1
|
Enlund E, Julin S, Linko V, Kostiainen MA. Structural stability of DNA origami nanostructures in organic solvents. NANOSCALE 2024; 16:13407-13415. [PMID: 38910453 PMCID: PMC11256221 DOI: 10.1039/d4nr02185a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
DNA origami nanostructures have attracted significant attention as an innovative tool in a variety of research areas, spanning from nanophotonics to bottom-up nanofabrication. However, the use of DNA origami is often restricted by their rather limited structural stability in application-specific conditions. The structural integrity of DNA origami is known to be superstructure-dependent, and the integrity is influenced by various external factors, for example cation concentration, temperature, and presence of nucleases. Given the necessity to functionalize DNA origami also with non-water-soluble entities, it is important to acquire knowledge of the structural stability of DNA origami in various organic solvents. Therefore, we herein systematically investigate the post-folding DNA origami stability in a variety of polar, water-miscible solvents, including acetone, ethanol, DMF, and DMSO. Our results suggest that the structural integrity of DNA origami in organic solvents is both superstructure-dependent and dependent on the properties of the organic solvent. In addition, DNA origami are generally more resistant to added organic solvents in folding buffer compared to that in deionized water. DNA origami stability can be maintained in up to 25-40% DMF or DMSO and up to 70-90% acetone or ethanol, with the highest overall stability observed in acetone. By rationally selecting both the DNA origami design and the solvent, the DNA origami stability can be maintained in high concentrations of organic solvents, which paves the way for more extensive use of non-water-soluble compounds for DNA origami functionalization and complexation.
Collapse
Affiliation(s)
- Eeva Enlund
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland.
| | - Sofia Julin
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland.
| | - Veikko Linko
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland.
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Mauri A Kostiainen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland.
- LIBER Center of Excellence, Aalto University, 00076 Aalto, Finland
| |
Collapse
|
2
|
Mathur N, Singh A, Singh N. Force-induced unzipping of DNA in the presence of solvent molecules. Biophys Chem 2024; 307:107175. [PMID: 38244296 DOI: 10.1016/j.bpc.2024.107175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024]
Abstract
The melting of double-stranded DNA (dsDNA) in the presence of solvent molecules is a fundamental process with significant implications for understanding the thermal and mechanical behavior of DNA and its interactions with the surrounding environment. The solvents play an essential role in the structural transformation of DNA subjected to a pulling force. In this study, we simulate the thermal and force induced denaturation of dsDNA and elucidate the solvent dependent melting behavior, identifying key factors that influence the stability of DNA melting in presence of solvent molecules. Using a statistical model, we first find the melting profile of short heterogeneous DNA molecules in the presence of solvent molecules in Force ensemble. We also investigate the effect of solvent's strengths on the melting profile of DNA. In the force ensemble, we consider two homogeneous DNA chains and apply the force on different locations along the chain in the presence of solvent molecules. Different pathways manifest the melting of the molecule in both ensembles, and we found several interesting features of melting DNA in a constant force ensemble, such as lower critical force when the chain is pulled from the base pair close to a solvent molecule. The results provide new insights into the force-induced unzipping of DNA and could be used to develop new methods for controlling the unzipping process. By providing a better understanding of melting and unzipping of dsDNA in the presence of solvent molecules, this study provides valuable guidelines for predicting DNA thermodynamic quantities and for designing DNA nanostructures.
Collapse
Affiliation(s)
- Neha Mathur
- Birla Institute of Technology & Science, Pilani 333031, India
| | - Amar Singh
- Birla Institute of Technology & Science, Pilani 333031, India.
| | - Navin Singh
- Birla Institute of Technology & Science, Pilani 333031, India
| |
Collapse
|
3
|
León-Paz-de-Rodríguez GE, Rodríguez-León E, Iñiguez-Palomares R. DNA Hyperstructure. ACS OMEGA 2024; 9:9013-9026. [PMID: 38434827 PMCID: PMC10905968 DOI: 10.1021/acsomega.3c07379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/29/2023] [Accepted: 01/24/2024] [Indexed: 03/05/2024]
Abstract
This study presents a new procedure to condense DNA molecules and precipitate them onto a glass slide. The resulting DNA molecules undergo autonomous self-assembly, creating closed superstructures on the micrometer scale, which are called DNA hyperstructures. These structures can be observed using low-magnification (4×) light microscopy. Precisely controlling the alcohol/glacial acetic acid ratio and DNA concentration during precipitation enabled the regulation of structure compaction on the slide. The alcohol/glacial acetic acid ratio is inversely proportional to the DNA concentration to achieve optimal compaction on the slide. Confocal microscopy fluorescence analysis of DNA extracts stained with DAPI shows that nucleic acids self-assemble to form structures during precipitation on the slide. This methodology is relevant since it facilitates the precipitation and visualization of DNA, regardless of its origin or molecular weight. To confirm its versatility, results with DNA extracted from human peripheral blood, the Lambda virus, and plasmid pBR322 are presented. The study examined the morphological features of DNA hyperstructures in both healthy individuals and those diagnosed with different medical conditions or illnesses, revealing distinct patterns specific to each case. This innovative technology has potential for disease detection in peripheral blood samples, ranging from cancer and Alzheimer's disease to determining the gender of the gestational product at an early stage.
Collapse
|
4
|
Tripathi K, Garg H, Rajesh R, Vemparala S. The conformational phase diagram of charged polymers in the presence of attractive bridging crowders. J Chem Phys 2023; 159:204903. [PMID: 38010332 DOI: 10.1063/5.0172696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/05/2023] [Indexed: 11/29/2023] Open
Abstract
Using extensive molecular dynamics simulations, we obtain the conformational phase diagram of a charged polymer in the presence of oppositely charged counterions and neutral attractive crowders for monovalent, divalent, and trivalent counterion valencies. We demonstrate that the charged polymer can exist in three phases: (1) an extended phase for low charge densities and weak polymer-crowder attractive interactions [Charged Extended (CE)]; (2) a collapsed phase for high charge densities and weak polymer-crowder attractive interactions, primarily driven by counterion condensation [Charged Collapsed due to Intra-polymer interactions [(CCI)]; and (3) a collapsed phase for strong polymer-crowder attractive interactions, irrespective of the charge density, driven by crowders acting as bridges or cross-links [Charged Collapsed due to Bridging interactions [(CCB)]. Importantly, simulations reveal that the interaction with crowders can induce collapse, despite the presence of strong repulsive electrostatic interactions, and can replace condensed counterions to facilitate a direct transition from the CCI and CE phases to the CCB phase.
