1
|
Bachelart T, Kumar S, Jouin A, Yousef M, Kieffer B, Torbeev V. Design, Synthesis and Catalytic Activity of Protein Containing Thiotyrosine as an Active Site Residue. Chembiochem 2024; 25:e202400148. [PMID: 38629812 DOI: 10.1002/cbic.202400148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/16/2024] [Indexed: 06/05/2024]
Abstract
Native chemical ligation is a key reaction in the toolbox of chemical methods for the synthesis of native and modified proteins. The catalysis of ligation is commonly performed by using small aryl-thiol molecules added at high concentrations. In this work, we incorporated thiotyrosine, a non-canonical amino acid containing an aryl-thiol moiety, into a designed cyclic protein « sans queue ni tête ». Importantly, the protein environment reduced the pKa of the thiol group to 5.8-5.9, which is significantly lower than the previously reported value for thiotyrosine in a short peptide (pKa 6.4). Furthermore, we demonstrated the catalytic activity of this protein both as hydrolase and in native chemical ligation of peptides. These results will be useful for the development of efficient protein catalysts (enzymes) for protein synthesis and modification.
Collapse
Affiliation(s)
- Thomas Bachelart
- École Supérieure de Biotechnologie de Strasbourg (ESBS), CNRS UMR 7242 Biotechnology and Cellular Signalling, University of Strasbourg, 67400, Illkirch, France
| | - Shailesh Kumar
- École Supérieure de Biotechnologie de Strasbourg (ESBS), CNRS UMR 7242 Biotechnology and Cellular Signalling, University of Strasbourg, 67400, Illkirch, France
| | - Alexis Jouin
- École Supérieure de Biotechnologie de Strasbourg (ESBS), CNRS UMR 7242 Biotechnology and Cellular Signalling, University of Strasbourg, 67400, Illkirch, France
| | - Mo'ath Yousef
- École Supérieure de Biotechnologie de Strasbourg (ESBS), CNRS UMR 7242 Biotechnology and Cellular Signalling, University of Strasbourg, 67400, Illkirch, France
| | - Bruno Kieffer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, INSERM U 1258, University of Strasbourg, 67400, Illkirch, France
| | - Vladimir Torbeev
- École Supérieure de Biotechnologie de Strasbourg (ESBS), CNRS UMR 7242 Biotechnology and Cellular Signalling, University of Strasbourg, 67400, Illkirch, France
| |
Collapse
|
2
|
Liu H, Chow HY, Liu J, Shi P, Li X. Prior disulfide bond-mediated Ser/Thr ligation. Chem Sci 2024:d4sc04825c. [PMID: 39170718 PMCID: PMC11333947 DOI: 10.1039/d4sc04825c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024] Open
Abstract
In this work, we developed a novel strategy, prior disulfide bond-mediated Ser/Thr ligation (PD-STL), for the chemical synthesis of peptides and proteins. This approach combines disulfide bond-forming chemistry with Ser/Thr ligation (STL), converting intermolecular STL into intramolecular STL to effectively proceed regardless of concentrations. We demonstrated the effectiveness of PD-STL under high dilution conditions, even for the relatively inert C-terminal proline at the ligation site. Additionally, we applied this method to synthesize the N-terminal cytoplasmic domain (2-104) of caveolin-1 and its Tyr14 phosphorylated form.
Collapse
Affiliation(s)
- Heng Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Hong Kong SAR P. R. China
| | - Hoi Yee Chow
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Hong Kong SAR P. R. China
| | - Jiamei Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Hong Kong SAR P. R. China
| | - Pengfei Shi
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Hong Kong SAR P. R. China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Hong Kong SAR P. R. China
| |
Collapse
|
3
|
Erickson PW, Fulcher JM, Spaltenstein P, Kay MS. Traceless Click-Assisted Native Chemical Ligation Enabled by Protecting Dibenzocyclooctyne from Acid-Mediated Rearrangement with Copper(I). Bioconjug Chem 2021; 32:2233-2244. [PMID: 34619957 PMCID: PMC9769386 DOI: 10.1021/acs.bioconjchem.1c00403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The scope of proteins accessible to total chemical synthesis via native chemical ligation (NCL) is often limited by slow ligation kinetics. Here we describe Click-Assisted NCL (CAN), in which peptides are incorporated with traceless "helping hand" lysine linkers that enable addition of dibenzocyclooctyne (DBCO) and azide handles. The resulting strain-promoted alkyne-azide cycloaddition (SPAAC) increases their effective concentration to greatly accelerate ligations. We demonstrate that copper(I) protects DBCO from acid-mediated rearrangement during acidic peptide cleavage, enabling direct production of DBCO synthetic peptides. Excitingly, triazole-linked model peptides ligated rapidly and accumulated little side product due to the fast reaction time. Using the E. coli ribosomal subunit L32 as a model protein, we further demonstrate that SPAAC, ligation, desulfurization, and linker cleavage steps can be performed in one pot. CAN is a useful method for overcoming challenging ligations involving sterically hindered junctions. Additionally, CAN is anticipated to be an important stepping stone toward a multisegment, one-pot, templated ligation system.
Collapse
Affiliation(s)
- Patrick W. Erickson
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Room 4100, Salt Lake City, Utah 84112, United States
- Institute for Protein Design, Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| | - James M. Fulcher
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Room 4100, Salt Lake City, Utah 84112, United States
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Paul Spaltenstein
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Room 4100, Salt Lake City, Utah 84112, United States
| | - Michael S. Kay
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Room 4100, Salt Lake City, Utah 84112, United States
| |
Collapse
|
4
|
Tumbic GW, Hossan MY, Thielges MC. Protein Dynamics by Two-Dimensional Infrared Spectroscopy. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:299-321. [PMID: 34314221 PMCID: PMC8713465 DOI: 10.1146/annurev-anchem-091520-091009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Proteins function as ensembles of interconverting structures. The motions span from picosecond bond rotations to millisecond and longer subunit displacements. Characterization of functional dynamics on all spatial and temporal scales remains challenging experimentally. Two-dimensional infrared spectroscopy (2D IR) is maturing as a powerful approach for investigating proteins and their dynamics. We outline the advantages of IR spectroscopy, describe 2D IR and the information it provides, and introduce vibrational groups for protein analysis. We highlight example studies that illustrate the power and versatility of 2D IR for characterizing protein dynamics and conclude with a brief discussion of the outlook for biomolecular 2D IR.
