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| |
Collapse
|
30
|
Kanchi S, Suresh G, Priyakumar UD, Ayappa KG, Maiti PK. Molecular Dynamics Study of the Structure, Flexibility, and Hydrophilicity of PETIM Dendrimers: A Comparison with PAMAM Dendrimers. J Phys Chem B 2015; 119:12990-3001. [DOI: 10.1021/acs.jpcb.5b07124] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Subbarao Kanchi
- Center
for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, 560012, India
- Department
of Chemical Engineering, Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, 560012, India
| | - Gorle Suresh
- Center
for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - U. Deva Priyakumar
- Center
for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - K. G. Ayappa
- Department
of Chemical Engineering, Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, 560012, India
| | - Prabal K Maiti
- Center
for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
31
|
Li D, Chen Y, Liu Z. Boronate affinity materials for separation and molecular recognition: structure, properties and applications. Chem Soc Rev 2015; 44:8097-123. [PMID: 26377373 DOI: 10.1039/c5cs00013k] [Citation(s) in RCA: 393] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Boronate affinity materials, as unique sorbents, have emerged as important media for the selective separation and molecular recognition of cis-diol-containing compounds. With the introduction of boronic acid functionality, boronate affinity materials exhibit several significant advantages, including broad-spectrum selectivity, reversible covalent binding, pH-controlled capture/release, fast association/desorption kinetics, and good compatibility with mass spectrometry. Because cis-diol-containing biomolecules, including nucleosides, saccharides, glycans, glycoproteins and so on, are the important targets in current research frontiers such as metabolomics, glycomics and proteomics, boronate affinity materials have gained rapid development and found increasing applications in the last decade. In this review, we critically survey recent advances in boronate affinity materials. We focus on fundamental considerations as well as important progress and new boronate affinity materials reported in the last decade. We particularly discuss on the effects of the structure of boronate ligands and supporting materials on the properties of boronate affinity materials, such as binding pH, affinity, selectivity, binding capacity, tolerance for interference and so on. A variety of promising applications, including affinity separation, proteomics, metabolomics, disease diagnostics and aptamer selection, are introduced with main emphasis on how boronate affinity materials can solve the issues in the applications and what merits boronate affinity materials can provide.
Collapse
Affiliation(s)
- Daojin Li
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 22 Hankou Road, Nanjing 210093, China.
| | | | | |
Collapse
|
32
|
Legocka J, Sobieszczuk-Nowicka E, Wojtyla Ł, Samardakiewicz S. Lead-stress induced changes in the content of free, thylakoid- and chromatin-bound polyamines, photosynthetic parameters and ultrastructure in greening barley leaves. JOURNAL OF PLANT PHYSIOLOGY 2015; 186-187:15-24. [PMID: 26318643 DOI: 10.1016/j.jplph.2015.07.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 07/09/2015] [Accepted: 07/17/2015] [Indexed: 06/04/2023]
Abstract
The aim of this study was to determine the impact of lead (Pb) stress as 0.6mM Pb(NO3)2 on the content of free, thylakoid- and chromatin-bound polyamines (PAs) and diamine oxidase (DAO) activity in detached greening barley leaves. Additionally, photosynthetic-related parameters, generation of hydrogen peroxide (H2O2) and malondialdehyde (MDA) content and ultrastructural changes under Pb-stress were studied. The level of putrescine (Put) was reduced progressively to 56% at 24h of Pb stress, and it was correlated with 38% increase of DAO activity. Spermidine (Spd) content was not affected by Pb-stress, while the free spermine (Spm) level significantly increased by about 83% at 6h, and in that time the lowest level of H2O2 was observed. The exogenous applied Spm to Pb-treated leaves caused a decrease in the content of H2O2. In greening leaves exposed to Pb an accumulation of chlorophylls a and b was inhibited by about 39 and 47%, respectively, and photosynthetic parameters of efficiency of electron transport and photochemical reaction in chloroplasts as ΦPSII, ETR and RFd were lowered by about 23-32%. The level of thylakoid-bound Put decreased by about 22%. Moreover, thylakoids isolated from chloroplasts of Pb-treated leaves were characterized with lower Put/Spm ratio as compared to control leaves. In the presence of Pb the significant decrease in the number of thylakoids per granum and cap-shape invaginations of cytoplasmic material were noticed. In Pb-stressed leaves the level of chromatin-bound Spm increased by about 48% and sometimes condensed chromatin in nuclei was observed. We conclude that in greening barley leaves exposed to Pb-stress changes in free, thylakoid- and chromatin-bound PAs play some role in the functioning of leaves or plants in heavy metal stress conditions.
