1
|
Hologne M, Chen PC, Cantrelle FX, Walker O. Molecular dynamics as an efficient process to predict 15N chemical shift anisotropy at very high NMR magnetic fields. Phys Chem Chem Phys 2025; 27:2320-2332. [PMID: 39688270 DOI: 10.1039/d4cp03821e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The emergence of very high NMR magnetic fields will certainly encourage the study of larger biological systems with their dynamics and interactions. NMR spin relaxation allows probing the dynamical properties of proteins where the 15N longitudinal (R1) and transverse (R2) relaxation rates in addition to the 1H-15N heteronuclear NOE describe the ps-ns time scale. Their analytical representation involves the chemical shift anisotropy (CSA) effect that represents the major contribution at a very high magnetic field above 18.8 T. An accurate analysis of the latter parameters in terms of model free (MF) requires considering its effect. Until now, a uniform value of -160 ppm for the CSA has been widely used to derive the backbone order parameters (S2), giving rise to a large fluctuation of its value at very high magnetic fields. Conversely, the use of a site-specific CSA improves the accurate analysis of protein dynamics but requires a cost-effective experimental multi-field approach. In the present paper, we show how the CSA mainly contributes to the relaxation parameters at 28.2 T compared to lower magnetic fields and may bias the determination of S2. We propose to replace the time-consuming measurement of spin relaxation at multiple fields by a combination of molecular dynamics (MD) and the measurement of spin relaxation at one very high magnetic field only. We applied this strategy to three well-folded proteins (ubiquitin, GB3 and ribonuclease H) to show that the determined order parameters are in good agreement with the ones obtained by means of experimental data only.
Collapse
Affiliation(s)
- Maggy Hologne
- Universite de Lyon, CNRS, UCB Lyon1, Institut des Sciences Analytiques, UMR5280, Villeurbanne, France.
| | - Po-Chia Chen
- School of Physics, University of Sydney, Sydney, NSW, Australia
| | - François-Xavier Cantrelle
- Université de Lille, CNRS, UMR8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Olivier Walker
- Universite de Lyon, CNRS, UCB Lyon1, Institut des Sciences Analytiques, UMR5280, Villeurbanne, France.
| |
Collapse
|
2
|
Beriashvili D, Folkers GE, Baldus M. Ubiquitin's Conformational Heterogeneity as Discerned by Nuclear Magnetic Resonance Spectroscopy. Chembiochem 2024; 25:e202400508. [PMID: 39140844 PMCID: PMC11664922 DOI: 10.1002/cbic.202400508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 08/15/2024]
Abstract
Visualizing a protein's molecular motions has been a long standing topic of research in the biophysics community. Largely this has been done by exploiting nuclear magnetic resonance spectroscopy (NMR), and arguably no protein's molecular motions have been better characterized by NMR than that of ubiquitin (Ub), a 76 amino acid polypeptide essential in ubiquitination-a key regulatory system within cells. Herein, we discuss ubiquitin's conformational plasticity as visualized, at atomic resolution, by more than 35 years of NMR work. In our discussions we point out the differences between data acquired in vitro, ex vivo, as well as in vivo and stress the need to investigate Ub's conformational plasticity in more biologically representative backgrounds.
Collapse
Affiliation(s)
- David Beriashvili
- NMR SpectroscopyBijvoet Center for Biomolecular ResearchUtrecht UniversityPadaulaan 83584 CHUtrechtThe Netherlands
| | - Gert E. Folkers
- NMR SpectroscopyBijvoet Center for Biomolecular ResearchUtrecht UniversityPadaulaan 83584 CHUtrechtThe Netherlands
| | - Marc Baldus
- NMR SpectroscopyBijvoet Center for Biomolecular ResearchUtrecht UniversityPadaulaan 83584 CHUtrechtThe Netherlands
| |
Collapse
|
3
|
Damberger F, Krepl M, Arora R, Beusch I, Maris C, Dorn G, Šponer J, Ravindranathan S, Allain FT. N-terminal domain of polypyrimidine-tract binding protein is a dynamic folding platform for adaptive RNA recognition. Nucleic Acids Res 2024; 52:10683-10704. [PMID: 39180402 PMCID: PMC11417363 DOI: 10.1093/nar/gkae713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
The N-terminal RNA recognition motif domain (RRM1) of polypyrimidine tract binding protein (PTB) forms an additional C-terminal helix α3, which docks to one edge of the β-sheet upon binding to a stem-loop RNA containing a UCUUU pentaloop. Importantly, α3 does not contact the RNA. The α3 helix therefore represents an allosteric means to regulate the conformation of adjacent domains in PTB upon binding structured RNAs. Here we investigate the process of dynamic adaptation by stem-loop RNA and RRM1 using NMR and MD in order to obtain mechanistic insights on how this allostery is achieved. Relaxation data and NMR structure determination of the free protein show that α3 is partially ordered and interacts with the domain transiently. Stem-loop RNA binding quenches fast time scale dynamics and α3 becomes ordered, however microsecond dynamics at the protein-RNA interface is observed. MD shows how RRM1 binding to the stem-loop RNA is coupled to the stabilization of the C-terminal helix and helps to transduce differences in RNA loop sequence into changes in α3 length and order. IRES assays of full length PTB and a mutant with altered dynamics in the α3 region show that this dynamic allostery influences PTB function in cultured HEK293T cells.
Collapse
Affiliation(s)
- Fred F Damberger
- Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
- Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, Brno 612 00, Czech Republic
| | - Rajika Arora
- Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Irene Beusch
- Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Georg Dorn
- Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, Brno 612 00, Czech Republic
| | | | - Frédéric H-T Allain
- Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
- Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
4
|
Khandave NP, Sekhar A, Vallurupalli P. Studying micro to millisecond protein dynamics using simple amide 15N CEST experiments supplemented with major-state R 2 and visible peak-position constraints. JOURNAL OF BIOMOLECULAR NMR 2023; 77:165-181. [PMID: 37300639 PMCID: PMC7615914 DOI: 10.1007/s10858-023-00419-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/10/2023] [Indexed: 06/12/2023]
Abstract
Over the last decade amide 15N CEST experiments have emerged as a popular tool to study protein dynamics that involves exchange between a 'visible' major state and sparsely populated 'invisible' minor states. Although initially introduced to study exchange between states that are in slow exchange with each other (typical exchange rates of, 10 to 400 s-1), they are now used to study interconversion between states on the intermediate to fast exchange timescale while still using low to moderate (5 to 350 Hz) 'saturating' B1 fields. The 15N CEST experiment is very sensitive to exchange as the exchange delay TEX can be quite long (~0.5 s) allowing for a large number of exchange events to occur making it a very powerful tool to detect minor sates populated ([Formula: see text]) to as low as 1%. When systems are in fast exchange and the 15N CEST data has to be described using a model that contains exchange, the exchange parameters are often poorly defined because the [Formula: see text] versus [Formula: see text] and [Formula: see text] versus exchange rate ([Formula: see text]) plots can be quite flat with shallow or no minima and the analysis of such 15N CEST data can lead to wrong estimates of the exchange parameters due to the presence of 'spurious' minima. Here we show that the inclusion of experimentally derived constraints on the intrinsic transverse relaxation rates and the inclusion of visible state peak-positions during the analysis of amide 15N CEST data acquired with moderate B1 values (~50 to ~350 Hz) results in convincing minima in the [Formula: see text] versus [Formula: see text] and the [Formula: see text] versus [Formula: see text] plots even when exchange occurs on the 100 μs timescale. The utility of this strategy is demonstrated on the fast-folding Bacillus stearothermophilus peripheral subunit binding domain that folds with a rate constant ~104 s-1. Here the analysis of 15N CEST data alone results in [Formula: see text] versus [Formula: see text] and [Formula: see text] versus [Formula: see text] plots that contain shallow minima, but the inclusion of visible-state peak positions and restraints on the intrinsic transverse relaxation rates of both states during the analysis of the 15N CEST data results in pronounced minima in the [Formula: see text] versus [Formula: see text] and [Formula: see text] versus [Formula: see text] plots and precise exchange parameters even in the fast exchange regime ([Formula: see text]~5). Using this strategy we find that the folding rate constant of PSBD is invariant (~10,500 s-1) from 33.2 to 42.9 °C while the unfolding rates (~70 to ~500 s-1) and unfolded state populations (~0.7 to ~4.3%) increase with temperature. The results presented here show that protein dynamics occurring on the 10 to 104 s-1 timescale can be studied using amide 15N CEST experiments.
Collapse
Affiliation(s)
- Nihar Pradeep Khandave
- Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, 500046, India
| | - Ashok Sekhar
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, 560012, India
| | - Pramodh Vallurupalli
- Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, 500046, India.
| |
Collapse
|
5
|
Wernersson S, Bobby R, Flavell L, Milbradt AG, Holdgate GA, Embrey KJ, Akke M. Bromodomain Interactions with Acetylated Histone 4 Peptides in the BRD4 Tandem Domain: Effects on Domain Dynamics and Internal Flexibility. Biochemistry 2022; 61:2303-2318. [PMID: 36215732 PMCID: PMC9631989 DOI: 10.1021/acs.biochem.2c00226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The bromodomain and extra-terminal (BET) protein BRD4
regulates
gene expression via recruitment of transcriptional regulatory complexes
to acetylated chromatin. Like other BET proteins, BRD4 contains two
bromodomains, BD1 and BD2, that can interact cooperatively with target
proteins and designed ligands, with important implications for drug
discovery. Here, we used nuclear magnetic resonance (NMR) spectroscopy
to study the dynamics and interactions of the isolated bromodomains,
as well as the tandem construct including both domains and the intervening
linker, and investigated the effects of binding a tetra-acetylated
peptide corresponding to the tail of histone 4. The peptide affinity
is lower for both domains in the tandem construct than for the isolated
domains. Using 15N spin relaxation, we determined the global
rotational correlation times and residue-specific order parameters
for BD1 and BD2. Isolated BD1 is monomeric in the apo state but apparently
dimerizes upon binding the tetra-acetylated peptide. Isolated BD2
partially dimerizes in both the apo and peptide-bound states. The
backbone order parameters reveal marked differences between BD1 and
BD2, primarily in the acetyl-lysine binding site where the ZA loop
is more flexible in BD2. Peptide binding reduces the order parameters
of the ZA loop in BD1 and the ZA and BC loops in BD2. The AB loop,
located distally from the binding site, shows variable dynamics that
reflect the different dimerization propensities of the domains. These
results provide a basis for understanding target recognition by BRD4.