Collapse
Affiliation(s)
- Goran W Tumbic
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, USA;
| | - Md Yeathad Hossan
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, USA;
| | - Megan C Thielges
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, USA;
| |
Collapse
|
5
|
Enhancing native chemical ligation for challenging chemical protein syntheses. Curr Opin Chem Biol 2020; 58:37-44. [PMID: 32745915 DOI: 10.1016/j.cbpa.2020.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 02/01/2023]
Abstract
Native chemical ligation has enabled the chemical synthesis of proteins for a wide variety of applications (e.g., mirror-image proteins). However, inefficiencies of this chemoselective ligation in the context of large or otherwise challenging protein targets can limit the practical scope of chemical protein synthesis. In this review, we focus on recent developments aimed at enhancing and expanding native chemical ligation for challenging protein syntheses. Chemical auxiliaries, use of selenium chemistry, and templating all enable ligations at otherwise suboptimal junctions. The continuing development of these tools is making the chemical synthesis of large proteins increasingly accessible.
Collapse
|
6
|
Affiliation(s)
- Christin Bednarek
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Ilona Wehl
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Nicole Jung
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
- Institute of Biological and Chemical Systems—Functional Molecular Systems, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Ute Schepers
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
- Institute of Biological and Chemical Systems—Functional Molecular Systems, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
7
|
Agouridas V, El Mahdi O, Diemer V, Cargoët M, Monbaliu JCM, Melnyk O. Native Chemical Ligation and Extended Methods: Mechanisms, Catalysis, Scope, and Limitations. Chem Rev 2019; 119:7328-7443. [DOI: 10.1021/acs.chemrev.8b00712] [Citation(s) in RCA: 243] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Vangelis Agouridas
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Ouafâa El Mahdi
- Faculté Polydisciplinaire de Taza, University Sidi Mohamed Ben Abdellah, BP 1223 Taza Gare, Morocco
| | - Vincent Diemer
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Marine Cargoët
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Jean-Christophe M. Monbaliu
- Center for Integrated Technology and Organic Synthesis, Department of Chemistry, University of Liège, Building B6a, Room 3/16a, Sart-Tilman, B-4000 Liège, Belgium
| | - Oleg Melnyk
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| |
Collapse
|
8
|
Mikula KM, Tascón I, Tommila JJ, Iwaï H. Segmental isotopic labeling of a single-domain globular protein without any refolding step by an asparaginyl endopeptidase. FEBS Lett 2017; 591:1285-1294. [PMID: 28369872 DOI: 10.1002/1873-3468.12640] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 01/23/2023]
Abstract
Asparaginyl endopeptidases (AEPs) catalyze head-to-tail backbone cyclization of naturally occurring cyclic peptides such as cyclotides, and have become an important peptide-engineering tool for macrocyclization and peptide ligation. Here, we report efficient protein ligation in trans by mimicking efficient backbone cyclization by an AEP without any excess of reactants. We demonstrate a practical application of segmental isotopic labeling for NMR studies of a single-domain globular protein without any refolding step using the recombinant AEP prepared from Escherichia coli. This simple protein ligation approach using an AEP could be applied for incorporation of various biophysical probes into proteins as well as post-translational production of full-length proteins.
Collapse
Affiliation(s)
- Kornelia M Mikula
- Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, Finland
| | - Igor Tascón
- Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, Finland
| | - Jenni J Tommila
- Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, Finland
| | - Hideo Iwaï
- Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, Finland
| |
Collapse
|
9
|
Harpaz Z, Loibl S, Seitz O. Native chemical ligation at a base-labile 4-mercaptobutyrate Nα-auxiliary. Bioorg Med Chem Lett 2016; 26:1434-7. [DOI: 10.1016/j.bmcl.2016.01.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 11/25/2022]
|
10
|
Panda SS, Jones RA, Hall CD, Katritzky AR. Applications of Chemical Ligation in Peptide Synthesis via Acyl Transfer. Top Curr Chem (Cham) 2015; 362:229-65. [PMID: 25805142 DOI: 10.1007/128_2014_608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The utility of native chemical ligation (NCL) in the solution or solid phase synthesis of peptides, cyclic peptides, glycopeptides, and neoglycoconjugates is reviewed. In addition, the mechanistic details of inter- or intra-molecular NCLs are discussed from experimental and computational points of view.
Collapse
Affiliation(s)
- Siva S Panda
- Department of Chemistry, Center for Heterocyclic Compounds, University of Florida, Gainesville, FL, 32611-7200, USA,
| | | | | | | |
Collapse
|
11
|
Li Y, Bi T, Camarero JA. Chemical and biological production of cyclotides. ADVANCES IN BOTANICAL RESEARCH 2015; 76:271-303. [PMID: 27064329 PMCID: PMC4822716 DOI: 10.1016/bs.abr.2015.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cyclotides are fascinating naturally occurring micro-proteins (≈30 residues long) present in several plant families, and display various biological properties such as protease inhibitory, anti-microbial, insecticidal, cytotoxic, anti-HIV and hormone-like activities. Cyclotides share a unique head-to-tail circular knotted topology of three disulfide bridges, with one disulfide penetrating through a macrocycle formed by the two other disulfides and interconnecting peptide backbones, forming what is called a cystine knot topology. This cyclic cystine knot (CCK) framework gives the cyclotides exceptional rigidity, resistance to thermal and chemical denaturation, and enzymatic stability against degradation. Interestingly, cyclotides have been shown to be orally bioavailable, and other cyclotides have been shown to cross the cell membranes. Moreover, recent reports have also shown that engineered cyclotides can be efficiently used to target extracellular and intracellular protein-protein interactions, therefore making cyclotides ideal tools for drug development to selectively target protein-protein interactions. In this work we will review all the available methods for production of these interesting proteins using chemical or biological methods.
