1
|
Katarzyna Lesiów M, Witwicki M, Tan NK, Graziotto ME, New EJ. Unravelling the Mystery of COVID-19 Pathogenesis: Spike Protein and Cu Can Synergize to Trigger ROS Production. Chemistry 2023; 29:e202301530. [PMID: 37414735 DOI: 10.1002/chem.202301530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/08/2023]
Abstract
The COVID-19 pandemic has had a devastating impact on global health, highlighting the need to understand how the SARS-CoV-2 virus damages the lungs in order to develop effective treatments. Recent research has shown that patients with COVID-19 experience severe oxidative damage to various biomolecules. We propose that the overproduction of reactive oxygen species (ROS) in SARS-CoV-2 infection involves an interaction between copper ions and the virus's spike protein. We tested two peptide fragments, Ac-ELDKYFKNH-NH2 (L1) and Ac-WSHPQFEK-NH2 (L2), derived from the spike protein of the Wuhan strain and the β variant, respectively, and found that they bind Cu(II) ions and form a three-nitrogen complexes at lung pH. Our research demonstrates that these complexes trigger the overproduction of ROS, which can break both DNA strands and transform DNA into its linear form. Using A549 cells, we demonstrated that ROS overproduction occurs in the mitochondria, not in the cytoplasm. Our findings highlight the importance of the interaction between copper ions and the virus's spike protein in the development of lung damage and may aid in the development of therapeutic procedures.
Collapse
Affiliation(s)
| | - Maciej Witwicki
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Nian Kee Tan
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for, Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | | | - Elizabeth Joy New
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for, Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
2
|
Ledray AP, Dwaraknath S, Chakarawet K, Sponholtz MR, Merchen C, Van Stappen C, Rao G, Britt RD, Lu Y. Tryptophan Can Promote Oxygen Reduction to Water in a Biosynthetic Model of Heme Copper Oxidases. Biochemistry 2023; 62:388-395. [PMID: 36215733 DOI: 10.1021/acs.biochem.2c00300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Heme-copper oxidases (HCOs) utilize tyrosine (Tyr) to donate one of the four electrons required for the reduction of O2 to water in biological respiration, while tryptophan (Trp) is speculated to fulfill the same role in cyt bd oxidases. We previously engineered myoglobin into a biosynthetic model of HCOs and demonstrated the critical role that Tyr serves in the oxygen reduction reaction (ORR). To address the roles of Tyr and Trp in these oxidases, we herein report the preparation of the same biosynthetic model with the Tyr replaced by Trp and further demonstrate that Trp can also promote the ORR, albeit with lower activity. An X-ray crystal structure of the Trp variant shows a hydrogen-bonding network involving two water molecules that are organized by Trp, similar to that in the Tyr variant, which is absent in the crystal structure with the native Phe residue. Additional electron paramagnetic resonance measurements are consistent with the formation of a Trp radical species upon reacting with H2O2. We attribute the lower activity of the Trp variant to Trp's higher reduction potential relative to Tyr. Together, these findings demonstrate, for the first time, that Trp can indeed promote the ORR and provides a structural basis for the observation of varying activities. The results support a redox role for the conserved Trp in bd oxidase while suggesting that HCOs use Tyr instead of Trp to achieve higher reactivity.
Collapse
Affiliation(s)
- Aaron P Ledray
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Sudharsan Dwaraknath
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Khetpakorn Chakarawet
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Madeline R Sponholtz
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Claire Merchen
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Casey Van Stappen
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Guodong Rao
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - R David Britt
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Yi Lu
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
3
|
Pastore AJ, Montoya A, Kamat M, Basso KB, Italia JS, Chatterjee A, Drosou M, Pantazis DA, Angerhofer A. Selective incorporation of 5-hydroxytryptophan blocks long range electron transfer in oxalate decarboxylase. Protein Sci 2023; 32:e4537. [PMID: 36482787 PMCID: PMC9801070 DOI: 10.1002/pro.4537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/28/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022]
Abstract
Oxalate decarboxylase from Bacillus subtilis is a binuclear Mn-dependent acid stress response enzyme that converts the mono-anion of oxalic acid into formate and carbon dioxide in a redox neutral unimolecular disproportionation reaction. A π-stacked tryptophan dimer, W96 and W274, at the interface between two monomer subunits facilitates long-range electron transfer between the two Mn ions and plays an important role in the catalytic mechanism. Substitution of W96 with the unnatural amino acid 5-hydroxytryptophan leads to a persistent EPR signal which can be traced back to the neutral radical of 5-hydroxytryptophan with its hydroxyl proton removed. 5-Hydroxytryptophan acts as a hole sink preventing the formation of Mn(III) at the N-terminal active site and strongly suppresses enzymatic activity. The lower boundary of the standard reduction potential for the active site Mn(II)/Mn(III) couple can therefore be estimated as 740 mV against the normal hydrogen electrode at pH 4, the pH of maximum catalytic efficiency. Our results support the catalytic importance of long-range electron transfer in oxalate decarboxylase while at the same time highlighting the utility of unnatural amino acid incorporation and specifically the use of 5-hydroxytryptophan as an energetic sink for hole hopping to probe electron transfer in redox proteins.
Collapse
Affiliation(s)
| | - Alvaro Montoya
- Department of ChemistryUniversity of FloridaGainesvilleFloridaUSA
| | - Manasi Kamat
- Department of ChemistryUniversity of FloridaGainesvilleFloridaUSA
| | - Kari B. Basso
- Department of ChemistryUniversity of FloridaGainesvilleFloridaUSA
| | - James S. Italia
- Department of ChemistryBoston CollegeChestnut HillMassachusettsUSA
| | | | - Maria Drosou
- Max‐Planck‐Institut für KohlenforschungMülheim an der RuhrGermany
| | | | | |
Collapse
|
4
|
Rivera JJ, Trinh C, Kim JE. Photoinduced Electron Transfer from the Tryptophan Triplet State in Zn-Azurin. ACS PHYSICAL CHEMISTRY AU 2022; 3:63-73. [PMID: 36718260 PMCID: PMC9881450 DOI: 10.1021/acsphyschemau.2c00042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/30/2022]
Abstract
Tryptophan is one of few residues that participates in biological electron transfer reactions. Upon substitution of the native Cu2+ center with Zn2+ in the blue-copper protein azurin, a long-lived tryptophan neutral radical can be photogenerated. We report the following quantum yield values for Zn-substituted azurin in the presence of the electron acceptor Cu(II)-azurin: formation of the tryptophan neutral radical (Φrad), electron transfer (ΦET), fluorescence (Φfluo), and phosphorescence (Φphos), as well as the efficiency of proton transfer of the cation radical (ΦPT). Increasing the concentration of the electron acceptor increased Φrad and ΦET values and decreased Φphos without affecting Φfluo. At all concentrations of the acceptor, the value of ΦPT was nearly unity. These observations indicate that the phosphorescent triplet state is the parent state of electron transfer and that nearly all electron transfer events lead to proton loss. Similar results regarding the parent state were obtained with a different electron acceptor, [Co(NH3)5Cl]2+; however, Stern-Volmer graphs revealed that [Co(NH3)5Cl]2+ was a more effective phosphorescence quencher (K SV = 230 000 M-1) compared to Cu(II)-azurin (K SV = 88 000 M-1). Competition experiments in the presence of both [Co(NH3)5Cl]2+ and Cu(II)-azurin suggested that [Co(NH3)5Cl]2+ is the preferred electron acceptor. Implications of these results in terms of quenching mechanisms are discussed.
Collapse
|
5
|
López-Peña I, Lee CT, Rivera JJ, Kim JE. Role of the Triplet State and Protein Dynamics in the Formation and Stability of the Tryptophan Radical in an Apoazurin Mutant. J Phys Chem B 2022; 126:6751-6761. [PMID: 35977067 PMCID: PMC9483921 DOI: 10.1021/acs.jpcb.2c02441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The protein, azurin,
has enabled the study of the tryptophan radical.
Upon UV excitation of tyrosine-deficient apoazurin and in the presence
of a Co(III) electron acceptor, the neutral radical (W48•)
is formed. The lifetime of W48• in apoazurin is 41 s, which
is shorter than the lifetime of several hours in Zn-substituted azurin.
Molecular dynamics simulations revealed enhanced fluctuations of apoazurin
which likely destabilize W48•. The photophysics of W48 was
investigated to probe the precursor state for ET. The phosphorescence
intensity was eliminated in the presence of an electron acceptor while
the fluorescence was unchanged; this quenching of the phosphorescence
is attributed to ET. The kinetics associated with W48• were
examined with a model that incorporates intersystem crossing, ET,
deprotonation, and decay of the cation radical. The estimated rate
constants for ET (6 × 106 s–1) and
deprotonation (3 × 105 s–1) are
in agreement with a photoinduced mechanism where W48• is derived
from the triplet state. The triplet as the precursor state for ET
was supported by photolysis of apoazurin with 280 nm in the absence
and presence of triplet-absorbing 405 nm light. Absorption bands from
the neutral radical were observed only in the presence of blue light.