Collapse
Affiliation(s)
- Jolanta Legocka
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University in Poznan, ul. Umultowska 89, 61-614 Poznań, Poland.
| | - Ewa Sobieszczuk-Nowicka
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University in Poznan, ul. Umultowska 89, 61-614 Poznań, Poland
| | - Łukasz Wojtyla
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University in Poznan, ul. Umultowska 89, 61-614 Poznań, Poland
| | - Sławomir Samardakiewicz
- Laboratory of Electron and Confocal Microscopy, Faculty of Biology, Adam Mickiewicz University in Poznan, ul. Umultowska 89, 61-614 Poznań, Poland
| |
Collapse
|
33
|
Caminade AM, Fruchon S, Turrin CO, Poupot M, Ouali A, Maraval A, Garzoni M, Maly M, Furer V, Kovalenko V, Majoral JP, Pavan GM, Poupot R. The key role of the scaffold on the efficiency of dendrimer nanodrugs. Nat Commun 2015; 6:7722. [PMID: 26169490 PMCID: PMC4510975 DOI: 10.1038/ncomms8722] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/04/2015] [Indexed: 12/29/2022] Open
Abstract
Dendrimers are well-defined macromolecules whose highly branched structure is reminiscent of many natural structures, such as trees, dendritic cells, neurons or the networks of kidneys and lungs. Nature has privileged such branched structures for increasing the efficiency of exchanges with the external medium; thus, the whole structure is of pivotal importance for these natural networks. On the contrary, it is generally believed that the properties of dendrimers are essentially related to their terminal groups, and that the internal structure plays the minor role of an ‘innocent' scaffold. Here we show that such an assertion is misleading, using convergent information from biological data (human monocytes activation) and all-atom molecular dynamics simulations on seven families of dendrimers (13 compounds) that we have synthesized, possessing identical terminal groups, but different internal structures. This work demonstrates that the scaffold of nanodrugs strongly influences their properties, somewhat reminiscent of the backbone of proteins. The biological properties of dendrimers are thought to be largely dependent on the chemical nature of their surface. Here, the authors show that the internal scaffold of dendritic nanodrugs strongly influences their bioactivity, based on convergent information from biology and computation results.
Collapse
Affiliation(s)
- Anne-Marie Caminade
- 1] Laboratoire de Chimie de Coordination du CNRS, UPR 8241, 205 route de Narbonne, BP 44099, 31077 Toulouse Cedex 4, France [2] Université de Toulouse, UPS, INP, LCC, F-31077 Toulouse, France
| | - Séverine Fruchon
- 1] Centre de Physiopathologie de Toulouse Purpan, F-31300 Toulouse, France [2] INSERM, U1043; CNRS, U5282; Université de Toulouse, UPS, Toulouse, France
| | - Cédric-Olivier Turrin
- 1] Laboratoire de Chimie de Coordination du CNRS, UPR 8241, 205 route de Narbonne, BP 44099, 31077 Toulouse Cedex 4, France [2] Université de Toulouse, UPS, INP, LCC, F-31077 Toulouse, France
| | - Mary Poupot
- 1] Centre de Recherche en Cancérologie de Toulouse, F-31300 Toulouse, France [2] INSERM, U1037; CNRS, U5294; Université de Toulouse, UPS, Toulouse, France
| | - Armelle Ouali
- 1] Laboratoire de Chimie de Coordination du CNRS, UPR 8241, 205 route de Narbonne, BP 44099, 31077 Toulouse Cedex 4, France [2] Université de Toulouse, UPS, INP, LCC, F-31077 Toulouse, France
| | - Alexandrine Maraval
- 1] Laboratoire de Chimie de Coordination du CNRS, UPR 8241, 205 route de Narbonne, BP 44099, 31077 Toulouse Cedex 4, France [2] Université de Toulouse, UPS, INP, LCC, F-31077 Toulouse, France
| | - Matteo Garzoni
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Galleria 2, 6928 Manno, Switzerland
| | - Marek Maly
- Faculty of Science, J.E. Purkinje University, Ceske mladeze 8, 400 96 Ústí nad Labem, Czech Republic
| | - Victor Furer
- Kazan State Architect and Civil Engineering University, Zelenaya 1, Kazan 420043, Russia
