1
|
Sadhu B, Sundararajan M. Asn47 and Phe114 modulate the inner sphere reorganization energies of type zero copper proteins. Phys Chem Chem Phys 2016; 18:16748-56. [PMID: 27271560 DOI: 10.1039/c6cp00747c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The geometric structures and electron transfer properties of type 1 Cu proteins are reasonably understood at the molecular level (E. I. Solomon and R. G. Hadt, Coord. Chem. Rev., 2011, 255, 774-789, J. J. Warren, K. M. Lancaster, J. H. Richards and H. B. Gray, J. Inorg. Biochem., 2012, 115, 119-126). Much understanding of type 1 copper electron transfer reactivity has come from site directed mutagenesis studies. For example, artificial "type zero" Cu-centres constructed in cupredoxin-azurin have showcased the capacity of outer-sphere hydrogen bonding networks to enhance Cu II/I electron transfer reactivity. In this paper, we have elaborated on earlier kinetics and electronic structural studies of type zero Cu by calculating the inner sphere reorganization energies of type 1, type 2, and type zero Cu proteins using density functional theory (DFT). Although the choice of density functionals for copper systems is not straightforward, we have benchmarked the density functionals against the recently reported ESI-PES data for two synthetic copper models (S. Niu, D.-L. Huang, P. D. Dau, H.-T. Liu, L.-S. Wang and T. J. Ichiye, Chem. Theory Comput., 2014, 10, 1283). For the Cu proteins, our calculations predict that changes in the coordination number upon metal reduction lead to large inner sphere reorganization energies for type 2 Cu sites, whereas retention in the coordination number is observed for type zero Cu sites. These variations in the coordination number are modulated by the outer-sphere coordinating residues Asn47 and Phe114, which are involved in hydrogen bonding with the Asp112 side chain.
Collapse
Affiliation(s)
- Biswajit Sadhu
- Radiation Safety Systems Division, Bhabha Atomic Research Centre, Mumbai - 400 085, India
| | - Mahesh Sundararajan
- Theoretical Chemistry Section, Bhabha Atomic Research Centre, Mumbai - 400 094, India.
| |
Collapse
|
2
|
Hayes EC, Porter TR, Barrows CJ, Kaminsky W, Mayer JM, Stoll S. Electronic Structure of a Cu(II)-Alkoxide Complex Modeling Intermediates in Copper-Catalyzed Alcohol Oxidations. J Am Chem Soc 2016; 138:4132-45. [PMID: 26907976 PMCID: PMC4988936 DOI: 10.1021/jacs.5b13088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In the copper-catalyzed oxidation of alcohols to aldehydes, a Cu(II)-alkoxide (Cu(II)-OR) intermediate is believed to modulate the αC-H bond strength of the deprotonated substrate to facilitate the oxidation. As a structural model for these intermediates, we characterized the electronic structure of the stable compound Tp(tBu)Cu(II)(OCH2CF3) (Tp(tBu) = hydro-tris(3-tert-butyl-pyrazolyl)borate) and investigated the influence of the trifluoroethoxide ligand on the electronic structure of the complex. The compound exhibits an electron paramagnetic resonance (EPR) spectrum with an unusually large gzz value of 2.44 and a small copper hyperfine coupling Azz of 40 × 10(-4) cm(-1) (120 MHz). Single-crystal electron nuclear double resonance (ENDOR) spectra show that the unpaired spin population is highly localized on the copper ion (≈68%), with no more than 15% on the ethoxide oxygen. Electronic absorption and magnetic circular dichroism (MCD) spectra show weak ligand-field transitions between 5000 and 12,000 cm(-1) and an intense ethoxide-to-copper charge transfer (LMCT) transition at 24,000 cm(-1), resulting in the red color of this complex. Resonance Raman (rR) spectroscopy reveals a Cu-O stretch mode at 592 cm(-1). Quantum chemical calculations support the interpretation and assignment of the experimental data. Compared to known Cu(II)-thiolate and Cu(II)-alkylperoxo complexes from the literature, we found an increased σ interaction in the Cu(II)-OR bond that results in the spectroscopic features. These insights lay the basis for further elucidating the mechanism of copper-catalyzed alcohol oxidations.
