1
|
Zagidullin AA, Lakomkina AR, Khrizanforov MN, Fayzullin RR, Kholin KV, Gerasimova TP, Shekurov RP, Bezkishko IA, Miluykov VA. Synthesis, Structure, and Electrochemical Properties of 2,3,4,5-Tetraphenyl-1-Monophosphaferrocene Derivatives. Molecules 2023; 28:molecules28062481. [PMID: 36985450 PMCID: PMC10056091 DOI: 10.3390/molecules28062481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/23/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Heteroleptic 2,3,4,5-tetraphenyl-1-monophosphaferrocene [FeCp(η5-PC4Ph4)] was obtained at a 62% yield through the reaction of lithium 2,3,4,5-tetraphenyl-1-monophosphacyclopentadienide Li(PC4Ph4) (1) with [FeCp(η6-C6H5CH3)][PF6]. The structure of 1-monophosphaferrocene 2 and its W(CO)5-complex 3 were confirmed by multinuclear NMR and single-crystal X-ray diffraction study and further supported by DFT calculations. Cyclic voltammetry demonstrated that [FeCp(η5-PC4Ph4)] 2 has a quasi-reversible oxidation wave. The comparison of the properties of phosphaferrocene 2 with those of W(CO)5-complex 3 shows the possibility of changing the coordination type during oxidation.
Collapse
Affiliation(s)
- Almaz A. Zagidullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, 420088 Kazan, Russia
| | - Alena R. Lakomkina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, 420088 Kazan, Russia
- A.M. Butlerov Chemistry Institute of the Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia
| | - Mikhail N. Khrizanforov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, 420088 Kazan, Russia
- A.M. Butlerov Chemistry Institute of the Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia
| | - Robert R. Fayzullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, 420088 Kazan, Russia
| | - Kirill V. Kholin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, 420088 Kazan, Russia
- Department of Physics, Kazan National Research Technological University, 68 Karl Marx Street, 420015 Kazan, Russia
| | - Tatiana P. Gerasimova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, 420088 Kazan, Russia
| | - Ruslan P. Shekurov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, 420088 Kazan, Russia
| | - Ilya A. Bezkishko
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, 420088 Kazan, Russia
| | - Vasili A. Miluykov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, 420088 Kazan, Russia
- Correspondence:
| |
Collapse
|
2
|
Liu Q, Ren W, Zhang S, Huang Y, Chen D, Zeng W, Zhou Z, He L, Guo W, Li J. d‐Orbital Reconstructions Forced by Double Bow‐Shaped Deformations and Second Coordination Sphere Effects of Cu(II) Heme Analogs in HER**. Chemistry 2022; 28:e202103892. [DOI: 10.1002/chem.202103892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Qiuhua Liu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule Ministry of Education and School of Chemistry and Chemical Engineering Institution for Hunan University of Science and Technology Yuhu District Xiangtan 411201 P. R. China
| | - Wanjie Ren
- College of Materials Science and Optoelectronic Technology University of Chinese Academy of Sciences Yanqi Lake, Huairou District Beijing 101408 P. R. China
| | - Siwei Zhang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule Ministry of Education and School of Chemistry and Chemical Engineering Institution for Hunan University of Science and Technology Yuhu District Xiangtan 411201 P. R. China
| | - Yang Huang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Suzhou Research Institute of LICP Institution for Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou 730000 P. R. China
| | - Dilong Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule Ministry of Education and School of Chemistry and Chemical Engineering Institution for Hunan University of Science and Technology Yuhu District Xiangtan 411201 P. R. China
| | - Wennan Zeng
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule Ministry of Education and School of Chemistry and Chemical Engineering Institution for Hunan University of Science and Technology Yuhu District Xiangtan 411201 P. R. China
| | - Zaichun Zhou
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule Ministry of Education and School of Chemistry and Chemical Engineering Institution for Hunan University of Science and Technology Yuhu District Xiangtan 411201 P. R. China
| | - Lin He
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Suzhou Research Institute of LICP Institution for Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou 730000 P. R. China
| | - Wenping Guo
- National Energy Center for Coal to Clean Fuels Synfuels China Company Ltd Huairou District Beijing 101400 P. R. China
| | - Jianfeng Li
- College of Materials Science and Optoelectronic Technology University of Chinese Academy of Sciences Yanqi Lake, Huairou District Beijing 101408 P. R. China
| |
Collapse
|
3
|
Lehnert N, Kim E, Dong HT, Harland JB, Hunt AP, Manickas EC, Oakley KM, Pham J, Reed GC, Alfaro VS. The Biologically Relevant Coordination Chemistry of Iron and Nitric Oxide: Electronic Structure and Reactivity. Chem Rev 2021; 121:14682-14905. [PMID: 34902255 DOI: 10.1021/acs.chemrev.1c00253] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule that is involved in a wide range of physiological and pathological events in biology. Metal coordination chemistry, especially with iron, is at the heart of many biological transformations involving NO. A series of heme proteins, nitric oxide synthases (NOS), soluble guanylate cyclase (sGC), and nitrophorins, are responsible for the biosynthesis, sensing, and transport of NO. Alternatively, NO can be generated from nitrite by heme- and copper-containing nitrite reductases (NIRs). The NO-bearing small molecules such as nitrosothiols and dinitrosyl iron complexes (DNICs) can serve as an alternative vehicle for NO storage and transport. Once NO is formed, the rich reaction chemistry of NO leads to a wide variety of biological activities including reduction of NO by heme or non-heme iron-containing NO reductases and protein post-translational modifications by DNICs. Much of our understanding of the reactivity of metal sites in biology with NO and the mechanisms of these transformations has come from the elucidation of the geometric and electronic structures and chemical reactivity of synthetic model systems, in synergy with biochemical and biophysical studies on the relevant proteins themselves. This review focuses on recent advancements from studies on proteins and model complexes that not only have improved our understanding of the biological roles of NO but also have provided foundations for biomedical research and for bio-inspired catalyst design in energy science.