Collapse
Affiliation(s)
- Sven Wernersson
- Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University, SE-221 00Lund, Sweden
| | - Romel Bobby
- Mechanistic and Structural Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, CambridgeCB4 0WG, U.K
| | - Liz Flavell
- Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge Science Park, CambridgeCB4 0WG, U.K
| | - Alexander G Milbradt
- Mechanistic and Structural Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, CambridgeCB4 0WG, U.K
| | - Geoffrey A Holdgate
- Mechanistic and Structural Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, CambridgeCB4 0WG, U.K
| | - Kevin J Embrey
- Mechanistic and Structural Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, CambridgeCB4 0WG, U.K
| | - Mikael Akke
- Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University, SE-221 00Lund, Sweden
| |
Collapse
|
6
|
Dayie TK, Olenginski LT, Taiwo KM. Isotope Labels Combined with Solution NMR Spectroscopy Make Visible the Invisible Conformations of Small-to-Large RNAs. Chem Rev 2022; 122:9357-9394. [PMID: 35442658 PMCID: PMC9136934 DOI: 10.1021/acs.chemrev.1c00845] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Indexed: 02/07/2023]
Abstract
RNA is central to the proper function of cellular processes important for life on earth and implicated in various medical dysfunctions. Yet, RNA structural biology lags significantly behind that of proteins, limiting mechanistic understanding of RNA chemical biology. Fortunately, solution NMR spectroscopy can probe the structural dynamics of RNA in solution at atomic resolution, opening the door to their functional understanding. However, NMR analysis of RNA, with only four unique ribonucleotide building blocks, suffers from spectral crowding and broad linewidths, especially as RNAs grow in size. One effective strategy to overcome these challenges is to introduce NMR-active stable isotopes into RNA. However, traditional uniform labeling methods introduce scalar and dipolar couplings that complicate the implementation and analysis of NMR measurements. This challenge can be circumvented with selective isotope labeling. In this review, we outline the development of labeling technologies and their application to study biologically relevant RNAs and their complexes ranging in size from 5 to 300 kDa by NMR spectroscopy.
Collapse
Affiliation(s)
- Theodore K. Dayie
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Lukasz T. Olenginski
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Kehinde M. Taiwo
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
7
|
Robson SA, Dağ Ç, Wu H, Ziarek JJ. TRACT revisited: an algebraic solution for determining overall rotational correlation times from cross-correlated relaxation rates. JOURNAL OF BIOMOLECULAR NMR 2021; 75:293-302. [PMID: 34480265 PMCID: PMC8627365 DOI: 10.1007/s10858-021-00379-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/23/2021] [Indexed: 05/09/2023]
Abstract
Accurate rotational correlation times ([Formula: see text]) are critical for quantitative analysis of fast timescale NMR dynamics. As molecular weights increase, the classic derivation of [Formula: see text] using transverse and longitudinal relaxation rates becomes increasingly unsuitable due to the non-trivial contribution of remote dipole-dipole interactions to longitudinal relaxation. Derivations using cross-correlated relaxation experiments, such as TRACT, overcome these limitations but are erroneously calculated in 65% of the citing literature. Herein, we developed an algebraic solutions to the Goldman relationship that facilitate rapid, point-by-point calculations for straightforward identification of appropriate spectral regions where global tumbling is likely to be dominant. The rigid-body approximation of the Goldman relationship has been previously shown to underestimate TRACT-based rotational correlation time estimates. This motivated us to develop a second algebraic solution that employs a simplified model-free spectral density function including an order parameter term that could, in principle, be set to an average backbone S2 ≈ 0.9 to further improve the accuracy of [Formula: see text] estimation. These solutions enabled us to explore the boundaries of the Goldman relationship as a function of the H-N internuclear distance ([Formula: see text]), difference of the two principal components of the axially-symmetric 15N CSA tensor ([Formula: see text]), and angle of the CSA tensor relative to the N-H bond vector ([Formula: see text]). We hope our algebraic solutions and analytical strategies will increase the accuracy and application of the TRACT experiment.
Collapse
Affiliation(s)
- Scott A Robson
- Department of Molecular and Cellular Biochemistry, Indiana University, 212 S. Hawthorne Drive, Bloomington, IN, 47405, USA
| | - Çağdaş Dağ
- Department of Molecular and Cellular Biochemistry, Indiana University, 212 S. Hawthorne Drive, Bloomington, IN, 47405, USA
- Department of Molecular Biology and Genetics, Nanofabrication and Nanocharacterization Center for Scientific and Technological Advanced Research, and Koc University Isbank Center for Infectious Diseases (KUISCID), Koc University, 34450, Istanbul, Turkey
| | - Hongwei Wu
- Department of Chemistry, Indiana University, 212 S. Hawthorne Drive, Bloomington, IN, 47405, USA
| | - Joshua J Ziarek
- Department of Molecular and Cellular Biochemistry, Indiana University, 212 S. Hawthorne Drive, Bloomington, IN, 47405, USA.
| |
Collapse
|
8
|
Olenginski LT, Dayie TK. Quantifying the effects of long-range 13C- 13C dipolar coupling on measured relaxation rates in RNA. JOURNAL OF BIOMOLECULAR NMR 2021; 75:203-211. [PMID: 33914223 PMCID: PMC8131303 DOI: 10.1007/s10858-021-00368-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Selective stable isotope labeling has transformed structural and dynamics analysis of RNA by NMR spectroscopy. These methods can remove 13C-13C dipolar couplings that complicate 13C relaxation analyses. While these phenomena are well documented for sites with adjacent 13C nuclei (e.g. ribose C1'), less is known about so-called isolated sites (e.g. adenosine C2). To investigate and quantify the effects of long-range (> 2 Å) 13C-13C dipolar interactions on RNA dynamics, we simulated adenosine C2 relaxation rates in uniformly [U-13C/15N]-ATP or selectively [2-13C]-ATP labeled RNAs. Our simulations predict non-negligible 13C-13C dipolar contributions from adenosine C4, C5, and C6 to C2 longitudinal (R1) relaxation rates in [U-13C/15N]-ATP labeled RNAs. Moreover, these contributions increase at higher magnetic fields and molecular weights to introduce discrepancies that exceed 50%. This will become increasingly important at GHz fields. Experimental R1 measurements in the 61 nucleotide human hepatitis B virus encapsidation signal ε RNA labeled with [U-13C/15N]-ATP or [2-13C]-ATP corroborate these simulations. Thus, in the absence of selectively labeled samples, long-range 13C-13C dipolar contributions must be explicitly taken into account when interpreting adenosine C2 R1 rates in terms of motional models for large RNAs.
Collapse
Affiliation(s)
- Lukasz T Olenginski
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD, 20742, USA
| | - Theodore K Dayie
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
9
|
Wallerstein J, Akke M. Minute Additions of DMSO Affect Protein Dynamics Measurements by NMR Relaxation Experiments through Significant Changes in Solvent Viscosity. Chemphyschem 2019; 20:326-332. [PMID: 30102005 PMCID: PMC6391962 DOI: 10.1002/cphc.201800626] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Indexed: 11/07/2022]
Abstract
Studies of protein-ligand binding often rely on dissolving the ligand in dimethyl sulfoxide (DMSO) to achieve sufficient solubility, and then titrating the ligand solution into the protein solution. As a result, the final protein-ligand solution contains small amounts of DMSO in the buffer. Here we report how the addition of DMSO impacts studies of protein conformational dynamics. We used 15 N NMR relaxation to compare the rotational diffusion correlation time (τC ) of proteins in aqueous buffer with and without DMSO. We found that τC scales with the viscosity of the water-DMSO mixture, which depends sensitively on the amount of DMSO and varies by a factor of 2 across the relevant concentration range. NMR relaxation studies of side chains dynamics are commonly interpreted using τC as a fixed parameter, obtained from backbone 15 N relaxation data acquired on a separate sample. Model-free calculations show that errors in τC , arising from mismatched DMSO concentration between samples, lead to significant errors in order parameters. Our results highlight the importance of determining τC for each sample or carefully matching the DMSO concentrations between samples.
Collapse
Affiliation(s)
- Johan Wallerstein
- Biophysical Chemistry, Center for Molecular Protein Science Department of ChemistryLund UniversityBox 124SE-221 00LundSweden
| | - Mikael Akke
- Biophysical Chemistry, Center for Molecular Protein Science Department of ChemistryLund UniversityBox 124SE-221 00LundSweden
| |
Collapse
|
10
|
Czernek J, Brus J. Theoretical investigations into the variability of the 15N solid-state NMR parameters within an antimicrobial peptide ampullosporin A. Physiol Res 2018; 67:S349-S356. [PMID: 30379555 DOI: 10.33549/physiolres.933976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The solid-state NMR measurements play an indispensable role in studies of interactions between biological membranes and peptaibols, which are amphipathic oligopeptides with a high abundance of alpha-aminobutyric acid (Aib). The solid-state NMR investigations are important in establishing the molecular models of the pore forming and antimicrobial properties of peptaibols, but rely on certain simplifications. Some of the underlying assumptions concern the parameters describing the 15N NMR chemical shielding tensor (CST) of the amide nitrogens in Aib and in conventional amino acids. Here the density functional theory (DFT) based calculations were applied to the known crystal structure of one of peptaibols, Ampullosporin A, in order to explicitly describe the variation of the 15N NMR parameters within its backbone. Based on the DFT computational data it was possible to verify the validity of the assumptions previously made about the differences between Aib and other amino acids in the isotropic part of the CST. Also the trends in the magnitudes and orientations of the anisotropic components of the CST, as revealed by the DFT calculations of the full periodic structure of Ampullosporin A, were thoroughly analyzed, and may be employed in future studies of peptaibols.