Collapse
Affiliation(s)
- Ellen C. Hayes
- Department of Chemistry, Box 351700, University of Washington, Seattle, WA 98195
| | | | - Charles J. Barrows
- Department of Chemistry, Box 351700, University of Washington, Seattle, WA 98195
| | - Werner Kaminsky
- Department of Chemistry, Box 351700, University of Washington, Seattle, WA 98195
| | | | - Stefan Stoll
- Department of Chemistry, Box 351700, University of Washington, Seattle, WA 98195
| |
Collapse
|
3
|
Hadt RG, Xie X, Pauleta SR, Moura I, Solomon EI. Analysis of resonance Raman data on the blue copper site in pseudoazurin: excited state π and σ charge transfer distortions and their relation to ground state reorganization energy. J Inorg Biochem 2012; 115:155-62. [PMID: 22560510 DOI: 10.1016/j.jinorgbio.2012.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Revised: 03/18/2012] [Accepted: 03/21/2012] [Indexed: 10/28/2022]
Abstract
The short Cu(2+)-S(Met) bond in pseudoazurin (PAz) results in the presence of two relatively intense S(p)(π) and S(p)(σ) charge transfer (CT) transitions. This has enabled resonance Raman (rR) data to be obtained for each excited state. The rR data show very different intensity distribution patterns for the vibrations in the 300-500 cm(-1) region. Time-dependent density functional theory (TDDFT) calculations have been used to determine that the change in intensity distribution between the S(p)(π) and S(p)(σ) excited states reflects the differential enhancement of S(Cys) backbone modes with Cu-S(Cys)-C(β) out-of-plane (oop) and in-plane (ip) bend character in their respective potential energy distributions (PEDs). The rR excited state distortions have been related to ground state reorganization energies (λ s) and predict that, in addition to M-L stretches, the Cu-S(Cys)-C(β) oop bend needs to be considered. DFT calculations predict a large distortion in the Cu-S(Cys)-C(β) oop bending coordinate upon reduction of a blue copper (BC) site; however, this distortion is not present in the X-ray crystal structures of reduced BC sites. The lack of Cu-S(Cys)-C(β) oop distortion upon reduction corresponds to a previously unconsidered constraint on the thiolate ligand orientation in the reduced state of BC proteins and can be considered as a contribution to the entatic/rack nature of BC sites.
Collapse
Affiliation(s)
- Ryan G Hadt
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
4
|
Alves WA, Matos IO, Takahashi PM, Bastos EL, Martinho H, Ferreira JG, Silva CC, de Almeida Santos RH, Paduan-Filho A, Da Costa Ferreira AM. A Chloro-Bridged Linear Chain Imine-Copper(II) Complex and Its Application as an Enzyme-Free Amperometric Biosensor for Hydrogen Peroxide. Eur J Inorg Chem 2009. [DOI: 10.1002/ejic.200801218] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
5
|
McNaughton RL, Helton ME, Cosper MM, Enemark JH, Kirk ML. Nature of the Oxomolybdenum−Thiolate π-Bond: Implications for Mo−S Bonding in Sulfite Oxidase and Xanthine Oxidase. Inorg Chem 2004; 43:1625-37. [PMID: 14989655 DOI: 10.1021/ic034206n] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The electronic structure of cis,trans-(L-N(2)S(2))MoO(X) (where L-N(2)S(2) = N,N'-dimethyl-N,N'-bis(2-mercaptophenyl)ethylenediamine and X = Cl, SCH(2)C(6)H(5), SC(6)H(4)-OCH(3), or SC(6)H(4)CF(3)) has been probed by electronic absorption, magnetic circular dichroism, and resonance Raman spectroscopies to determine the nature of oxomolybdenum-thiolate bonding in complexes possessing three equatorial sulfur ligands. One of the phenyl mercaptide sulfur donors of the tetradentate L-N(2)S(2) chelating ligand, denoted S(180), coordinates to molybdenum in the equatorial plane such that the OMo-S(180)-C(phenyl) dihedral angle is approximately 180 degrees, resulting in a highly covalent pi-bonding interaction between an S(180) p orbital and the molybdenum d(xy) orbital. This highly covalent bonding scheme is the origin of an intense low-energy S --> Mo d(xy) bonding-to-antibonding LMCT