Collapse
Affiliation(s)
- Kamal Tripathi
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
- Univ. Grenoble Alpes, CNRS, Grenoble INP, 3SR, F-38000 Grenoble, France
| | - Hitesh Garg
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - R Rajesh
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Satyavani Vemparala
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
5
|
Andrew LJ, Kly S, Moloney EG, Moffitt MG. Effects of Microfluidic Shear on the Plasmid DNA Structure: Implications for Polymeric Gene Delivery Vectors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11545-11555. [PMID: 37552625 DOI: 10.1021/acs.langmuir.3c00934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Microfluidic manufacturing of advanced gene delivery vectors necessitates consideration of the effects of microfluidic shear forces on the structural integrity of plasmid DNA (pDNA). In this paper, we expose pDNA to variable shear forces in a two-phase, gas-liquid microfluidic reactor and apply gel electrophoresis to analyze the products of on-chip shear-induced degradation. The effects of shear rate, solvent environment, pDNA size, and copolymer complexation on shear-induced degradation are investigated. We find that small naked pDNA (pUC18, 2.7 kb) exhibits shear rate-dependent shear degradation in the microfluidic channels in a mixed organic solvent (dioxane/water/acetic acid; 90/10/<0.1 w/w/w), with the extents of both supercoil isoform relaxation and complete fragmentation increasing as the maximum shear rates increase from 4 × 105 to 2 × 106 s-1. However, over the same range of shear rates, the same pDNA sample shows no evidence of microfluidic shear-induced degradation in a pure aqueous environment. Quiescent control experiments in the same mixed organic solvent prove that a combination of solvent and shear forces is involved in the observed shear-induced degradation. Furthermore, we show that shear degradation effects in mixed organic solvents can be significantly attenuated by complexation of pDNA with the block copolymer polycaprolactone-block-poly(2-vinylpyridine) prior to exposure to microfluidic shear. Finally, we demonstrate that medium (pDSK519, 8.1 kb) and large (pRK290, 20 kb) naked pDNA are more sensitive to shear-induced microfluidic degradation in the mixed organic solvent environment than small pDNA, with both plasmids showing complete fragmentation even at the lowest shear rate, although we found no evidence of shear-induced damage in water for the largest investigated naked pDNA even at the highest flow rate. The resulting understanding of the interplay of the solvent and shear effects during microfluidic processing should inform microfluidic manufacturing routes to new gene therapy formulations.
Collapse
Affiliation(s)
- Lucas J Andrew
- Department of Chemistry, University of Victoria, P.O. Box 1700 Stn CSC, Victoria, BC V8W 2Y2, Canada
| | - Sundiata Kly
- Department of Chemistry, University of Victoria, P.O. Box 1700 Stn CSC, Victoria, BC V8W 2Y2, Canada
| | - Erin G Moloney
- Department of Chemistry, University of Victoria, P.O. Box 1700 Stn CSC, Victoria, BC V8W 2Y2, Canada
| | - Matthew G Moffitt
- Department of Chemistry, University of Victoria, P.O. Box 1700 Stn CSC, Victoria, BC V8W 2Y2, Canada
| |
Collapse
|
6
|
Lu H, Cai J, Fang Y, Ren M, Tan X, Jia F, Wang D, Zhang K. Exploring the Structural Diversity of DNA Bottlebrush Polymers Using an Oligonucleotide Macromonomer Approach. Macromolecules 2022; 55:2235-2242. [PMID: 36187461 PMCID: PMC9521811 DOI: 10.1021/acs.macromol.1c02624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we demonstrate that macromonomers consisting of organics-soluble, chemically protected oligonucleotides (protDNA) and poly(ethylene glycol) (PEG) chains can be converted into bottlebrush polymers of distinct architectures via ring-opening metathesis polymerization (ROMP). Using a custom norbornene-containing phosphoramidite, two types of macromonomers were obtained: a linear norbornene-protDNA-PEG structure and a Y-shaped structure where the polymerizable norbornene group is situated at the junction where protDNA and PEG meet. With this strategy, the PEG chains can be placed either near the backbone of the bottlebrush or on its periphery, and in principle anywhere between these two extremes by adjusting the norbornene location, which makes this strategy attractive for constructing architecturally sophisticated oligonucleotide-containing copolymers.
Collapse
Affiliation(s)
- Hao Lu
- Departments of Chemistry and Chemical Biology, Bioengineering, and Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Jiansong Cai
- Departments of Chemistry and Chemical Biology, Bioengineering, and Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Yang Fang
- Departments of Chemistry and Chemical Biology, Bioengineering, and Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Mengqi Ren
- Departments of Chemistry and Chemical Biology, Bioengineering, and Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Xuyu Tan
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Fei Jia
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Dali Wang
- Departments of Chemistry and Chemical Biology, Bioengineering, and Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Ke Zhang
- Departments of Chemistry and Chemical Biology, Bioengineering, and Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
- Corresponding Author:
| |
Collapse
|
7
|
Gordievskaya YD, Kramarenko EY, Gavrilov AA. The effect of explicit polarity on the conformational behavior of a single polyelectrolyte chain. Phys Chem Chem Phys 2021; 23:26296-26305. [PMID: 34787619 DOI: 10.1039/d1cp03167h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this work using dissipative particle dynamics simulations with explicit treatment of polar species we demonstrate that the molecular nature of dielectric media has a significant impact on swelling and collapse of a polyelectrolyte chain in a dilute solution. We show that the small-scale effects related to the presence of polar species lead to the intensification of the electrostatic interactions when the charges are close to each other and/or their density is high enough. As a result, the electrostatic strength , usually regarded as the main parameter governing the polyelectrolyte chain collapse, does not have a universal meaning: the value of λ at which the coil-to-globule transition occurs is found to be dependent on the specific fixed value of the solvent bulk permittivity ε while varying the monomer unit charge Q and vice versa. This effect is observed even when the backbone and the counterions have the same polarity as the solvent beads, i.e. no dielectric mismatch is present. The reason for such behavior is rationalized in terms of the "effective" dielectric permittivity εeff which depends on the volume fraction φ of charged units inside the polymer chain volume; using εeff instead of ε collapses all data onto one master curve describing the chain shrinking with λ. Furthermore, it is shown that a polar chain adopts less swollen conformations in the polyelectrolyte regime and collapses more easily compared to a non-polar chain.
Collapse
Affiliation(s)
- Yulia D Gordievskaya
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia. .,A. N. Nesmeyanov Institute of Organoelement Compounds RAS, 119991 Moscow, Russia
| | - Elena Yu Kramarenko
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia. .,A. N. Nesmeyanov Institute of Organoelement Compounds RAS, 119991 Moscow, Russia
| | - Alexey A Gavrilov
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia.
| |
Collapse
|
8
|
Ghosh S, Vemparala S. Kinetics of charged polymer collapse in poor solvents. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 34:045101. [PMID: 34352747 DOI: 10.1088/1361-648x/ac1aef] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Extensive molecular dynamics simulations, using simple charged polymer models, have been employed to probe the collapse kinetics of a single flexible polyelectrolyte (PE) chain under implicit poor solvent conditions. We investigate the role of the charged nature of PE chain (A), valency of counterions (Z) on the kinetics of such PE collapse. Our study shows that the collapse kinetics of charged polymers are significantly different from those of the neutral polymer and that the finite-size scaling behavior of PE collapse times does not follow the Rouse scaling as observed in the case of neutral polymers. The critical exponent for charged PE chains is found to be less than that of neutral polymers and also exhibits dependence on counterion valency. The coarsening of clusters along the PE chain suggests a multi-stage collapse and exhibits opposite behavior of exponents compared to neutral polymers: faster in the early stages and slower in the later stages of collapse.