Collapse
Affiliation(s)
- J Czernek
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Praha 6, Czech Republic.
| | | |
Collapse
|
11
|
Chen PC, Hologne M, Walker O, Hennig J. Ab Initio Prediction of NMR Spin Relaxation Parameters from Molecular Dynamics Simulations. J Chem Theory Comput 2018; 14:1009-1019. [PMID: 29294268 DOI: 10.1021/acs.jctc.7b00750] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
1H-15N NMR spin relaxation and relaxation dispersion experiments can reveal the time scale and extent of protein motions across the ps-ms range, where the ps-ns dynamics revealed by fundamental quantities R1, R2, and heteronuclear NOE can be well-sampled by molecular dynamics simulations (MD). Although the principles of relaxation prediction from simulations are well-established, numerous NMR-MD comparisons have hitherto focused upon the aspect of order parameters S2 due to common artifacts in the prediction of transient dynamics. We therefore summarize here all necessary components and highlight existing and proposed solutions, such as the inclusion of quantum mechanical zero-point vibrational corrections and separate MD convergence of global and local motions in coarse-grained and all-atom force fields, respectively. For the accuracy of the MD prediction to be tested, two model proteins GB3 and Ubiquitin are used to validate five atomistic force fields against published NMR data supplemented by the coarse-grained force field MARTINI+EN. In Amber and CHARMM-type force fields, quantitative agreement was achieved for structured elements with minimum adjustment of global parameters. Deviations from experiment occur in flexible loops and termini, indicating differences in both the extent and time scale of backbone motions. The lack of systematic patterns and water model dependence suggests that modeling of the local environment limits prediction accuracy. Nevertheless, qualitative accuracy in a 2 μs CHARMM36m Stam2 VHS domain simulation demonstrates the potential of MD-based interpretation in combination with NMR-measured dynamics, increasing the utility of spin relaxation in integrative structural biology.
Collapse
Affiliation(s)
- Po-Chia Chen
- Structural and Computational Biology Unit, EMBL Heidelberg , Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Maggy Hologne
- Université de Lyon, CNRS, Université Claude Bernard Lyon1, Ens de Lyon, Institut des Sciences Analytiques, UMR 5280 , 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Olivier Walker
- Université de Lyon, CNRS, Université Claude Bernard Lyon1, Ens de Lyon, Institut des Sciences Analytiques, UMR 5280 , 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Janosch Hennig
- Structural and Computational Biology Unit, EMBL Heidelberg , Meyerhofstrasse 1, 69117 Heidelberg, Germany
| |
Collapse
|
12
|
Hernández G, LeMaster DM. Quantifying protein dynamics in the ps-ns time regime by NMR relaxation. JOURNAL OF BIOMOLECULAR NMR 2016; 66:163-174. [PMID: 27734179 PMCID: PMC5446045 DOI: 10.1007/s10858-016-0064-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/28/2016] [Indexed: 05/12/2023]
Abstract
Both 15N chemical shift anisotropy (CSA) and sufficiently rapid exchange linebroadening transitions exhibit relaxation contributions that are proportional to the square of the magnetic field. Deconvoluting these contributions is further complicated by residue-dependent variations in protein amide 15N CSA values which have proven difficult to accurately measure. Exploiting recently reported improvements for the implementation of T1 and T1ρ experiments, field strength-dependent studies have been carried out on the B3 domain of protein G (GB3) as well as on the immunophilin FKBP12 and a H87V variant of that protein in which the major conformational exchange linebroadening transition is suppressed. By applying a zero frequency spectral density rescaling analysis to the relaxation data collected at magnetic fields from 500 to 900 MHz 1H, differential residue-specific 15N CSA values have been obtained for GB3 which correlate with those derived from solid state and liquid crystalline NMR measurements to a level similar to the correlation among those previously reported studies. Application of this analysis protocol to FKBP12 demonstrated an efficient quantitation of both weak exchange linebroadening contributions and differential residue-specific 15N CSA values. Experimental access to such differential residue-specific 15N CSA values should significantly facilitate more accurate comparisons with molecular dynamics simulations of protein motion that occurs within the timeframe of global molecular tumbling.
Collapse
Affiliation(s)
- Griselda Hernández
- Wadsworth Center, New York State Department of Health and Department of Biomedical Sciences, School of Public Health, University at Albany - SUNY, Empire State Plaza, Albany, NY, 12201, USA
| | - David M LeMaster
- Wadsworth Center, New York State Department of Health and Department of Biomedical Sciences, School of Public Health, University at Albany - SUNY, Empire State Plaza, Albany, NY, 12201, USA.
| |
Collapse
|
13
|
Jaremko Ł, Jaremko M, Nowakowski M, Ejchart A. The Quest for Simplicity: Remarks on the Free-Approach Models. J Phys Chem B 2015; 119:11978-87. [PMID: 26301699 DOI: 10.1021/acs.jpcb.5b07181] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nuclear magnetic relaxation provides a powerful method giving insight into molecular motions at atomic resolution on a broad time scale. Dynamics of biological macromolecules has been widely exploited by measuring (15)N and (13)C relaxation data. Interpretation of these data relies almost exclusively on the use of the model-free approach (MFA) and its extended version (EMFA) which requires no particular physical model of motion and a small number of parameters. It is shown that EMFA is often unable to cope with three different time scales and fails to describe slow internal motions properly. In contrast to EMFA, genuine MFA with two time scales can reproduce internal motions slower than the overall tumbling. It is also shown that MFA and simplified EMFA are equivalent with respect to the values of the N-H bond length and chemical shift anisotropy. Therefore, the vast majority of (15)N relaxation data for proteins can be satisfactorily interpreted solely with MFA.
Collapse
Affiliation(s)
- Łukasz Jaremko
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry , Am Fassberg 11, 37077 Göttingen, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) , Am Fassberg 11, 37077 Göttingen, Germany
| | - Mariusz Jaremko
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry , Am Fassberg 11, 37077 Göttingen, Germany
| | - Michał Nowakowski
- Centre of New Technologies, University of Warsaw , Banacha 2C, 02-097 Warsaw, Poland
| | - Andrzej Ejchart
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences , Pawinskiego 5A, 02-106 Warsaw, Poland
| |
Collapse
|
14
|
Asami S, Porter JR, Lange OF, Reif B. Access to Cα backbone dynamics of biological solids by 13C T1 relaxation and molecular dynamics simulation. J Am Chem Soc 2015; 137:1094-100. [PMID: 25564702 DOI: 10.1021/ja509367q] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We introduce a labeling scheme for magic angle spinning (MAS) solid-state NMR that is based on deuteration in combination with dilution of the carbon spin system. The labeling strategy achieves spectral editing by simplification of the HαCα and aliphatic side chain spectral region. A reduction in both proton and carbon spin density in combination with fast spinning (≥50 kHz) is essential to retrieve artifact-free (13)C-R1 relaxation data for aliphatic carbons. We obtain good agreement between the NMR experimental data and order parameters extracted from a molecular dynamics (MD) trajectory, which indicates that carbon based relaxation parameters can yield complementary information on protein backbone as well as side chain dynamics.
Collapse
Affiliation(s)
- Sam Asami
- Munich Center for Integrated Protein Science (CIPSM) at Department of Chemie, Technische Universität München (TUM) , Lichtenbergstr. 4, D-85747 Garching, Germany
| | | | | | | |
Collapse
|
15
|
Pandey MK, Vivekanandan S, Ahuja S, Huang R, Im SC, Waskell L, Ramamoorthy A. Cytochrome-P450-cytochrome-b5 interaction in a membrane environment changes 15N chemical shift anisotropy tensors. J Phys Chem B 2013; 117:13851-60. [PMID: 24107224 DOI: 10.1021/jp4086206] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It has been well realized that the dependence of chemical shift anisotropy (CSA) tensors on the amino acid sequence, secondary structure, dynamics, and electrostatic interactions can be utilized in the structural and dynamic studies of proteins by NMR spectroscopy. In addition, CSA tensors could also be utilized to measure the structural interactions between proteins in a protein-protein complex. To this end, we report the experimentally measured backbone amide-(15)N CSA tensors for a membrane-bound 16.7 kDa full-length rabbit cytochrome-b5 (cytb5), in complexation with a 55.8 kDa microsomal rabbit cytochrome P450 2B4 (cytP4502B4). The (15)N-CSAs, determined using the (15)N CSA/(15)N-(1)H dipolar coupling transverse cross-correlated rates, for free cytb5 are compared with those for the cytb5 bound to cytP4502B4. An overall increase in backbone amide-(15)N transverse cross-correlated rates for the cytb5 residues in the cytb5-cytP450 complex is observed as compared to the free cytb5 residues. Due to fast spin-spin relaxation (T2) and subsequent broadening of the signals in the complex, we could measure amide-(15)N CSAs only for 48 residues of cytb5 as compared to 84 residues of free cytb5. We observed a change in (15)N CSA for most residues of cytb5 in the complex, as compared to free cytb5, suggesting a dynamic interaction between the oppositely charged surfaces of anionic cytb5 and cationic cytP450. The mean values of (15)N CSA determined for residues in helical, sheet, and turn regions of cytb5 in the complex are -184.5, -146.8, and -146.2 ppm, respectively, with an overall average value of -165.5 ppm (excluding the values from residues in more flexible termini). The measured CSA value for residues in helical conformation is slightly larger as compared to previously reported values. This may be attributed to the paramagnetic effect from Fe(III) of the heme in cytb5, which is similar to our previously reported values for the free cytb5.
Collapse
Affiliation(s)
- Manoj Kumar Pandey
- Biophysics and Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109-1055, United States
| | | | | | | | | | | | | |
Collapse
|
16
|
Pandey MK, Ramamoorthy A. Quantum chemical calculations of amide-15N chemical shift anisotropy tensors for a membrane-bound cytochrome-b5. J Phys Chem B 2013; 117:859-67. [PMID: 23268659 PMCID: PMC3564578 DOI: 10.1021/jp311116p] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is considerable interest in determining amide-(15)N chemical shift anisotropy (CSA) tensors from biomolecules and understanding their variation for structural and dynamics studies using solution and solid-state NMR spectroscopy and also by quantum chemical calculations. Due to the difficulties associated with the measurement of CSA tensors from membrane proteins, NMR-based structural studies heavily relied on the CSA tensors determined from model systems, typically single crystals of model peptides. In the present study, the principal components of backbone amide-(15)N CSA tensors have been determined using density functional theory for a 16.7 kDa membrane-bound paramagnetic heme containing protein, cytochrome-b(5) (cytb(5)). All the calculations were performed by taking residues within 5 Å distance from the backbone amide-(15)N nucleus of interest. The calculated amide-(15)N CSA spans agree less well with our solution NMR data determined for an effective internuclear distance r(N-H) = 1.023 Å and a constant angle β = 18° that the least shielded component (δ(11)) makes with the N-H bond. The variation of amide-(15)N CSA span obtained using quantum chemical calculations is found to be smaller than that obtained from solution NMR measurements, whereas the trends of the variations are found to be in close agreement. We believe that the results reported in this study will be useful in studying the structure and dynamics of membrane proteins and heme-containing proteins, and also membrane-bound protein-protein complexes such as cytochromes-b5-P450.