Collapse
Affiliation(s)
- Ignacio López-Peña
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093, United States
| | - Christopher T Lee
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093, United States
| | - Joel J Rivera
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093, United States
| | - Judy E Kim
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093, United States
| |
Collapse
|
6
|
Dong J, Huang C, Guo S, Xia Y, Hou Y, Yang C, Zhang X, Jie J, Zhu BZ, Su H. Free-Radical-Mediated Photoinduced Electron Transfer between 6-Thioguanine and Tryptophan Leading to DNA-Protein-Like Cross-Link. J Phys Chem B 2021; 126:14-22. [PMID: 34951313 DOI: 10.1021/acs.jpcb.1c03380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The nucleobase analog 6-thioguanine (6-TG) has emerged as important immunosuppressant, anti-inflammatory, and anticancer drug in the past few decades, but its unique photosensitivity of absorbing strongly ultraviolet UVA light elicits photochemical hazards in many ways. The particularly intriguing yet unresolved question is whether the direct photoreaction of 6-TG can promote DNA-protein cross-links (DPCs) formation, which are large DNA adducts blocking DNA replication and physically impede DNA-related processes. Herein, by real-time observation of radical intermediates using time-resolved UV-vis absorption spectroscopy in conjunction with product analysis by HPLC-MS, we discover that UVA excitation of 6-TG triggers direct covalent cross-linking with tryptophan (TrpH) via an exquisite radical mechanism of electron transfer. The photoexcitation prepares the redox-active triplet 36-TG*, which initiates electron transfer with TrpH, creating TrpH•+ and 6-TG•- in the first step. The deprotonated Trp• undergoes radical-recombination with its geminate partner 6-TG•- and eliminates a H2S, leading to the cross-linking product 6-TG-Trp. The photoadduct structures (two chiral isomers and one constitutional isomer) are identified unambiguously, validating further the mechanism. These findings pinpoint the exact amino acid that is vulnerable to photo-cross-linking with 6-TG and establish a mechanistic framework for understanding mutagenic DPCs formation and developing photoprobes based on this new type of photo-cross-linking.
Collapse
Affiliation(s)
- Junjie Dong
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Chunhua Huang
- State Key Lab of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Shaoshi Guo
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Ye Xia
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Yue Hou
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Chunfan Yang
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Xianwang Zhang
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Jialong Jie
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Ben-Zhan Zhu
- State Key Lab of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Hongmei Su
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
7
|
Bím D, Chalupský J, Culka M, Solomon EI, Rulíšek L, Srnec M. Proton-Electron Transfer to the Active Site Is Essential for the Reaction Mechanism of Soluble Δ 9-Desaturase. J Am Chem Soc 2020; 142:10412-10423. [PMID: 32406236 DOI: 10.1021/jacs.0c01786] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A full understanding of the catalytic action of non-heme iron (NHFe) and non-heme diiron (NHFe2) enzymes is still beyond the grasp of contemporary computational and experimental techniques. Many of these enzymes exhibit fascinating chemo-, regio-, and stereoselectivity, in spite of employing highly reactive intermediates which are necessary for activations of most stable chemical bonds. Herein, we study in detail one intriguing representative of the NHFe2 family of enzymes: soluble Δ9 desaturase (Δ9D), which desaturates rather than performing the thermodynamically favorable hydroxylation of substrate. Its catalytic mechanism has been explored in great detail by using QM(DFT)/MM and multireference wave function methods. Starting from the spectroscopically observed 1,2-μ-peroxo diferric P intermediate, the proton-electron uptake by P is the favored mechanism for catalytic activation, since it allows a significant reduction of the barrier of the initial (and rate-determining) H-atom abstraction from the stearoyl substrate as compared to the "proton-only activated" pathway. Also, we ruled out that a Q-like intermediate (high-valent diamond-core bis-μ-oxo-[FeIV]2 unit) is involved in the reaction mechanism. Our mechanistic picture is consistent with the experimental data available for Δ9D and satisfies fairly stringent conditions required by Nature: the chemo-, stereo-, and regioselectivity of the desaturation of stearic acid. Finally, the mechanisms evaluated are placed into a broader context of NHFe2 chemistry, provided by an amino acid sequence analysis through the families of the NHFe2 enzymes. Our study thus represents an important contribution toward understanding the catalytic action of the NHFe2 enzymes and may inspire further work in NHFe(2) biomimetic chemistry.
Collapse
Affiliation(s)
- Daniel Bím
- J. Heyrovský Institute of Physical Chemistry, The Czech Academy of Sciences, Dolejškova 3, Prague 8 182 23, Czech Republic.,Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám. 2, Prague 6 166 10, Czech Republic
| | - Jakub Chalupský
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám. 2, Prague 6 166 10, Czech Republic
| | - Martin Culka
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám. 2, Prague 6 166 10, Czech Republic
| | - Edward I Solomon
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California 94305-5080, United States
| | - Lubomír Rulíšek
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám. 2, Prague 6 166 10, Czech Republic
| | - Martin Srnec
- J. Heyrovský Institute of Physical Chemistry, The Czech Academy of Sciences, Dolejškova 3, Prague 8 182 23, Czech Republic
| |
Collapse
|
8
|
Sasmal S, Debnath M, Nandi SK, Haldar D. A urea-modified tryptophan based in situ reducing and stabilizing agent for the fabrication of gold nanoparticles as a Suzuki-Miyaura cross-coupling catalyst in water. NANOSCALE ADVANCES 2019; 1:1380-1386. [PMID: 36132616 PMCID: PMC9418380 DOI: 10.1039/c8na00273h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/01/2019] [Indexed: 06/02/2023]
Abstract
Urea-modified tryptophan has been used as an in situ reducing and stabilizing agent for the fabrication of gold nanoparticles in water. The tryptophan side chain NH has been used for the reduction of gold ions in HAuCl4 to metallic gold and carboxylic acid functionality helps to stabilize the gold nanoparticles. This was confirmed by a controlled reaction with urea-modified leucine which failed to form any gold nanoparticles. The resultant gold nanoparticles have been characterized by various spectroscopic techniques such as UV-visible spectroscopy, FT-IR spectroscopy and microscopic techniques such as FE-SEM and TEM. Moreover, we have shown that the urea-modified tryptophan stabilized gold nanoparticles catalyze the Suzuki-Miyaura cross-coupling reaction. The gold nanoparticle catalyzed Suzuki-Miyaura cross-coupling reaction between 4-bromobenzoic acid and phenylboronic acid in water provides 92% yield in 40 minutes. The high efficiency exhibited by the gold nanoparticle catalyst was effectively translated to a large number of Suzuki-Miyaura reactions between halides with phenylboronic acid. The results may inspire further research on gold nanoparticles catalysis in water.
Collapse
Affiliation(s)
- Supriya Sasmal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur 741246 West Bengal India
| | - Mintu Debnath
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur 741246 West Bengal India
| | - Sujay Kumar Nandi
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur 741246 West Bengal India
| | - Debasish Haldar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur 741246 West Bengal India
| |
Collapse
|
9
|
Kopka B, Magerl K, Savitsky A, Davari MD, Röllen K, Bocola M, Dick B, Schwaneberg U, Jaeger KE, Krauss U. Electron transfer pathways in a light, oxygen, voltage (LOV) protein devoid of the photoactive cysteine. Sci Rep 2017; 7:13346. [PMID: 29042655 PMCID: PMC5645311 DOI: 10.1038/s41598-017-13420-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/21/2017] [Indexed: 11/17/2022] Open
Abstract
Blue-light absorption by the flavin chromophore in light, oxygen, voltage (LOV) photoreceptors triggers photochemical reactions that lead to the formation of a flavin-cysteine adduct. While it has long been assumed that adduct formation is essential for signaling, it was recently shown that LOV photoreceptor variants devoid of the photoactive cysteine can elicit a functional response and that flavin photoreduction to the neutral semiquinone radical is sufficient for signal transduction. Currently, the mechanistic basis of the underlying electron- (eT) and proton-transfer (pT) reactions is not well understood. We here reengineered pT into the naturally not photoreducible iLOV protein, a fluorescent reporter protein derived from the Arabidopsis thaliana phototropin-2 LOV2 domain. A single amino-acid substitution (Q489D) enabled efficient photoreduction, suggesting that an eT pathway is naturally present in the protein. By using a combination of site-directed mutagenesis, steady-state UV/Vis, transient absorption and electron paramagnetic resonance spectroscopy, we investigate the underlying eT and pT reactions. Our study provides strong evidence that several Tyr and Trp residues, highly conserved in all LOV proteins, constitute the eT pathway for flavin photoreduction, suggesting that the propensity for photoreduction is evolutionary imprinted in all LOV domains, while efficient pT is needed to stabilize the neutral semiquinone radical.