Collapse
Affiliation(s)
- Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Eunsuk Kim
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Hai T Dong
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jill B Harland
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Andrew P Hunt
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Elizabeth C Manickas
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Kady M Oakley
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - John Pham
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Garrett C Reed
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Victor Sosa Alfaro
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
4
|
Jemmeli D, Mchiri C, Dridi C, Nasri H, Dempsey E. Development of a new bisphenol A electrochemical sensor based on a cadmium(ii) porphyrin modified carbon paste electrode. RSC Adv 2020; 10:31740-31747. [PMID: 35518173 PMCID: PMC9056557 DOI: 10.1039/d0ra04793g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/04/2020] [Indexed: 11/23/2022] Open
Abstract
In this study, the (5,10,15,20-tetrakis[(4-methoxyphenyl)]porphyrinato)cadmium(ii) complex ([Cd(TMPP)]) was successfully used as a modifier in a carbon paste electrode (CPE) and exploited for bisphenol A (BPA) detection. Analytical performance revealed two linear ranges from 0.0015-15 μM and 0.015-1.5 mM with a detection limit of 13.5 pM. The proposed method was implemented in water samples, which resulted in quantitative signals over the range 6.5-1000 μM with recoveries between 92.6 and 107.7% for tap water and between 96.6 to 106.0% for mineral water.
Collapse
Affiliation(s)
- Dhouha Jemmeli
- NANOMISENE Laboratory LR16CRMN01, Centre of Research on Microelectronics and Nanotechnology of Sousse, Technopole of Sousse Tunisia +216 73823 003
| | - Chadlia Mchiri
- Laboratory of Physical Chemistry of Materials, University of Monastir, Faculty of Sciences of Monastir Avenue de l'environnement 5019 Monastir Tunisia
| | - Chérif Dridi
- NANOMISENE Laboratory LR16CRMN01, Centre of Research on Microelectronics and Nanotechnology of Sousse, Technopole of Sousse Tunisia +216 73823 003
| | - Habib Nasri
- Laboratory of Physical Chemistry of Materials, University of Monastir, Faculty of Sciences of Monastir Avenue de l'environnement 5019 Monastir Tunisia
| | - Eithne Dempsey
- Department of Chemistry, Kathleen Lonsdale Institute for Human Health, Maynooth University Co. Kildare Ireland
| |
Collapse
|
5
|
Ikezaki A, Nakamura M, Neya S. Synthesis and utility of the natural type of porphyrin selectively labeled with carbon-13 at α-meso site. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Liu Q, Zhang J, Tang M, Yang Y, Zhang J, Zhou Z. Geometric deconstruction of core and electron activation of a π-system in a series of deformed porphyrins: mimics of heme. Org Biomol Chem 2018; 16:7725-7736. [PMID: 30289139 DOI: 10.1039/c8ob01959b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The predominant distortion of heme is responsible for its electronic activity, catalytic ability and spectral properties. In this work, altogether 12 new X-ray structures of saddled, waved and ruffled porphyrins are reported. Three types of deformed porphyrins as mimics of heme were evaluated and analyzed by geometric deconstruction, spectral comparison, and electrochemical tracking, which shows a unique relationship of deformation fashions and distortion degree to the geometry of the core and electron transfer ability of rings in these enzyme containing porphyrins. These mimics can adjust their core geometry for changing the structures of potential metals; while for rings themselves, they can also regulate the electron activity by switching the HOMO of the large π systems. These deformed porphyrins can be used as ideal mimics for heme. These findings help us to understand the principle and contribution of these deformations to electron transfer in catalytic oxidation and photoreactions. The nonplanar mimics have been synthesized through a modular synthetic approach under Adler-Longo or Lindsey condensation conditions.
Collapse
Affiliation(s)
- Qiuhua Liu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecules, Ministry of Education; and School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
| | - Jinjin Zhang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecules, Ministry of Education; and School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
| | - Min Tang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecules, Ministry of Education; and School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
| | - Yan Yang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecules, Ministry of Education; and School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
| | - Jian Zhang
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0304, USA.
| | - Zaichun Zhou
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecules, Ministry of Education; and School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
| |
Collapse
|
7
|
Tang M, Yang Y, Zhang S, Chen J, Zhang J, Zhou Z, Liu Q. Electron Transfer and Geometric Conversion of Co-NO Moiety in Saddled Porphyrins: Implications for Trigger Role of Tetrapyrrole Distortion. Inorg Chem 2018; 57:277-287. [PMID: 29257677 DOI: 10.1021/acs.inorgchem.7b02455] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The electrons of NO and Co are strongly delocalized in normal {Co-NO}8 species. In this work, {Co-NO}8 complexes are induced to convert from (CoII)+•-NO• to CoIII-NO- by a core contraction of 0.06 Å in saddled cobalt(II) porphyrins. This intramolecular electron transfer mechanism indicates that nonplanarity of porphyrin is involved in driving conversion of the NO units from electrophilic NO• as a bent geometry to nucleophilic NO- as a linear geometry. This implies that distortion acts as a trigger in enzymes containing tetrapyrrole. The electronic behaviors of the CoII ions and Co-NO moieties were confirmed by X-ray crystallography, EPR spectroscopy, theoretical calculation, UV-vis and IR spectroscopy, and electrochemistry.