Collapse
Affiliation(s)
- Susmita Ghosh
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Satyavani Vemparala
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
9
|
Pi-Boleda B, Ramisetty S, Illa O, Branchadell V, Dias RS, Ortuño RM. Efficient DNA Condensation Induced by Chiral β-Amino Acid-Based Cationic Surfactants. ACS APPLIED BIO MATERIALS 2021; 4:7034-7043. [DOI: 10.1021/acsabm.1c00683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bernat Pi-Boleda
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Sravani Ramisetty
- Department of Physics, The Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Ona Illa
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Vicenç Branchadell
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Rita S. Dias
- Department of Physics, The Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Rosa M. Ortuño
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
10
|
Lu H, Cai J, Zhang K. Synthetic Approaches for Copolymers Containing Nucleic Acids and Analogues: Challenges and Opportunities. Polym Chem 2021; 12:2193-2204. [PMID: 34394751 PMCID: PMC8356553 DOI: 10.1039/d0py01707h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A deep integration of nucleic acids with other classes of materials have become the basis of many useful technologies. Among these biohybrids, nucleic acid-containing copolymers has seen rapid development in both chemistry and application. This review focuses on the various synthetic approaches to access nucleic acid-polymer biohybrids spanning post-polymerization conjugation, nucleic acids in polymerization, solid-phase synthesis, and nucleoside/nucleobase-functionalized polymers. We highlight the challenges associated with working with nucleic acids with each approach and the ingenuity of the solutions, with the hope of lowering the entry barrier and inpsiring further investigations in this exciting area.
Collapse
Affiliation(s)
- Hao Lu
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA
| | - Jiansong Cai
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA
| | - Ke Zhang
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA
| |
Collapse
|
11
|
Simas RG, Takagi M, Miranda EA. Study of the polyribosyl-ribitol-phosphate precipitation mechanism by salts and organic solvents. Int J Biol Macromol 2019; 140:102-108. [PMID: 31419558 DOI: 10.1016/j.ijbiomac.2019.08.110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 07/15/2019] [Accepted: 08/12/2019] [Indexed: 11/18/2022]
Abstract
Precipitation has been widely applied to purification and fractionation of biological macromolecules. Several physical-chemical factors contribute to the destabilization of those solutions, such as the nature of solvent employed, presence of salts, temperature, and concentration of the macromolecule. In the case of charged biopolymers, electrostatic forces are the major contributors to their stability in solution. However, the role of each variable and the exact mechanism of precipitation are not completely understood yet. The aim of this work was to study the precipitation of polyribosyl-ribitol-phosphate (PRP, a linear homogeneous anionic biopolymer) in presence of salts and non-solvents, in order to contribute to the elucidation of its precipitation mechanism. The solvents tested (acetone, ethanol, and isopropanol) presented distinct dielectric constants. The salts used (NH4Cl, NaCl, KCl, MgCl2, and CaCl2) differ by their cations. For each salt concentration, the solvent fraction that induces precipitation was identified and the dielectric constant of the bulk solution was calculated. Precipitation always occurred at well-defined combinations of solvents and salts. At low concentration of monovalent salts, there was a linear correlation between the logarithm of the salt concentration and the inverse of the medium dielectric constant at a defined precipitation point. This is a strong indication that the stability of the solution depends almost exclusively on the balance of electrostatic forces. This behavior is compatible with the DLVO modeling of colloidal systems. When divalent salts were used, low concentrations of the counterion were sufficient to induce precipitation, due to a phenomenon called ionic condensation. Apparently, PRP precipitates when around 90% of its charges are neutralized, value that is similar to charge neutralization for DNA precipitation.
Collapse
Affiliation(s)
- Rodrigo Gabriel Simas
- Laboratory of Process Development, Instituto Butantan, Av. Vital Brasil 1500, 05503-900 São Paulo, SP, Brazil; Department of Materials and Bioprocess Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), Av. Albert Einstein 500, 13083-852 Campinas, SP, Brazil
| | - Mickie Takagi
- Laboratory of Process Development, Instituto Butantan, Av. Vital Brasil 1500, 05503-900 São Paulo, SP, Brazil
| | - Everson Alves Miranda
- Department of Materials and Bioprocess Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), Av. Albert Einstein 500, 13083-852 Campinas, SP, Brazil.
| |
Collapse
|
12
|
Ghosh S, T D, Baul U, Vemparala S. Aggregation dynamics of charged peptides in water: Effect of salt concentration. J Chem Phys 2019; 151:074901. [DOI: 10.1063/1.5100890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Susmita Ghosh
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Devanand T
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Upayan Baul
- Institue of Physics, Albert-Ludwigs-University of Freiburg, Hermann-Herder-Strasse 3, 79104 Freiburg, Germany
| | - Satyavani Vemparala
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
13
|
Importance of hydrophobic interactions in the single-chained cationic surfactant-DNA complexation. J Colloid Interface Sci 2018; 521:197-205. [PMID: 29571101 DOI: 10.1016/j.jcis.2018.03.048] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/10/2018] [Accepted: 03/14/2018] [Indexed: 12/12/2022]
Abstract
The goal of this work was to understand the key factors determining the DNA compacting capacity of single-chained cationic surfactants. Fluorescence, zeta potential, circular dichroism, gel electrophoresis and AFM measurements were carried out in order to study the condensation of the nucleic acid resulting from the formation of the surfactant-DNA complexes. The apparent equilibrium binding constant of the surfactants to the nucleic acid, Kapp, estimated from the experimental results obtained in the ethidium bromide competitive binding experiments, can be considered directly related to the ability of a given surfactant as a DNA compacting agent. The plot of ln(Kapp) vs. ln(cmc), cmc being the critical micelle concentration, for all the bromide and chloride surfactants studied, was found to be a reasonably good linear correlation. This result shows that hydrophobic interactions mainly control the surfactant DNA compaction efficiency.