Collapse
Affiliation(s)
- Manoj Kumar Pandey
- Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, MI 48109-1055
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, MI 48109-1055
| |
Collapse
|
17
|
Wang Y, Schwieters CD, Tjandra N. Parameterization of solvent-protein interaction and its use on NMR protein structure determination. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2012; 221:76-84. [PMID: 22750253 PMCID: PMC3405189 DOI: 10.1016/j.jmr.2012.05.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 05/22/2012] [Accepted: 05/27/2012] [Indexed: 05/26/2023]
Abstract
NMR structure determination is frequently hindered by an insufficient amount of distance information for determining the correct fold of the protein in its early stages. In response we introduce a simple and general structure-based metric that can be used to incorporate NMR-based restraints on protein surface accessibility. This metric is inversely proportional to the sum of the inverse square distances to neighboring heavy atoms. We demonstrate the use of this restraint using a dataset from the water to protein magnetization transfer experiment on the protein Bax and the solvent paramagnetic relaxation enhancement experiment on the protein ubiquitin and Qua1 homodimer. The calculated solvent accessibility values using the new empirical function are well correlated with the experimental data. By incorporating an associated energy term into Xplor-NIH, we show that structure calculation with a limited number of additional experimental restraints, improves both the precision and accuracy of the resulting structures. This new empirical energy term will have general applicability to other types of solvent accessibility data.
Collapse
Affiliation(s)
- Yu Wang
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, U. S. A
| | - Charles D. Schwieters
- Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892, U. S. A
| | - Nico Tjandra
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, U. S. A
| |
Collapse
|
18
|
Lakomek NA, Ying J, Bax A. Measurement of ¹⁵N relaxation rates in perdeuterated proteins by TROSY-based methods. JOURNAL OF BIOMOLECULAR NMR 2012; 53:209-21. [PMID: 22689066 PMCID: PMC3412688 DOI: 10.1007/s10858-012-9626-5] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Accepted: 04/04/2012] [Indexed: 05/11/2023]
Abstract
While extracting dynamics parameters from backbone (15)N relaxation measurements in proteins has become routine over the past two decades, it is increasingly recognized that accurate quantitative analysis can remain limited by the potential presence of systematic errors associated with the measurement of (15)N R(1) and R(2) or R(1ρ) relaxation rates as well as heteronuclear (15)N-{(1)H} NOE values. We show that systematic errors in such measurements can be far larger than the statistical error derived from either the observed signal-to-noise ratio, or from the reproducibility of the measurement. Unless special precautions are taken, the problem of systematic errors is shown to be particularly acute in perdeuterated systems, and even more so when TROSY instead of HSQC elements are used to read out the (15)N magnetization through the NMR-sensitive (1)H nucleus. A discussion of the most common sources of systematic errors is presented, as well as TROSY-based pulse schemes that appear free of systematic errors to the level of <1 %. Application to the small perdeuterated protein GB3, which yields exceptionally high S/N and therefore is an ideal test molecule for detection of systematic errors, yields relaxation rates that show considerably less residue by residue variation than previous measurements. Measured R(2)'/R(1)' ratios fit an axially symmetric diffusion tensor with a Pearson's correlation coefficient of 0.97, comparable to fits obtained for backbone amide RDCs to the Saupe matrix.
Collapse
Affiliation(s)
| | | | - Ad Bax
- Correspondence: Ad Bax, National Institutes of Health, DHHS NIDDK LCP, Building 5, Room 126, 9000 Rockville Pike, Bethesda, MD 20892-0520, Tel.:301-496-2848, Fax: 301-402-0907,
| |
Collapse
|
19
|
Pandey MK, Vivekanandan S, Ahuja S, Pichumani K, Im SC, Waskell L, Ramamoorthy A. Determination of 15N chemical shift anisotropy from a membrane-bound protein by NMR spectroscopy. J Phys Chem B 2012; 116:7181-9. [PMID: 22620865 PMCID: PMC3381076 DOI: 10.1021/jp3049229] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chemical shift anisotropy (CSA) tensors are essential in the structural and dynamic studies of proteins using NMR spectroscopy. Results from relaxation studies in biomolecular solution and solid-state NMR experiments on aligned samples are routinely interpreted using well-characterized CSA tensors determined from model compounds. Since CSA tensors, particularly the (15)N CSA, highly depend on a number of parameters including secondary structure, electrostatic interaction, and the amino acid sequence, there is a need for accurately determined CSA tensors from proteins. In this study, we report the backbone amide-(15)N CSA tensors for a 16.7-kDa membrane-bound and paramagnetic-heme containing protein, rabbit Cytochrome b(5) (cytb(5)), determined using the (15)N CSA/(15)N-(1)H dipolar transverse cross-correlation rates. The mean values of (15)N CSA determined for residues in helical, sheet, and turn regions are -187.9, -166.0, and -161.1 ppm, respectively, with an overall average value of -171.7 ppm. While the average CSA value determined from this study is in good agreement with previous solution NMR experiments on small globular proteins, the CSA value determined for residues in helical conformation is slightly larger, which may be attributed to the paramagnetic effect from Fe(III) of the heme unit in cytb(5). However, like in previous solution NMR studies, the CSA values reported in this study are larger than the values measured from solid-state NMR experiments. We believe that the CSA parameters reported in this study will be useful in determining the structure, dynamics, and orientation of proteins, including membrane proteins, using NMR spectroscopy.
Collapse
Affiliation(s)
- Manoj Kumar Pandey
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055
| | | | - Shivani Ahuja
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055
| | - Kumar Pichumani
- Advanced Imaging Research Center, University of Texas southwestern Medical Center, 2201 Inwood Road, Dallas, Texas 75390-8568
| | - Sang-Choul Im
- Department of Anesthesiology, University of Michigan and VA Medical Center, Ann Arbor, Michigan 48105
| | - Lucy Waskell
- Department of Anesthesiology, University of Michigan and VA Medical Center, Ann Arbor, Michigan 48105
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055
| |
Collapse
|
20
|
Shapiro YE, Meirovitch E. Slowly Relaxing Local Structure (SRLS) Analysis of 15N–H Relaxation from the Prototypical Small Proteins GB1 and GB3. J Phys Chem B 2012; 116:4056-68. [DOI: 10.1021/jp300245k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yury E. Shapiro
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900 Israel
| | - Eva Meirovitch
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900 Israel
| |
Collapse
|
21
|
Markwick PR, Nilges M. Computational approaches to the interpretation of NMR data for studying protein dynamics. Chem Phys 2012. [DOI: 10.1016/j.chemphys.2011.11.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
22
|
Neira JL, Sevilla P, García-Blanco F. The C-terminal sterile alpha motif (SAM) domain of human p73 is a highly dynamic protein, which acquires high thermal stability through a decrease in backbone flexibility. Phys Chem Chem Phys 2012; 14:10308-23. [DOI: 10.1039/c2cp41179b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
23
|
Tang S, Case DA. Calculation of chemical shift anisotropy in proteins. JOURNAL OF BIOMOLECULAR NMR 2011; 51:303-12. [PMID: 21866436 PMCID: PMC3196061 DOI: 10.1007/s10858-011-9556-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 08/03/2011] [Indexed: 05/24/2023]
Abstract
Individual peptide groups in proteins must exhibit some variation in the chemical shift anisotropy (CSA) of their constituent atoms, but not much is known about the extent or origins of this dispersion. Direct spectroscopic measurement of CSA remains technically challenging, and theoretical methods can help to overcome these limitations by estimating shielding tensors for arbitrary structures. Here we use an automated fragmentation quantum mechanics/molecular mechanics (AF-QM/MM) approach to compute (15)N, (13)C' and (1)H chemical shift tensors for human ubiquitin and the GB1 and GB3 fragments of staphylococcal protein G. The average and range of variation of the anisotropies is in good agreement with experimental estimates from solid-state NMR, and the variation among residues is somewhat smaller than that estimated from solution-state measurements. Hydrogen-bond effects account for much of the variation, both between helix and sheet regions, and within elements of secondary structure, but other effects (including variations in torsion angles) may play a role as well.
Collapse
Affiliation(s)
- Sishi Tang
- Department of Chemistry and Chemical Biology, BioMaPS Institute, Rutgers University, Piscataway, NJ 08854, USA
| | | |
Collapse
|
24
|
Ultrahigh resolution protein structures using NMR chemical shift tensors. Proc Natl Acad Sci U S A 2011; 108:16974-9. [PMID: 21969532 DOI: 10.1073/pnas.1103728108] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
NMR chemical shift tensors (CSTs) in proteins, as well as their orientations, represent an important new restraint class for protein structure refinement and determination. Here, we present the first determination of both CST magnitudes and orientations for (13)Cα and (15)N (peptide backbone) groups in a protein, the β1 IgG binding domain of protein G from Streptococcus spp., GB1. Site-specific (13)Cα and (15)N CSTs were measured using synchronously evolved recoupling experiments in which (13)C and (15)N tensors were projected onto the (1)H-(13)C and (1)H-(15)N vectors, respectively, and onto the (15)N-(13)C vector in the case of (13)Cα. The orientations of the (13)Cα CSTs to the (1)H-(13)C and (13)C-(15)N vectors agreed well with the results of ab initio calculations, with an rmsd of approximately 8°. In addition, the measured (15)N tensors exhibited larger reduced anisotropies in α-helical versus β-sheet regions, with very limited variation (18 ± 4°) in the orientation of the z-axis of the (15)N CST with respect to the (1)H-(15)N vector. Incorporation of the (13)Cα CST restraints into structure calculations, in combination with isotropic chemical shifts, transferred echo double resonance (13)C-(15)N distances and vector angle restraints, improved the backbone rmsd to 0.16 Å (PDB ID code 2LGI) and is consistent with existing X-ray structures (0.51 Å agreement with PDB ID code 2QMT). These results demonstrate that chemical shift tensors have considerable utility in protein structure refinement, with the best structures comparable to 1.0-Å crystal structures, based upon empirical metrics such as Ramachandran geometries and χ(1)/χ(2) distributions, providing solid-state NMR with a powerful tool for de novo structure determination.