| | - Valeri Kovalenko
- A.E. Arbuzov Institute of Organic and Physical Chemistry of Kazan Scientific Center of Russian Academy of Science, Arbuzov Str., 8, Kazan 420088, Russia
| | - Jean-Pierre Majoral
- 1] Laboratoire de Chimie de Coordination du CNRS, UPR 8241, 205 route de Narbonne, BP 44099, 31077 Toulouse Cedex 4, France [2] Université de Toulouse, UPS, INP, LCC, F-31077 Toulouse, France
| | - Giovanni M Pavan
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Galleria 2, 6928 Manno, Switzerland
| | - Rémy Poupot
- 1] Centre de Physiopathologie de Toulouse Purpan, F-31300 Toulouse, France [2] INSERM, U1043; CNRS, U5282; Université de Toulouse, UPS, Toulouse, France
| |
Collapse
|
34
|
Yang J, Zhang Q, Chang H, Cheng Y. Surface-Engineered Dendrimers in Gene Delivery. Chem Rev 2015; 115:5274-300. [PMID: 25944558 DOI: 10.1021/cr500542t] [Citation(s) in RCA: 319] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jiepin Yang
- Shanghai
Key Laboratory of
Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P. R. China
| | - Qiang Zhang
- Shanghai
Key Laboratory of
Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P. R. China
| | - Hong Chang
- Shanghai
Key Laboratory of
Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P. R. China
| | - Yiyun Cheng
- Shanghai
Key Laboratory of
Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P. R. China
| |
Collapse
|
35
|
Consequences of chirality on the dynamics of a water-soluble supramolecular polymer. Nat Commun 2015; 6:6234. [PMID: 25698667 PMCID: PMC4346625 DOI: 10.1038/ncomms7234] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/07/2015] [Indexed: 02/07/2023] Open
Abstract
The rational design of supramolecular polymers in water is imperative for their widespread use, but the design principles for these systems are not well understood. Herein, we employ a multi-scale (spatial and temporal) approach to differentiate two analogous water-soluble supramolecular polymers: one with and one without a stereogenic methyl. Initially aiming simply to understand the molecular behaviour of these systems in water, we find that while the fibres may look identical, the introduction of homochirality imparts a higher level of internal order to the supramolecular polymer. Although this increased order does not seem to affect the basic dimensions of the supramolecular fibres, the equilibrium dynamics of the polymers differ by almost an order of magnitude. This report represents the first observation of a structure/property relationship with regard to equilibrium dynamics in water-soluble supramolecular polymers.
Collapse
|
36
|
Goren K, Karabline-Kuks J, Shiloni Y, Barak-Kulbak E, Miller SJ, Portnoy M. Multivalency as a key factor for high activity of selective supported organocatalysts for the Baylis-Hillman reaction. Chemistry 2015; 21:1191-7. [PMID: 25376519 DOI: 10.1002/chem.201404560] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Indexed: 11/05/2022]
Abstract
The polystyrene-supported N-alkylimidazole-based dendritic catalysts for the Baylis-Hillman reaction exhibit one of the strongest beneficial effects of multivalent architecture ever reported for an organocatalyst. The yields in the model reaction of methyl vinyl ketone with p-nitrobenzaldehyde are more than tripled when a non-dendritic catalyst is replaced by a second- or third-generation analogue. Moreover, the reaction of the less active substrates will not occur with the non-dendritic catalyst and will proceed to a significant extent only with the analogous catalysts of higher generations. A substantial additional enhancement of the reaction yield could be achieved by increasing the content of water in the reaction solvent. The plausible cause of the dendritic effect is the assistance of the second, nearby imidazole moiety in the presumably rate-determining proton transfer in the intermediate adduct, after the first imidazole unit induced the formation of the new carbon-carbon bond.