Collapse
|
14
|
Li Z, Kumarasinghe R, Collinson MM, Higgins DA. Probing the Local Dielectric Constant of Plasmid DNA in Solution and Adsorbed on Chemically Graded Aminosilane Surfaces. J Phys Chem B 2018; 122:2307-2313. [DOI: 10.1021/acs.jpcb.8b00077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Zi Li
- Department
of Chemistry, Kansas State University, Manhattan, Kansas 66506-0401, United States
| | - Ruwandi Kumarasinghe
- Department
of Chemistry, Kansas State University, Manhattan, Kansas 66506-0401, United States
| | - Maryanne M. Collinson
- Department
of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, United States
| | - Daniel A. Higgins
- Department
of Chemistry, Kansas State University, Manhattan, Kansas 66506-0401, United States
| |
Collapse
|
15
|
Tom AM, Rajesh R, Vemparala S. Aggregation of flexible polyelectrolytes: Phase diagram and dynamics. J Chem Phys 2017; 147:144903. [DOI: 10.1063/1.4993684] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
16
|
Pandey PK, Kaushik P, Rawat K, Aswal VK, Bohidar HB. Solvent hydrophobicity induced complex coacervation of dsDNA and in situ formed zein nanoparticles. SOFT MATTER 2017; 13:6784-6791. [PMID: 28819659 DOI: 10.1039/c7sm01222e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Zein, a predominantly hydrophobic protein, was sustained as a stable dispersion in ethanol-water (80 : 20, % (v/v)) binary solvent at room temperature (25 °C). Addition of aqueous dsDNA solution (1% (w/v)) to the above dispersion prepared with the protein concentration of Czein = 0.01-0.5% (w/v) caused a concomitant change in ethanol content from 14-35% (v/v), which in turn generated zein nanoparticles in situ of size 80-120 nm increasing with water content. The subsequent associative interaction between DNA (polyanion; 2000 bps) and the positively charged zein nanoparticles, (at pH = 4) was driven by Coulombic forces, and by the solvent hydrophobicity due to the ethanol content of the binary solvent. Experimentally, two interesting regions of interaction were observed from turbidity, zeta potential, particle sizing, and viscosity data: (i) for Czein < 0.2% (w/v), zein nanoparticles of size 80 nm bind to dsDNA (primary complex) causing its condensation (apparent hydrodynamic size decreased from ≈2100 to 560 nm), and (ii) for 0.2% < Czein < 0.5% (w/v) larger nanoparticles (>80 nm) were selectively bound to primary complexes to form partially charge neutralized interpolymer soluble complexes (secondary complexes), followed by complex coacervation. During this process, there was depletion of water in the vicinity of the nucleic acid, which was replaced by hydration provided by the ethanol-water binary solvent. Equilibrium coacervate samples were probed for their microstructure by small angle neutron scattering, and for their viscoelastic properties by rheology. The interplay of solvent hydrophobicity, electrostatic interaction, and zein nanoparticle size dependent charge neutralization had a commensurate effect on this hitherto unexplored coacervation phenomenon.
Collapse
Affiliation(s)
- Pankaj Kumar Pandey
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | | | | | | | | |
Collapse
|
17
|
Liu L, Chen W, Chen J. Shape and Diffusion of Circular Polyelectrolytes in Salt-Free Dilute Solutions and Comparison with Linear Polyelectrolytes. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00189] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lijun Liu
- State Key Laboratory
of Polymer
Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Wenduo Chen
- State Key Laboratory
of Polymer
Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Jizhong Chen
- State Key Laboratory
of Polymer
Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| |
Collapse
|
18
|
Nakano SI, Sugimoto N. Model studies of the effects of intracellular crowding on nucleic acid interactions. MOLECULAR BIOSYSTEMS 2017; 13:32-41. [PMID: 27819369 DOI: 10.1039/c6mb00654j] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Molecular interactions and reactions in living cells occur with high concentrations of background molecules and ions. Many research studies have shown that intracellular molecules have characteristics different from those obtained using simple aqueous solutions. To better understand the behavior of biomolecules in intracellular environments, biophysical experiments were conducted under cell-mimicking conditions in a test tube. It has been shown that the molecular environments at the physiological level of macromolecular crowding, spatial confinement, water activity and dielectric constant, have significant effects on the interactions of DNA and RNA for hybridization, higher-order folding, and catalytic activity. The experimental approaches using in vitro model systems are useful to reveal the origin of the environmental effects and to bridge the gap between the behaviors of nucleic acids in vitro and in vivo. This paper highlights the model experiments used to evaluate the influences of intracellular environment on nucleic acid interactions.
Collapse
Affiliation(s)
- Shu-Ichi Nakano
- Department of Nanobiochemistry, Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan.
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan. and Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| |
Collapse
|
19
|
Budkov YA, Kalikin NN, Kolesnikov AL. Polymer chain collapse induced by many-body dipole correlations. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2017; 40:47. [PMID: 28417323 DOI: 10.1140/epje/i2017-11533-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/17/2017] [Indexed: 06/07/2023]
Abstract
We present a simple analytical theory of a flexible polymer chain dissolved in a good solvent, carrying permanent freely oriented dipoles on the monomers. We take into account the dipole correlations within the random phase approximation (RPA), as well as a dielectric heterogeneity in the internal polymer volume relative to the bulk solution. We demonstrate that the dipole correlations of monomers can be taken into account as pairwise ones only when the polymer chain is in a coil conformation. In this case the dipole correlations manifest themselves through the Keesom interactions of the permanent dipoles. On the other hand, the dielectric heterogeneity effect (dielectric mismatch effect) leads to the effective interaction between the monomers of the polymeric coil. Both of these effects can be taken into account by renormalizing the second virial coefficient of the monomer-monomer volume interactions. We establish that in the case when the solvent dielectric permittivity exceeds the dielectric permittivity of the polymeric material, the dielectric mismatch effect competes with the dipole attractive interactions, leading to polymer coil expansion. In the opposite case, both the dielectric mismatch effect and the dipole attractive interaction lead to the polymer coil collapse. We analyse the coil-globule transition caused by the dipole correlations of monomers within the many-body theory. We demonstrate that accounting for the dipole correlations higher than the pairwise ones smooths this pure electrostatics driven coil-globule transition of the polymer chain.
Collapse
Affiliation(s)
- Yu A Budkov
- National Research University Higher School of Economics, Department of Applied Mathematics, Moscow, Russia.
| | - N N Kalikin
- Ivanovo State University, Department of Physics, Ivanovo, Russia
| | - A L Kolesnikov
- Institut für Nichtklassische Chemie e.V., Universität Leipzig, Leipzig, Germany
| |
Collapse
|
20
|
Tom AM, Vemparala S, Rajesh R, Brilliantov NV. Regimes of electrostatic collapse of a highly charged polyelectrolyte in a poor solvent. SOFT MATTER 2017; 13:1862-1872. [PMID: 28177005 DOI: 10.1039/c6sm02152b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We perform extensive molecular dynamics simulations of a highly charged, collapsed, flexible polyelectrolyte chain in a poor solvent for the case when the electrostatic interactions, characterized by the reduced Bjerrum length lB, are strong. We find the existence of several sub-regimes in the dependence of the gyration radius of the chain Rg on lB characterized by Rg ∼ l. In contrast to a good solvent, the exponent γ for a poor solvent crucially depends on the size and valency of the counterions. To explain the different sub-regimes, we generalize the existing counterion fluctuation theory by including a more complete account of all possible volume interactions in the free energy of the polyelectrolyte chain. We also show that the presence of condensed counterions modifies the effective attraction among the chain monomers and modulates the sign of the second virial coefficient under poor solvent conditions.