Collapse
Affiliation(s)
- Benita Kopka
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, 52426, Jülich, Germany
| | - Kathrin Magerl
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, 93053, Regensburg, Germany
| | - Anton Savitsky
- Max Planck Institute for Chemical Energy Conversion, 45470, Mülheim an der Ruhr, Germany
| | - Mehdi D Davari
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Katrin Röllen
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, 52426, Jülich, Germany
| | - Marco Bocola
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Bernhard Dick
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, 93053, Regensburg, Germany
| | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany.,DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52056, Aachen, Germany
| | - Karl-Erich Jaeger
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, 52426, Jülich, Germany.,IBG-1: Biotechnologie, Forschungszentrum Jülich, 52426, Jülich, Germany
| | - Ulrich Krauss
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, 52426, Jülich, Germany.
| |
Collapse
|
10
|
Chemically induced dynamic nuclear polarization study of the reduction of histidine radical in the reactions with aromatic amino acids. Russ Chem Bull 2017. [DOI: 10.1007/s11172-016-1676-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Miller DC, Tarantino KT, Knowles RR. Proton-Coupled Electron Transfer in Organic Synthesis: Fundamentals, Applications, and Opportunities. Top Curr Chem (Cham) 2016; 374:30. [PMID: 27573270 PMCID: PMC5107260 DOI: 10.1007/s41061-016-0030-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 04/21/2016] [Indexed: 10/21/2022]
Abstract
Proton-coupled electron transfers (PCETs) are unconventional redox processes in which both protons and electrons are exchanged, often in a concerted elementary step. While PCET is now recognized to play a central a role in biological redox catalysis and inorganic energy conversion technologies, its applications in organic synthesis are only beginning to be explored. In this chapter, we aim to highlight the origins, development, and evolution of the PCET processes most relevant to applications in organic synthesis. Particular emphasis is given to the ability of PCET to serve as a non-classical mechanism for homolytic bond activation that is complimentary to more traditional hydrogen atom transfer processes, enabling the direct generation of valuable organic radical intermediates directly from their native functional group precursors under comparatively mild catalytic conditions. The synthetically advantageous features of PCET reactivity are described in detail, along with examples from the literature describing the PCET activation of common organic functional groups.
Collapse
Affiliation(s)
- David C Miller
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - Kyle T Tarantino
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - Robert R Knowles
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
12
|
The toolbox of Auricularia auricula-judae dye-decolorizing peroxidase - Identification of three new potential substrate-interaction sites. Arch Biochem Biophys 2014; 574:75-85. [PMID: 25542606 DOI: 10.1016/j.abb.2014.12.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/09/2014] [Accepted: 12/13/2014] [Indexed: 11/21/2022]
Abstract
Dye-decolorizing peroxidases (DyPs) such as AauDyPI from the fungus Auricularia auricula-judae are able to oxidize substrates of different kinds and sizes. A crystal structure of an AauDyPI-imidazole complex gives insight into the binding patterns of organic molecules within the heme cavity of a DyP. Several small N-containing heterocyclic aromatics are shown to bind in the AauDyPI heme cavity, hinting to susceptibility of DyPs to azole-based inhibitors similar to cytochromes P450. Imidazole is confirmed as a competitive inhibitor with regard to peroxide binding. In contrast, bulky substrates such as anthraquinone dyes are converted at the enzyme surface. In the crystal structure a substrate analog, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), binds to a tyrosine-rich hollow harboring Y25, Y147, and Y337. Spin trapping with a nitric oxide donor uncovers Y229 as an additional tyrosine-based radical center in AauDyPI. Multi-frequency EPR spectroscopy further reveals the presence of at least one intermediate tryptophanyl radical center in activated AauDyPI with W377 as the most likely candidate.
Collapse
|
13
|
Abstract
Electron transfer (ET) reactions within proteins are accomplished by a broad set of redox-active molecules, including natural amino acids. Tryptophan participates in ET chemistry as both a cation and a neutral radical. Identification and characterization of the biologically relevant species is essential to understand efficient ET mechanisms in proteins. We present resonance Raman spectra and excitation profiles of the tryptophan cation radical generated by combining a strong oxidant, Ce(IV), with tryptophan model compounds in a fast-flow mixing device. Isotopically modified derivatives, coupled with calculations, allowed the assignment of the normal modes of this radical. Raman bands that are sensitive to protonation state and hydrogen bonding environment of the cation radical were identified. The present findings, along with resonance Raman spectra of the closed-shell and neutral radical counterparts, form a foundation for probing tryptophan-mediated ET reactions in proteins.
Collapse
Affiliation(s)
- Hannah S Shafaat
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Judy E Kim
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
14
|
Piatkivskyi A, Osburn S, Jaderberg K, Grzetic J, Steill JD, Oomens J, Zhao J, Lau JKC, Verkerk UH, Hopkinson AC, Siu KWM, Ryzhov V. Structure and reactivity of the distonic and aromatic radical cations of tryptophan. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:513-523. [PMID: 23512424 DOI: 10.1007/s13361-013-0594-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 01/24/2013] [Accepted: 01/30/2013] [Indexed: 06/01/2023]
Abstract
In this work, we regiospecifically generate and compare the gas-phase properties of two isomeric forms of tryptophan radical cations-a distonic indolyl N-radical (H3N(+) - TrpN(•)) and a canonical aromatic π (Trp(•+)) radical cation. The distonic radical cation was generated by nitrosylating the indole nitrogen of tryptophan in solution followed by collision-induced dissociation (CID) of the resulting protonated N-nitroso tryptophan. The π-radical cation was produced via CID of the ternary [Cu(II)(terpy)(Trp)](•2+) complex. CID spectra of the two isomeric species were found to be very different, suggesting no interconversion between the isomers. In gas-phase ion-molecule reactions, the distonic radical cation was unreactive towards n-propylsulfide, whereas the π radical cation reacted by hydrogen atom abstraction. DFT calculations revealed that the distonic indolyl radical cation is about 82 kJ/mol higher in energy than the π radical cation of tryptophan. The low reactivity of the distonic nitrogen radical cation was explained by spin delocalization of the radical over the aromatic ring and the remote, localized charge (at the amino nitrogen). The lack of interconversion between the isomers under both trapping and CID conditions was explained by the high rearrangement barrier of ca.137 kJ/mol. Finally, the two isomers were characterized by infrared multiple-photon dissociation (IRMPD) spectroscopy in the ~1000-1800 cm(-1) region. It was found that some of the main experimental IR features overlap between the two species, making their distinction by IRMPD spectroscopy in this region problematic. In addition, DFT theoretical calculations showed that the IR spectra are strongly conformation-dependent.
Collapse
Affiliation(s)
- Andrii Piatkivskyi
- Department of Chemistry and Biochemistry, and Center for Biochemical and Biophysical Studies, Northern Illinois University, DeKalb, IL 60115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Bernini C, Andruniów T, Olivucci M, Pogni R, Basosi R, Sinicropi A. Effects of the Protein Environment on the Spectral Properties of Tryptophan Radicals in Pseudomonas aeruginosa Azurin. J Am Chem Soc 2013; 135:4822-33. [DOI: 10.1021/ja400464n] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Caterina Bernini
- Dipartimento di Biotecnologie,
Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Tadeusz Andruniów
- Quantum Chemistry and Molecular
Modelling Lab, Institute of Physical and Theoretical Chemistry, Wroclaw University of Technology, Wyb. Wyspianskiego
27, 50-370 Wroclaw, Poland
| | - Massimo Olivucci
- Dipartimento di Biotecnologie,
Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
- Chemistry Department, Bowling Green State University, Bowling Green, Ohio
43403, United States
| | - Rebecca Pogni
- Dipartimento di Biotecnologie,
Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Riccardo Basosi
- Dipartimento di Biotecnologie,
Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Adalgisa Sinicropi
- Dipartimento di Biotecnologie,
Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| |
Collapse
|
16
|
Diradical intermediate within the context of tryptophan tryptophylquinone biosynthesis. Proc Natl Acad Sci U S A 2013; 110:4569-73. [PMID: 23487750 DOI: 10.1073/pnas.1215011110] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite the importance of tryptophan (Trp) radicals in biology, very few radicals have been trapped and characterized in a physiologically meaningful context. Here we demonstrate that the diheme enzyme MauG uses Trp radical chemistry to catalyze formation of a Trp-derived tryptophan tryptophylquinone cofactor on its substrate protein, premethylamine dehydrogenase. The unusual six-electron oxidation that results in tryptophan tryptophylquinone formation occurs in three discrete two-electron catalytic steps. Here the exact order of these oxidation steps in the processive six-electron biosynthetic reaction is determined, and reaction intermediates are structurally characterized. The intermediates observed in crystal structures are also verified in solution using mass spectrometry. Furthermore, an unprecedented Trp-derived diradical species on premethylamine dehydrogenase, which is an intermediate in the first two-electron step, is characterized using high-frequency and -field electron paramagnetic resonance spectroscopy and UV-visible absorbance spectroscopy. This work defines a unique mechanism for radical-mediated catalysis of a protein substrate, and has broad implications in the areas of applied biocatalysis and understanding of oxidative protein modification during oxidative stress.
Collapse
|
17
|
Chen X, Rinkevicius Z, Ruud K, Ågren H. Role of zero-point vibrational corrections to carbon hyperfine coupling constants in organic π radicals. J Chem Phys 2013; 138:054310. [PMID: 23406122 DOI: 10.1063/1.4789769] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
By analyzing a set of organic π radicals, we demonstrate that zero-point vibrational corrections give significant contributions to carbon hyperfine coupling constants, in one case even inducing a sign reversal for the coupling constant. We discuss the implications of these findings for the computational analysis of electron paramagnetic spectra based on hyperfine coupling constants evaluated at the equilibrium geometry of radicals. In particular, we note that a dynamical description that involves the nuclear motion is in many cases necessary in order to achieve a semi-quantitatively predictive theory for carbon hyperfine coupling constants. In addition, we discuss the implications of the strong dependence of the carbon hyperfine coupling constants on the zero-point vibrational corrections for the selection of exchange-correlation functionals in density functional theory studies of these constants.