Collapse
Affiliation(s)
- Kerem Goren
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 69978 (Israel); Current Address: Teva Pharmaceutical Industries Ltd, P.O.B. 3190, 2 Denmark Street, Petah Tikva (Israel)
| | | | | | | | | | | |
Collapse
|
37
|
Bartolami E, Bessin Y, Bettache N, Gary-Bobo M, Garcia M, Dumy P, Ulrich S. Multivalent DNA recognition by self-assembled clusters: deciphering structural effects by fragments screening and evaluation as siRNA vectors. Org Biomol Chem 2015; 13:9427-38. [DOI: 10.1039/c5ob01404b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fragment self-assembly was used for producing clusters with a variety of scaffolds and ligands, and an effective siRNA vector was identified.
Collapse
Affiliation(s)
- Eline Bartolami
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Yannick Bessin
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Nadir Bettache
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Magali Gary-Bobo
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Marcel Garcia
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Pascal Dumy
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| |
Collapse
|
38
|
Tsuchido Y, Sakai Y, Aimu K, Hashimoto T, Akiyoshi K, Hayashita T. The design of phenylboronic acid azoprobe–polyamidoamine dendrimer complexes as supramolecular sensors for saccharide recognition in water. NEW J CHEM 2015. [DOI: 10.1039/c4nj01309c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phenylboronic acid azoprobe–PAMAM dendrimer complex responded to saccharides and exhibited selective aggregation particularly with glucose at neutral pH.
Collapse
Affiliation(s)
- Yuji Tsuchido
- Department of Materials and Life Sciences
- Faculty of Science and Technology
- Sophia University
- Tokyo 102-8554
- Japan
| | - Yuuki Sakai
- Department of Materials and Life Sciences
- Faculty of Science and Technology
- Sophia University
- Tokyo 102-8554
- Japan
| | - Keisuke Aimu
- Department of Materials and Life Sciences
- Faculty of Science and Technology
- Sophia University
- Tokyo 102-8554
- Japan
| | - Takeshi Hashimoto
- Department of Materials and Life Sciences
- Faculty of Science and Technology
- Sophia University
- Tokyo 102-8554
- Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| | - Takashi Hayashita
- Department of Materials and Life Sciences
- Faculty of Science and Technology
- Sophia University
- Tokyo 102-8554
- Japan
| |
Collapse
|
39
|
Zheng F, Cheng Y, Wang J, Lu J, Zhang B, Zhao Y, Gu Z. Aptamer-functionalized barcode particles for the capture and detection of multiple types of circulating tumor cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:7333-8. [PMID: 25251012 DOI: 10.1002/adma.201403530] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Indexed: 05/21/2023]
Abstract
Aptamer-functionalized barcode particles are employed to capture and detect various types of circulating tumor cells (CTCs). The particles are spherical colloidal crystal clusters, and the reflection properties that arise from their structures are how their codes are evaluated. Aptamer functionalization (with TD05, Sgc8, and Sgd5) make the particles interact with specific CTC types; dendrimers are used to amplify the effect of the aptamers, allowing for increased sensitivity, reliability, and specificity in CTC capture, detection, and subsequent release.