Collapse
Affiliation(s)
- Yilong Li
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90033, USA
| | - Tao Bi
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90033, USA
| | - Julio A. Camarero
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90033, USA
- Department of Chemistry, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
12
|
Verzele D, Madder A. Patchwork protein chemistry: a practitioner's treatise on the advances in synthetic peptide stitchery. Chembiochem 2014; 14:1032-48. [PMID: 23775826 DOI: 10.1002/cbic.201200775] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Indexed: 12/22/2022]
Abstract
With the study of peptides and proteins at the heart of many scientific endeavors, the omics era heralded a multitude of opportunities for chemists and biologists alike. Across the interface with life sciences, peptide chemistry plays an indispensable role, and progress made over the past decades now allows proteins to be treated as molecular patchworks stitched together through synthetic tailoring. The continuous elaboration of sophisticated strategies notwithstanding, Merrifield's solid-phase methodology remains a cornerstone of chemical protein design. Although the non-practitioner might misjudge peptide synthesis as trivial, routine, or dull given its long history, we comment here on its many advances, obstacles, and prospects from a practitioner's point of view. While sharing our perspectives through thematic highlights across the literature, this treatise provides an interpretive overview as a guide to novices, and a recap for specialists.
Collapse
Affiliation(s)
- Dieter Verzele
- Organic and Biomimetic Chemistry Research Group, Department of Organic Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 (S4), 9000 Ghent, Belgium.
| | | |
Collapse
|
13
|
Moyal T, Bavikar SN, Karthikeyan SV, Hemantha HP, Brik A. Polymerization behavior of a bifunctional ubiquitin monomer as a function of the nucleophile site and folding conditions. J Am Chem Soc 2012; 134:16085-92. [PMID: 22963682 DOI: 10.1021/ja3078736] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Biopolymers with repeating modules composed of either folded peptides or tertiary protein domains are considered some of the basic biomaterials that nature has evolved to optimize for energy efficient synthesis and unique functions. Such biomaterials continue to inspire scientists to mimic their exceptional properties and the ways that nature adopts to prepare them. Ubiquitin chains represent another example of nature's approach to use a protein-repeating module to prepare functionally important biopolymers. In the current work, we utilize a novel synthetic strategy to prepare bifunctional ubiquitin monomers having a C-terminal thioester and a nucleophilic 1,2-aminothiol at a desired position to examine their polymerization products under different conditions. Our study reveals that such analogues, when subjected to polymerization conditions under different folding states, afford distinct patterns of polymerization products where both the dynamic and the tertiary structures of the chains play important roles in such processes. Moreover, we also show that the presence of a specific ubiquitin-binding domain, which binds specifically to some of these chains, could interfere selectively with the polymerization outcome. Our study represents the first example of examining the polymerization of designed and synthetic repeating modules based on tertiary protein domains and affords early lessons in the design and synthesis of biomaterial. In regards to the ubiquitin system, our study may have implications on the ease of synthesis of ubiquitin chains with varying lengths and types for structural and functional analyses. Importantly, such an approach could also assist in understanding the enzymatic machinery and the factors controlling the assembly of these chains with a desired length.
Collapse
Affiliation(s)
- Tal Moyal
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | | | | | | | | |
Collapse
|
14
|
Siman P, Brik A. Chemical and semisynthesis of posttranslationally modified proteins. Org Biomol Chem 2012; 10:5684-97. [DOI: 10.1039/c2ob25149c] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
CAMARERO JULIOA. NEW DEVELOPMENTS FOR THE SITE-SPECIFIC ATTACHMENT OF PROTEIN TO SURFACES. ACTA ACUST UNITED AC 2011. [DOI: 10.1142/s1793048006000045] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Protein immobilization on surfaces is of great importance in numerous applications in biology and biophysics. The key for the success of all these applications relies on the immobilization technique employed to attach the protein to the corresponding surface. Protein immobilization can be based on covalent or noncovalent interaction of the molecule with the surface. Noncovalent interactions include hydrophobic interactions, hydrogen bonding, van der Waals forces, electrostatic forces, or physical adsorption. However, since these interactions are weak, the molecules can get denatured or dislodged, thus causing loss of signal. They also result in random attachment of the protein to the surface. Site–specific covalent attachment of proteins onto surfaces, on the other hand, leads to molecules being arranged in a definite, orderly fashion and uses spacers and linkers to help minimize steric hindrances between the protein and the surface. This work reviews in detail some of the methods most commonly used as well as the latest developments for the site-specific covalent attachment of protein to solid surfaces.
Collapse
Affiliation(s)
- JULIO A. CAMARERO
- Chemical Biology and Nuclear Science Division, Lawrence Livermore National Laboratory, University of California, 7000 East Avenue, L-232, Livermore, California 94550, USA
| |
Collapse
|
16
|
Affiliation(s)
- Ayman El-Faham
- Institute for Research in Biomedicine, Barcelona, Spain.