Collapse
Affiliation(s)
- X Chen
- KTH Royal Institute of Technology, School of Biotechnology, Division of Theoretical Chemistry and Biology, S-106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
18
|
1H CIDNP study of the kinetics and mechanism of the reversible photoinduced oxidation of tryptophyl-tryptophan dipeptide in aqueous solutions. Russ Chem Bull 2012. [DOI: 10.1007/s11172-011-0396-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Stoll S, Shafaat HS, Krzystek J, Ozarowski A, Tauber MJ, Kim JE, Britt RD. Hydrogen bonding of tryptophan radicals revealed by EPR at 700 GHz. J Am Chem Soc 2011; 133:18098-101. [PMID: 22007694 PMCID: PMC3251908 DOI: 10.1021/ja208462t] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Redox-active tryptophans are important in biological electron transfer and redox biochemistry. Proteins can tune the electron transfer kinetics and redox potentials of tryptophan via control of the protonation state and the hydrogen-bond strength. We examine the local environment of two neutral tryptophan radicals (Trp108 on the solvent-exposed surface and Trp48 buried in the hydrophobic core) in two azurin variants. Ultrahigh-field EPR spectroscopy at 700 GHz and 25 T allowed complete resolution of all of the principal components of the g tensors of the two radicals and revealed significant differences in the g tensor anisotropies. The spectra together with (2)H ENDOR spectra and supporting DFT calculations show that the g tensor anisotropy is directly diagnostic of the presence or absence as well as the strength of a hydrogen bond to the indole nitrogen. The approach is a powerful one for identifying and characterizing hydrogen bonds that are critical in the regulation of tryptophan-assisted electron transfer and tryptophan-mediated redox chemistry in proteins.
Collapse
Affiliation(s)
- Stefan Stoll
- Department of Chemistry, University of California Davis, Davis California 95616, United States
| | - Hannah S. Shafaat
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla California 92093, United States
| | - J. Krzystek
- National High Magnetic Field Laboratory, Florida State University, Tallahassee Florida 32310, United States
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory, Florida State University, Tallahassee Florida 32310, United States
| | - Michael J. Tauber
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla California 92093, United States
| | - Judy E. Kim
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla California 92093, United States
| | - R. David Britt
- Department of Chemistry, University of California Davis, Davis California 95616, United States
| |
Collapse
|
20
|
Bellina B, Compagnon I, Houver S, Maître P, Allouche AR, Antoine R, Dugourd P. Spectroscopic Signatures of Peptides Containing Tryptophan Radical Cations. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201104783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Bellina B, Compagnon I, Houver S, Maître P, Allouche AR, Antoine R, Dugourd P. Spectroscopic Signatures of Peptides Containing Tryptophan Radical Cations. Angew Chem Int Ed Engl 2011; 50:11430-2. [DOI: 10.1002/anie.201104783] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Indexed: 11/06/2022]
|
22
|
Costanzo F, Sulpizi M, Valle RGD, Sprik M. The oxidation of tyrosine and tryptophan studied by a molecular dynamics normal hydrogen electrode. J Chem Phys 2011; 134:244508. [DOI: 10.1063/1.3597603] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
23
|
Zhang Q, Chen D, Lin J, Liao R, Tong W, Xu Z, Liu W. Characterization of NocL involved in thiopeptide nocathiacin I biosynthesis: a [4Fe-4S] cluster and the catalysis of a radical S-adenosylmethionine enzyme. J Biol Chem 2011; 286:21287-94. [PMID: 21454624 DOI: 10.1074/jbc.m111.224832] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The radical S-adenosylmethionine (AdoMet) enzyme superfamily is remarkable at catalyzing chemically diverse and complex reactions. We have previously shown that NosL, which is involved in forming the indole side ring of the thiopeptide nosiheptide, is a radical AdoMet enzyme that processes L-Trp to afford 3-methyl-2-indolic acid (MIA) via an unusual fragmentation-recombination mechanism. We now report the expansion of the MIA synthase family by characterization of NocL, which is involved in nocathiacin I biosynthesis. EPR and UV-visible absorbance spectroscopic analyses demonstrated the interaction between L-Trp and the [4Fe-4S] cluster of NocL, leading to the assumption of nonspecific interaction of [4Fe-4S] cluster with other nucleophiles via the unique Fe site. This notion is supported by the finding of the heterogeneity in the [4Fe-4S] cluster of NocL in the absence of AdoMet, which was revealed by the EPR study at very low temperature. Furthermore, a free radical was observed by EPR during the catalysis, which is in good agreement with the hypothesis of a glycyl radical intermediate. Combined with the mutational analysis, these studies provide new insights into the function of the [4Fe-4S] cluster of radical AdoMet enzymes as well as the mechanism of the radical-mediated complex carbon chain rearrangement catalyzed by MIA synthase.
Collapse
Affiliation(s)
- Qi Zhang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Bernini C, Pogni R, Ruiz-Dueñas FJ, Martínez AT, Basosi R, Sinicropi A. EPR parameters of amino acid radicals in P. eryngii versatile peroxidase and its W164Y variant computed at the QM/MM level. Phys Chem Chem Phys 2011; 13:5078-98. [DOI: 10.1039/c0cp02151b] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
25
|
Shafaat HS, Leigh BS, Tauber MJ, Kim JE. Spectroscopic Comparison of Photogenerated Tryptophan Radicals in Azurin: Effects of Local Environment and Structure. J Am Chem Soc 2010; 132:9030-9. [DOI: 10.1021/ja101322g] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hannah S. Shafaat
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093
| | - Brian S. Leigh
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093
| | - Michael J. Tauber
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093
| | - Judy E. Kim
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093
| |
Collapse
|
26
|
Izmaylov AF, Tully JC, Frisch MJ. Relativistic interactions in the radical pair model of magnetic field sense in CRY-1 protein of Arabidopsis thaliana. J Phys Chem A 2010; 113:12276-84. [PMID: 19863135 DOI: 10.1021/jp900357f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Experimentally, it has been shown that magnetic field sensitivity in living organisms is connected to the presence of blue-light photoreceptor cryptochromes. Cryptochromes transduce a light signal through a chain of chemical reactions involving the formation of intermediate biradicals. It was proposed that an external magnetic field affects the interconversion between singlet and triplet states of biradicals and thus interferes with the signal transduction chain. Theoretical modeling of this process requires an accurate evaluation of all interactions important for singlet-triplet interconversion: electron-electron, spin-orbit, spin-spin, hyperfine, and Zeeman. In the current study we investigate these interactions at the CIS level of theory applied to representative fragments of the CRY-1 protein in the plant Arabidopsis thaliana. We find, in contrast to previous simplified modeling (O. Efimova, O.; Hore, P. J. Biophys. J. 2008, 94, 1565), that the spin-spin interaction is significantly larger than the "exchange" interaction. Thus it is not canceled by the latter but rather dies off with the inter-radical separation. Also, we find that the spin-orbit interaction can play a significant role in singlet-triplet interconversion for short inter-radical distances, and the hyperfine interaction becomes the only coupling interaction for long inter-radical distances.
Collapse
Affiliation(s)
- Artur F Izmaylov
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
27
|
Solov'yov IA, Schulten K. Magnetoreception through cryptochrome may involve superoxide. Biophys J 2009; 96:4804-13. [PMID: 19527640 PMCID: PMC2712043 DOI: 10.1016/j.bpj.2009.03.048] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 03/17/2009] [Accepted: 03/24/2009] [Indexed: 11/27/2022] Open
Abstract
In the last decades, it has been demonstrated that many animal species orient in the Earth magnetic field. One of the best-studied examples is the use of the geomagnetic field by migratory birds for orientation and navigation. However, the biophysical mechanism underlying animal magnetoreception is still not understood. One theory for magnetoreception in birds invokes the so-called radical-pair model. This mechanism involves a pair of reactive radicals, whose chemical fate can be influenced by the orientation with respect to the magnetic field of the Earth through Zeeman and hyperfine interactions. The fact that the geomagnetic field is weak, i.e., approximately 0.5 G, puts a severe constraint on the radical pair that can establish the magnetic compass sense. For a noticeable change of the reaction yield in a redirected geomagnetic field, the hyperfine interaction has to be as weak as the Earth field Zeeman interaction, i.e., unusually weak for an organic compound. Such weak hyperfine interaction can be achieved if one of the radicals is completely devoid of this interaction as realized in a radical pair containing an oxygen molecule as one of the radicals. Accordingly, we investigate here a possible radical pair-based reaction in the photoreceptor cryptochrome that reduces the protein's flavin group from its signaling state FADH* to the inactive state FADH- (which reacts to the likewise inactive FAD) by means of the superoxide radical, O2*-. We argue that the spin dynamics in the suggested reaction can act as a geomagnetic compass and that the very low physiological concentration (nM-microM) of otherwise toxic O2*- is sufficient, even favorable, for the biological function.