transition (E(max) approximately 16000 cm(-)(1), epsilon approximately 4000 M(-)(1) cm(-)(1)). Spectroscopically calibrated bonding calculations performed at the DFT level of theory reveal that S(180) contributes approximately 22% to the HOMO, which is predominantly a pi antibonding molecular orbital between Mo d(xy) and the S(180) p orbital oriented in the same plane. The second sulfur donor of the L-N(2)S(2) ligand is essentially nonbonding with Mo d(xy) due to an OMo-S-C(phenyl) dihedral angle of approximately 90 degrees. Because the formal Mo d(xy) orbital is the electroactive or redox orbital, these Mo d(xy)-S 3p interactions are important with respect to defining key covalency contributions to the reduction potential in monooxomolybdenum thiolates, including the one- and two-electron reduced forms of sulfite oxidase. Interestingly, the highly covalent Mo-S(180) pi bonding interaction observed in these complexes is analogous to the well-known Cu-S(Cys) pi bond in type 1 blue copper proteins, which display electronic absorption and resonance Raman spectra that are remarkably similar to these monooxomolybdenum thiolate complexes. Finally, the presence of a covalent Mo-S pi interaction oriented orthogonal to the MOO bond is discussed with respect to electron-transfer regeneration in sulfite oxidase and Mo=S(sulfido) bonding in xanthine oxidase.
Collapse
Affiliation(s)
- Rebecca L McNaughton
- Departments of Chemistry, The University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, New Mexico 87131-0001, USA
| | | | | | | | | |
Collapse
|
6
|
Clay MD, Emerson JP, Coulter ED, Kurtz DM, Johnson MK. Spectroscopic characterization of the [Fe(His)(4)(Cys)] site in 2Fe-superoxide reductase from Desulfovibrio vulgaris. J Biol Inorg Chem 2003; 8:671-82. [PMID: 12764688 DOI: 10.1007/s00775-003-0465-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2003] [Accepted: 04/11/2003] [Indexed: 10/26/2022]
Abstract
The electronic and vibrational properties of the [Fe(His)(4)(Cys)] site (Center II) responsible for catalysis of superoxide reduction in the two-iron superoxide reductase (2Fe-SOR) from Desulfovibrio vulgaris have been investigated using the combination of EPR, resonance Raman, UV/visible/near-IR absorption, CD, and VTMCD spectroscopies. Deconvolution of the spectral contributions of Center II from those of the [Fe(Cys)(4)] site (Center I) has been achieved by parallel investigations of the C13S variant, which does not contain Center I. The resonance Raman spectrum of ferric Center II has been assigned based on isotope shifts for (34)S and (15)N globally labeled proteins. As for the [Fe(His)(4)(Cys)] active site in 1Fe-SOR from Pyrococcus furiosus, the spectroscopic properties of ferric and ferrous Center II in D. vulgaris 2Fe-SOR are indicative of distorted octahedral and square-pyramidal coordination geometries, respectively. Differences in the properties of the ferric [Fe(His)(4)(Cys)] sites in 1Fe- and 2Fe-SORs are apparent in the rhombicity of the S=5/2 ground state ( E/ D=0.06 and 0.28 in 1Fe- and 2Fe-SORs, respectively), the energy of the CysS(-)(p(pi))-->Fe(3+)(d(pi)) CT transition (15150+/-150 cm(-1) and 15600+/-150 cm(-1) in 1Fe- and 2Fe-SORs, respectively) and in changes in the Fe-S stretching region of the resonance Raman spectrum indicative of a weaker Fe-S(Cys) bond in 2Fe-SORs. These differences are interpreted in terms of small structural perturbations in the Fe coordination sphere with changes in the Fe-S(Cys) bond strength resulting from differences in the peptide N-H.S(Cys) hydrogen bonding within a tetrapeptide bidentate "chelate". Observation of the characteristic intervalence charge transfer transition of a cyano-bridged [Fe(III)-NC-Fe(II)(CN)(5)] unit in the near-IR VTMCD spectra of ferricyanide-oxidized samples of both P. furiosus 1Fe-SOR and D. vulgaris 2Fe-SOR has confirmed the existence of novel ferrocyanide adducts of the ferric [Fe(His)(4)(Cys)] sites in both 1Fe- and 2Fe-SORs.