| | | |
Collapse
|
17
|
Wang C, Guo Q, Fu Y. Theoretical Analysis of the Detailed Mechanism of Native Chemical Ligation Reactions. Chem Asian J 2011; 6:1241-51. [DOI: 10.1002/asia.201000760] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Indexed: 12/22/2022]
Affiliation(s)
- Chen Wang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026 (China), Fax: (+86) 551‐3606689
| | - Qing‐Xiang Guo
- Department of Chemistry, University of Science and Technology of China, Hefei 230026 (China), Fax: (+86) 551‐3606689
| | - Yao Fu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026 (China), Fax: (+86) 551‐3606689
| |
Collapse
|
18
|
Dheur J, Ollivier N, Melnyk O. Synthesis of Thiazolidine Thioester Peptides and Acceleration of Native Chemical Ligation. Org Lett 2011; 13:1560-3. [DOI: 10.1021/ol2002804] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Julien Dheur
- CNRS UMR 8161, Univ Lille Nord de France, Institut Pasteur de Lille, IFR 142 Molecular and Cellular Medicine, 1 rue du Pr Calmette 59021 Lille Cedex, France
| | - Nathalie Ollivier
- CNRS UMR 8161, Univ Lille Nord de France, Institut Pasteur de Lille, IFR 142 Molecular and Cellular Medicine, 1 rue du Pr Calmette 59021 Lille Cedex, France
| | - Oleg Melnyk
- CNRS UMR 8161, Univ Lille Nord de France, Institut Pasteur de Lille, IFR 142 Molecular and Cellular Medicine, 1 rue du Pr Calmette 59021 Lille Cedex, France
| |
Collapse
|
19
|
Schilling CI, Jung N, Biskup M, Schepers U, Bräse S. Bioconjugation via azide–Staudinger ligation: an overview. Chem Soc Rev 2011; 40:4840-71. [DOI: 10.1039/c0cs00123f] [Citation(s) in RCA: 234] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Ajish Kumar K, Harpaz Z, Haj-Yahya M, Brik A. Side-chain assisted ligation in protein synthesis. Bioorg Med Chem Lett 2009; 19:3870-4. [DOI: 10.1016/j.bmcl.2009.03.156] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 03/25/2009] [Accepted: 03/30/2009] [Indexed: 10/20/2022]
|
21
|
Piontek C, Ring P, Harjes O, Heinlein C, Mezzato S, Lombana N, Pöhner C, Püttner M, Varón Silva D, Martin A, Schmid F, Unverzagt C. Semisynthesis of a Homogeneous Glycoprotein Enzyme: Ribonuclease C: Part 1. Angew Chem Int Ed Engl 2009; 48:1936-40. [DOI: 10.1002/anie.200804734] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
Piontek C, Ring P, Harjes O, Heinlein C, Mezzato S, Lombana N, Pöhner C, Püttner M, Varón Silva D, Martin A, Schmid F, Unverzagt C. Semisynthese eines homogenen Glycoprotein-Enzyms: Ribonuclease C (Teil 1). Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200804734] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
Kleineweischede R, Hackenberger CPR. Chemoselective peptide cyclization by traceless Staudinger ligation. Angew Chem Int Ed Engl 2008; 47:5984-8. [PMID: 18604792 DOI: 10.1002/anie.200801514] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Rolf Kleineweischede
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | | |
Collapse
|
24
|
Kleineweischede R, Hackenberger C. Chemoselektive Peptidcyclisierung über spurlose Staudinger-Ligation. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200801514] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
25
|
Abstract
The chemical synthesis of glycopeptides and glycoproteins from readily available materials presents an attractive route to homogeneous products for structural and functional studies. Chemical synthesis of glycopeptides and glycoproteins based on native chemical ligation represents one of the useful methods for the synthesis of natural glycopeptide structures. Here we describe a method that allows for the synthesis of glycopeptides from cysteine-free peptides. This method utilizes a peptide thioester and a glycopeptide in which the sugar moiety is modified with a thiol handle at the C-2 position. Upon completion of the ligation reaction, the thiol handle can be reduced with H2/metal to the acetamide moiety, furnishing the unmodified glycopeptides. Together, this sequence of reactions displays an attractive potential in glycopeptides and glycoproteins synthesis.
Collapse
Affiliation(s)
- Ashraf Brik
- Department of Chemistry and Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
26
|
Ryadnov MG, Woolfson DN. Self-assembled templates for polypeptide synthesis. J Am Chem Soc 2007; 129:14074-81. [PMID: 17949087 DOI: 10.1021/ja072960s] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The chemical synthesis of polypeptide chains >50 amino acids with prescribed sequences is challenging. In one approach, native chemical ligation (NCL), short, unprotected peptides are connected through peptide bonds to render proteins in water. Here we combine chemical ligation with peptide self-assembly to deliver extremely long polypeptide chains with stipulated, repeated sequences. We use a self-assembling fiber (SAF) system to form structures tens of micrometers long. In these assemblies, tens of thousands of peptides align with their N- and C-termini abutting. This arrangement facilitates chemical ligation without the usual requirement for a catalytic cysteine residue at the reactive N-terminus. We introduced peptides with C-terminal thioester moieties into the SAFs. Subsequent ligation and disassembly of the noncovalent components produced extended chains > or =10 microm long and estimated at > or =3 MDa in mass. These extremely long molecules were characterized by a combination of biophysical, hydrodynamic, and microscopic measurements.
Collapse
Affiliation(s)
- Maxim G Ryadnov
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | | |
Collapse
|
27
|
Abstract
Sugar-assisted ligation (SAL) presents an attractive strategy for the synthesis of glycopeptides, including the synthesis of cysteine-free beta-O-linked and N-linked glycopeptides. Here we extended the utility of SAL for the synthesis of alpha-O-linked glycopeptides and glycoproteins. In order to explore SAL in the context of glycoprotein synthesis, we developed a new chemical synthetic route for the alpha-O-linked glycoprotein diptericin epsilon. In the first stage of our synthesis, diptericin segment Cys(Acm)37-Gly(52) and segment Val(53)-Phe(82) were assembled by SAL through a Gly-Val ligation junction. Subsequently, after Acm deprotection, diptericin segment Cys(37)-Phe(82) was ligated to segment Asp(1)-Asn(36) by means of native chemical ligation (NCL) to give the full sequence of diptericin epsilon. In the final synthetic step, hydrogenolysis was applied to remove the thiol handle from the sugar moiety with the concomitant conversion of mutated Cys(37) into the native alanine residue. In addition, we extended the applicability of SAL to the synthesis of glycopeptides containing cysteine residues by carrying out selective desulfurization of the sulfhydryl-modified sugar moiety in the presence of acetamidomethyl (Acm) protected cysteine residues. The results presented here demonstrated for the first time that SAL could be a general and useful tool in the chemical synthesis of glycoproteins.