Collapse
Affiliation(s)
- Ilia A Solov'yov
- Frankfurt Institute for Advanced Studies, Goethe University, Frankfurt am Main, Germany
| | | |
Collapse
|
28
|
Suarez J, Ranguelova K, Jarzecki AA, Manzerova J, Krymov V, Zhao X, Yu S, Metlitsky L, Gerfen GJ, Magliozzo RS. An oxyferrous heme/protein-based radical intermediate is catalytically competent in the catalase reaction of Mycobacterium tuberculosis catalase-peroxidase (KatG). J Biol Chem 2009; 284:7017-29. [PMID: 19139099 DOI: 10.1074/jbc.m808106200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A mechanism accounting for the robust catalase activity in catalase-peroxidases (KatG) presents a new challenge in heme protein enzymology. In Mycobacterium tuberculosis, KatG is the sole catalase and is also responsible for peroxidative activation of isoniazid, an anti-tuberculosis pro-drug. Here, optical stopped-flow spectrophotometry, rapid freeze-quench EPR spectroscopy both at the X-band and at the D-band, and mutagenesis are used to identify catalase reaction intermediates in M. tuberculosis KatG. In the presence of millimolar H2O2 at neutral pH, oxyferrous heme is formed within milliseconds from ferric (resting) KatG, whereas at pH 8.5, low spin ferric heme is formed. Using rapid freeze-quench EPR at X-band under both of these conditions, a narrow doublet radical signal with an 11 G principal hyperfine splitting was detected within the first milliseconds of turnover. The radical and the unique heme intermediates persist in wild-type KatG only during the time course of turnover of excess H2O2 (1000-fold or more). Mutation of Met255, Tyr229, or Trp107, which have covalently linked side chains in a unique distal side adduct (MYW) in wild-type KatG, abolishes this radical and the catalase activity. The D-band EPR spectrum of the radical exhibits a rhombic g tensor with dual gx values (2.00550 and 2.00606) and unique gy (2.00344) and gz values (2.00186) similar to but not typical of native tyrosyl radicals. Density functional theory calculations based on a model of an MYW adduct radical built from x-ray coordinates predict experimentally observed hyperfine interactions and a shift in g values away from the native tyrosyl radical. A catalytic role for an MYW adduct radical in the catalase mechanism of KatG is proposed.
Collapse
Affiliation(s)
- Javier Suarez
- Department of Chemistry, Brooklyn College, Brooklyn, New York 11210, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Shafaat HS, Leigh BS, Tauber MJ, Kim JE. Resonance Raman Characterization of a Stable Tryptophan Radical in an Azurin Mutant. J Phys Chem B 2008; 113:382-8. [PMID: 19072535 DOI: 10.1021/jp809329a] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hannah S. Shafaat
- Department of Chemistry & Biochemistry, University of California at San Diego, La Jolla, California 92093
| | - Brian S. Leigh
- Department of Chemistry & Biochemistry, University of California at San Diego, La Jolla, California 92093
| | - Michael J. Tauber
- Department of Chemistry & Biochemistry, University of California at San Diego, La Jolla, California 92093
| | - Judy E. Kim
- Department of Chemistry & Biochemistry, University of California at San Diego, La Jolla, California 92093
| |
Collapse
|
30
|
Joly L, Antoine R, Allouche AR, Dugourd P. Formation and Spectroscopy of a Tryptophan Radical Containing Peptide in the Gas Phase. J Am Chem Soc 2008; 130:13832-3. [PMID: 18817390 DOI: 10.1021/ja804508d] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Laure Joly
- Université de Lyon, CNRS, UMR 5579, LASIM, Université Lyon 1, Villeurbanne, F-69622 Lyon, France
| | - Rodolphe Antoine
- Université de Lyon, CNRS, UMR 5579, LASIM, Université Lyon 1, Villeurbanne, F-69622 Lyon, France
| | - Abdul-Rahman Allouche
- Université de Lyon, CNRS, UMR 5579, LASIM, Université Lyon 1, Villeurbanne, F-69622 Lyon, France
| | - Philippe Dugourd
- Université de Lyon, CNRS, UMR 5579, LASIM, Université Lyon 1, Villeurbanne, F-69622 Lyon, France
| |
Collapse
|
31
|
Connor HD, Sturgeon BE, Mottley C, Sipe HJ, Mason RP. L-tryptophan radical cation electron spin resonance studies: connecting solution-derived hyperfine coupling constants with protein spectral interpretations. J Am Chem Soc 2008; 130:6381-7. [PMID: 18433127 DOI: 10.1021/ja0780277] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fast-flow electron spin resonance (ESR) spectroscopy has been used to detect a free radical formed from the reaction of l-tryptophan with Ce (4+) in an acidic aqueous environment. Computer simulations of the ESR spectra from l-tryptophan and several isotopically modified forms strongly support the conclusion that the l-tryptophan radical cation has been detected by ESR for the first time. The hyperfine coupling constants (HFCs) determined from the well-resolved isotropic ESR spectra support experimental and computational efforts to understand l-tryptophan's role in protein catalysis of oxidation-reduction processes. l-Tryptophan HFCs facilitated the simulation of fast-flow ESR spectra of free radicals from two related compounds, tryptamine and 3-methylindole. Analysis of these three compounds' beta-methylene hydrogen HFC data along with equivalent l-tyrosine data has led to a new computational method that can distinguish between these two amino acid free radicals in proteins without dependence on isotope labeling, electron-nuclear double resonance, or high-field ESR. This approach also produces geometric parameters (dihedral angles for the beta-methylene hydrogens) that should facilitate protein site assignment of observed l-tryptophan radicals as has been done for l-tyrosine radicals.
Collapse
Affiliation(s)
- Henry D Connor
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, P.O. Box 12233, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | |
Collapse
|
32
|
Wiertz FGM, Richter OMH, Ludwig B, de Vries S. Kinetic Resolution of a Tryptophan-radical Intermediate in the Reaction Cycle of Paracoccus denitrificans Cytochrome c Oxidase. J Biol Chem 2007; 282:31580-91. [PMID: 17761680 DOI: 10.1074/jbc.m705520200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The catalytic mechanism, electron transfer coupled to proton pumping, of heme-copper oxidases is not yet fully understood. Microsecond freeze-hyperquenching single turnover experiments were carried out with fully reduced cytochrome aa(3) reacting with O(2) between 83 micros and 6 ms. Trapped intermediates were analyzed by low temperature UV-visible, X-band, and Q-band EPR spectroscopy, enabling determination of the oxidation-reduction kinetics of Cu(A), heme a, heme a(3), and of a recently detected tryptophan radical (Wiertz, F. G. M., Richter, O. M. H., Cherepanov, A. V., MacMillan, F., Ludwig, B., and de Vries, S. (2004) FEBS Lett. 575, 127-130). Cu(B) and heme a(3) were EPR silent during all stages of the reaction. Cu(A) and heme a are in electronic equilibrium acting as a redox pair. The reduction potential of Cu(A) is 4.5 mV lower than that of heme a. Both redox groups are oxidized in two phases with apparent half-lives of 57 micros and 1.2 ms together donating a single electron to the binuclear center in each phase. The formation of the heme a(3) oxoferryl species P(R) (maxima at 430 nm and 606 nm) was completed in approximately 130 micros, similar to the first oxidation phase of Cu(A) and heme a. The intermediate F (absorbance maximum at 571 nm) is formed from P(R) and decays to a hitherto undetected intermediate named F(W)(*). F(W)(*) harbors a tryptophan radical, identified by Q-band EPR spectroscopy as the tryptophan neutral radical of the strictly conserved Trp-272 (Trp-272(*)). The Trp-272(*) populates to 4-5% due to its relatively low rate of formation (t((1/2)) = 1.2 ms) and rapid rate of breakdown (t((1/2)) = 60 micros), which represents electron transfer from Cu(A)/heme a to Trp-272(*). The formation of the Trp-272(*) constitutes the major rate-determining step of the catalytic cycle. Our findings show that Trp-272 is a redox-active residue and is in this respect on an equal par to the metallocenters of the cytochrome c oxidase. Trp-272 is the direct reductant either to the heme a(3) oxoferryl species or to Cu (2+)(B). The potential role of Trp-272 in proton pumping is discussed.
Collapse
Affiliation(s)
- Frank G M Wiertz
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, Delft 2628 BC, The Netherlands
| | | | | | | |
Collapse
|
33
|
Kiryutin AS, Morozova OB, Kuhn LT, Yurkovskaya AV, Hore PJ. H and13C Hyperfine Coupling Constants of the Tryptophanyl Cation Radical in Aqueous Solution from Microsecond Time-Resolved CIDNP. J Phys Chem B 2007; 111:11221-7. [PMID: 17764168 DOI: 10.1021/jp073385h] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Relative values of the 1H and 13C isotropic hyperfine couplings in the cationic oxidized tryptophan radical TrpH*+ in aqueous solution are determined. The data are obtained from the photo-CIDNP (chemically induced dynamic nuclear polarization) enhancements observed in the microsecond time-resolved NMR spectra of the diamagnetic products of photochemical reactions in which TrpH*+ is a transient intermediate. The method is validated using the tyrosyl neutral radical Tyr*, whose 1H and 13C hyperfine couplings have previously been determined by electron paramagnetic resonance spectroscopy. Good agreement is found with hyperfine coupling constants for TrpH*+ calculated using density functional theory methods but only if water molecules are explicitly included in the calculation.
Collapse
Affiliation(s)
- Alexey S Kiryutin
- International Tomography Center of SB RAS, Institutskaya 3a, 630090 Novosibirsk, Russia
| | | | | | | | | |
Collapse
|
34
|
Voevodskaya N, Lendzian F, Ehrenberg A, Gräslund A. High catalytic activity achieved with a mixed manganese-iron site in protein R2 ofChlamydiaribonucleotide reductase. FEBS Lett 2007; 581:3351-5. [PMID: 17601579 DOI: 10.1016/j.febslet.2007.06.023] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 06/13/2007] [Accepted: 06/14/2007] [Indexed: 10/23/2022]
Abstract
Ribonucleotide reductase (class I) contains two components: protein R1 binds the substrate, and protein R2 normally has a diferric site and a tyrosyl free radical needed for catalysis. In Chlamydia trachomatis RNR, protein R2 functions without radical. Enzyme activity studies show that in addition to a diiron cluster, a mixed manganese-iron cluster provides the oxidation equivalent needed to initiate catalysis. An EPR signal was observed from an antiferromagnetically coupled high-spin Mn(III)-Fe(III) cluster in a catalytic reaction mixture with added inhibitor hydroxyurea. The manganese-iron cluster in protein R2 confers much higher specific activity than the diiron cluster does to the enzyme.