Collapse
Affiliation(s)
- Min Tang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecules, Ministry of Education, and School of Chemistry and Chemical Engineering, Hunan University of Science and Technology , Xiangtan 411201, China
| | - Yan Yang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecules, Ministry of Education, and School of Chemistry and Chemical Engineering, Hunan University of Science and Technology , Xiangtan 411201, China
| | - Shaowei Zhang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecules, Ministry of Education, and School of Chemistry and Chemical Engineering, Hunan University of Science and Technology , Xiangtan 411201, China
| | - Jiafu Chen
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China , Hefei 230026, China
| | - Jian Zhang
- Department of Chemistry, University of Nebraska-Lincoln , Lincoln, Nebraska 68588-0304, United States
| | - Zaichun Zhou
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecules, Ministry of Education, and School of Chemistry and Chemical Engineering, Hunan University of Science and Technology , Xiangtan 411201, China
| | - Qiuhua Liu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecules, Ministry of Education, and School of Chemistry and Chemical Engineering, Hunan University of Science and Technology , Xiangtan 411201, China
| |
Collapse
|
8
|
Nasri S, Brahmi J, Turowska-Tyrk I, Schulz CE, Nasri H. Synthesis, UV-visible and Mössbauer spectroscopic studies and molecular structure of the low-spin iron(II) Bis( tert -butyl isocyanide)(5, 10, 15, 20-[4-(benzoyloxy)phenyl]porphyrin) coordination compound. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Liu Q, Zhang X, Zeng W, Wang J, Zhou Z. Origin of d-π Interaction in Cobalt(II) Porphyrins under Synergistic Effects of Core Contraction and Axial Ligation: Implications for a Ligand Effect of Natural Distorted Tetrapyrrole. CHINESE J CHEM 2016. [DOI: 10.1002/cjoc.201600226] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
10
|
Zhou Z, Tang M, Liu Q, Zhang X, Zhou X. Formation of π‐Cation Radicals in Highly Deformed Copper(II) Porphyrins: Implications for the Distortion of Natural Tetrapyrrole Macrocycles. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600674] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Zaichun Zhou
- Key Laboratory of “Theoretical Organic Chemistry and Function Molecule” of the Ministry of EducationSchool of Chemistry and Chemical Engineering;Hunan University of Science and Technology411201XiangtanChina
| | - Min Tang
- Key Laboratory of “Theoretical Organic Chemistry and Function Molecule” of the Ministry of EducationSchool of Chemistry and Chemical Engineering;Hunan University of Science and Technology411201XiangtanChina
| | - Qiuhua Liu
- Key Laboratory of “Theoretical Organic Chemistry and Function Molecule” of the Ministry of EducationSchool of Chemistry and Chemical Engineering;Hunan University of Science and Technology411201XiangtanChina
| | - Xi Zhang
- Key Laboratory of “Theoretical Organic Chemistry and Function Molecule” of the Ministry of EducationSchool of Chemistry and Chemical Engineering;Hunan University of Science and Technology411201XiangtanChina
| | - Xiaochun Zhou
- Key Laboratory of “Theoretical Organic Chemistry and Function Molecule” of the Ministry of EducationSchool of Chemistry and Chemical Engineering;Hunan University of Science and Technology411201XiangtanChina
| |
Collapse
|
11
|
Abstract
The synthesis of six new bis(cyano) iron(III) porphyrinate derivatives is reported. The anionic porphyrin complexes utilized tetraphenylporphyrin, tetramesitylporphyrin, and tetratolylporphyrin as the porphyrin ligand. The potassium salts of Kryptofix-222 and 18-C-6 were used as the cations. These complexes have been characterized by X-ray structure analysis, solid-state Mössbauer spectroscopy, and EPR spectroscopy, both in frozen CH2Cl2 solution and in the microcrystalline state. These data show that these anionic complexes can exist in either the (dxz,dyz)(4)(dxy)(1) or the (dxy)(2)(dxz,dyz)(3) electronic configuration and some can clearly readily interconvert. This is a reflection that these two states can be very close in energy. In addition to the effects of varying the porphyrin ligand, subtle effects of the cyanide ligand environment in the solid state and in solution are sufficient to shift the balance between the two electronic states.
Collapse
|
12
|
Ikezaki A, Ono J, Ohgo Y, Fukagawa M, Ikeue T, Nakamura M. Electronic structure of low-spin six-coordinate iron(III) meso-tetrapropylchlorin complexes. J PORPHYR PHTHALOCYA 2014. [DOI: 10.1142/s1088424614500576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Low-spin iron(III) tetrapropylchlorins [ Fe ( T n PrC ) L 2]± (L = HIm, 1-MeIm, DMAP, CN-, 4-CNPy, tBuNC) adopt the dxy-type ground state regardless of the nature of axial ligands. Among the complexes examined, [ Fe ( T n PrC )( t BuNC )2]+ has shown quite unique spectroscopic properties as described below. (1) 1 H NMR signals were extremely broad as compared with those of other complexes. In particular, 5,20- CH 2(α) signal was too broad to detect. (2) No signals except C γ were observed in 13 C NMR spectra. (3) Tetragonal splitting parameter (|Δ|) estimated by the EPR g values at 4.2 K reached as much as 12.4 λ, which is the largest |Δ| value among all the low-spin iron(III) porphyrins and porphyrinoids reported previously. On the basis of these results, we have concluded that [ Fe ( T n PrC )( t BuNC )2]+ adopts the low-spin iron(III) with (dxz, dyz)4(dxy)1 electronic ground state at 4.2–30 K where the EPR spectra are taken, while it should be expressed as the low-spin Fe ( II ) chlorin π-radical cation [ Fe II ( T n PrC .)( t BuNC )2]+ at ambient temperature where the NMR spectra are taken.