Collapse
Affiliation(s)
- Anvy Moly Tom
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India. and Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai-400094, India
| | - Satyavani Vemparala
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India. and Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai-400094, India
| | - R Rajesh
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India. and Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai-400094, India
| | | |
Collapse
|
21
|
Das A, Adhikari C, Chakraborty A. Interaction of Different Divalent Metal Ions with Lipid Bilayer: Impact on the Encapsulation of Doxorubicin by Lipid Bilayer and Lipoplex Mediated Deintercalation. J Phys Chem B 2017; 121:1854-1865. [DOI: 10.1021/acs.jpcb.6b11443] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Anupam Das
- Discipline of Chemistry, Indian Institute of Technology Indore, Indore, Madhya Pradesh 452020, India
| | - Chandan Adhikari
- Discipline of Chemistry, Indian Institute of Technology Indore, Indore, Madhya Pradesh 452020, India
| | - Anjan Chakraborty
- Discipline of Chemistry, Indian Institute of Technology Indore, Indore, Madhya Pradesh 452020, India
| |
Collapse
|
22
|
Wang Y, Wang R, Cao B, Guo Z, Yang G. Single Molecular Demonstration of Modulating Charge Inversion of DNA. Sci Rep 2016; 6:38628. [PMID: 27929107 PMCID: PMC5144137 DOI: 10.1038/srep38628] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 11/11/2016] [Indexed: 11/09/2022] Open
Abstract
Charge inversion of DNA is a counterintuitive phenomenon in which the effective charge of DNA switches its sign from negative to positive in the presence of multivalent counterions. The underlying microscopic mechanism is still controversial whether it is driven by a specific chemical affinity or electrostatic ion correlation. It is well known that DNA shows no charge inversion in normal aqueous solution of trivalent counterions though they can induce the conformational compaction of DNA. However, in the same trivalent counterion condition, we demonstrate for the first time the occurrence of DNA charge inversion by decreasing the dielectric constant of solution to make the electrophoretic mobility of DNA increase from a negative value to a positive value. In contrast, the charge inversion of DNA induced by quadrivalent counterions can be canceled out by increasing the dielectric constant of solution. The physical modulation of DNA effective charge in two ways unambiguously demonstrates that charge inversion of DNA is a predominantly electrostatic phenomenon driven by the existence of a strongly correlated liquid (SCL) of counterions at the DNA surface. This conclusion is also supported by the measurement of condensing and unraveling forces of DNA condensates by single molecular MT.
Collapse
Affiliation(s)
- Yanwei Wang
- School of Physics and Electronic Information, Wenzhou University, Wenzhou, 325035, China
| | - Ruxia Wang
- School of Physics and Electronic Information, Wenzhou University, Wenzhou, 325035, China
| | - Bozhi Cao
- School of Physics and Electronic Information, Wenzhou University, Wenzhou, 325035, China
| | - Zilong Guo
- School of Physics and Electronic Information, Wenzhou University, Wenzhou, 325035, China
| | - Guangcan Yang
- School of Physics and Electronic Information, Wenzhou University, Wenzhou, 325035, China
| |
Collapse
|
23
|
Tom AM, Vemparala S, Rajesh R, Brilliantov NV. Mechanism of Chain Collapse of Strongly Charged Polyelectrolytes. PHYSICAL REVIEW LETTERS 2016; 117:147801. [PMID: 27740827 DOI: 10.1103/physrevlett.117.147801] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Indexed: 06/06/2023]
Abstract
We perform extensive molecular dynamics simulations of a charged polymer in a good solvent in the regime where the chain is collapsed. We analyze the dependence of the gyration radius R_{g} on the reduced Bjerrum length ℓ_{B} and find two different regimes. In the first one, called a weak electrostatic regime, R_{g}∼ℓ_{B}^{-1/2}, which is consistent only with the predictions of the counterion-fluctuation theory. In the second one, called a strong electrostatic regime, we find R_{g}∼ℓ_{B}^{-1/5}. To explain the novel regime we modify the counterion-fluctuation theory.
Collapse
Affiliation(s)
- Anvy Moly Tom
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
| | - Satyavani Vemparala
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
| | - R Rajesh
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
| | - Nikolai V Brilliantov
- Department of Mathematics, University of Leicester, Leicester LE1 7RH, United Kingdom
| |
Collapse
|
24
|
Das A, Adhikari C, Chakraborty A. Lipoplex-Mediated Deintercalation of Doxorubicin from Calf Thymus DNA-Doxorubicin Complex. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:8889-8899. [PMID: 27465781 DOI: 10.1021/acs.langmuir.6b01860] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this paper, we report the lipoplex-mediated deintercalation of anticancer drug doxorubicin (DOX) from the DOX-DNA complex under controlled experimental conditions. We used three zwitterionic liposomes, namely, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), and 2-oleoyl-1-palmitoyl-sn-glycero-3-phosphocholine (POPC), which are widely different in their phase transition temperatures to form a lipoplex with calf thymus DNA in the presence of Ca(2+) ions. The study revealed that DPPC being in sol-gel phase was more effective in releasing the drug from the DOX-DNA complex compared with liposomes that remain in liquid crystalline phase (DMPC and POPC). The higher extent of drug release in the case of DPPC liposomes was attributed to the stronger lipoplex formation with DNA as compared with that of other liposomes. Owing to the relatively smaller head group area, the DPPC liposomes in their sol-gel phase can absorb a larger number of Ca(2+) ions and hence offer a strong electrostatic interaction with DNA. This interaction was confirmed by time-resolved anisotropy and circular dichroism spectroscopy. Apart from the electrostatic interaction, the possible hydrophobic interaction between the liposomes and DNA was also taken into account for the observed deintercalation. The successful uptake of drug molecules by liposomes from the drug-DNA complex in the post-release period was also confirmed using confocal laser scanning microscopy (CLSM).
Collapse
Affiliation(s)
- Anupam Das
- Discipline of Chemistry, Indian Institute of Technology Indore , Indore 453552, Madhya Pradesh, India
| | - Chandan Adhikari
- Discipline of Chemistry, Indian Institute of Technology Indore , Indore 453552, Madhya Pradesh, India
| | - Anjan Chakraborty
- Discipline of Chemistry, Indian Institute of Technology Indore , Indore 453552, Madhya Pradesh, India
| |
Collapse
|
25
|
Araki T. Conformational changes of polyelectrolyte chains in solvent mixtures. SOFT MATTER 2016; 12:6111-6119. [PMID: 27352249 DOI: 10.1039/c6sm00352d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We numerically investigate the behaviors of polyelectrolyte chains in solvent mixtures, taking into account the effects of the concentration inhomogeneity and the degree of the ionization. When changing the interaction parameters between the solvent components, we found a first order transition of the polymer conformation. In the mixing state far from the coexistence curve, the polymers behave as semi-flexible chains. In the phase-separated state, on the other hand, they show compact conformations included in the droplets. As the interaction parameters of the mixture are increased, an inhomogeneous concentration field develops around the polymer and induces critical Casimir attractive interactions among the monomers. The competition between the electrostatic interactions and the critical Casimir ones gives rise to drastic changes in the conformation.
Collapse
Affiliation(s)
- Takeaki Araki
- Department of Physics, Kyoto University, Sakyo-ku, Kyoto 606-8505, Japan.
| |
Collapse
|
26
|
Deiana M, Pokladek Z, Olesiak-Banska J, Młynarz P, Samoc M, Matczyszyn K. Photochromic switching of the DNA helicity induced by azobenzene derivatives. Sci Rep 2016; 6:28605. [PMID: 27339811 PMCID: PMC4919647 DOI: 10.1038/srep28605] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 06/03/2016] [Indexed: 01/08/2023] Open
Abstract
The photochromic properties of azobenzene, involving conformational changes occurring upon interaction with light, provide an excellent tool to establish new ways of selective regulation applied to biosystems. We report here on the binding of two water-soluble 4-(phenylazo)benzoic acid derivatives (Azo-2N and Azo-3N) with double stranded DNA and demonstrate that the photoisomerization of Azo-3N leads to changes in DNA structure. In particular, we show that stabilization and destabilization of the B-DNA secondary structure can be photochemically induced in situ by light. This photo-triggered process is fully reversible and could be an alternative pathway to control a broad range of biological processes. Moreover, we found that the bicationic Azo-3N exhibited a higher DNA-binding constant than the monocationic Azo-2N pointing out that the number of positive charges along the photosensitive polyamines chain plays a pivotal role in stabilizing the photochrome-DNA complex.