Collapse
Affiliation(s)
- Yu-Ying Yang
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Simon Ficht
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ashraf Brik
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
- E-mail: ,
| | - Chi-Huey Wong
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
- Genomic Research Center, Academia Sinica, 128 Sec. 2, Academia Road, Nankang, Taipei 115, Taiwan
- E-mail: ,
| |
Collapse
|
28
|
Metanis N, Keinan E, Davison PE. Synthetic seleno-glutaredoxin 3 analogues are highly reducing oxidoreductases with enhanced catalytic efficiency. J Am Chem Soc 2006; 128:16684-91. [PMID: 17177418 PMCID: PMC2532977 DOI: 10.1021/ja0661414] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Selenoenzymes have a central role in maintaining cellular redox potential. These enzymes have selenenylsulfide bonds in their active sites that catalyze the reduction of peroxides, sulfoxides, and disulfides. The selenol/disufide exchange reaction is common to all of these enzymes, and the active site redox potential reflects the ratio between the forward and reverse rates of this reaction. The preparation of enzymes containing selenocysteine (Sec) is experimentally challenging. As a result, little is known about the kinetic role of selenols in enzyme active sites, and the redox potential of a selenenylsulfide or diselenide bond in a protein has not been experimentally determined. To fully evaluate the effects of Sec on oxidoreductase redox potential and kinetics, glutaredoxin 3 (Grx3) and all three Sec variants of its conserved (11)CXX(14)C active site were chemically synthesized. Grx3, Grx3(C11U), and Grx3(C14U) exhibited redox potentials of -194, -260, and -275 mV, respectively. The position of redox equilibrium between Grx3(C11U-C14U) (-309 mV) and thioredoxin (Trx) (-270 mV) suggests a possible role for diselenide bonds in biological systems. Kinetic analysis is consistent with the hypothesis that the lower redox potentials of the Sec variants result primarily from the greater nucleophilicity of the active site selenium rather than its role as either a leaving group or a "central atom" in the exchange reaction. The 10(2)-10(4)-fold increase in the rate of Trx reduction by the seleno-Grx3 analogues demonstrates that oxidoreductases containing either selenenyl-sulfide or diselenide bonds can have physiologically compatible redox potentials and enhanced reduction kinetics in comparison with their sulfide counterparts.
Collapse
Affiliation(s)
- Norman Metanis
- Department of Chemistry and Institute of Catalysis Science and Technology, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
- The Scripps Research Institute, Departments of Molecular Biology, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
- Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Ehud Keinan
- Department of Chemistry and Institute of Catalysis Science and Technology, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
- The Scripps Research Institute, Departments of Molecular Biology, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
- Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Philip E. Davison
- The Scripps Research Institute, Departments of Molecular Biology, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
- Departments of Cell Biology and Chemistry, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
- Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| |
Collapse
|
29
|
Muralidharan V, Muir TW. Protein ligation: an enabling technology for the biophysical analysis of proteins. Nat Methods 2006; 3:429-38. [PMID: 16721376 DOI: 10.1038/nmeth886] [Citation(s) in RCA: 304] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Biophysical techniques such as fluorescence spectroscopy and nuclear magnetic resonance (NMR) spectroscopy provide a window into the inner workings of proteins. These approaches make use of probes that can either be naturally present within the protein or introduced through a labeling procedure. In general, the more control one has over the type, location and number of probes in a protein, then the more information one can extract from a given biophysical analysis. Recently, two related approaches have emerged that allow proteins to be labeled with a broad range of physical probes. Expressed protein ligation (EPL) and protein trans-splicing (PTS) are both intein-based approaches that permit the assembly of a protein from smaller synthetic and/or recombinant pieces. Here we provide some guidelines for the use of EPL and PTS, and highlight how the dovetailing of these new protein chemistry methods with standard biophysical techniques has improved our ability to interrogate protein function, structure and folding.
Collapse
Affiliation(s)
- Vasant Muralidharan
- Laboratory of Synthetic Protein Chemistry, The Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
30
|
Synthetic Approaches to Disulfide-free Circular Bovine Pancreatic Trypsin Inhibitor (c-BPTI) Analogues. Int J Pept Res Ther 2006. [DOI: 10.1007/s10989-006-9023-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Vitali F, Henning A, Oberstrass FC, Hargous Y, Auweter SD, Erat M, Allain FHT. Structure of the two most C-terminal RNA recognition motifs of PTB using segmental isotope labeling. EMBO J 2006; 25:150-62. [PMID: 16362043 PMCID: PMC1356354 DOI: 10.1038/sj.emboj.7600911] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Accepted: 11/21/2005] [Indexed: 11/08/2022] Open
Abstract
The polypyrimidine tract binding protein (PTB) is a 58 kDa protein involved in many aspects of RNA metabolism. In this study, we focused our attention on the structure of the two C-terminal RNA recognition motifs (RRM3 and RRM4) of PTB. In a previous study, it was found that the two RRMs are independent in the free state. We recently determined the structure of the same fragment in complex with RNA and found that the two RRMs interact extensively. This difference made us re-evaluate in detail the free protein structure and in particular the interdomain interface. We used a combination of NMR spectroscopy and segmental isotopic labeling to unambiguously study and characterize the interdomain interactions. An improved segmental isotopic labeling protocol was used, enabling us to unambiguously identify 130 interdomain NOEs between the two RRMs and to calculate a very precise structure. The structure reveals a large interdomain interface, resulting in a very unusual positioning of the two RRM domains relative to one another.
Collapse
Affiliation(s)
- Francesca Vitali
- Institute for Molecular Biology and Biophysics, Swiss Federal Institute of Technology Zurich, ETH-Hönggerberg, Zürich, Switzerland
| | - Anke Henning
- Institute for Molecular Biology and Biophysics, Swiss Federal Institute of Technology Zurich, ETH-Hönggerberg, Zürich, Switzerland
| | - Florian C Oberstrass
- Institute for Molecular Biology and Biophysics, Swiss Federal Institute of Technology Zurich, ETH-Hönggerberg, Zürich, Switzerland
| | - Yann Hargous
- Institute for Molecular Biology and Biophysics, Swiss Federal Institute of Technology Zurich, ETH-Hönggerberg, Zürich, Switzerland
| | - Sigrid D Auweter
- Institute for Molecular Biology and Biophysics, Swiss Federal Institute of Technology Zurich, ETH-Hönggerberg, Zürich, Switzerland
| | - Michèle Erat
- Institute for Molecular Biology and Biophysics, Swiss Federal Institute of Technology Zurich, ETH-Hönggerberg, Zürich, Switzerland
| | - Frédéric H-T Allain
- Institute for Molecular Biology and Biophysics, Swiss Federal Institute of Technology Zurich, ETH-Hönggerberg, Zürich, Switzerland
| |
Collapse
|
32
|
Abstract
Proteins have become accessible targets for chemical synthesis. The basic strategy is to use native chemical ligation, Staudinger ligation, or other orthogonal chemical reactions to couple synthetic peptides. The ligation reactions are compatible with a variety of solvents and proceed in solution or on a solid support. Chemical synthesis enables a level of control on protein composition that greatly exceeds that attainable with ribosome-mediated biosynthesis. Accordingly, the chemical synthesis of proteins is providing previously unattainable insight into the structure and function of proteins.