Collapse
Affiliation(s)
- Akira Ikezaki
- Department of Chemistry, School of Medicine, Toho University, Ota-ku, Tokyo 143-8540, Japan
| | - Jyunpei Ono
- Department of Chemistry, School of Medicine, Toho University, Ota-ku, Tokyo 143-8540, Japan
| | - Yoshiki Ohgo
- Department of Chemistry, School of Medicine, Toho University, Ota-ku, Tokyo 143-8540, Japan
| | - Mari Fukagawa
- Department of Chemistry, School of Medicine, Toho University, Ota-ku, Tokyo 143-8540, Japan
| | - Takahisa Ikeue
- Department of Material Science, Interdisciplinary Faculty of Science and Engineering, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan
| | - Mikio Nakamura
- Department of Chemistry, School of Medicine, Toho University, Ota-ku, Tokyo 143-8540, Japan
- Department of Chemistry, Faculty of Science, Toho University, Funabashi 274-8510, Japan
- Research Center for Materials with Integrated Properties, Toho University, Funabashi 274-8510, Japan
| |
Collapse
|
13
|
Leeladee P, Jameson GNL, Siegler MA, Kumar D, de Visser SP, Goldberg DP. Generation of a high-valent iron imido corrolazine complex and NR group transfer reactivity. Inorg Chem 2013; 52:4668-82. [PMID: 23527920 DOI: 10.1021/ic400280x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The generation of a new high-valent iron terminal imido complex prepared with a corrolazine macrocycle is reported. The reaction of [Fe(III)(TBP8Cz)] (TBP8Cz = octakis(4-tert-butylphenyl)corrolazinato) with the commercially available chloramine-T (Na(+)TsNCl(-)) leads to oxidative N-tosyl transfer to afford [Fe(IV)(TBP8Cz(+•))(NTs)] in dichloromethane/acetonitrile at room temperature. This complex was characterized by UV-vis, Mössbauer (δ = -0.05 mm s(-1), ΔE(Q) = 2.94 mm s(-1)), and EPR (X-band (15 K), g = 2.10, 2.00) spectroscopies, and together with reactivity patterns and DFT calculations has been established as an iron(IV) species antiferromagnetically coupled with a Cz-π-cation-radical (S(total) = 1/2 ground state). Reactivity studies with triphenylphosphine as substrate show that [Fe(IV)(TBP8Cz(+•))(NTs)] is an efficient NTs transfer agent, affording the phospharane product Ph3P═NTs under both stoichiometric and catalytic conditions. Kinetic analysis of this reaction supports a bimolecular NTs transfer mechanism with rate constant of 70(15) M(-1) s(-1). These data indicate that [Fe(IV)(TBP8Cz(+•))(NTs)] reacts about 100 times faster than analogous Mn terminal arylimido corrole analogues. It was found that two products crystallize from the same reaction mixture of Fe(III)(TBP8Cz) + chloramine-T + PPh3, [Fe(IV)(TBP8Cz)(NPPh3)] and [Fe(III)(TBP8Cz)(OPPh3)], which were definitively characterized by X-ray crystallography. The sequential production of Ph3P═NTs, Ph3P═NH, and Ph3P═O was observed by (31)P NMR spectroscopy and led to a proposed mechanism that accounts for all of the observed products. The latter Fe(III) complex was then rationally synthesized and structurally characterized from Fe(III)(TBP8Cz) and OPPh3, providing an important benchmark compound for spectroscopic studies. A combination of Mössbauer and EPR spectroscopies led to the characterization of both intermediate spin (S = 3/2 and low spin (S = 1/2) Fe(III) corrolazines, as well as a formally Fe(IV) corrolazine which may also be described by its valence tautomer Fe(III)(Cz(+•)).
Collapse
Affiliation(s)
- Pannee Leeladee
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
All but a few bacterial species have an absolute need for heme, and most are able to synthesize it via a pathway that is highly conserved among all life domains. Because heme is a rich source for iron, many pathogenic bacteria have also evolved processes for sequestering heme from their hosts. The heme biosynthesis pathways are well understood at the genetic and structural biology levels. In comparison, much less is known about the heme acquisition, trafficking, and degradation processes in bacteria. Gram-positive and Gram-negative bacteria have evolved similar strategies but different tactics for importing and degrading heme, likely as a consequence of their different cellular architectures. The differences are manifested in distinct structures for molecules that perform similar functions. Consequently, the aim of this chapter is to provide an overview of the structural biology of proteins and protein-protein interactions that enable Gram-positive and Gram-negative bacteria to sequester heme from the extracellular milieu, import it to the cytosol, and degrade it to mine iron.
Collapse
Affiliation(s)
- David R Benson
- Department of Chemistry, University of Kansas, Multidisciplinary Research Building, 2030 Becker Dr., Lawrence, KS, 66047, USA,
| | | |
Collapse
|
15
|
Nakamura M, Ikezaki A, Takahashi M. Metal-Porphyrin Orbital Interactions in Paramagnetic Iron Complexes Having Planar and Deformed Porphyrin Ring. J CHIN CHEM SOC-TAIP 2012. [DOI: 10.1002/jccs.201200474] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
16
|
Kurahashi S, Ikeue T, Sugimori T, Takahashi M, Mikuriya M, Handa M, Ikezaki A, Nakamura M. Formation and characterization of five- and six-coordinate iron(III) corrolazine complexes. J PORPHYR PHTHALOCYA 2012. [DOI: 10.1142/s1088424612500460] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Electronic structures of five- and six-coordinate iron(III) corrolazine complexes are determined by means of 1H NMR, 13C NMR, EPR, and Mössbauer spectroscopy as well as SQUID magnetometry. A series of five-coordinate complexes, [FeIII(TBP8Cz)(L)]* where the axial ligands(L) are cyanide(CN-), imidazole(HIm), 1-methylimidazole(1-MeIm), 4-(N,N-dimethylamino)pyridine(DMAP), pyridine(Py), 4-cyanopyridine(4-CNPy), and tert-butylisocyanide(tBuNC), are obtained by the addition of 1 to 2 equiv. of the ligands to the dichloromethane solutions of FeIII(TBP8Cz) at 298 K: TBP8Cz is a trianion of 2,3,7,8,12,13,17,18-octakis(4-tert-butylphenyl)corrolazine. These complexes commonly show the S = 3/2 at 298 K. By contrast, formation of the six-coordinate complexes depends on the nature of the axial ligands. While the addition of 3 equiv. of CN- has completely converted FeIII(TBP8Cz) to (Bu4N)2[FeIII(TBP8Cz)(CN)2] at 298 K, the conversion to the bis-adduct is only attained below ca. 200 K in the case of HIm, 1-MeIm, and DMAP even in the presence of 50 equiv. of the ligands. If the axial ligand is Py, 4-CNPy, or tBuNC, the formation of [FeIII(TBP8Cz)(L)2] is confirmed only at an extremely low temperature (15 K). Close inspection of the 1H NMR and EPR spectra has revealed that all the bis-adducts adopt the (dxy)2(dxz, dyz)3 ground state. While FeIII(TBP8Cz) forms paramagnetic bis- and mono-adduct in toluene solution at 298 K in the presence of excess amount of CN- and tBuNC, respectively, the corresponding porphyrazine complex, [FeIII(TBP8Pz)]Cl , forms diamagnetic bis-CN and bis-tBuNC under the same conditions: TBP8Pz is a dianion of 2,3,7,8,12,13,17,18-octakis(4-tert-butylphenyl)-porphyrazine. Thus, the iron(III) ion of porphyrazine complex is more easily reduced than that of the corresponding corrolazine complex.