Collapse
Affiliation(s)
- Fuyin Zheng
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, China
| | | | | | | | | | | | | |
Collapse
|
40
|
Ottaviani MF, Cangiotti M, Fattori A, Coppola C, Posocco P, Laurini E, Liu X, Liu C, Fermeglia M, Peng L, Pricl S. Copper(II) binding to flexible triethanolamine-core PAMAM dendrimers: a combined experimental/in silico approach. Phys Chem Chem Phys 2014; 16:685-94. [PMID: 24256926 DOI: 10.1039/c3cp54005g] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The structure of copper(II) complexes formed with triethanolamine (TEA) core poly(amidoamine) (PAMAM) dendrimers from generation 0 (G0) to 4 (G4) were investigated by the electron paramagnetic resonance (EPR) technique and molecular simulations. Different square planar coordination modes were detected as a function of copper(II) concentration, whose dynamic evolution relates to the high structural flexibility peculiar to this dendrimer family. Modulated by generation and solvation effects, copper(II) complexation begins at the dendrimer core and progresses to the dendrimer periphery. Differently from the ethylenediamine (EDA) core PAMAM dendrimers, the copper complexes involving the TEA core showed high mobility and saturation of the internal sites above the 1 : 1 molar ratio between the dendrimers and the ions. Therefore, by combining EPR and molecular simulations for the first time, ultimately we obtained unique information on structure, dynamics and copper interacting ability of these dendrimers which could be successfully exploited in biomedical applications.
Collapse
Affiliation(s)
- Maria Francesca Ottaviani
- Department of Earth, Life and Environment Sciences, University of Urbino, Località Crocicchia, 61029 Urbino, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Pavan GM. Modeling the Interaction between Dendrimers and Nucleic Acids: a Molecular Perspective through Hierarchical Scales. ChemMedChem 2014; 9:2623-31. [DOI: 10.1002/cmdc.201402280] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Indexed: 01/02/2023]
|
42
|
Star-shaped tetraspermine enhances cellular uptake and cytotoxicity of T-oligo in prostate cancer cells. Pharm Res 2014; 32:196-210. [PMID: 25092067 DOI: 10.1007/s11095-014-1455-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 07/02/2014] [Indexed: 01/24/2023]
Abstract
PURPOSE An oligonucleotide termed 'T-oligo' having sequence homology with telomere overhang has shown cytotoxicity in multiple cancers. We have demonstrated that T-oligo can induce apoptosis in androgen independent prostate cancer cell line DU-145. In this report, we evaluate the use of star-shaped tetraspermine (SSTS) for delivery of T-oligo. METHODS SSTS was synthesized from spermine and its intrinsic cytotoxicity towards DU-145 cells was compared with spermine and branched polyethyleneimine (bPEI). Atomistic molecular dynamic (MD) simulations were conducted to understand binding and complexation of spermine and SSTS with T-oligo. Complexation was also determined using gel electrophoresis and SYBR gold assay. Complexes were characterized for size, cellular uptake and antiproliferative effect. RESULTS SSTS exhibited significantly lower toxicity than spermine and bPEI. Its affinity towards T-oligo was significantly higher than spermine as determined by experimental studies and confirmed by MD simulations and it formed stable complexes (TONPs) with T-oligo. TONPs facilitated cellular uptake and nuclear accumulation of T-oligo and their cytotoxic potential was observed at concentration several folds lower than that required for T-oligo alone. CONCLUSION SSTS significantly enhanced therapeutic benefits associated with the use of T-oligo and can be developed as a delivery vehicle for its in-vivo therapeutic applications.