Collapse
Affiliation(s)
- Nina Voevodskaya
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | | | | | | |
Collapse
|
35
|
Lehnig M, Kirsch M. 15N-CIDNP investigations during tryptophan, N-acetyl-L-tryptophan, and melatonin nitration with reactive nitrogen species. Free Radic Res 2007; 41:523-35. [PMID: 17454135 DOI: 10.1080/10715760601161445] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Tryptophan and melatonin are nitrated by peroxynitrite; tryptophan residues in proteins are susceptible to attack by reactive nitrogen species. Nitrated tryptophan might therefore be used as a biomarker for the involvement of reactive species derived from nitrogen oxide in a variety of pathophysiological conditions. The radical character of the tryptophan (Trp) and N-acetyl-L-tryptophan (N-AcTrp) nitration with peroxynitrite is shown using (15)N-CIDNP. During the decay of peroxynitrite-(15)N in the presence of Trp at pH 5 in the probe of a (15)N-NMR spectrometer, the (15)N-NMR signals of various nitrated tryptophans ((15)NO(2)-Trp) show emission (E). The effects are built up in radical pairs [Trp( radical), 15NO2 ](F) formed by diffusive encounters of radicals 15NO2 and Trp( radical) generated during decay of peroxynitrite-(15)N in the presence of Trp. Similar (15)N-CIDNP effects are observed during reaction of Trp and/or N-AcTrp using the nitrating systems H(15)NO(3), H(15)NO(4) and H(2)O(2)/15NO2 /HRP, which are also built up in radical pairs [Trp, 15NO2 ](F). During nitration of melatonin (Mel) with peroxynitrite-(15)N and H(15)NO(4), the (15)N-NMR signal of 4-nitromelatonin (4-(15)NO(2)-Mel) shows emission arising from radical pairs [Mel, 15NO2 ](F) which are formed in an analogous manner.
Collapse
Affiliation(s)
- M Lehnig
- Organische Chemie, Fachbereich Chemie, Universität Dortmund, Otto-Hahn-Strasse 6, Dortmund, Germany.
| | | |
Collapse
|
36
|
Si S, Mandal TK. Tryptophan-based peptides to synthesize gold and silver nanoparticles: a mechanistic and kinetic study. Chemistry 2007; 13:3160-8. [PMID: 17245786 DOI: 10.1002/chem.200601492] [Citation(s) in RCA: 227] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Synthetic oligopeptides with a tryptophan residue at the C-terminus have been used for the synthesis of gold and silver nanoparticles at pH 11. The tryptophan residue in the peptides is responsible for the reduction of metal ions to the respective metals, possibly through electron transfer. A mechanistic pathway has been proposed to explain the reductive properties of the tryptophan moiety of the peptide based on some spectroscopic techniques, such as UV-visible and fluorescence spectroscopy. This study reveals that some of the peptide molecules are converted to its corresponding ditryptophan, kynurenine form and some cross-linked products, all of which are highly fluorescent species. The resultant peptide-functionalized metal nanoparticles have also been characterized by UV-visible spectroscopy, transmission electron microscopy, and Fourier transform IR spectroscopy and thermogravimatric analysis.
Collapse
Affiliation(s)
- Satyabrata Si
- Polymer Science Unit & Centre for Advanced Materials, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | | |
Collapse
|
37
|
Solov'yov IA, Chandler DE, Schulten K. Magnetic field effects in Arabidopsis thaliana cryptochrome-1. Biophys J 2007; 92:2711-26. [PMID: 17259272 PMCID: PMC1831705 DOI: 10.1529/biophysj.106.097139] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Accepted: 01/04/2007] [Indexed: 11/18/2022] Open
Abstract
The ability of some animals, most notably migratory birds, to sense magnetic fields is still poorly understood. It has been suggested that this "magnetic sense" may be mediated by the blue light receptor protein cryptochrome, which is known to be localized in the retinas of migratory birds. Cryptochromes are a class of photoreceptor signaling proteins that are found in a wide variety of organisms and that primarily perform regulatory functions, such as the entrainment of circadian rhythm in mammals and the inhibition of hypocotyl growth in plants. Recent experiments have shown that the activity of cryptochrome-1 in Arabidopsis thaliana is enhanced by the presence of a weak external magnetic field, confirming the ability of cryptochrome to mediate magnetic field responses. Cryptochrome's signaling is tied to the photoreduction of an internally bound chromophore, flavin adenine dinucleotide. The spin chemistry of this photoreduction process, which involves electron transfer from a chain of three tryptophans, can be modulated by the presence of a magnetic field in an effect known as the radical-pair mechanism. Here we present and analyze a model of the flavin-adenine-dinucleotide-tryptophan chain system that incorporates realistic hyperfine coupling constants and reaction rate constants. Our calculations show that the radical-pair mechanism in cryptochrome can produce an increase in the protein's signaling activity of approximately 10% for magnetic fields on the order of 5 G, which is consistent with experimental results. These calculations, in view of the similarity between bird and plant cryptochromes, provide further support for a cryptochrome-based model of avian magnetoreception.
Collapse
Affiliation(s)
- Ilia A Solov'yov
- Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | | | | |
Collapse
|
38
|
Galander M, Uppsten M, Uhlin U, Lendzian F. Orientation of the Tyrosyl Radical in Salmonella typhimurium Class Ib Ribonucleotide Reductase Determined by High Field EPR of R2F Single Crystals. J Biol Chem 2006. [DOI: 10.1016/s0021-9258(19)84089-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
39
|
Galander M, Uppsten M, Uhlin U, Lendzian F. Orientation of the tyrosyl radical in Salmonella typhimurium class Ib ribonucleotide reductase determined by high field EPR of R2F single crystals. J Biol Chem 2006; 281:31743-52. [PMID: 16854982 DOI: 10.1074/jbc.m605089200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The R2 protein of class I ribonucleotide reductase (RNR) generates and stores a tyrosyl radical, located next to a diferric iron center, which is essential for ribonucleotide reduction and thus DNA synthesis. X-ray structures of class Ia and Ib proteins from various organisms served as bases for detailed mechanistic suggestions. The active site tyrosine in R2F of class Ib RNR of Salmonella typhimurium is located at larger distance to the diiron site, and shows a different side chain orientation, as compared with the tyrosine in R2 of class Ia RNR from Escherichia coli. No structural information has been available for the active tyrosyl radical in R2F. Here we report on high field EPR experiments of single crystals of R2F from S. typhimurium, containing the radical Tyr-105*. Full rotational pattern of the spectra were recorded, and the orientation of the g-tensor axes were determined, which directly reflect the orientation of the radical Tyr-105* in the crystal frame. Comparison with the orientation of the reduced tyrosine Tyr-105-OH from the x-ray structure reveals a rotation of the tyrosyl side chain, which reduces the distance between the tyrosyl radical and the nearest iron ligands toward similar values as observed earlier for Tyr-122* in E. coli R2. Presence of the substrate binding subunit R1E did not change the EPR spectra of Tyr-105*, indicating that binding of R2E alone induces no structural change of the diiron site. The present study demonstrates that structural and functional information about active radical states can be obtained by combining x-ray and high-field-EPR crystallography.
Collapse
Affiliation(s)
- Marcus Galander
- Max-Volmer Laboratory for Biophysical Chemistry, Technical University Berlin, D-10623 Berlin, Germany
| | | | | | | |
Collapse
|
40
|
Pogni R, Baratto MC, Teutloff C, Giansanti S, Ruiz-Dueñas FJ, Choinowski T, Piontek K, Martínez AT, Lendzian F, Basosi R. A tryptophan neutral radical in the oxidized state of versatile peroxidase from Pleurotus eryngii: a combined multifrequency EPR and density functional theory study. J Biol Chem 2006; 281:9517-26. [PMID: 16443605 DOI: 10.1074/jbc.m510424200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Versatile peroxidases are heme enzymes that combine catalytic properties of lignin peroxidases and manganese peroxidases, being able to oxidize Mn(2+) as well as phenolic and non-phenolic aromatic compounds in the absence of mediators. The catalytic process (initiated by hydrogen peroxide) is the same as in classical peroxidases, with the involvement of 2 oxidizing equivalents and the formation of the so-called Compound I. This latter state contains an oxoferryl center and an organic cation radical that can be located on either the porphyrin ring or a protein residue. In this study, a radical intermediate in the reaction of versatile peroxidase from the ligninolytic fungus Pleurotus eryngii with H(2)O(2) has been characterized by multifrequency (9.4 and 94 GHz) EPR and assigned to a tryptophan residue. Comparison of experimental data and density functional theory theoretical results strongly suggests the assignment to a tryptophan neutral radical, excluding the assignment to a tryptophan cation radical or a histidine radical. Based on the experimentally determined side chain orientation and comparison with a high resolution crystal structure, the tryptophan neutral radical can be assigned to Trp(164) as the site involved in long-range electron transfer for aromatic substrate oxidation.