Collapse
Affiliation(s)
- Satoshi Kurahashi
- Department of Chemistry and Research Center for Coordination Molecule-Based Devices, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan
| | - Takahisa Ikeue
- Department of Material Science, Interdisciplinary Faculty of Science and Engineering, Shimane University 1060, Nishikawatsu, Matsue 690-8504, Japan
| | - Tamotsu Sugimori
- Division of Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Masashi Takahashi
- Department of Chemistry, Faculty of Science, Toho University, Funabashi 274-8510, Japan
- Research Center for Materials with Integrated Properties, Toho University, Funabashi 274-8510, Japan
| | - Masahiro Mikuriya
- Department of Chemistry and Research Center for Coordination Molecule-Based Devices, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan
| | - Makoto Handa
- Department of Material Science, Interdisciplinary Faculty of Science and Engineering, Shimane University 1060, Nishikawatsu, Matsue 690-8504, Japan
| | - Akira Ikezaki
- Department of Chemistry, School of Medicine, Toho University, Ota-ku, Tokyo 143-8540, Japan
| | - Mikio Nakamura
- Research Center for Materials with Integrated Properties, Toho University, Funabashi 274-8510, Japan
- Department of Chemistry, School of Medicine, Toho University, Ota-ku, Tokyo 143-8540, Japan
- Division of Chemistry, Graduate School of Science, Toho University, Funabashi 274-8510, Japan
| |
Collapse
|
17
|
Ohgo Y, Neya S, Hashizume D, Ozeki T, Nakamura M. Unusual electronic structure of bis-isocyanide complexes of iron(iii) porphyrinoids. Dalton Trans 2012; 41:3126-9. [DOI: 10.1039/c2dt12249a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Ikeue T, Handa M, Chamberlin A, Ghosh A, Ongayi O, Vicente MGH, Ikezaki A, Nakamura M. Benzoannelation Stabilizes the dxy1 State of Low-Spin Iron(III) Porphyrinates. Inorg Chem 2011; 50:3567-81. [DOI: 10.1021/ic1024873] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Takahisa Ikeue
- Department of Chemistry, Faculty of Material Science, Shimane University, 1060 Nishikawatsu-cho, Matsue-shi, Shimane 690-8504, Japan
| | - Makoto Handa
- Department of Chemistry, Faculty of Material Science, Shimane University, 1060 Nishikawatsu-cho, Matsue-shi, Shimane 690-8504, Japan
| | - Adam Chamberlin
- Department of Chemistry and the Center for Theoretical and Computational Chemistry, University of Tromso, Breivika, N-9037 Tromso, Norway
| | - Abhik Ghosh
- Department of Chemistry and the Center for Theoretical and Computational Chemistry, University of Tromso, Breivika, N-9037 Tromso, Norway
| | - Owendi Ongayi
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - M. Graça H. Vicente
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Akira Ikezaki
- Department of Chemistry, School of Medicine, Toho University, Ota-ku, Tokyo 143-8540, Japan
| | - Mikio Nakamura
- Department of Chemistry, School of Medicine, Toho University, Ota-ku, Tokyo 143-8540, Japan
- Division of Chemistry, Graduate School of Science, Toho University, Funabashi 274-8510, Japan
| |
Collapse
|
19
|
Alonso PJ, Arauzo AB, García-Monforte MA, García-Rubio I, Martín A, Menjón B, Rillo C. Synthesis, characterisation and magnetic properties of octahedral chromium(iii) compounds with six C-donor ligands. Dalton Trans 2011; 40:853-61. [DOI: 10.1039/c0dt00891e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Ikezaki A, Nakamura M. Formation and characterization of a six-coordinate iron(iii) complex with the most ruffled porphyrin ring. Dalton Trans 2011; 40:3455-8. [DOI: 10.1039/c1dt10042d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Tozuka A, Ohgo Y, Ikezaki A, Taniguchi M, Nakamura M. Electronic structure of highly ruffled low-spin iron(III) porphyrinates with electron withdrawing heptafluoropropyl groups at the meso positions. Inorg Chem 2010; 49:10400-8. [PMID: 20942414 DOI: 10.1021/ic101184y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bis(pyridine)[meso-tetrakis(heptafluoropropyl)porphyrinato]iron(III), [Fe(THFPrP)Py(2)](+), was reported to be the low-spin complex that adopts the purest (d(xz), d(yz))(4)(d(xy))(1) ground state where the energy gap between the iron d(xy) and d(π)(d(xz), d(yz)) orbitals is larger than the corresponding energy gaps of any other complexes reported previously (Moore, K. T.; Fletcher, J. T.; Therien, M. J. J. Am. Chem. Soc. 1999, 121, 5196-5209). Although the highly ruffled porphyrin core expected for this complex contributes to the stabilization of the (d(xz), d(yz))(4)(d(xy))(1) ground state, the strongly electron withdrawing C(3)F(7) groups at the meso positions should stabilize the (d(xy))(2)(d(xz), d(yz))(3) ground state. Thus, we have reexamined the electronic structure of [Fe(THFPrP)Py(2)](+) by means of (1)H NMR, (19)F NMR, and electron paramagnetic resonance (EPR) spectroscopy. The CD(2)Cl(2) solution of [Fe(THFPrP)Py(2)](+) shows the pyrrole-H signal at -10.25 ppm (298 K) in (1)H NMR, the CF(2)(α) signal at -74.6 ppm (298 K) in (19)F NMR, and the large g(max) type signal at g = 3.16 (4.2 K) in the EPR. Thus, contrary to the previous report, the complex is unambiguously shown to adopt the (d(xy))(2)(d(xz), d(yz))(3) ground state. Comparison of the spectroscopic data of a series of [Fe(THFPrP)L(2)](+) with those of the corresponding meso-tetrapropylporphyrin complexes [Fe(TPrP)L(2)](+) with various axial ligands (L) has shown that the meso-C(3)F(7) groups stabilize the (d(xy))(2)(d(xz), d(yz))(3) ground state. Therefore, it is clear that the less common (d(xz), d(yz))(4)(d(xy))(1) ground state can be stabilized by the three major factors: (i) axial ligand with low-lying π* orbitals, (ii) ruffled porphyrin ring, and (iii) electron donating substituent at the meso position.