Collapse
|
25
|
Morin S. A practical guide to protein dynamics from 15N spin relaxation in solution. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2011; 59:245-62. [PMID: 21920220 DOI: 10.1016/j.pnmrs.2010.12.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 12/17/2010] [Indexed: 05/08/2023]
Affiliation(s)
- Sébastien Morin
- Department of Structural Biology, Biozentrum, University of Basel, Switzerland.
| |
Collapse
|
26
|
Fiala R, Spacková N, Foldynová-Trantírková S, Sponer J, Sklenár V, Trantírek L. NMR cross-correlated relaxation rates reveal ion coordination sites in DNA. J Am Chem Soc 2011; 133:13790-3. [PMID: 21819145 DOI: 10.1021/ja202397p] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this work, a novel NMR method for the identification of preferential coordination sites between physiologically relevant counterions and nucleic acid bases is demonstrated. In this approach, the NMR cross-correlated relaxation rates between the aromatic carbon chemical shift anisotropy and the proton-carbon dipolar interaction are monitored as a function of increasing Na(+), K(+), and Mg(2+) concentrations. Increasing the counterion concentration modulates the residence times of the counterions at specific sites around the nucleic acid bases. It is demonstrated that the modulation of the counterion concentration leads to sizable variations of the cross-correlated relaxation rates, which can be used to probe the site-specific counterion coordination. In parallel, the very same measurements report on the rotational tumbling of DNA, which, as shown here, depends on the nature of the ion and its concentration. This methodology is highly sensitive and easily implemented. The method can be used to cross-validate and/or complement direct but artifact-prone experimental techniques such as X-ray diffraction, NMR analysis with substitutionary ions, and molecular dynamics simulations. The feasibility of this technique is demonstrated on the extraordinarily stable DNA mini-hairpin d(GCGAAGC).
Collapse
Affiliation(s)
- Radovan Fiala
- National Centre for Biomolecular Research and CEITEC, Masaryk University, Brno, Czech Republic.
| | | | | | | | | | | |
Collapse
|
27
|
Cai L, Kosov DS, Fushman D. Density functional calculations of backbone 15N shielding tensors in beta-sheet and turn residues of protein G. JOURNAL OF BIOMOLECULAR NMR 2011; 50:19-33. [PMID: 21305337 PMCID: PMC3085593 DOI: 10.1007/s10858-011-9474-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 01/18/2011] [Indexed: 05/30/2023]
Abstract
We performed density functional calculations of backbone (15)N shielding tensors in the regions of beta-sheet and turns of protein G. The calculations were carried out for all twenty-four beta-sheet residues and eight beta-turn residues in the protein GB3 and the results were compared with the available experimental data from solid-state and solution NMR measurements. Together with the alpha-helix data, our calculations cover 39 out of the 55 residues (or 71%) in GB3. The applicability of several computational models developed previously (Cai et al. in J Biomol NMR 45:245-253, 2009) to compute (15)N shielding tensors of alpha-helical residues is assessed. We show that the proposed quantum chemical computational model is capable of predicting isotropic (15)N chemical shifts for an entire protein that are in good correlation with experimental data. However, the individual components of the predicted (15)N shielding tensor agree with experiment less well: the computed values show much larger spread than the experimental data, and there is a profound difference in the behavior of the tensor components for alpha-helix/turns and beta-sheet residues. We discuss possible reasons for this.
Collapse
Affiliation(s)
- Ling Cai
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
- Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742, USA
| | - Daniel S. Kosov
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
- Department of Physics and Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, Campus Plaine, CP 231, Blvd du Triomphe, B-1050 Brussels, Belgium
| | - David Fushman
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
- Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
28
|
Zerbetto M, Buck M, Meirovitch E, Polimeno A. Integrated computational approach to the analysis of NMR relaxation in proteins: application to ps-ns main chain 15N-1H and global dynamics of the Rho GTPase binding domain of plexin-B1. J Phys Chem B 2011; 115:376-88. [PMID: 21142011 PMCID: PMC3079214 DOI: 10.1021/jp108633v] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An integrated computational methodology for interpreting NMR spin relaxation in proteins has been developed. It combines a two-body coupled-rotator stochastic model with a hydrodynamics-based approach for protein diffusion, together with molecular dynamics based calculations for the evaluation of the coupling potential of mean force. The method is applied to ¹⁵N relaxation of N-H bonds in the Rho GTPase binding (RBD) domain of plexin-B1, which exhibits intricate internal mobility. Bond vector dynamics are characterized by a rhombic local ordering tensor, S, with principal values S₀² and S₂², and an axial local diffusion tensor, D₂, with principal values D(2,||) and D(2,⊥). For α-helices and β-sheets we find that S₀² ~ -0.5 (strong local ordering), -1.2 < S₂² < -0.8 (large S tensor anisotropy), D(2,⊥) ~ D₁ = 1.93 × 10⁷ s⁻¹ (D₁ is the global diffusion rate), and log(D(2,||)/D₁) ~ 4. For α-helices the z-axis of the local ordering frame is parallel to the C(α)-C(α) axis. For β-sheets the z-axes of the S and D₂ tensors are parallel to the N-H bond. For loops and terminal chain segments the local ordering is generally weaker and more isotropic. On average, D(2,⊥) ~ D₁ also, but log(D(2,||)/D₁) is on the order of 1-2. The tensor orientations are diversified. This study sets forth an integrated computational approach for treating NMR relaxation in proteins by combining stochastic modeling and molecular dynamics. The approach developed provides new insights by its application to a protein that experiences complex dynamics.
Collapse
Affiliation(s)
- Mirco Zerbetto
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Padova, Italy
| | | | | | | |
Collapse
|
29
|
Meirovitch E, Zerbetto M, Polimeno A, Freed JH. Backbone dynamics of deoxy and carbonmonoxy hemoglobin by NMR/SRLS. J Phys Chem B 2011; 115:143-57. [PMID: 21162544 PMCID: PMC3071157 DOI: 10.1021/jp107553j] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The slowly relaxing local structure (SRLS) approach, developed for NMR spin relaxation analysis in proteins, is applied herein to amide ¹⁵N relaxation in deoxy and carbonmonoxy hemoglobin. Experimental data including ¹⁵N T₁, T₂ and ¹⁵N-{¹H} NOE, acquired at 11.7 and 14.1 T, and 29 and 34 °C, are analyzed. The restricted local motion of the N-H bond is described in terms of the principal value (S(0)(2)) and orientation (β(D)) of an axial local ordering tensor, S, and the principal values (R(||)(L) and R(⊥)(L)) and orientation (β(O)) of an axial local diffusion tensor, R(L). The parameters c₀² (the potential coefficient in terms of which S(0)(2) is defined), R(||)(L), β(D), and β(O) are determined by data fitting; R(⊥)(L) is set equal to the global motional rate, R(C), found previously to be (5.2-5.8) × 10⁶ 1/s in the temperature range investigated. The principal axis of S is (nearly) parallel to the C(i-1)(α)-C(i)(α) axis; when the two axes are parallel, β(D) = -101.3° (in the frame used). The principal axis of R(L) is (nearly) parallel to the N-H bond; when the two axes are parallel, β(O) = -101.3°. For "rigid" N-H bonds located in secondary structure elements the best-fit parameters are S(0)(2) = 0.88-0.95 (corresponding to local potentials of 8.6-19.9 k(B)T), R(||)(L) = 10⁹-10¹⁰ 1/s, β(D) = -101.3° ± 2.0°, and β(O) = -101.3° ± 4°. For flexible N-H bonds located in loops the best-fit values are S(0)(2) = 0.75-0.80 (corresponding to local potentials of 4.5-5.5 k(B)T), R(||)(L) = (1.0-6.3) × 10⁸ 1/s, β(D) = -101.3° ± 4.0°, and β(O) = -101.3° ± 10°. These results are important in view of their physical clarity, inherent potential for further interpretation, consistency, and new qualitative insights provided (vide infra).
Collapse
Affiliation(s)
- Eva Meirovitch
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel.
| | | | | | | |
Collapse
|
30
|
Ishima R. Recent developments in (15)N NMR relaxation studies that probe protein backbone dynamics. Top Curr Chem (Cham) 2011; 326:99-122. [PMID: 21898206 DOI: 10.1007/128_2011_212] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nuclear Magnetic Resonance (NMR) relaxation is a powerful technique that provides information about internal dynamics associated with configurational energetics in proteins, as well as site-specific information involved in conformational equilibria. In particular, (15)N relaxation is a useful probe to characterize overall and internal backbone dynamics of proteins because the relaxation mainly reflects reorientational motion of the N-H bond vector. Over the past 20 years, experiments and protocols for analysis of (15)N R (1), R 2, and the heteronuclear (15)N-{(1)H} NOE data have been well established. The development of these methods has kept pace with the increase in the available static-magnetic field strength, providing dynamic parameters optimized from data fitting at multiple field strengths. Using these methodological advances, correlation times for global tumbling and order parameters and correlation times for internal motions of many proteins have been determined. More recently, transverse relaxation dispersion experiments have extended the range of NMR relaxation studies to the milli- to microsecond time scale, and have provided quantitative information about functional conformational exchange in proteins. Here, we present an overview of recent advances in (15)N relaxation experiments to characterize protein backbone dynamics.
Collapse
Affiliation(s)
- Rieko Ishima
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA.
| |
Collapse
|
31
|
Yao L, Grishaev A, Cornilescu G, Bax A. The impact of hydrogen bonding on amide 1H chemical shift anisotropy studied by cross-correlated relaxation and liquid crystal NMR spectroscopy. J Am Chem Soc 2010; 132:10866-75. [PMID: 20681720 PMCID: PMC2915638 DOI: 10.1021/ja103629e] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Site-specific 1H chemical shift anisotropy (CSA) tensors have been derived for the well-ordered backbone amide moieties in the B3 domain of protein G (GB3). Experimental input data include residual chemical shift anisotropy (RCSA), measured in six mutants that align differently relative to the static magnetic field when dissolved in a liquid crystalline Pf1 suspension, and cross-correlated relaxation rates between the 1HN CSA tensor and either the 1H−15N, the 1H−13C′, or the 1H−13Cα dipolar interactions. Analyses with the assumption that the 1HN CSA tensor is symmetric with respect to the peptide plane (three-parameter fit) or without this premise (five-parameter fit) yield very similar results, confirming the robustness of the experimental input data, and that, to a good approximation, one of the principal components orients orthogonal to the peptide plane. 1HN CSA tensors are found to deviate strongly from axial symmetry, with the most shielded tensor component roughly parallel to the N−H vector, and the least shielded component orthogonal to the peptide plane. DFT calculations on pairs of N-methyl acetamide and acetamide in H-bonded geometries taken from the GB3 X-ray structure correlate with experimental data and indicate that H-bonding effects dominate variations in the 1HN CSA. Using experimentally derived 1HN CSA tensors, the optimal relaxation interference effect needed for narrowest 1HN TROSY line widths is found at ∼1200 MHz.