Collapse
Affiliation(s)
- Marco Deiana
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Ziemowit Pokladek
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Joanna Olesiak-Banska
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Piotr Młynarz
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Marek Samoc
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Katarzyna Matczyszyn
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
27
|
Pegado L, Jönsson B, Wennerström H. Attractive ion-ion correlation forces and the dielectric approximation. Adv Colloid Interface Sci 2016; 232:1-8. [PMID: 27037137 DOI: 10.1016/j.cis.2016.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 01/16/2016] [Accepted: 01/17/2016] [Indexed: 11/30/2022]
Abstract
We analyze the classical problem of the interaction between two charged surfaces separated by a solution containing neutralizing counter-ions. The focus is on obtaining a description where the solvent is treated explicitly rather than through a dielectric approximation as is conventionally done. We summarize the results of three papers where we have used a Stockmayer fluid model in Monte Carlo simulations. It is shown that the attractive ion-ion correlation mechanism is also operating when the solvent is described explicitly. There appears an oscillatory component to the force, but when this is accounted for, there is a semi-quantitative agreement between the continuum model and the model with explicit solvent. The properties of the continuum model can be reached in a molecular system by making the solvent molecules much smaller than the ions. It is demonstrated that having an explicit solvent model makes the analysis of force mechanisms more delicate due to the interplay between several different microscopic contributions to the force. Finally, it is argued that the agreement between the forces calculated using the continuum and the explicit solvent models, respectively, has as its basis the circumstance that the force between the surfaces is mainly caused by long-range ion-ion interactions, for which the dielectric approximation is most adequate. This argument applies equally well to an aqueous system as to the Stockmayer fluid.
Collapse
Affiliation(s)
- Luis Pegado
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS, Univ. Bourgogne Franche-Comté, 9 Av. A. Savary, BP 47870, F-21078 Dijon Cedex, France; Laboratory for Waste Management, Paul Scherrer Institute, Villigen, CH 5232, Switzerland.
| | - Bo Jönsson
- Division of Theoretical Chemistry, Department of Chemistry, Lund University, PO Box 124, Lund, SE 22100, Sweden
| | - Håkan Wennerström
- Division of Physical Chemistry, Department of Chemistry, Lund University, PO Box 124, Lund, SE 22100, Sweden
| |
Collapse
|
28
|
The structural stability and catalytic activity of DNA and RNA oligonucleotides in the presence of organic solvents. Biophys Rev 2016; 8:11-23. [PMID: 28510143 DOI: 10.1007/s12551-015-0188-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/03/2015] [Indexed: 01/02/2023] Open
Abstract
Organic solvents and apolar media are used in the studies of nucleic acids to modify the conformation and function of nucleic acids, to improve solubility of hydrophobic ligands, to construct molecular scaffolds for organic synthesis, and to study molecular crowding effects. Understanding how organic solvents affect nucleic acid interactions and identifying the factors that dominate solvent effects are important for the creation of oligonucleotide-based technologies. This review describes the structural and catalytic properties of DNA and RNA oligonucleotides in organic solutions and in aqueous solutions with organic cosolvents. There are several possible mechanisms underlying the effects of organic solvents on nucleic acid interactions. The reported results emphasize the significance of the osmotic pressure effect and the dielectric constant effect in addition to specific interactions with nucleic acid strands. This review will serve as a guide for the selection of solvent systems based on the purpose of the nucleic acid-based experiments.
Collapse
|
29
|
Satpathi S, Sengupta A, Hridya VM, Gavvala K, Koninti RK, Roy B, Hazra P. A Green Solvent Induced DNA Package. Sci Rep 2015. [PMCID: PMC5378943 DOI: 10.1038/srep09137] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Mechanistic details of DNA compaction is essential blue print for gene regulation in living organisms. Many in vitro studies have been implemented using several compaction agents. However, these compacting agents may have some kinds of cytotoxic effects to the cells. To minimize this aspect, several research works had been performed, but people have never focused green solvent, i.e. room temperature ionic liquid as DNA compaction agent. To the best of our knowledge, this is the first ever report where we have shown that guanidinium tris(pentafluoroethyl)trifluorophosphate (Gua-IL) acts as a DNA compacting agent. The compaction ability of Gua-IL has been verified by different spectroscopic techniques, like steady state emission, circular dichroism, dynamic light scattering and UV melting. Notably, we have extensively probed this compaction by Gua-IL through field emission scanning electron microscopy (FE-SEM) and fluorescence microscopy images. We also have discussed the plausible compaction mechanism process of DNA by Gua-IL. Our results suggest that Gua-IL forms a micellar kind of self aggregation above a certain concentration (≥1 mM), which instigates this compaction process. This study divulges the specific details of DNA compaction mechanism by a new class of compaction agent, which is highly biodegradable and eco friendly in nature.
Collapse
|
30
|
Xu H, Minter CJ, Nagasaka S, Ito T, Higgins DA. Elongation, Alignment, and Guided Electrophoretic Migration of ds-DNA in Flow-Aligned Hexagonal F127 Gels. J Phys Chem B 2014; 118:4151-9. [DOI: 10.1021/jp501175h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Hao Xu
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506-0401, United States
| | - Christopher J. Minter
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506-0401, United States
| | - Shinobu Nagasaka
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506-0401, United States
| | - Takashi Ito
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506-0401, United States
| | - Daniel A. Higgins
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506-0401, United States
| |
Collapse
|
31
|
Shah P, Cho SK, Thulstrup PW, Bhang YJ, Ahn JC, Choi SW, Rørvig-Lund A, Yang SW. Effect of salts, solvents and buffer on miRNA detection using DNA silver nanocluster (DNA/AgNCs) probes. NANOTECHNOLOGY 2014; 25:045101. [PMID: 24393838 DOI: 10.1088/0957-4484/25/4/045101] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
MicroRNAs (miRNAs) are small regulatory RNAs (size ~21 nt to ~25 nt) which regulate a variety of important cellular events in plants, animals and single cell eukaryotes. Especially because of their use in diagnostics of human diseases, efforts have been directed towards the invention of a rapid, simple and sequence selective detection method for miRNAs. Recently, we reported an innovative method for the determination of miRNA levels using the red fluorescent properties of DNA/silver nanoclusters (DNA/AgNCs). Our method is based on monitoring the emission drop of a DNA/AgNCs probe in the presence of its specific target miRNA. Accordingly, the accuracy and efficiency of the method relies on the sensitivity of hybridization between the probe and target. To gain specific and robust hybridization between probe and target, we investigated a range of diverse salts, organic solvents, and buffer to optimize target sensing conditions. Under the newly adjusted conditions, the target sensitivity and the formation of emissive DNA/AgNCs probes were significantly improved. Also, fortification of the Tris-acetate buffer with inorganic salts or organic solvents improved the sensitivity of the DNA/AgNC probes. On the basis of these optimizations, the versatility of the DNA/AgNCs-based miRNA detection method can be expanded.