Collapse
Affiliation(s)
- Akira Tozuka
- Division of Chemistry, Graduate School of Science, Toho University, Funabashi 274-8510, Japan
| | | | | | | | | |
Collapse
|
22
|
Patra R, Bhowmik S, Ghosh SK, Rath SP. Effects of axial pyridine coordination on a saddle-distorted porphyrin macrocycle: stabilization of hexa-coordinated high-spin Fe(iii) and air-stable low-spin iron(ii) porphyrinates. Dalton Trans 2010; 39:5795-806. [DOI: 10.1039/b924742d] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Ikezaki A, Ohgo Y, Nakamura M. NMR studies on the electronic structure of one-electron oxidized complexes of iron(III) porphyrinates. Coord Chem Rev 2009. [DOI: 10.1016/j.ccr.2009.01.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Zhou Y, Xiao HP, Kang LC, Zuo JL, Li CH, You XZ. Synthesis and characterization of neutral iron(ii) and ruthenium(ii) complexes with the isocyanotriphenylborate ligand. Dalton Trans 2009:10256-62. [DOI: 10.1039/b914262b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Ajibade PA, Kolawole GA. Synthesis, characterization and in vitro antiprotozoal studies of iron(III) complexes of some antimalarial drugs. J COORD CHEM 2008. [DOI: 10.1080/00958970802072765] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Peter A. Ajibade
- a Department of Chemistry , University of Fort Hare , Private Bag X1314, Alice 5700, South Africa
| | - Gabriel A. Kolawole
- b Department of Chemistry , University of Zululand , Private Bag X1001, Kwadlangezwa 3886, South Africa
| |
Collapse
|
26
|
Factors that stabilize the electron configuration in iron(III) porphyrinates: A case of bis(benzaldehyde) complex. INORG CHEM COMMUN 2008. [DOI: 10.1016/j.inoche.2008.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Patra R, Chaudhary A, Ghosh SK, Rath SP. Modulation of Metal Displacements in a Saddle Distorted Macrocycle: Synthesis, Structure, and Properties of High-Spin Fe(III) Porphyrins and Implications for the Hemoproteins. Inorg Chem 2008; 47:8324-35. [DOI: 10.1021/ic800944q] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Ranjan Patra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India
| | - Arvind Chaudhary
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India
| | - Sudip Kumar Ghosh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India
| | - Sankar Prasad Rath
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India
| |
Collapse
|
28
|
Nakamura M, Ohgo Y, Ikezaki A. Electronic ground states of low-spin iron(III) porphyrinoids. J Inorg Biochem 2008; 102:433-45. [DOI: 10.1016/j.jinorgbio.2007.10.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2007] [Revised: 09/29/2007] [Accepted: 10/12/2007] [Indexed: 11/27/2022]
|
29
|
Ohgo Y, Hoshino A, Okamura T, Uekusa H, Hashizume D, Ikezaki A, Nakamura M. Metal−Porphyrin Orbital Interactions in Highly Saddled Low-Spin Iron(III) Porphyrin Complexes. Inorg Chem 2007; 46:8193-207. [PMID: 17725347 DOI: 10.1021/ic700827w] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Substituent effects of the meso-aryl (Ar) groups on the 1H and 13C NMR chemical shifts in a series of low-spin highly saddled iron(III) octaethyltetraarylporphyrinates, [Fe(OETArP)L2]+, where axial ligands (L) are imidazole (HIm) and tert-butylisocyanide ((t)BuNC), have been examined to reveal the nature of the interactions between metal and porphyrin orbitals. As for the bis(HIm) complexes, the crystal and molecular structures have been determined by X-ray crystallography. These complexes have shown a nearly pure saddled structure in the crystal, which is further confirmed by the normal-coordinate structural decomposition method. The substituent effects on the CH2 proton as well as meso and CH2 carbon shifts are fairly small in the bis(HIm) complexes. Since these complexes adopt the (d(xy))2(d(xz), d(yz))3 ground state as revealed by the electron paramagnetic resonance (EPR) spectra, the unpaired electron in one of the metal dpi orbitals is delocalized to the porphyrin ring by the interactions with the porphyrin 3e(g)-like orbitals. A fairly small substituent effect is understandable because the 3e(g)-like orbitals have zero coefficients at the meso-carbon atoms. In contrast, a sizable substituent effect is observed when the axial HIm is replaced by (t)BuNC. The Hammett plots exhibit a large negative slope, -220 ppm, for the meso-carbon signals as compared with the corresponding value, +5.4 ppm, in the bis(HIm) complexes. Since the bis((t)BuNC) complexes adopt the (d(xz), d(yz))4(d(xy))1 ground state as revealed by the EPR spectra, the result strongly indicates that the half-filled dxy orbital interacts with the specific porphyrin orbitals that have large coefficients on the meso-carbon atoms. Thus, we have concluded that the major metal-porphyrin orbital interaction in low-spin saddle-shaped complexes with the (d(xz), d(yz))4(d(xy))1 ground state should take place between the d(xy) and a(2u)-like orbital rather than between the dxy and a(1u)-like orbital, though the latter interaction is symmetry-allowed in saddled D(2d) complexes. Fairly weak spin delocalization to the meso-carbon atoms in the complexes with electron-withdrawing groups is then ascribed to the decrease in spin population in the d(xy) orbital due to a smaller energy gap between the d(xy) and dpi orbitals. In fact, the energy levels of the d(xy) and dpi orbitals are completely reversed in the complex carrying a strongly electron-withdrawing substituent, the 3,5-bis(trifluoromethyl)phenyl group, which results in the formation of the low-spin complex with an unprecedented (d(xy))2(d(xz), d(yz))3 ground state despite the coordination of (t)BuNC.