Collapse
|
43
|
Bromfield SM, Posocco P, Fermeglia M, Tolosa J, Herreros-López A, Pricl S, Rodríguez-López J, Smith DK. Shape-Persistent and Adaptive Multivalency: Rigid Transgeden (TGD) and Flexible PAMAM Dendrimers for Heparin Binding. Chemistry 2014; 20:9666-74. [DOI: 10.1002/chem.201402237] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Indexed: 11/06/2022]
|
44
|
Meneksedag-Erol D, Tang T, Uludağ H. Molecular modeling of polynucleotide complexes. Biomaterials 2014; 35:7068-76. [PMID: 24856107 DOI: 10.1016/j.biomaterials.2014.04.103] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 04/28/2014] [Indexed: 11/30/2022]
Abstract
Delivery of polynucleotides into patient cells is a promising strategy for treatment of genetic disorders. Gene therapy aims to either synthesize desired proteins (DNA delivery) or suppress expression of endogenous genes (siRNA delivery). Carriers constitute an important part of gene therapeutics due to limitations arising from the pharmacokinetics of polynucleotides. Non-viral carriers such as polymers and lipids protect polynucleotides from intra and extracellular threats and facilitate formation of cell-permeable nanoparticles through shielding and/or bridging multiple polynucleotide molecules. Formation of nanoparticulate systems with optimal features, their cellular uptake and intracellular trafficking are crucial steps for an effective gene therapy. Despite the great amount of experimental work pursued, critical features of the nanoparticles as well as their processing mechanisms are still under debate due to the lack of instrumentation at atomic resolution. Molecular modeling based computational approaches can shed light onto the atomic level details of gene delivery systems, thus provide valuable input that cannot be readily obtained with experimental techniques. Here, we review the molecular modeling research pursued on critical gene therapy steps, highlight the knowledge gaps in the field and providing future perspectives. Existing modeling studies revealed several important aspects of gene delivery, such as nanoparticle formation dynamics with various carriers, effect of carrier properties on complexation, carrier conformations in endosomal stages, and release of polynucleotides from carriers. Rate-limiting steps related to cellular events (i.e. internalization, endosomal escape, and nuclear uptake) are now beginning to be addressed by computational approaches. Limitations arising from current computational power and accuracy of modeling have been hindering the development of more realistic models. With the help of rapidly-growing computational power, the critical aspects of gene therapy are expected to be better investigated and direct comparison between more realistic molecular modeling and experiments may open the path for design of next generation gene therapeutics.
Collapse
Affiliation(s)
- Deniz Meneksedag-Erol
- Department of Biomedical Engineering, University of Alberta, Edmonton, Canada; Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Canada
| | - Tian Tang
- Department of Biomedical Engineering, University of Alberta, Edmonton, Canada; Department of Mechanical Engineering, University of Alberta, Edmonton, Canada.
| | - Hasan Uludağ
- Department of Biomedical Engineering, University of Alberta, Edmonton, Canada; Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Canada; Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada.
| |
Collapse
|
45
|
Amado Torres D, Garzoni M, Subrahmanyam AV, Pavan GM, Thayumanavan S. Protein-triggered supramolecular disassembly: insights based on variations in ligand location in amphiphilic dendrons. J Am Chem Soc 2014; 136:5385-99. [PMID: 24641469 PMCID: PMC4004214 DOI: 10.1021/ja500634u] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Indexed: 12/14/2022]
Abstract
We use monodisperse dendrons that allow control over functional group presentation to investigate the influence of the location of a ligand on protein-induced disassembly and release of encapsulated small molecules. Based on both experiments and molecular dynamics simulations, we demonstrate that ligand location greatly influences release of guest molecules from the dendron-based supramolecular assembly. We show that a ligand moiety grafted to the dendron periphery is more accessible for the target protein in aqueous solution. On the other hand, the ligand moiety placed at the focal point or at the intermediate layer within the dendritic scaffold is less accessible, since it is surrounded by an environment rich in PEG chains, which hinders binding and even influences nonspecific interactions. We also demonstrate that the specific binding between one ligand and the target protein can destabilize the dendritic assembly. Furthermore, if more ligands are available, multivalent interactions are also possible with extravidin, which speed up disassembly and trigger the release of hydrophobic guests.