Collapse
Affiliation(s)
- Bradley L. Nilsson
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706
| | - Matthew B. Soellner
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706
| | - Ronald T. Raines
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706
| |
Collapse
|
33
|
Abstract
A novel cysteine derivative, N(alpha)-trityl-S-(9H-xanthen-9-yl)-l-cysteine [Trt-Cys(Xan)-OH] has been introduced for peptide synthesis, specifically for application to a new strategy for the preparation of cyclic peptides. The following steps were carried out to synthesize the cyclic model peptide cyclo(Cys-Thr-Abu-Gly-Gly-Ala-Arg-Pro-Asp-Phe): (i). side-chain anchoring of Fmoc-Asp-OAl via its free beta-carboxyl as a p-alkoxybenzyl ester to a solid support; (ii). stepwise chain elongation of the peptide by standard Fmoc/tBu solid-phase chemistry; (iii). removal of the N-terminal Fmoc group; (iv). coupling of Trt-Cys(Xan)-OH; (v). selective Pd(0)-promoted cleavage of the C-terminal allyl ester; (vi). coupling of the C-terminal residue, i.e., H-Phe-SBzl, preactivated as a thioester; (vii). selective removal of the N(alpha)-Trt and S-Xan protecting groups under very mild acid conditions; (viii). on-resin cyclization by native chemical ligation in an aqueous milieu; and (ix). final acidolytic cleavage of the cyclic peptide from the resin. The strategy was evaluated for three supports: poly[N,N-dimethacrylamide-co-poly(ethylene glycol)] (PEGA), cross-linked ethoxylate acrylate resin (CLEAR), and poly(ethylene glycol)-polystyrene (PEG-PS) graft resin supports. For PEGA and CLEAR, the desired cyclic product was obtained in 76-86% overall yield with initial purities of approximately 70%, whereas for PEG-PS (which does not swell nearly as well in water), results were inferior. Solid-phase native chemical ligation/cyclization methodology appears to have advantages of convenience and specificity, which make it promising for further generalization.
Collapse
Affiliation(s)
- Judit Tulla-Puche
- Department of Chemistry, University of Minnesota, 207 Pleasant Street S E, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
34
|
Abstract
The proximity of the alpha-amine and beta-thiol of alpha-amino terminal-cysteine (NT-Cys) residues in peptides imparts unique chemical properties that have been exploited for inter- and intra-molecular ligation of unprotected peptides obtained through both synthetic and biological means. A reversible protecting group orthogonal to other protection strategies and reversible under mild conditions would be useful in simplifying the synthesis, cleavage, purification and handling of such NT-Cys peptides. It could also be useful for the sequential ligation of peptides. To this end, we explored tri-one chemistry and found that ninhydrin (indane-1,2,3 trione) reacted readily with cysteine or an NT-Cys-containing peptide on- or off-resin at pH 2-5 to form Ninhydrin-protected Cys (Nin-Cys) as a thiazolidine (Thz). The Thz ring, protecting both the amino and thiol groups in Nin-Cys, completely avoids the formylation and Thz side reactions found during hydrofluoric acid (HF) cleavage when N-pi-benzyloxymethyl histidine groups are present. Nin-Cys is stable during coupling reactions and various cleavage conditions with trifluoroacetic acid or HF, but is deprotected under thiolytic or reducing conditions. These properties enable a facile one-step deprotection and end-to-end-cyclization reaction of Nin-Cys peptides containing C-terminal thioesters.
Collapse
Affiliation(s)
- C T Pool
- Department of Microbiology/Immunology, Vanderbilt University, Nashville, TN, USA
| | | | | |
Collapse
|
35
|
Abstract
Expressed protein ligation (EPL) is a protein engineering approach that allows recombinant and synthetic polypeptides to be chemoselectively and regioselectively joined together. The approach makes the primary structure of most proteins accessible to the tools of synthetic organic chemistry, enabling the covalent structure of proteins to be modified in an unprecedented fashion. The ability to incorporate noncoded amino acids, biophysical probes, and stable isotopes into specific locations within proteins provides research tools to peer into the inner workings of these molecules. In this review I discuss the development of this technology, its broad application to biological systems, and its possible role in the area of proteomics.
Collapse
Affiliation(s)
- Tom W Muir
- Laboratory of Synthetic Protein Chemistry, The Rockefeller University, 1230 York Avenue, New York, New York 10021, USA.
| |
Collapse
|
36
|
Abstract
Topological linking of proteins is a new approach for stabilizing and controlling the oligomerization state of proteins that fold in an interwined manner. The recent design of a backbone cyclized protein catenane based on the p53tet domain suggested that topological cross-linking provided increased stability against thermal and chemical denaturation. However, the tetrameric structure complicated detailed biophysical analysis of this protein. Here, we describe the design, synthesis and thermodynamic characterization of a protein catenane based on a dimeric mutant of the p53tet domain (M340E/L344K). The formation of the catenane proceeded efficiently, and the overall structure and oligomerization of the domain was not affected by the formation of the topological link. Unfolding and refolding of the catenane was consistent with a two-state process. The topological link stabilized the dimer against thermal and chemical denaturation considerably, raising the apparent melting temperature by 59 degrees C and the midpoint of denaturation by 4.5M GuHCl at a concentration of 50 microM. The formation of the topological link increased the resistance of the dimer to proteolysis. However, the m value decreased by 1.7kcalmol(-1)M(-1), suggesting a decrease in accessible surface area in the unfolded state. This implies that the stabilization from the topological link is largely due to a destabilization of the unfolded state, similar to other cross-links in proteins. Topological linking therefore provides a powerful and orthogonal tool for the stabilization of peptide and protein oligomers.