Collapse
Affiliation(s)
- Rebecca Pogni
- Department of Chemistry, University of Siena, 53100 Siena, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Bennati M, Lendzian F, Schmittel M, Zipse H. Spectroscopic and theoretical approaches for studying radical reactions in class I ribonucleotide reductase. Biol Chem 2005; 386:1007-22. [PMID: 16218873 DOI: 10.1515/bc.2005.117] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Ribonucleotide reductases (RNRs) catalyze the production of deoxyribonucleotides, which are essential for DNA synthesis and repair in all organisms. The three currently known classes of RNRs are postulated to utilize a similar mechanism for ribonucleotide reduction via a transient thiyl radical, but they differ in the way this radical is generated. Class I RNR, found in all eukaryotic organisms and in some eubacteria and viruses, employs a diferric iron center and a stable tyrosyl radical in a second protein subunit, R2, to drive thiyl radical generation near the substrate binding site in subunit R1. From extensive experimental and theoretical research during the last decades, a general mechanistic model for class I RNR has emerged, showing three major mechanistic steps: generation of the tyrosyl radical by the diiron center in subunit R2, radical transfer to generate the proposed thiyl radical near the substrate bound in subunit R1, and finally catalytic reduction of the bound ribonucleotide. Amino acid- or substrate-derived radicals are involved in all three major reactions. This article summarizes the present mechanistic picture of class I RNR and highlights experimental and theoretical approaches that have contributed to our current understanding of this important class of radical enzymes.
Collapse
Affiliation(s)
- Marina Bennati
- Institut für Physikalische und Theoretische Chemie und BMRZ, J.W. Goethe-Universität Frankfurt, Marie-Curie-Str. 11, D-60439 Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
42
|
Jung C, Lendzian F, Schünemann V, Richter M, Böttger LH, Trautwein AX, Contzen J, Galander M, Ghosh DK, Barra AL. Multi-frequency EPR and Mössbauer spectroscopic studies on freeze-quenched reaction intermediates of nitric oxide synthase. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2005; 43 Spec no.:S84-95. [PMID: 16235218 DOI: 10.1002/mrc.1694] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
It is believed by analogy to chloroperoxidase (CPO) from Caldariomyces fumago that the electronic structure of the intermediate iron-oxo species in the catalytic cycle of nitric oxide synthase (NOS) corresponds to an iron(IV) porphyrin-pi -cation radical. Such species can also be produced by the reaction of ferric NOS with external oxidants within the shunt pathway. We present multi-frequency EPR (9.6, 94, 285 GHz) and Mössbauer spectroscopic studies on freeze-quenched intermediates of the oxygenase domain of nitric oxide synthase which has reacted with peroxy acetic acid within 8-200 ms. The intermediates of the oxygenase domain of both the cytokine inducible NOS (iNOSox) and the neuronal NOS (nNOSox) show an organic radical signal in the 9.6-GHz spectrum overlapping with the spectrum of an unknown species with g-values of 2.24, 2.23 and 1.96. Using 94- and 285-GHz EPR the organic radical signal is assigned to a tyrosine radical on the basis of g-values (i.e. Tyr*562 in nNOSox and Tyr*341 in iNOSox). Mössbauer spectroscopy of (57)Fe-labeled unreacted nNOSox shows a ferric low-spin heme-iron (delta = 0.38 mms(-1), deltaE(Q) = 2.58 mms(-1)). The reaction of nNOSox with peroxy acetic acid for 8 ms leads to the disappearance of the magnetic background characteristic for native nNOSox and a new species with delta = 0.27 mms(-1) and deltaE(Q) = 2.41 mms(-1) is detected at 4.2 K which does not resemble the parameters typical for a Fe(IV) center. It is proposed that this intermediate species corresponds to a ferric low-spin species which magnetically couples to an amino acid radical (presumably Trp*409).
Collapse
Affiliation(s)
- C Jung
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Un S. The g-values and hyperfine coupling of amino acid radicals in proteins: comparison of experimental measurements with ab initio calculations. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2005; 43 Spec no.:S229-36. [PMID: 16235221 DOI: 10.1002/mrc.1660] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy has been extensively used to identify and characterize protein-based redox active amino acid radicals based on their g-values and hyperfine couplings. To better understand how these parameters depend on the electronic structure and environment of the radical, the theoretical g-values and proton hyperfine tensors of three models corresponding to the tyrosyl, tryptophanyl and glycyl radicals were calculated using Gaussian 03. The g-values were determined using the B3LYP/6-31+G(D,P) combination of density functional and basis set, while the hyperfine tensors were determined using the B3LYP/EPR-III and PBE0/EPR-III combinations. Comparisons are made to measured values. It was found that by appropriately accounting for hydrogen bonds and the dielectric constant of the environment, good agreement could be achieved between the calculated and measured g-values. In all three cases, the g-anisotropy arose from significant spin density on a nitrogen or oxygen atom. The calculated hyperfine tensors for the three radicals did not differ significantly from previous calculations. In the case of the tyrosyl radical, it is shown for the first time that the para-position substituent that is opposite of the C-O group can break the symmetry of the phenyl ring, leading to different hyperfine tensors for the two large ortho proton couplings. For the tyrosyl and tryptophanyl models, the calculated hyperfine couplings to hydrogen-bonding protons were in very good agreement with measured values for both the tyrosyl and tryptophanyl models.
Collapse
Affiliation(s)
- Sun Un
- Service de Bioénergétique, Département de Biologie Joliot-Curie, CNRS URA 2096, CEA Saclay, 91191 Gif-sur-Yvette, France.
| |
Collapse
|
44
|
Pogni R, Baratto MC, Giansanti S, Teutloff C, Verdin J, Valderrama B, Lendzian F, Lubitz W, Vazquez-Duhalt R, Basosi R. Tryptophan-based radical in the catalytic mechanism of versatile peroxidase from Bjerkandera adusta. Biochemistry 2005; 44:4267-74. [PMID: 15766255 DOI: 10.1021/bi047474l] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Versatile peroxidase (VP) from Bjerkandera adusta is a structural hybrid between lignin (LiP) and manganese (MnP) peroxidase. This hybrid combines the catalytic properties of the two above peroxidases, being able to oxidize typical LiP and MnP substrates. The catalytic mechanism is that of classical peroxidases, where the substrate oxidation is carried out by a two-electron multistep reaction at the expense of hydrogen peroxide. Elucidation of the structures of intermediates in this process is crucial for understanding the mechanism of substrate oxidation. In this work, the reaction of H(2)O(2) with the enzyme in the absence of substrate has been investigated with electron paramagnetic resonance (EPR) spectroscopy. The results reveal an EPR signal with partially resolved hyperfine structure typical of an organic radical. The yield of this radical is approximately 30%. Progressive microwave power saturation measurements indicate that the radical is weakly coupled to a paramagnetic metal ion, suggesting an amino acid radical in moderate distance from the ferryl heme. A tryptophan radical was identified as a protein-based radical formed during the catalytic mechanism of VP from Bjerkandera adusta through X-band and high-field EPR measurements at 94 GHz, aided by computer simulations for both frequency bands. A close analysis of the theoretical model of the VP from Bjerkandera sp. shows the presence of a tryptophan residue near to the heme prosthetic group, which is solvent-exposed as in the case of LiP and other VPs. The catalytic role of this residue in a long-range electron-transfer pathway is discussed.
Collapse
Affiliation(s)
- Rebecca Pogni
- Department of Chemistry, University of Siena, via Aldo Moro, 53100 Siena, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Lendzian F. Structure and interactions of amino acid radicals in class I ribonucleotide reductase studied by ENDOR and high-field EPR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1707:67-90. [PMID: 15721607 DOI: 10.1016/j.bbabio.2004.02.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2003] [Accepted: 02/17/2004] [Indexed: 11/18/2022]
Abstract
This short review compiles high-field electron paramagnetic resonance (EPR) and electron nuclear double resonance (ENDOR) studies on different intermediate amino acid radicals, which emerge in wild-type and mutant class I ribonucleotide reductase (RNR) both in the reaction of protein subunit R2 with molecular oxygen, which generates the essential tyrosyl radical, and in the catalytic reaction, which involves a radical transfer between subunits R2 and R1. Recent examples are presented, how different amino acid radicals (tyrosyl, tryptophan, and different cysteine-based radicals) were identified, assigned to a specific residue, and their interactions, in particular hydrogen bonding, were investigated using high-field EPR and ENDOR spectroscopy. Thereby, unexpected diiron-radical centers, which emerge in mutants of R2 with changed iron coordination, and an important catalytic cysteine-based intermediate in the substrate turnover reaction in R1 were identified and characterized. Experiments on the essential tyrosyl radical in R2 single crystals revealed the so far unknown conformational changes induced by formation of the radical. Interesting structural differences between the tyrosyl radicals of class Ia and Ib enzymes were revealed. Recently accurate distances between the tyrosyl radicals in the protein dimer R2 could be determined using pulsed electron-electron double resonance (PELDOR), providing a new tool for docking studies of protein subunits. These studies show that high-field EPR and ENDOR are important tools for the identification and investigation of radical intermediates, which contributed significantly to the current understanding of the reaction mechanism of class I RNR.