Collapse
Affiliation(s)
- Lishan Yao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266061, China
| | | | | | | |
Collapse
|
32
|
Saitô H, Ando I, Ramamoorthy A. Chemical shift tensor - the heart of NMR: Insights into biological aspects of proteins. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2010; 57:181-228. [PMID: 20633363 PMCID: PMC2905606 DOI: 10.1016/j.pnmrs.2010.04.005] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 04/26/2010] [Indexed: 05/19/2023]
Affiliation(s)
- Hazime Saitô
- Department of Life Science, Himeji Institute of Technology, University of Hyogo, Kamigori, Hyog, 678-1297, Japan
| | - Isao Ando
- Department of Chemistry and Materials Science, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, 152-0033, Japan
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109-1055, USA
| |
Collapse
|
33
|
Yao L, Grishaev A, Cornilescu G, Bax A. Site-specific backbone amide (15)N chemical shift anisotropy tensors in a small protein from liquid crystal and cross-correlated relaxation measurements. J Am Chem Soc 2010; 132:4295-309. [PMID: 20199098 PMCID: PMC2847892 DOI: 10.1021/ja910186u] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Site-specific (15)N chemical shift anisotropy (CSA) tensors have been derived for the well-ordered backbone amide (15)N nuclei in the B3 domain of protein G (GB3) from residual chemical shift anisotropy (RCSA) measured in six different mutants that retain the native structure but align differently relative to the static magnetic field when dissolved in a liquid crystalline Pf1 suspension. This information is complemented by measurement of cross-correlated relaxation rates between the (15)N CSA tensor and either the (15)N-(1)H or (15)N-(13)C' dipolar interaction. In agreement with recent solid state NMR measurements, the (15)N CSA tensors exhibit only a moderate degree of variation from averaged values, but have larger magnitudes in alpha-helical (-173 +/- 7 ppm) than in beta-sheet (-162 +/- 6 ppm) residues, a finding also confirmed by quantum computations. The orientations of the least shielded tensor component cluster tightly around an in-peptide-plane vector that makes an angle of 19.6 +/- 2.5 degrees with the N-H bond, with the asymmetry of the (15)N CSA tensor being slightly smaller in alpha-helix (eta = 0.23 +/- 0.17) than in beta-sheet (eta = 0.31 +/- 0.11). The residue-specific (15)N CSA values are validated by improved agreement between computed and experimental (15)N R(1rho) relaxation rates measured for (15)N-{(2)H} sites in GB3, which are dominated by the CSA mechanism. Use of residue-specific (15)N CSA values also results in more uniform generalized order parameters, S(2), and predicts considerable residue-by-residue variations in the magnetic field strengths where TROSY line narrowing is most effective.
Collapse
Affiliation(s)
- Lishan Yao
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, MD 20892-0520
| | - Alexander Grishaev
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, MD 20892-0520
| | | | - Ad Bax
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, MD 20892-0520
| |
Collapse
|
34
|
Ravindranathan S, Oberstrass FC, Allain FHT. Increase in backbone mobility of the VTS1p-SAM domain on binding to SRE-RNA. J Mol Biol 2009; 396:732-46. [PMID: 20004205 DOI: 10.1016/j.jmb.2009.12.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 11/30/2009] [Accepted: 12/02/2009] [Indexed: 01/14/2023]
Abstract
The sterile alpha motif (SAM) domain of VTS1p, a posttranscriptional gene regulator, belongs to a family of SAM domains conserved from yeast to humans. Even though SAM domains were originally classified as protein-protein interaction domains, recently, it was shown that the yeast VTS1p-SAM and the SAM domain of its Drosophila homolog Smaug can specifically recognize RNA hairpins termed Smaug recognition element (SRE). Structural studies of the SRE-RNA complex of VTS1p-SAM revealed that the SAM domain primarily recognizes the shape of the RNA fold induced by the Watson-Crick base-pairing in the RNA pentaloop. Only the central G nucleotide is specifically recognized. The VTS1p-SAM domain recognizes SRE-RNAs with a CNGGN pentaloop where N is any nucleotide. The C1-G4 base pair in the wild type can be replaced by any pair of nucleotides that can form base pairs even though the binding affinity is greatest with a pyrimidine in position 1 and a purine in position 4. The interaction thus combines elements of sequence-specific and non-sequence-specific recognitions. The lack of structural rearrangements in either partner following binding is rather intriguing, suggesting that molecular dynamics may play an important role in imparting relaxed specificity with respect to the exact combination of nucleotides in the loop, except for the central nucleotide. In this work, we extend our previous studies of SRE-RNA interaction with VTS1p, by comparing the dynamics of the VTS1p-SAM domain both in its free form and when bound to SRE-RNA. The 15N relaxation studies of backbone dynamics suggest the presence of a dynamic interaction interface, with residues associated with specific G3 recognition becoming more rigid on RNA binding while other regions attain increased flexibility. The results parallel the observations from our studies of dynamics changes in SRE-RNA upon binding to VTS1p-SAM and shows that molecular dynamics could play a crucial role in modulating binding affinity and possibly contribute to the free energy of the interaction through an entropy-driven mechanism.
Collapse
|
35
|
Morin S, M Gagné S. Simple tests for the validation of multiple field spin relaxation data. JOURNAL OF BIOMOLECULAR NMR 2009; 45:361-372. [PMID: 19842046 DOI: 10.1007/s10858-009-9381-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 08/07/2009] [Indexed: 05/28/2023]
Abstract
(15)N spin relaxation data is widely used to extract detailed dynamic information regarding bond vectors such as the amide N-H bond of the protein backbone. Analysis is typically carried using the Lipari-Szabo model-free approach. Even though the original model-free equation can be determined from single field R (1), R (2) and NOE, over-determination of more complex motional models is dependent on the recording of multiple field datasets. This is especially important for the characterization of conformational exchange which affects R (2) in a field dependent manner. However, severe artifacts can be introduced if inconsistencies arise between experimental setups with different magnets (or samples). Here, we propose the use of simple tests as validation tools for the assessment of consistency between different datasets recorded at multiple magnetic fields. Synthetic data are used to show the effects of inconsistencies on the proposed tests. Moreover, an analysis of data currently deposited in the BMRB is performed. Finally, two cases from our laboratory are presented. These tests are implemented in the open-source program relax, and we propose their use as a routine check-up for assessment of multiple field dataset consistency prior to any analysis such as model-free calculations. We believe this will aid in the extraction of higher quality dynamics information from (15)N spin relaxation data.
Collapse
Affiliation(s)
- Sébastien Morin
- Département de Biochimie et de Microbiologie, Université Laval, Québec, QC, G1V 0A6, Canada.
| | | |
Collapse
|
36
|
Hansen DF, Feng H, Zhou Z, Bai Y, Kay LE. Selective characterization of microsecond motions in proteins by NMR relaxation. J Am Chem Soc 2009; 131:16257-65. [PMID: 19842628 PMCID: PMC7386800 DOI: 10.1021/ja906842s] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The three-dimensional structures of macromolecules fluctuate over a wide range of time-scales. Separating the individual dynamic processes according to frequency is of importance in relating protein motions to biological function and stability. We present here a general NMR method for the specific characterization of microsecond motions at backbone positions in proteins even in the presence of other dynamics such as large-amplitude nanosecond motions and millisecond chemical exchange processes. The method is based on measurement of relaxation rates of four bilinear coherences and relies on the ability of strong continuous radio frequency fields to quench millisecond chemical exchange. The utility of the methodology is demonstrated and validated through two specific examples focusing on the thermo-stable proteins, ubiquitin and protein L, where it is found that small-amplitude microsecond dynamics are more pervasive than previously thought. Specifically, these motions are localized to alpha helices, loop regions, and regions along the rim of beta sheets in both of the proteins examined. A third example focuses on a 28 kDa ternary complex of the chaperone Chz1 and the histones H2A.Z/H2B, where it is established that pervasive microsecond motions are localized to a region of the chaperone that is important for stabilizing the complex. It is further shown that these motions can be well separated from extensive millisecond dynamics that are also present and that derive from exchange of Chz1 between bound and free states. The methodology is straightforward to implement, and data recorded at only a single static magnetic field are required.
Collapse
Affiliation(s)
- D Flemming Hansen
- Department of Molecular Genetics, The University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| | | | | | | | | |
Collapse
|
37
|
Cai L, Fushman D, Kosov DS. Density functional calculations of chemical shielding of backbone 15N in helical residues of protein G. JOURNAL OF BIOMOLECULAR NMR 2009; 45:245-253. [PMID: 19644655 PMCID: PMC2884268 DOI: 10.1007/s10858-009-9358-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Accepted: 07/09/2009] [Indexed: 05/28/2023]
Abstract
We performed density functional calculations of backbone (15)N chemical shielding tensors in selected helical residues of protein G. Here we describe a computationally efficient methodology to include most of the important effects in the calculation of chemical shieldings of backbone (15)N. We analyzed the role of long-range intra-protein electrostatic interactions by comparing models with different complexity in vacuum and in charge field. Our results show that the dipole moment of the alpha-helix can cause significant deshielding of (15)N; therefore, it needs to be considered when calculating (15)N chemical shielding. We found that it is important to include interactions with the side chains that are close in space when the charged form for ionizable side chains is adopted in the calculation. We also illustrate how the ionization state of these side chains can affect the chemical shielding tensor elements. Chemical shielding calculations using a 8-residue fragment model in vacuum and adopting the charged form of ionizable side chains yield a generally good agreement with experimental data.