Collapse
Affiliation(s)
- John W Blankenship
- Department of Cell Biology and Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, MC CVN-6, La Jolla, CA 92037, USA
| | | |
Collapse
|
37
|
Blankenship JW, Balambika R, Dawson PE. Probing backbone hydrogen bonds in the hydrophobic core of GCN4. Biochemistry 2002; 41:15676-84. [PMID: 12501196 DOI: 10.1021/bi026862p] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Backbone amide hydrogen bonds play a central role in protein secondary and tertiary structure. Previous studies have shown that substitution of a backbone ester (-COO-) in place of a backbone amide (-CONH-) can selectively destabilize backbone hydrogen bonds in a protein while maintaining a similar conformation to the native backbone structure. The majority of these studies have focused on backbone substitutions that were accessible to solvent. The GCN4 coiled coil domain is an example of a stable alpha-helical dimer that possesses a well-packed hydrophobic core. Amino acids in the a and d positions of the GCN4 helix, which pack the hydrophobic core, were replaced with the corresponding alpha-hydroxy acids in the context of a chemoselectively ligated heterodimer. While the overall structure and oligomerization state of the heterodimer were maintained, the overall destabilization of the ester analogues was greater (average DeltaDeltaG of 3+ kcal mol(-1)) and more variable than previous studies. Since burial of the more hydrophobic ester should stabilize the backbone and reduce the DeltaDeltaG, the increased destabilization must come from another source. However, the observed destabilization is correlated with the protection factors for individual amide hydrogens from previous hydrogen exchange experiments. Therefore, our results suggest that backbone engineering through ester substitution is a useful approach for probing the relative strength of backbone hydrogen bonds.
Collapse
Affiliation(s)
- John W Blankenship
- Department of Cell Biology, Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, CVN-6, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
38
|
Hofmann RM, Muir TW. Recent advances in the application of expressed protein ligation to protein engineering. Curr Opin Biotechnol 2002; 13:297-303. [PMID: 12323349 DOI: 10.1016/s0958-1669(02)00326-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Expressed protein ligation is a technique for joining recombinantly expressed proteins to polypeptides containing biophysical probes, post-translational modifications or unnatural amino acids. Recent advances have expanded the scope of expressed protein ligation and have allowed the approach to be applied to the study of basic biological questions.
Collapse
Affiliation(s)
- Roseanne M Hofmann
- Laboratory of Synthetic Protein Chemistry, The Rockefeller University, New York, NY 10021, USA
| | | |
Collapse
|
39
|
Tam JP, Yu Q, Yang JL. Tandem ligation of unprotected peptides through thiaprolyl and cysteinyl bonds in water. J Am Chem Soc 2001; 123:2487-94. [PMID: 11456916 DOI: 10.1021/ja0035654] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tandem ligation for the synthesis and modification of proteins entails forming two or more regiospecific amide bonds of multiple free peptide segments without a protecting-group scheme. We here describe a semi-orthogonal strategy for ligating three unprotected peptide segments, two of which contain N-terminal (NT) cysteine, to form in tandem two amide bonds, an Xaa-SPro (thiaproline), and then an Xaa-Cys. This strategy exploits the strong preference of an NT-cysteinyl peptide under acidic conditions to undergo selectively an SPro-imine ligation rather than a Cys-thioester ligation. Operationally, it was performed in the N --> C direction, first by an imine ligation at pH < 3 to afford an Xaa-thiazolidine ester bond between a peptide containing a carboxyl terminal (CT)-glycoaldehyde ester and a second peptide containing both an NT-Cys and a CT-thioester. The newly created O-ester-linked segment with a CT-thioester was then ligated to another NT-cysteinyl peptide through thioester ligation at pH > 7 to form an Xaa-Cys bond. Concurrently, this basic condition also catalyzed the O,N-acyl migration of an Xaa-thiazolidine ester to the Xaa-SPro bond at the first ligation site to complete the tandem three-segment ligation. Both ligation reactions were performed in aqueous buffered solvents. The effectiveness of this three-segment ligation strategy was tested in six peptides ranging from 19 to 70 amino acids, including thiaproline --> proline analogues of somatostatins and two CC-chemokines. The thiaproline replacements in these peptides and proteins did not result in altered biological activity. By eliminating the protecting-group scheme and coupling reagents, tandem ligation of multiple free peptide segments in aqueous solutions enhances the scope of protein synthesis and may provide a useful approach for combinatorial segment synthesis.
Collapse
Affiliation(s)
- J P Tam
- Department of Microbiology and Immunology, Vanderbilt University, A5119 MCN, Nashville, Tennessee 37232-2363, USA.
| | | | | |
Collapse
|
40
|
Abstract
In just a few short years, the chemical ligation of unprotected peptide segments in aqueous solution has established itself as the most practical method for the total synthesis of native proteins. A wide range of proteins has been prepared. These synthetic molecules have led to the elucidation of gene function, to the discovery of novel biology, and to the determination of new three-dimensional protein structures by both NMR and X-ray crystallography. The facile access to novel analogs provided by chemical protein synthesis has led to original insights into the molecular basis of protein function in a number of systems. Chemical protein synthesis has also enabled the systematic development of proteins with enhanced potency and specificity as candidate therapeutic agents.
Collapse
Affiliation(s)
- P E Dawson
- The Scripps Research Institute, La Jolla, California 92037, USA.
| | | |
Collapse
|
41
|
Yan LZ, Dawson PE. Synthesis of peptides and proteins without cysteine residues by native chemical ligation combined with desulfurization. J Am Chem Soc 2001; 123:526-33. [PMID: 11456564 DOI: 10.1021/ja003265m] [Citation(s) in RCA: 501] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The highly chemoselective reaction between unprotected peptides bearing an N-terminal Cys residue and a C-terminal thioester enables the total and semi-synthesis of complex polypeptides. Here we extend the utility of this native chemical ligation approach to non-cysteine containing peptides. Since alanine is a common amino acid in proteins, ligation at this residue would be of great utility. To achieve this goal, a specific alanine residue in the parent protein is replaced with cysteine to facilitate synthesis by native chemical ligation. Following ligation, selective desulfurization of the resulting unprotected polypeptide product with H(2)/metal reagents converts the cysteine residue to alanine. This approach, which provides a general method to prepare alanyl proteins from their cysteinyl forms, can be used to chemically synthesize a variety of polypeptides, as demonstrated by the total chemical syntheses of the cyclic antibiotic microcin J25, the 56-amino acid streptococcal protein G B1 domain, and a variant of the 110-amino acid ribonuclease, barnase.