Collapse
Affiliation(s)
- Michael D Clay
- Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | |
Collapse
|
7
|
UV resonance Raman and NMR spectroscopic studies on the pH dependent metal ion release from pseudoazurin. Inorganica Chim Acta 2002. [DOI: 10.1016/s0020-1693(02)00937-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Fraga E, Loppnow GR. The Role of Specific Amino Acid Residues in The Vibrational Properties of Plastocyanin. J Phys Chem B 2002. [DOI: 10.1021/jp014547r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- E. Fraga
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - G. R. Loppnow
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
9
|
Clay MD, Jenney FE, Noh HJ, Hagedoorn PL, Adams MWW, Johnson MK. Resonance Raman characterization of the mononuclear iron active-site vibrations and putative electron transport pathways in Pyrococcus furiosus superoxide reductase. Biochemistry 2002; 41:9833-41. [PMID: 12146949 DOI: 10.1021/bi025833b] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The resonance Raman spectrum of oxidized wild-type P. furiosus SOR at pH 7.5 and 10.5 has been investigated using excitation wavelengths between 406 and 676 nm, and vibrational modes have been assigned on the basis of isotope shifts resulting from global replacements of (32)S with (34)S, (14)N with (15)N, (56)Fe with (54)Fe, and exchange into a H(2)(18)O buffer. The results are interpreted in terms of the crystallographically defined active-site structure involving a six-coordinate mononuclear Fe center with four equatorial histidine ligands and axial cysteine and monodentate glutamate ligands (Yeh, A. P., Hu, Y., Jenney, F. E., Adams, M. W. W., and Rees, D. C. (2000) Biochemistry 39, 2499-2508). Excitation into the intense (Cys)S(p(pi))-to-Fe(d(pi)) CT transition centered at 660 nm results in strong enhancement of modes at 298 cm(-1) and 323 cm(-1) that are assigned to extensively mixed cysteine S-C(beta)-C(alpha) bending and Fe-S(Cys) stretching modes, respectively. All other higher-energy vibrational modes are readily assigned to overtone or combination bands or to fundamentals corresponding to internal modes of the ligated cysteine. Weak enhancement of Fe-N(His) stretching modes is observed in the 200-250 cm(-1) region. The enhancement of internal cysteine modes and Fe-N(His) stretching modes are a consequence of a near-planar Fe-S-C(beta)-C(alpha)-N unit for the coordinated cysteine and significant (His)N(p(pi))-Fe(d(xy))-(Cys)S(p(pi)) orbital overlap, respectively, and have close parallels to type 1 copper proteins. By analogy with type 1 copper proteins, putative superexchange electron-transfer pathways to the mononuclear Fe active site are identified involving either the tyrosine and cysteine residues or the solvent-exposed deltaN histidine residue in a Y-C-X-X-H arrangement. Studies of wild-type at pH 10.5 and the E14A variant indicate that the resonance Raman spectrum is remarkably insensitive to changes in the ligand trans to cysteine and hence are inconclusive concerning the origin of the alkaline transition and the nature of sixth Fe ligand in the E14A variant.