Collapse
Affiliation(s)
- Ling Cai
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - David Fushman
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Daniel S. Kosov
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
- Department of Physics and Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, Campus Plaine, CP 231, Blvd du Triomphe, B-1050 Brussels, Belgium
| |
Collapse
|
38
|
Grishaev A, Yao L, Ying J, Pardi A, Bax A. Chemical shift anisotropy of imino 15N nuclei in Watson-Crick base pairs from magic angle spinning liquid crystal NMR and nuclear spin relaxation. J Am Chem Soc 2009; 131:9490-1. [PMID: 19537719 DOI: 10.1021/ja903244s] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Knowledge of (15)N chemical shift anisotropy is prerequisite both for quantitative interpretation of nuclear spin relaxation rates in terms of local dynamics and for the use of residual chemical shift anisotropy (RCSA) as a constraint in structure determination. Accurate measurement of the very small RCSA from the difference in (15)N chemical shift under isotropic and weakly aligning liquid crystalline conditions is very sensitive to minute differences in sample conditions, such as pH or ionic strength. For this reason, chemical shifts were measured for the same solution, under static liquid crystalline alignment, and under magic angle spinning conditions where alignment relative to the magnetic field is removed. Measurements were made for 14 well-resolved G-N(1) and 6 U-N(3) (15)N nuclei in a sample of tRNA(Val). Fitting these RCSA data together with (15)N-(1)H dipole-CSA cross-correlated relaxation measurements to the recently refined structural model of tRNA(Val) yields the magnitude, asymmetry, and orientation of the (15)N CSA tensors.
Collapse
Affiliation(s)
- Alexander Grishaev
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| | | | | | | | | |
Collapse
|
39
|
Rinnenthal J, Richter C, Nozinovic S, Fürtig B, Lopez JJ, Glaubitz C, Schwalbe H. RNA phosphodiester backbone dynamics of a perdeuterated cUUCGg tetraloop RNA from phosphorus-31 NMR relaxation analysis. JOURNAL OF BIOMOLECULAR NMR 2009; 45:143-55. [PMID: 19636800 DOI: 10.1007/s10858-009-9343-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 06/19/2009] [Indexed: 05/13/2023]
Abstract
We have analyzed the relaxation properties of all (31)P nuclei in an RNA cUUCGg tetraloop model hairpin at proton magnetic field strengths of 300, 600 and 900 MHz in solution. Significant H, P dipolar contributions to R (1) and R (2) relaxation are observed in a protonated RNA sample at 600 MHz. These contributions can be suppressed using a perdeuterated RNA sample. In order to interpret the (31)P relaxation data (R (1), R (2)), we measured the (31)P chemical shift anisotropy (CSA) by solid-state NMR spectroscopy under various salt and hydration conditions. A value of 178.5 ppm for the (31)P CSA in the static state (S (2) = 1) could be determined. In order to obtain information about fast time scale dynamics we performed a modelfree analysis on the basis of our relaxation data. The results show that subnanosecond dynamics detected around the phosphodiester backbone are more pronounced than the dynamics detected for the ribofuranosyl and nucleobase moieties of the individual nucleotides (Duchardt and Schwalbe, J Biomol NMR 32:295-308, 2005; Ferner et al., Nucleic Acids Res 36:1928-1940, 2008). Furthermore, the dynamics of the individual phosphate groups seem to be correlated to the 5' neighbouring nucleobases.
Collapse
Affiliation(s)
- Jörg Rinnenthal
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 7, Frankfurt/Main, Germany
| | | | | | | | | | | | | |
Collapse
|
40
|
Slow motions in chicken villin headpiece subdomain probed by cross-correlated NMR relaxation of amide NH bonds in successive residues. Biophys J 2008; 95:5941-50. [PMID: 18820237 DOI: 10.1529/biophysj.108.134320] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The villin headpiece subdomain (HP36) is a widely used system for protein-folding studies. Nuclear magnetic resonance cross-correlated relaxation rates arising from correlated fluctuations of two N-H(N) dipole-dipole interactions involving successive residues were measured at two temperatures at which HP36 is at least 99% folded. The experiment revealed the presence of motions slower than overall tumbling of the molecule. Based on the theoretical analysis of the spectral densities we show that the structural and dynamic contributions to the experimental cross-correlated relaxation rate can be separated under certain conditions. As a result, dynamic cross-correlated order parameters describing slow microsecond-to-millisecond motions of N-H bonds in neighboring residues can be introduced for any extent of correlations in the fluctuations of the two bond vectors. These dynamic cross-correlated order parameters have been extracted for HP36. The comparison of their values at two different temperatures indicates that when the temperature is raised, slow motions increase in amplitude. The increased amplitude of these fluctuations may reflect the presence of processes directly preceding the unfolding of the protein.
Collapse
|
41
|
Dutta K, Cox CJ, Basavappa R, Pascal SM. 15N relaxation studies of Apo-Mts1: a dynamic S100 protein. Biochemistry 2008; 47:7637-47. [PMID: 18627127 DOI: 10.1021/bi8005048] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mts1 is a member of the S100 family of EF-hand calcium-binding proteins. Like most S100 proteins, Mts1 exists as a dimer in solution and contains one canonical and one pseudo-EF-hand motif per monomer, each of which consists of two alpha helices connected by a loop capable of coordinating a calcium ion. The backbone dynamics of murine apo-Mts1 homodimer have been examined by nuclear magnetic resonance spectroscopy. Longitudinal and transverse relaxation data and steady-state (1)H- (15)N nuclear Overhauser effects were analyzed using model-free formalism. The extracted global correlation time is 9.94 ns. Results indicate that the protein backbone is most rigid at the dimer interface, made up of helices 1 and 4 from each monomer with mean S (2) ( S avg (2)) values approximately 0.9, flanked by helices 2 and 3 with lower S avg (2) values of 0.84 and 0.77, respectively. Each calcium-binding site along with the hinge joining the two EF-hands and the N- and C-termini are considerably more flexible than the dimer interface on a range of time scales and more flexible than the corresponding regions of other S100 proteins studied to date. As the hinge and the C-terminal tail are believed to interact with target proteins, these dynamic characteristics may have implications for Mts1 activity.
Collapse
Affiliation(s)
- Kaushik Dutta
- New York Structural Biology Center, 89 Convent Avenue, New York, New York 10033, USA.
| | | | | | | |
Collapse
|
42
|
Eryilmaz E, Benach J, Su M, Seetharaman J, Dutta K, Wei H, Gottlieb P, Hunt JF, Ghose R. Structure and dynamics of the P7 protein from the bacteriophage phi 12. J Mol Biol 2008; 382:402-22. [PMID: 18647606 DOI: 10.1016/j.jmb.2008.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 06/20/2008] [Accepted: 07/03/2008] [Indexed: 12/15/2022]
Abstract
Cystoviruses are a class of enveloped double-stranded RNA viruses that use a multiprotein polymerase complex (PX) to replicate and transcribe the viral genome. Although the structures of the polymerase and ATPase components of the cystoviral PX are known and their functional behavior is understood to a large extent, no atomic-resolution structural information is available for the major capsid protein P1 that defines the overall structure and symmetry of the viral capsid and the essential protein P7. Toward obtaining a complete structural and functional understanding of the cystoviral PX, we have obtained the structure of P7 from the cystovirus phi 12 at a resolution of 1.8 A. The N-terminal core region (1-129) of P7 forms a novel homodimeric alpha/beta-fold having structural similarities with BRCT domains implicated in multiple protein-protein interactions in DNA repair proteins. Our results, combined with the known role of P7 in stabilizing the nucleation complex during capsid assembly, hint toward its participation in key protein-protein interactions within the cystoviral PX. Additionally, we have found through solution NMR studies that the C-terminal tail of P7 (130-169) that is essential for virus viability, although highly disordered, contains a nascent helix. We demonstrate for the first time, through NMR titrations, that P7 is capable of interacting with RNA. We find that both the N-terminal core and the dynamic C-terminal tail of P7 play a role in RNA recognition. This interaction leads to a significant reduction of the degree of disorder in the C-terminal tail. Given the requirement of P7 in maintaining genome packaging efficiency and transcriptional fidelity, our data suggest a central biological role for P7-RNA interactions.
Collapse
Affiliation(s)
- Ertan Eryilmaz
- Department of Chemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Monajjemi M, Rajaeian E, Mollaamin F, Naderi F, Saki S. Investigation of NMR shielding tensors in 1,3 dipolar cycloadditions: solvents dielectric effect. PHYSICS AND CHEMISTRY OF LIQUIDS 2008. [DOI: 10.1080/00319100601124369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
44
|
Cai L, Fushman D, Kosov DS. Density functional calculations of 15N chemical shifts in solvated dipeptides. JOURNAL OF BIOMOLECULAR NMR 2008; 41:77-88. [PMID: 18484179 PMCID: PMC2891059 DOI: 10.1007/s10858-008-9241-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 04/16/2008] [Accepted: 04/22/2008] [Indexed: 05/03/2023]
Abstract
We performed density functional calculations to examine the effects of solvation, hydrogen bonding, backbone conformation, and the side chain on 15N chemical shielding in proteins. We used N-methylacetamide (NMA) and N-formyl-alanyl-X (with X being one of the 19 naturally occurring amino acids excluding proline) as model systems. In addition, calculations were performed for selected fragments from protein GB3. The conducting polarizable continuum model was employed to include the effect of solvent in the density functional calculations. Our calculations for NMA show that the augmentation of the polarizable continuum model with the explicit water molecules in the first solvation shell has a significant influence on isotropic 15N chemical shift but not as much on the chemical shift anisotropy. The difference in the isotropic chemical shift between the standard beta-sheet and alpha-helical conformations ranges from 0.8 to 6.2 ppm depending on the residue type, with the mean of 2.7 ppm. This is in good agreement with the experimental chemical shifts averaged over a database of 36 proteins containing >6100 amino acid residues. The orientation of the 15N chemical shielding tensor as well as its anisotropy and asymmetry are also in the range of values experimentally observed for peptides and proteins.