Collapse
Affiliation(s)
- Pratik Shah
- UNIK Center for Synthetic Biology/Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 4, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Nakano SI, Miyoshi D, Sugimoto N. Effects of molecular crowding on the structures, interactions, and functions of nucleic acids. Chem Rev 2013; 114:2733-58. [PMID: 24364729 DOI: 10.1021/cr400113m] [Citation(s) in RCA: 375] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Shu-ichi Nakano
- Department of Nanobiochemistry, Faculty of Frontiers of Innovative Research in Science and Technology (FIRST) and Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University , 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | | | | |
Collapse
|
33
|
Charge density dependence of solution and gel behaviors of maleic acid-containing polyelectrolytes. Colloid Polym Sci 2013. [DOI: 10.1007/s00396-013-2979-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
34
|
Dias R, Rosa M, Pais AC, Miguel M, Lindman B. DNA-Surfactant Interactions. Compaction, Condensation, Decompaction and Phase Separation. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.200400069] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
35
|
Zhou T, Llizo A, Wang C, Xu G, Yang Y. Nanostructure-induced DNA condensation. NANOSCALE 2013; 5:8288-8306. [PMID: 23838744 DOI: 10.1039/c3nr01630g] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The control of the DNA condensation process is essential for compaction of DNA in chromatin, as well as for biological applications such as nonviral gene therapy. This review endeavours to reflect the progress of investigations on DNA condensation effects of nanostructure-based condensing agents (such as nanoparticles, nanotubes, cationic polymer and peptide agents) observed by using atomic force microscopy (AFM) and other techniques. The environmental effects on structural characteristics of nanostructure-induced DNA condensates are also discussed.
Collapse
Affiliation(s)
- Ting Zhou
- National Center for Nanoscience and Technology (NCNST), Beijing 100190, PR China
| | | | | | | | | |
Collapse
|
36
|
Zhou J, Ke F, Xia Y, Sun J, Xu N, Li ZC, Liang D. Complexation of DNA with poly-(L-lysine) and its copolymers in dimethylformamide. POLYMER 2013. [DOI: 10.1016/j.polymer.2013.03.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
37
|
Szilagyi I, Polomska A, Citherlet D, Sadeghpour A, Borkovec M. Charging and aggregation of negatively charged colloidal latex particles in the presence of multivalent oligoamine cations. J Colloid Interface Sci 2013; 392:34-41. [DOI: 10.1016/j.jcis.2012.09.058] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 08/06/2012] [Accepted: 09/26/2012] [Indexed: 11/30/2022]
|
38
|
Das A, Thakur R, Chakraborty A. A steady-state and time-resolved fluorescence study on liposome-calf thymus DNA interaction: probed by an anticancer drug ellipticine. RSC Adv 2013. [DOI: 10.1039/c3ra43037e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
39
|
Giustini M, Giuliani AM, Gennaro G. Natural or synthetic nucleic acids encapsulated in a closed cavity of amphiphiles. RSC Adv 2013. [DOI: 10.1039/c3ra23208e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
40
|
Nakano SI, Hirayama H, Miyoshi D, Sugimoto N. Dimerization of nucleic acid hairpins in the conditions caused by neutral cosolutes. J Phys Chem B 2012; 116:7406-15. [PMID: 22703387 DOI: 10.1021/jp302170f] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Characterization of metal ion binding to RNA and DNA base pairs is important for understanding their energy contribution to the folding and conformational changes of nucleic acid structures. In this study, we examine the equilibrium shift from the hairpin toward the dimer formation, induced by nonspecifically bound metal ions. The hairpin dimerization is markedly enhanced in the presence of high background concentrations of poly(ethylene glycol) (PEG) and several small organic molecules. The simple volume exclusion effect and the base pair stability cannot entirely account for this increase. We find that the dielectric constant correlates well with the dimerization efficiency in the conditions caused by small alcohol molecules and amide compounds as well as PEG. The hairpin dimerization experiments reveal the potential of PEG for enhancing the binding affinity between nucleic acids and metal ions, by reducing the solution dielectric constant without decreasing the thermodynamic stability of nucleic acid structures. The results presented here contribute to the understanding of nucleic acid folding and its ability to switch between alternative conformations under the condition of limited cation availability and cellular physiology.
Collapse
Affiliation(s)
- Shu-ichi Nakano
- Faculty of Frontiers of Innovative Research in Science and Technology, Konan University, 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | | | | | | |
Collapse
|
41
|
Korolev N, Berezhnoy NV, Eom KD, Tam JP, Nordenskiöld L. A universal description for the experimental behavior of salt-(in)dependent oligocation-induced DNA condensation. Nucleic Acids Res 2012; 40:2808-21. [PMID: 22563605 PMCID: PMC3729243 DOI: 10.1093/nar/gks214] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We report a systematic study of the condensation of plasmid DNA by oligocations with variation of the charge, Z, from +3 to +31. The oligocations include a series of synthetic linear ε-oligo(L-lysines), (denoted εKn, n = 3–10, 31; n is the number of lysines with the ligand charge Z = n+1) and branched α-substituted homologues of εK10: εYK10, εLK10 (Z = +11); εRK10, εYRK10 and εLYRK10 (Z = +21). Data were obtained by light scattering, UV absorption monitored precipitation assay and isothermal titration calorimetry in a wide range concentrations of DNA and monovalent salt (KCl, CKCl). The dependence of EC50 (ligand concentration at the midpoint of DNA condensation) on C(KCl) shows the existence of a salt-independent regime at low C(KCl) and a salt-dependent regime with a steep rise of EC50 with increase of C(KCl). Increase of the ligand charge shifts the transition from the salt-independent to salt-dependent regime to higher C(KCl). A novel and simple relationship describing the EC50 dependence on DNA concentration, charge of the ligand and the salt-dependent dissociation constant of the ligand–DNA complex is derived. For the ε-oligolysines εK6–εK10, the experimental dependencies of EC50 on C(KCl) and Z are well-described by an equation with a common set of parameters. Implications from our findings for understanding DNA condensation in chromatin are discussed.
Collapse
Affiliation(s)
- Nikolay Korolev
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551.
| | | | | | | | | |
Collapse
|
42
|
Pegado L, Jönsson B, Wennerström H. The transition from a molecular to a continuum solvent in electrical double layers showing ion-ion correlation effects. Phys Chem Chem Phys 2011; 13:16324-35. [PMID: 21845284 DOI: 10.1039/c1cp20514e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We analyze, using Monte Carlo simulations, how a dielectric medium, modeled as a Stockmayer fluid, modulates the force between two similarly charged surfaces. A major objective is to provide a basis for understanding the strengths and weaknesses of the primitive model. The system studied has uniformly charged walls separated by counterions and solvent, where the latter is kept at constant chemical potential as the separation between the walls is varied. For two different types of Stockmayer fluids, one with a "low" (ε(r) ≃ 4.4) and one with a "high" (ε(r) ≃ 20) relative dielectric permittivity, the size of the solvent molecules is varied systematically. As the size of the solvent molecules becomes smaller one approaches the continuum limit, where the primitive model should give an increasingly more accurate representation. We find that having an explicit description of the solvent gives rise to an oscillatory component in the force between the surfaces. The wavelength of the oscillations reflects the diameter of the solvent molecules. The smaller the solvent molecules the smaller are the amplitudes of the oscillations. On integrating the force curves to yield interaction free energies the oscillatory features become less apparent. For the smallest solvent size studied the interaction curves show clear similarities with those obtained from the primitive model. The qualitative effect of the dielectric screening is recovered. It is found that the deviations from the mean field description also appear for the molecular solvent. All this suggests that there are no major deviations due to the neglect of many-body contributions in the solvent-averaged potential of the primitive model. This also holds for the incompressibility assumption implicitly applied when using the primitive model.