Collapse
Affiliation(s)
- Michael D Clay
- Department of Chemistry, Center for Metalloenzyme Studies, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | |
Collapse
|
10
|
Webb MA, Loppnow GR. Evidence for Anisotropic Coupling between the Protein Environment and the Copper Site in Azurin from Resonance Raman Spectroscopy. J Phys Chem B 2002. [DOI: 10.1021/jp013665b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- M. Adam Webb
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Glen R. Loppnow
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
11
|
|
12
|
Arjunan V, Subramanian S, Mohan S. Fourier transform infrared and Raman spectral analysis of trans-1,4-polyisoprene. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2001; 57:2547-2554. [PMID: 11765780 DOI: 10.1016/s1386-1425(01)00426-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Polyisoprene is the most widely used polymer in industry and commerce. Fourier transform infrared (FTIR) and Raman spectra of trans-1,4-polyisoprene have been recorded in the range of 4000-400 and 4000-100 cm(-1), respectively. In the present investigation, detailed assignments of the observed fundamental bands of trans-1,4-polyisoprene has been analysed in terms of peak positions and relative intensities. With the hope of providing more and effective information on the fundamental vibrations, a normal co-ordinate analysis has been performed on trans-1,4polyisoprene, by assuming Cs symmetry. The simple general valance force field (SGVFF) method has been employed in normal co-ordinate analysis and to calculate the potential energy distribution (PED) for each fundamental vibration. The PED contribution corresponding to each of the observed frequencies shows the reliability and accuracy of the spectral analysis. The validity of the SGVFF method as a practical tool for complete analysis of vibrational spectra, even for a polymer of this complexity, is confirmed in the present work.
Collapse
Affiliation(s)
- V Arjunan
- Department of Chemistry, Pondicherry Engineering College, Pondicherry, India
| | | | | |
Collapse
|
13
|
Metzler DE, Metzler CM, Sauke DJ. Light and Life. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50026-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Hennessy MH, Soos ZG, Watson DF, Bocarsly AB. Raman Excitation Profiles with Self-Consistent Excited-State Displacements. J Phys Chem B 2000. [DOI: 10.1021/jp0011084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- M. H. Hennessy
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544
| | - Z. G. Soos
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544
| | - D. F. Watson
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544
| | - A. B. Bocarsly
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544
| |
Collapse
|
15
|
Affiliation(s)
- P R Carey
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| |
Collapse
|
16
|
Kohzuma T, Inoue T, Yoshizaki F, Sasakawa Y, Onodera K, Nagatomo S, Kitagawa T, Uzawa S, Isobe Y, Sugimura Y, Gotowda M, Kai Y. The structure and unusual pH dependence of plastocyanin from the fern Dryopteris crassirhizoma. The protonation of an active site histidine is hindered by pi-pi interactions. J Biol Chem 1999; 274:11817-23. [PMID: 10206999 DOI: 10.1074/jbc.274.17.11817] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Spectroscopic properties, amino acid sequence, electron transfer kinetics, and crystal structures of the oxidized (at 1.7 A resolution) and reduced form (at 1.8 A resolution) of a novel plastocyanin from the fern Dryopteris crassirhizoma are presented. Kinetic studies show that the reduced form of Dryopteris plastocyanin remains redox-active at low pH, under conditions where the oxidation of the reduced form of other plastocyanins is inhibited by the protonation of a solvent-exposed active site residue, His87 (equivalent to His90 in Dryopteris plastocyanin). The x-ray crystal structure analysis of Dryopteris plastocyanin reveals pi-pi stacking between Phe12 and His90, suggesting that the active site is uniquely protected against inactivation. Like higher plant plastocyanins, Dryopteris plastocyanin has an acidic patch, but this patch is located closer to the solvent-exposed active site His residue, and the total number of acidic residues is smaller. In the reactions of Dryopteris plastocyanin with inorganic redox reagents, the acidic patch (the "remote" site) and the hydrophobic patch surrounding His90 (the "adjacent" site) are equally efficient for electron transfer. These results indicate the significance of the lack of protonation at the active site of Dryopteris plastocyanin, the equivalence of the two electron transfer sites in this protein, and a possibility of obtaining a novel insight into the photosynthetic electron transfer system of the first vascular plant fern, including its molecular evolutionary aspects. This is the first report on the characterization of plastocyanin and the first three-dimensional protein structure from fern plant.
Collapse
Affiliation(s)
- T Kohzuma
- Faculty of Science, Ibaraki University, Mito, Ibaraki 310-8512, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|