Collapse
Affiliation(s)
- Yoshiki Ohgo
- Department of Chemistry, School of Medicine, Toho University, Tokyo 143-8540, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
El-Dissouky A, Al-Awadi NA, Shauib NM, Abbas AB. Synthesis and spectroscopic studies on iron(III) complexes of 1-benzotriazol-1-yl-1-[(p-X-phenyl)hydrazono]propan-2-one. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2007; 67:1072-9. [PMID: 17142091 DOI: 10.1016/j.saa.2006.09.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Accepted: 09/13/2006] [Indexed: 05/12/2023]
Abstract
A new series of iron(III) complexes are synthesized from the reaction of the polyfunctional ligands 1-benzotriazol-1-yl-1-[p-X-phenyl]hydrazono]propan-2-one (X=H, Cl, NO(2), CH(3) or OCH(3) corresponding to HL(1),HL(2), HL(3), HL(4) or HL(5), respectively, with iron(III) chloride in the presence of LiOH by the conventional and microwave induced energy methods. The conventional method led to the formation of [FeL(3)].nH(2)O but the microwave induced energy gave [FeLCl(2)], n=1-3 and L is the anion of HL(1)-HL(5). The complexes are characterized by the elemental analysis, molar conductivity, magnetic and spectral (FT-IR, UV-vis and ESR) studies. The magnetic and spectral studies showed that [FeLCl(2)] are polymeric octahedral, [Fe(L(1))(3)].H(2)O is a low spin octahedral and (d(xz),d(yz))(4) (d(xy))(1) ground state, [FeL(3)].nH(2)O, L=anion of HL(4) or HL(5) and are octahedral with intermediate spin (S=32) with ground state (d(xy))(2)(d(xz),d(yz))(3) electronic configuration while for the anions of HL(2) and HL(3), they have (t(2g))(3)(e(g))(5) admixed with (d(xy))(2)(d(xz),d(yz))(3) configurations. From the ESR data, the contribution of the high spin (S=52) and low spin (S=32) to the quantum mechanical spin intermediate (QMS), and the crystal field parameters Delta and V are calculated and related to the electronic and steric effects of the ligands. The electronic spectral data confirm that obtained from the ESR, and the different ligand field parameters as well as the pi-->t(2g), t(2g)-->e(g), e(g)-->pi*, pi-->pi* transitions are estimated and compared with that experimentally obtained.
Collapse
Affiliation(s)
- Ali El-Dissouky
- Faculty of Science, Chemistry Department, Kuwait University, Safat 13060, Kuwait.
| | | | | | | |
Collapse
|
31
|
Garcia-Serres R, Davydov RM, Matsui T, Ikeda-Saito M, Hoffman BM, Huynh BH. Distinct reaction pathways followed upon reduction of oxy-heme oxygenase and oxy-myoglobin as characterized by Mössbauer spectroscopy. J Am Chem Soc 2007; 129:1402-12. [PMID: 17263425 PMCID: PMC2519892 DOI: 10.1021/ja067209i] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Activation of O(2) by heme-containing monooxygenases generally commences with the common initial steps of reduction to the ferrous heme and binding of O(2) followed by a one-electron reduction of the O(2)-bound heme. Subsequent steps that generate reactive oxygen intermediates diverge and reflect the effects of protein control on the reaction pathway. In this study, Mössbauer and EPR spectroscopies were used to characterize the electronic states and reaction pathways of reactive oxygen intermediates generated by 77 K radiolytic cryoreduction and subsequent annealing of oxy-heme oxygenase (HO) and oxy-myoglobin (Mb). The results confirm that one-electron reduction of (Fe(II)-O(2))HO is accompanied by protonation of the bound O(2) to generate a low-spin (Fe(III)-O(2)H(-))HO that undergoes self-hydroxylation to form the alpha-meso-hydroxyhemin-HO product. In contrast, one-electron reduction of (Fe(II)-O(2))Mb yields a low-spin (Fe(III)-O(2)(2-))Mb. Protonation of this intermediate generates (Fe(III)-O(2)H(-))Mb, which then decays to a ferryl complex, (Fe(IV)=O(2-))Mb, that exhibits magnetic properties characteristic of the compound II species generated in the reactions of peroxide with heme peroxidases and with Mb. Generation of reactive high-valent states with ferryl species via hydroperoxo intermediates is believed to be the key oxygen-activation steps involved in the catalytic cycles of P450-type monooxygenases. The Mössbauer data presented here provide direct spectroscopic evidence supporting the idea that ferric-hydroperoxo hemes are indeed the precursors of the reactive ferryl intermediates. The fact that a ferryl intermediate does not accumulate in HO underscores the determining role played by protein structure in controlling the reactivity of reaction intermediates.