Collapse
Affiliation(s)
- Luís Pegado
- Physical Chemistry, Center for Chemistry and Chemical Engineering, Lund University, POB 124, SE-22100 Lund, Sweden.
| | | | | |
Collapse
|
43
|
Zhou J, Ke F, Liang D. Kinetic study on the reentrant condensation of oligonucleotide in trivalent salt solution. J Phys Chem B 2011; 114:13675-80. [PMID: 20936839 DOI: 10.1021/jp1074187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The reentrant condensation of 21-bp oligonucleotide in the presence of spermidine was investigated by laser light scattering and capillary electrophoresis. 21-bp oligonucleotide showed a bimodal distribution in 1 × TE buffer, with the slow mode being the characteristic diffusion of polyelectrolyte in solution without enough salt. At the fixed spermidine concentration, the reentry of oligonucleotide underwent aggregation, phase separation, and disassociation in sequence with time, and the kinetics was extremely slow. For example, it took more than 1200 h (50 days) for the reentry to complete at 21 mM spermidine. Higher spermidine concentration led to faster kinetics. After reentry, the slow mode disappeared, and the charges of oligonucleotide were at least partially neutralized. No prominent charge inversion was observed. The kinetics of oligonucleotide reentry in the presence of spermidine gained insight in the interactions of polyelectrolyte in aqueous solution.
Collapse
Affiliation(s)
- Jihan Zhou
- Beijing National Laboratory for Molecular Sciences and the Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China, 100871
| | | | | |
Collapse
|
44
|
Ke F, Luu YK, Hadjiargyrou M, Liang D. Characterizing DNA condensation and conformational changes in organic solvents. PLoS One 2010; 5:e13308. [PMID: 20949017 PMCID: PMC2952604 DOI: 10.1371/journal.pone.0013308] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 09/15/2010] [Indexed: 11/19/2022] Open
Abstract
Organic solvents offer a new approach to formulate DNA into novel structures suitable for gene delivery. In this study, we examined the in situ behavior of DNA in N, N-dimethylformamide (DMF) at low concentration via laser light scattering (LLS), TEM, UV absorbance and Zeta potential analysis. Results revealed that, in DMF, a 21bp oligonucleotide remained intact, while calf thymus DNA and supercoiled plasmid DNA were condensed and denatured. During condensation and denaturation, the size was decreased by a factor of 8–10, with calf thymus DNA forming spherical globules while plasmid DNA exhibited a toroid-like conformation. In the condensed state, DNA molecules were still able to release the counterions to be negatively charged, indicating that the condensation was mainly driven by the excluded volume interactions. The condensation induced by DMF was reversible for plasmid DNA but not for calf thymus DNA. When plasmid DNA was removed from DMF and resuspended in an aqueous solution, the DNA was quickly regained a double stranded configuration. These findings provide further insight into the behavior and condensation mechanism of DNA in an organic solvent and may aid in developing more efficient non-viral gene delivery systems.
Collapse
Affiliation(s)
- Fuyou Ke
- Beijing National Laboratory for Molecular Sciences and the Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yen Kim Luu
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, United States of America
| | - Michael Hadjiargyrou
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail: (DL); (MH)
| | - Dehai Liang
- Beijing National Laboratory for Molecular Sciences and the Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- * E-mail: (DL); (MH)
| |
Collapse
|
45
|
Kuchkina NV, Laptinskaya TV, Tsvetkov NV, Rusanov AL, Izumrudov VA, Shifrina ZB. Formation of soluble complexes of cationic polypyridylphenylene dendrimers with DNA. POLYMER SCIENCE SERIES C 2010. [DOI: 10.1134/s1811238210010121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Diguet A, Mani NK, Geoffroy M, Sollogoub M, Baigl D. Photosensitive Surfactants with Various Hydrophobic Tail Lengths for the Photocontrol of Genomic DNA Conformation with Improved Efficiency. Chemistry 2010; 16:11890-6. [DOI: 10.1002/chem.201001579] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Antoine Diguet
- Department of Chemistry, Ecole Normale Superieure, 24 rue Lhomond, 75005 Paris (France), Fax: (+33) 1‐4432‐2402
| | - Naresh Kumar Mani
- Department of Chemistry, Ecole Normale Superieure, 24 rue Lhomond, 75005 Paris (France), Fax: (+33) 1‐4432‐2402
| | - Marie Geoffroy
- Department of Chemistry, Ecole Normale Superieure, 24 rue Lhomond, 75005 Paris (France), Fax: (+33) 1‐4432‐2402
| | - Matthieu Sollogoub
- UPMC Univ Paris 06, Institut Parisien de Chimie Moléculaire (UMR CNRS 7201), FR 2769, C. 181, 4 Place Jussieu, 75005 Paris (France)
| | - Damien Baigl
- Department of Chemistry, Ecole Normale Superieure, 24 rue Lhomond, 75005 Paris (France), Fax: (+33) 1‐4432‐2402
| |
Collapse
|
47
|
|
48
|
Cyclodextrins in DNA decompaction. Colloids Surf B Biointerfaces 2010; 76:20-7. [DOI: 10.1016/j.colsurfb.2009.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2009] [Revised: 09/30/2009] [Accepted: 10/01/2009] [Indexed: 11/21/2022]
|
49
|
Gabelica V. Determination of equilibrium association constants of ligand-DNA complexes by electrospray mass spectrometry. Methods Mol Biol 2010; 613:89-101. [PMID: 19997879 DOI: 10.1007/978-1-60327-418-0_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Electrospray mass spectrometry can be used to detect ligand-DNA noncovalent complexes formed in solution. This chapter describes how to determine equilibrium association constants of the complexes. Particular attention is devoted to describing how to tune an electrospray mass spectrometer using a 12-mer oligodeoxynucleotides duplex in order to perform these experiments. This protocol can then be applied to any nucleic acid structure that can be ionized with electrospray mass spectrometry.
Collapse
Affiliation(s)
- Valérie Gabelica
- Physical Chemistry and Mass Spectrometry Laboratory, Department of Chemistry, University of Liège, Liège, Belgium.
| |
Collapse
|
50
|
Popa I, Papastavrou G, Borkovec M. Charge regulation effects on electrostatic patch-charge attraction induced by adsorbed dendrimers. Phys Chem Chem Phys 2010; 12:4863-71. [DOI: 10.1039/b925812d] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|