Collapse
Affiliation(s)
- L Z Yan
- Departments of Cell Biology and Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, CVN-6, La Jolla, California 92037, USA
| | | |
Collapse
|
42
|
Beligere GS, Dawson PE. Design, Synthesis, and Characterization of 4-Ester CI2, a Model for Backbone Hydrogen Bonding in Protein α-Helices. J Am Chem Soc 2000. [DOI: 10.1021/ja001648e] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gangamani S. Beligere
- Contribution from the Departments of Cell Biology and Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Philip E. Dawson
- Contribution from the Departments of Cell Biology and Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
43
|
Abstract
The manipulation of protein structure enables a better understanding of the principles of protein folding, as well as the development of novel therapeutics and drug-delivery vehicles. Chemical synthesis is the most powerful approach for constructing proteins of novel design and structure, allowing for variation of covalent structure without limitations. Here we describe the various chemical methods that are currently used for creating proteins of unique architecture and function.
Collapse
Affiliation(s)
- J A Borgia
- Department of Chemistry and Biochemistry and the Center for Molecular Biology and Biotechnology, Florida Atlantic University, Boca Raton, FL 33431, USA
| | | |
Collapse
|
44
|
Deniz AA, Laurence TA, Beligere GS, Dahan M, Martin AB, Chemla DS, Dawson PE, Schultz PG, Weiss S. Single-molecule protein folding: diffusion fluorescence resonance energy transfer studies of the denaturation of chymotrypsin inhibitor 2. Proc Natl Acad Sci U S A 2000; 97:5179-84. [PMID: 10792044 PMCID: PMC25802 DOI: 10.1073/pnas.090104997] [Citation(s) in RCA: 391] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report single-molecule folding studies of a small, single-domain protein, chymotrypsin inhibitor 2 (CI2). CI2 is an excellent model system for protein folding studies and has been extensively studied, both experimentally (at the ensemble level) and theoretically. Conformationally assisted ligation methodology was used to synthesize the proteins and site-specifically label them with donor and acceptor dyes. Folded and denatured subpopulations were observed by fluorescence resonance energy transfer (FRET) measurements on freely diffusing single protein molecules. Properties of these subpopulations were directly monitored as a function of guanidinium chloride concentration. It is shown that new information about different aspects of the protein folding reaction can be extracted from such subpopulation properties. Shifts in the mean transfer efficiencies are discussed, FRET efficiency distributions are translated into potentials, and denaturation curves are directly plotted from the areas of the FRET peaks. Changes in stability caused by mutation also are measured by comparing pseudo wild-type CI2 with a destabilized mutant (K17G). Current limitations and future possibilities and prospects for single-pair FRET protein folding investigations are discussed.
Collapse
Affiliation(s)
- A A Deniz
- Department of Physics, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Since the mid-1990s, chemical synthesis has emerged as a powerful technique for the study of structure/function relationships in proteins. During the review period, the applicability of chemical protein synthesis techniques has been significantly broadened by increases in the size of synthetically accessible proteins through two new techniques: solid-phase protein synthesis and expressed protein ligation. Also in the period under review, synthetic access to novel classes of proteins has been established, including metalloproteins with tuned properties and integral membrane proteins.
Collapse
|
46
|
Ingenito R, Bianchi E, Fattori D, Pessi A. Solid Phase Synthesis of Peptide C-Terminal Thioesters by Fmoc/t-Bu Chemistry. J Am Chem Soc 1999. [DOI: 10.1021/ja992668n] [Citation(s) in RCA: 247] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Raffaele Ingenito
- Contribution from the Istituto di Ricerche di Biologia Molecolare P. Angeletti (IRBM), Via Pontina Km 30.600, 00040 Pomezia, Rome, Italy
| | - Elisabetta Bianchi
- Contribution from the Istituto di Ricerche di Biologia Molecolare P. Angeletti (IRBM), Via Pontina Km 30.600, 00040 Pomezia, Rome, Italy
| | - Daniela Fattori
- Contribution from the Istituto di Ricerche di Biologia Molecolare P. Angeletti (IRBM), Via Pontina Km 30.600, 00040 Pomezia, Rome, Italy
| | - Antonello Pessi
- Contribution from the Istituto di Ricerche di Biologia Molecolare P. Angeletti (IRBM), Via Pontina Km 30.600, 00040 Pomezia, Rome, Italy
| |
Collapse
|
47
|
Abstract
The ability to assemble a target protein from a series of peptide fragments, either synthetic or biosynthetic in origin, enables the covalent structure of a protein to be modified in an unprecedented fashion. The present technologies available for performing such peptide ligations are discussed, with an emphasis on how these methodologies have been utilized in protein engineering to investigate biological processes.
Collapse
Affiliation(s)
- G J Cotton
- Laboratory of Synthetic Protein Chemistry, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
48
|
Hackeng TM, Griffin JH, Dawson PE. Protein synthesis by native chemical ligation: expanded scope by using straightforward methodology. Proc Natl Acad Sci U S A 1999; 96:10068-73. [PMID: 10468563 PMCID: PMC17843 DOI: 10.1073/pnas.96.18.10068] [Citation(s) in RCA: 553] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The total chemical synthesis of proteins has great potential for increasing our understanding of the molecular basis of protein function. The introduction of native chemical ligation techniques to join unprotected peptides next to a cysteine residue has greatly facilitated the synthesis of proteins of moderate size. Here, we describe a straightforward methodology that has enabled us to rapidly analyze the compatibility of the native chemical ligation strategy for X-Cys ligation sites, where X is any of the 20 naturally occurring amino acids. The simplified methodology avoids the necessity of specific amino acid thioester linkers or alkylation of C-terminal thioacid peptides. Experiments using matrix-assisted laser-desorption ionization MS analysis of combinatorial ligations of LYRAX-C-terminal thioester peptides to the peptide CRANK show that all 20 amino acids are suitable for ligation, with Val, Ile, and Pro representing less favorable choices because of slow ligation rates. To illustrate the method's utility, two 124-aa proteins were manually synthesized by using a three-step, four-piece ligation to yield a fully active human secretory phospholipase A(2) and a catalytically inactive analog. The combination of flexibility in design with general access because of simplified methodology broadens the applicability and versatility of chemical protein synthesis.
Collapse
Affiliation(s)
- T M Hackeng
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|