Collapse
Affiliation(s)
- Diego Amado Torres
- Department
of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Matteo Garzoni
- Department
of Innovative Technologies, University of
Applied Science of Southern Switzerland, Manno 6928, Switzerland
| | - Ayyagari V. Subrahmanyam
- Department
of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Giovanni M. Pavan
- Department
of Innovative Technologies, University of
Applied Science of Southern Switzerland, Manno 6928, Switzerland
| | - S. Thayumanavan
- Department
of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
46
|
Sobieszczuk-Nowicka E, Legocka J. Plastid-associated polyamines: their role in differentiation, structure, functioning, stress response and senescence. PLANT BIOLOGY (STUTTGART, GERMANY) 2014; 16:297-305. [PMID: 23889994 DOI: 10.1111/plb.12058] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 05/06/2013] [Indexed: 05/03/2023]
Abstract
Polyamines are low-molecular weight biogenic amines. They are a specific group of cell growth and development regulators. In the past decade biochemical, molecular and genetic studies have contributed much to a better understanding of the biological role of polyamines in the plant cell. Substantial evidence has also been added to our understanding of the role of polyamines in plastid development. In developing chloroplasts, polyamines serve as a nitrogen source for protein and chlorophyll synthesis. In chloroplast structure, thylakoid proteins linked to polyamines belong mainly to antenna proteins of light-harvesting chlorophyll a/b-protein complexes. The fact that LHCII oligomeric forms are much more intensely labelled by polyamines, in comparison to monomeric forms, suggests that polyamines participate in oligomer stabilisation. In plastid metabolism, polyamines modulate effectiveness of photosynthesis. The role of polyamines in mature chloroplasts is also related to the photo-adaptation of the photosynthetic apparatus to low and high light intensity and its response to environmental stress. The occurrence of polyamines and enzymes participating in their metabolism at every stage of plastid development indicates that polyamines play a role in plastid differentiation, structure, functioning and senescence.
Collapse
Affiliation(s)
- E Sobieszczuk-Nowicka
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | | |
Collapse
|
47
|
Tintaru A, Chendo C, Wang Q, Viel S, Quéléver G, Peng L, Posocco P, Pricl S, Charles L. Conformational sensitivity of conjugated poly(ethylene oxide)-poly(amidoamine) molecules to cations adducted upon electrospray ionization – A mass spectrometry, ion mobility and molecular modeling study. Anal Chim Acta 2014; 808:163-74. [DOI: 10.1016/j.aca.2013.08.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/05/2013] [Accepted: 08/19/2013] [Indexed: 10/26/2022]
|
48
|
Molecular Dynamics Simulations of Polyplexes and Lipoplexes Employed in Gene Delivery. INTRACELLULAR DELIVERY II 2014. [DOI: 10.1007/978-94-017-8896-0_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
49
|
Barnard A, Posocco P, Fermeglia M, Tschiche A, Calderon M, Pricl S, Smith DK. Double-degradable responsive self-assembled multivalent arrays--temporary nanoscale recognition between dendrons and DNA. Org Biomol Chem 2013; 12:446-55. [PMID: 24263553 DOI: 10.1039/c3ob42202j] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This article reports self-assembling dendrons which bind DNA in a multivalent manner. The molecular design directly impacts on self-assembly which subsequently controls the way these multivalent nanostructures bind DNA--this can be simulated by multiscale modelling. Incorporation of an S-S linkage between the multivalent hydrophilic dendron and the hydrophobic units responsible for self-assembly allows these structures to undergo triggered reductive cleavage, with dithiothreitol (DTT) inducing controlled breakdown, enabling the release of bound DNA. As such, the high-affinity self-assembled multivalent binding is temporary. Furthermore, because the multivalent dendrons are constructed from esters, a second slow degradation step causes further breakdown of these structures. This two-step double-degradation mechanism converts a large self-assembling unit with high affinity for DNA into small units with no measurable binding affinity--demonstrating the advantage of self-assembled multivalency (SAMul) in achieving highly responsive nanoscale binding of biological targets.
Collapse
Affiliation(s)
- Anna Barnard
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK.
| | | | | | | | | | | | | |
Collapse
|
50
|
Bromfield SM, Posocco P, Fermeglia M, Pricl S, Rodríguez-López J, Smith DK. A simple new competition assay for heparin binding in serum applied to multivalent PAMAM dendrimers. Chem Commun (Camb) 2013; 49:4830-2. [PMID: 23595366 DOI: 10.1039/c3cc41251b] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a competition assay using our recently reported dye Mallard Blue, which allows us to identify synthetic heparin binders in competitive media, including human serum - using this we gain insight into the ability of PAMAM dendrimers to bind heparin, with the interesting result that low-generation G2-PAMAM is the preferred heparin binder.
Collapse
|