Collapse
Affiliation(s)
- Friedhelm Lendzian
- Max-Volmer-Laboratory for Biophysical Chemistry, Institute for Chemistry, PC 14, Technical University Berlin, Strasse des 17. Juni 135, D-10623 Berlin, Germany.
| |
Collapse
|
46
|
Kolberg M, Logan DT, Bleifuss G, Pötsch S, Sjöberg BM, Gräslund A, Lubitz W, Lassmann G, Lendzian F. A new tyrosyl radical on Phe208 as ligand to the diiron center in Escherichia coli ribonucleotide reductase, mutant R2-Y122H. Combined x-ray diffraction and EPR/ENDOR studies. J Biol Chem 2005; 280:11233-46. [PMID: 15634667 DOI: 10.1074/jbc.m414634200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The R2 protein subunit of class I ribonucleotide reductase (RNR) belongs to a structurally related family of oxygen bridged diiron proteins. In wild-type R2 of Escherichia coli, reductive cleavage of molecular oxygen by the diferrous iron center generates a radical on a nearby tyrosine residue (Tyr122), which is essential for the enzymatic activity of RNR, converting ribonucleotides into deoxyribonucleotides. In this work, we characterize the mutant E. coli protein R2-Y122H, where the radical site is substituted with a histidine residue. The x-ray structure verifies the mutation. R2-Y122H contains a novel stable paramagnetic center which we name H, and which we have previously proposed to be a diferric iron center with a strongly coupled radical, Fe(III)Fe(III)R.. Here we report a detailed characterization of center H, using 1H/2H -14N/15N- and 57Fe-ENDOR in comparison with the Fe(III)Fe(IV) intermediate X observed in the iron reconstitution reaction of R2. Specific deuterium labeling of phenylalanine residues reveals that the radical results from a phenylalanine. As Phe208 is the only phenylalanine in the ligand sphere of the iron site, and generation of a phenyl radical requires a very high oxidation potential, we propose that in Y122H residue Phe208 is hydroxylated, as observed earlier in another mutant (R2-Y122F/E238A), and further oxidized to a phenoxyl radical, which is coordinated to Fe1. This work demonstrates that small structural changes can redirect the reactivity of the diiron site, leading to oxygenation of a hydrocarbon, as observed in the structurally similar methane monoxygenase, and beyond, to formation of a stable iron-coordinated radical.
Collapse
Affiliation(s)
- Matthias Kolberg
- Max-Volmer-Laboratory, Institute for Chemistry, PC 14, Technical University Berlin, D-10623 Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Jung C, Schünemann V, Lendzian F, Trautwein AX, Contzen J, Galander M, Böttger LH, Richter M, Barra AL. Spectroscopic characterization of the iron-oxo intermediate in cytochrome P450. Biol Chem 2005; 386:1043-53. [PMID: 16218876 DOI: 10.1515/bc.2005.120] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
From analogy to chloroperoxidase from Caldariomyces fumago, it is believed that the electronic structure of the intermediate iron-oxo species in the catalytic cycle of cytochrome P450 corresponds to an iron(IV) porphyrin-pi-cation radical (compound I). However, our recent studies on P450cam revealed that after 8 ms a tyrosine radical and iron(IV) were formed in the reaction of ferric P450 with external oxidants in the shunt pathway. The present study on the heme domain of P450BM3 (P450BMP) shows a similar result. In addition to a tyrosine radical, a contribution from a tryptophan radical was found in the electron paramagnetic resonance (EPR) spectra of P450BMP. Here we present comparative multi-frequency EPR (9.6, 94 and 285 GHz) and Mössbauer spectroscopic studies on freeze-quenched intermediates produced using peroxy acetic acid as oxidant for both P450 cytochromes. After 8 ms in both systems, amino acid radicals occurred instead of the proposed iron(IV) porphyrin-pi-cation radical, which may be transiently formed on a much faster time scale. These findings are discussed with respect to other heme thiolate proteins. Our studies demonstrate that intramolecular electron transfer from aromatic amino acids is a common feature in these enzymes. The electron transfer quenches the presumably transiently formed porphyrin-pi-cation radical, which makes it extremely difficult to trap compound I.
Collapse
Affiliation(s)
- Christiane Jung
- Max-Delbrück-Center for Molecular Medicine, D-13125 Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Chang CH, Svedruzic D, Ozarowski A, Walker L, Yeagle G, Britt RD, Angerhofer A, Richards NGJ. EPR spectroscopic characterization of the manganese center and a free radical in the oxalate decarboxylase reaction: identification of a tyrosyl radical during turnover. J Biol Chem 2004; 279:52840-9. [PMID: 15475346 DOI: 10.1074/jbc.m402345200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Several molecular mechanisms for cleavage of the oxalate carbon-carbon bond by manganese-dependent oxalate decarboxylase have recently been proposed involving high oxidation states of manganese. We have examined the oxalate decarboxylase from Bacillus subtilis by electron paramagnetic resonance in perpendicular and parallel polarization configurations to test for the presence of such species in the resting state and during enzymatic turnover. Simulation and the position of the half-field Mn(II) line suggest a nearly octahedral metal geometry in the resting state. No spectroscopic signature for Mn(III) or Mn(IV) is seen in parallel mode EPR for samples frozen during turnover, consistent either with a large zero-field splitting in the oxidized metal center or undetectable levels of these putative high-valent intermediates in the steady state. A narrow, featureless g = 2.0 species was also observed in perpendicular mode in the presence of substrate, enzyme, and dioxygen. Additional splittings in the signal envelope became apparent when spectra were taken at higher temperatures. Isotopic editing resulted in an altered line shape only when tyrosine residues of the enzyme were specifically deuterated. Spectral processing confirmed multiple splittings with isotopically neutral enzyme that collapsed to a single prominent splitting in the deuterated enzyme. These results are consistent with formation of an enzyme-based tyrosyl radical upon oxalate exposure. Modestly enhanced relaxation relative to abiological tyrosyl radicals was observed, but site-directed mutagenesis indicated that conserved tyrosine residues in the active site do not host the unpaired spin. Potential roles for manganese and a peripheral tyrosyl radical during steady-state turnover are discussed.
Collapse
Affiliation(s)
- Christopher H Chang
- Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Budiman K, Kannt A, Lyubenova S, Richter OMH, Ludwig B, Michel H, MacMillan F. Tyrosine 167: The Origin of the Radical Species Observed in the Reaction of Cytochrome c Oxidase with Hydrogen Peroxide in Paracoccus denitrificans. Biochemistry 2004; 43:11709-16. [PMID: 15362855 DOI: 10.1021/bi048898i] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Determination of the three-dimensional structure of cytochrome c oxidase, the terminal enzyme of the respiratory chain, from Paracoccus denitrificans offers the possibility of site-directed mutagenesis studies to investigate the relationship between the structure and the catalytic function of the enzyme. The mechanism of electron-coupled proton transfer is still, however, poorly understood. The P(M) intermediate of the catalytic cycle is an oxoferryl state the generation of which requires one additional electron, which cannot be provided by the two metal centers. It is suggested that the missing electron is donated to this binuclear site by a tyrosine residue that forms a radical species, which can then be detected in both the P(M) and F(*) intermediates of the catalytic cycle. One possibility to produce P(M) and F(*) intermediates artificially in cytochrome c oxidase is the addition of hydrogen peroxide to the fully oxidized enzyme. Using electron paramagnetic resonance (EPR) spectroscopy, we assign a radical species detected in this reaction to a tyrosine residue. To address the question, which tyrosine residue is the origin of the radical species, several tyrosine variants of subunit I are investigated. These variants are characterized by their turnover rates, as well as using EPR and optical spectroscopy. From these experiments, it is concluded that the origin of the radical species appearing in P(M) and F(*) intermediates produced with hydrogen peroxide is tyrosine 167. The significance of this finding for the catalytic function of the enzyme is discussed.
Collapse
Affiliation(s)
- Kerstin Budiman
- Max-Planck Institut für Biophysik, D-60439 Frankfurt am Main, Germany
| | | | | | | | | | | | | |
Collapse
|
50
|
van Gastel M, Lubitz W, Lassmann G, Neese F. Electronic structure of the cysteine thiyl radical: a DFT and correlated ab initio study. J Am Chem Soc 2004; 126:2237-46. [PMID: 14971960 DOI: 10.1021/ja038813l] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The electronic structure and the unusual EPR parameters of sulfur-centered alkyl thiyl radical from cysteine are investigated by density functional theory (DFT) and correlated ab initio calculations. Three geometry-optimized, staggered conformations of the radical are found that lie within 630 cm(-1) in energy. The EPR g-values are sensitive to the energy difference between the nearly-degenerate singly occupied orbital and one of the lone-pair orbitals (excitation energies of 1732, 1083, and 3429 cm(-1) from Multireference Configuration Interaction calculations for the structures corresponding to the three minima), both of which are almost pure sulfur 3p orbitals. Because of the near degeneracy, the second order correction to the g tensor, which is widely used to analyze g-values of paramagnetic systems, is insufficient to obtain accurate g-values of the cysteine thiyl radical. Instead, an expression for the g tensor must be used in which third order corrections are taken into account. The near-degeneracy can be affected to roughly equal extents by changes in the structure of the radical and by hydrogen bonds to the sulfur. The magnitude of the hyperfine coupling constants for the beta protons of the cysteine thiyl radical is found to depend on the structure of the radical. On the basis of a detailed comparison between experimental and calculated g-values and hyperfine coupling constants an attempt is made to identify the structure of thiyl radicals and the number of hydrogen bonds to the sulfur.
Collapse
Affiliation(s)
- Maurice van Gastel
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470, Muelheim on the Ruhr, Germany.
| | | | | | | |
Collapse
|