Collapse
Affiliation(s)
| | - David Fushman
- Address all Correspondence to David Fushman, 1115 Biomolecular Sciences Bldg (#296), Center for Biomolecular Structure & Organization, University of Maryland, College Park, MD 20742-3360, Phone: (301) 405 3461; Fax: (301) 314 0386, , Daniel S. Kosov, Department of Chemistry & Biochemistry, University of Maryland, College Park, MD 20742-2021, USA, Phone: (301) 405 1384, Fax: (301) 314 912,
| | - Daniel S. Kosov
- Address all Correspondence to David Fushman, 1115 Biomolecular Sciences Bldg (#296), Center for Biomolecular Structure & Organization, University of Maryland, College Park, MD 20742-3360, Phone: (301) 405 3461; Fax: (301) 314 0386, , Daniel S. Kosov, Department of Chemistry & Biochemistry, University of Maryland, College Park, MD 20742-2021, USA, Phone: (301) 405 1384, Fax: (301) 314 912,
| |
Collapse
|
45
|
Song XJ, Simplaceanu V, Ho NT, Ho C. Effector-induced structural fluctuation regulates the ligand affinity of an allosteric protein: binding of inositol hexaphosphate has distinct dynamic consequences for the T and R states of hemoglobin. Biochemistry 2008; 47:4907-15. [PMID: 18376851 PMCID: PMC2493540 DOI: 10.1021/bi7023699] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The present study reports distinct dynamic consequences for the T- and R-states of human normal adult hemoglobin (Hb A) due to the binding of a heterotropic allosteric effector, inositol hexaphosphate (IHP). A nuclear magnetic resonance (NMR) technique based on modified transverse relaxation optimized spectroscopy (TROSY) has been used to investigate the effect of conformational exchange of Hb A in both deoxy and CO forms, in the absence and presence of IHP, at 14.1 and 21.1 T, and at 37 degrees C. Our results show that the majority of the polypeptide backbone amino acid residues of deoxy- and carbonmonoxy-forms of Hb A in the absence of IHP is not mobile on the micros-ms time scale, with the exception of several amino acid residues, that is, beta109Val and beta132Lys in deoxy-Hb A, and alpha40Lys in HbCO A. The mobility of alpha40Lys in HbCO A can be explained by the crystallographic data showing that the H-bond between alpha40Lys and beta146His in deoxy-Hb A is absent in HbCO A. However, the conformational exchange of beta109Val, which is located in the intradimer (alpha 1beta 1 or alpha 2beta 2) interface, is not consistent with the crystallographic observations that show rigid packing at this site. IHP binding appears to rigidify alpha40Lys in HbCO A, but does not significantly affect the flexibility of beta109Val in deoxy-Hb A. In the presence of IHP, several amino acid residues, especially those at the interdimer (alpha 1beta 2 or alpha 2beta 1) interface of HbCO A, exhibit significant conformational exchange. The affected residues include the proximal beta92His in the beta-heme pocket, as well as some other residues located in the flexible joint (betaC helix-alphaFG corner) and switch (alphaC helix-betaFG corner) regions that play an important role in the dimer-dimer rotation of Hb during the oxygenation process. These findings suggest that, upon IHP binding, HbCO A undergoes a conformational fluctuation near the R-state but biased toward the T-state, apparently along the trajectory of its allosteric transition, accompanied by structural fluctuations in the heme pocket of the beta-chain. In contrast, no significant perturbation of the dynamic features on the ms-micros time scale has been observed upon IHP binding to deoxy-Hb A. We propose that the allosteric effector-induced quaternary structural fluctuation may contribute to the reduced ligand affinity of ligated hemoglobin. Conformational exchange mapping of the beta-chain of HbCO A observed at 21.1 T shows significantly increased scatter in the chemical exchange contribution to the transverse relaxation rate ( R ex) values, relative to those at lower fields, due to the enhanced effect of the local chemical shift anisotropy (CSA) fluctuation. A spring-on-scissors model is proposed to interpret the dynamic phenomena induced by the heterotropic effector, IHP.
Collapse
Affiliation(s)
- Xiang-jin Song
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | |
Collapse
|
46
|
Wylie BJ, Rienstra CM. Multidimensional solid state NMR of anisotropic interactions in peptides and proteins. J Chem Phys 2008; 128:052207. [PMID: 18266412 DOI: 10.1063/1.2834735] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Accurate determinations of chemical shift anisotropy (CSA) tensors are valuable for NMR of biological systems. In this review we describe recent developments in CSA measurement techniques and applications, particularly in the context of peptides and proteins. These techniques include goniometeric measurements of single crystals, slow magic-angle spinning studies of powder samples, and CSA recoupling under moderate to fast MAS. Experimental CSA data can be analyzed by comparison with ab initio calculations for structure determination and refinement. This approach has particularly high potential for aliphatic (13)C analysis, especially Calpha tensors which are directly related to structure. Carbonyl and (15)N CSA tensors demonstrate a more complex dependence upon hydrogen bonding and electrostatics, in addition to conformational dependence. The improved understanding of these tensors and the ability to measure them quantitatively provide additional opportunities for structure determination, as well as insights into dynamics.
Collapse
Affiliation(s)
- Benjamin J Wylie
- Department of Chemistry, Department of Biochemistry and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | | |
Collapse
|
47
|
Tom20 recognizes mitochondrial presequences through dynamic equilibrium among multiple bound states. EMBO J 2007; 26:4777-87. [PMID: 17948058 DOI: 10.1038/sj.emboj.7601888] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Accepted: 09/19/2007] [Indexed: 11/09/2022] Open
Abstract
Most mitochondrial proteins are synthesized in the cytosol and imported into mitochondria. The N-terminal presequences of mitochondrial-precursor proteins contain a diverse consensus motif (phi chi chi phi phi, phi is hydrophobic and chi is any amino acid), which is recognized by the Tom20 protein on the mitochondrial surface. To reveal the structural basis of the broad selectivity of Tom20, the Tom20-presequence complex was crystallized. Tethering a presequence peptide to Tom20 through a disulfide bond was essential for crystallization. Unexpectedly, the two crystals with different linker designs provided unique relative orientations of the presequence with respect to Tom20, and neither configuration could fully account for the hydrophobic preference at the three hydrophobic positions of the consensus motif. We propose the existence of a dynamic equilibrium in solution among multiple states including the two bound states. In accordance, NMR 15N relaxation analyses suggested motion on a sub-millisecond timescale at the Tom20-presequence interface. We suggest that the dynamic, multiple-mode interaction is the molecular mechanism facilitating the broadly selective specificity of the Tom20 receptor toward diverse mitochondrial presequences.
Collapse
|
48
|
Ropars V, Bouguet-Bonnet S, Auguin D, Barthe P, Canet D, Roumestand C. Unraveling protein dynamics through fast spectral density mapping. JOURNAL OF BIOMOLECULAR NMR 2007; 37:159-77. [PMID: 17237978 DOI: 10.1007/s10858-006-9091-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Accepted: 09/22/2006] [Indexed: 05/13/2023]
Abstract
Spectral density mapping at multiple NMR field strengths is probably the best method to describe the dynamical behavior of a protein in solution through the analysis of 15N heteronuclear relaxation parameters. Nevertheless, such analyses are scarcely reported in the literature, probably because this method is excessively demanding in spectrometer measuring time. Indeed, when using n different magnetic fields and assuming the validity of the high frequency approximation, the discrete sampling of the spectral density function with 2n + 1 points needs the measurement of 3n 15N heteronuclear relaxation measurements (n R1, n R2, and n15N{1H}NOEs). Based on further approximations, we proposed a new strategy that allows us to describe the spectral density with n + 2 points, with the measurement of a total of n + 2 heteronuclear relaxation parameters. Applied to the dynamics analysis of the protein p13( MTCP1) at three different NMR fields, this approach allowed us to divide by nearly a factor of two the total measuring time, without altering further results obtained by the "model free" analysis of the resulting spectral densities. Furthermore, simulations have shown that this strategy remains applicable to any low isotropically tumbling protein (tauc>3 ns), and is valid for the types of motion generally envisaged for proteins.
Collapse
Affiliation(s)
- Virginie Ropars
- Centre de Biochimie Structurale, UMR UM1/5048 CNRS/554 INSERM, 29 rue de Navacelles, 34090, Montpellier Cedex, France
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
A fundamental concept of phosphorylation-mediated signaling is the precise switching between discrete functional conformations. According to the traditional view, phosphorylation induces a new, active conformation. In this chapter, a series of NMR experiments performed on a response regulator are described that challenge this traditional notion. The combination of NMR relaxation experiments with chemical shift data and the linkage to structure/function reveals a fundamentally different activation mechanism. The NMR data for the response regulator NtrC provide kinetic (rates of interconversion), thermodynamic (relative populations), and structural (chemical shift) information for the conformational exchange process. The results demonstrate that both the inactive and active states are present before phosphorylation, and activation occurs via a shift of this preexisting equilibrium. This concept is in accordance with the energy landscape view of proteins that embraces the existence of conformational substates. We conjecture that this population-shift mechanism is a general paradigm for response regulator activation and possibly more universal for phosphorylation-mediated signaling.
Collapse
|
50
|
de Alba E, Tjandra N. On the accurate measurement of amide one-bond 15N-1H couplings in proteins: effects of cross-correlated relaxation, selective pulses and dynamic frequency shifts. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2006; 183:160-5. [PMID: 16949845 DOI: 10.1016/j.jmr.2006.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 08/10/2006] [Accepted: 08/14/2006] [Indexed: 05/11/2023]
Abstract
Amide one-bond 15N-1H scalar couplings of 15N- and [15N,2H]-isotopically enriched ubiquitin have been measured with the Quantitative J approach by monitoring NMR signal intensity modulation. Scalar couplings of the non-deuterated protein are in average approximately 0.6 Hz larger than values of deuterated ubiquitin. This deviation is 30 times the error derived from experiment reproducibility. Refocusing dipole/dipole cross-correlated relaxation decreases the discrepancy to approximately 0.1 Hz, suggesting that it likely originates from relaxation interference. Alternatively, the subtraction of J values obtained at different magnetic fields largely reduces the relaxation effects. In contrast, the dynamic frequency shift whose main contribution to 1J(15N-1H) arises from 15N chemical shielding anisotropy/NH dipole cross-correlation, is not eliminated by refocusing spin evolution under this interaction. Furthermore, the average difference of 1J(15N-1H) values at two magnetic fields closely agrees with the theoretical expected difference in the dynamic frequency shift.
Collapse
Affiliation(s)
- Eva de Alba
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Drive, Bethesda, MD 20892, USA.
| | | |
Collapse
|