Collapse
Affiliation(s)
| | | | | | - Masao Ikeda-Saito
- *To whom correspondence should be addressed. B.H.H: telephone, 404-727-4295; fax, 404-727-0873; email, . B.M.H., telephone, 847-491-3104; fax: 847-491-7713; email, . M.I.S.: telephone, +81-22-217-5116; fax, +81-22-217-5118; email,
| | - Brian M. Hoffman
- *To whom correspondence should be addressed. B.H.H: telephone, 404-727-4295; fax, 404-727-0873; email, . B.M.H., telephone, 847-491-3104; fax: 847-491-7713; email, . M.I.S.: telephone, +81-22-217-5116; fax, +81-22-217-5118; email,
| | - Boi Hanh Huynh
- *To whom correspondence should be addressed. B.H.H: telephone, 404-727-4295; fax, 404-727-0873; email, . B.M.H., telephone, 847-491-3104; fax: 847-491-7713; email, . M.I.S.: telephone, +81-22-217-5116; fax, +81-22-217-5118; email,
| |
Collapse
|
32
|
|
33
|
Ikezaki A, Nakamura M, Juillard S, Simonneaux G. 13C NMR Studies of the Electronic Structure of Low-Spin Iron(III) Tetraphenylchlorin Complexes. Inorg Chem 2006; 45:6728-39. [PMID: 16903729 DOI: 10.1021/ic060508o] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A series of low-spin six-coordinate (tetraphenylchlorinato)iron(III) complexes [Fe(TPC)(L)2]+/- (L = 1-MeIm, CN-, 4-CNPy, and (t)BuNC) have been prepared, and their (13)C NMR spectra have been examined to reveal the electronic structure. These complexes exist as the mixture of the two isomers with the (d(xy))2(d(xz), d(yz))3 and (d(xz), d(yz))4(d(xy))1 ground states. Contribution of the (d(xz), d(yz))4(d(xy))1 isomer has increased as the axial ligand changes from 1-MeIm, to CN(-) (in CD2Cl2 solution), CN- (in CD(3)OD solution), and 4-CNPy, and then to tBuNC as revealed by the meso and pyrroline carbon chemical shifts; the meso carbon signals at 146 and -19 ppm in [Fe(TPC)(1-MeIm)2]+ shifted to 763 and 700 ppm in [Fe(TPC)(tBuNC)2]+. In the case of the CN- complex, the population of the (d(xz), d(yz))4(d(xy))1 isomer has increased to a great extent when the solvent is changed from CD2Cl2 to CD3OD. The result is ascribed to the stabilization of the d(xz) and d(yz) orbitals of iron(III) caused by the hydrogen bonding between methanol and the coordinated cyanide ligand. Comparison of the 13C NMR data of the TPC complexes with those of the TPP, OEP, and OEC complexes has revealed that the populations of the (d(xz), d(yz))4(d(xy))1 isomer in TPC complexes are much larger than those in the corresponding TPP, OEC, and OEP complexes carrying the same axial ligands.
Collapse
Affiliation(s)
- Akira Ikezaki
- Department of Chemistry, School of Medicine, Toho University, Ota-ku, Tokyo 143-8540, Japan
| | | | | | | |
Collapse
|
34
|
Teschner T, Yatsunyk L, Schünemann V, Paulsen H, Winkler H, Hu C, Scheidt WR, Walker FA, Trautwein AX. Models of the membrane-bound cytochromes: mössbauer spectra of crystalline low-spin ferriheme complexes having axial ligand plane dihedral angles ranging from 0 degree to 90 degrees. J Am Chem Soc 2006; 128:1379-89. [PMID: 16433558 PMCID: PMC1525297 DOI: 10.1021/ja056343k] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Crystalline samples of four low-spin Fe(III) octaalkyltetraphenylporphyrinate and two low-spin Fe(III) tetramesitylporphyrinate complexes, all of which are models of the bis-histidine-coordinated cytochromes of mitochondrial complexes II, III, and IV and chloroplast complex b(6)f, and whose molecular structures and EPR spectra have been reported previously, have been investigated in detail by Mössbauer spectroscopy. The six complexes and the dihedral angles between axial ligand planes of each are [(TMP)Fe(1-MeIm)(2)]ClO(4) (0 degree), paral-[(OMTPP)Fe(1-MeIm)(2)]Cl (19.5 degrees), paral-[(TMP)Fe(5-MeHIm)(2)]ClO(4) (26 degrees, 30 degrees for two molecules in the unit cell whose EPR spectra overlap), [(OETPP)Fe(4-Me(2)NPy)(2)]Cl (70 degrees), perp-[(OETPP)Fe(1-MeIm)(2)]Cl (73 degrees), and perp-[(OMTPP)Fe(1-MeIm)(2)]Cl (90 degrees). Of these, the first three have been shown to exhibit normal rhombic EPR spectra, each with three clearly resolved g-values, while the last three have been shown to exhibit "large g(max)" EPR spectra at 4.2 K. It is found that the hyperfine coupling constants of the complexes are consistent with those reported previously for low-spin ferriheme systems, with the largest-magnitude hyperfine coupling constant, A(zz), being considerably smaller for the "parallel" complexes (400-540 kG) than for the strictly perpendicular complex (902 kG), A(xx) being negative for all six complexes, and A(zz) and A(xx) being of similar magnitude for the "parallel" complexes (for example, for [(TMP)Fe(1-MeIm)(2)]Cl, A(zz) = 400 kG, A(xx) = -400 kG). In all cases, A(yy) is small but difficult to estimate with accuracy. With results for six structurally characterized model systems, we find for the first time qualitative correlations of g(zz), A(zz), and DeltaE(Q) with axial ligand plane dihedral angle Deltavarphi.
Collapse
|
35
|
Zeng Y, Caignan GA, Bunce RA, Rodríguez JC, Wilks A, Rivera M. Azide-inhibited bacterial heme oxygenases exhibit an S = 3/2 (dxz,dyz)3(dxy)1(dz2)1 spin state: mechanistic implications for heme oxidation. J Am Chem Soc 2005; 127:9794-807. [PMID: 15998084 DOI: 10.1021/ja0425987] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The azide complexes of heme oxygenase from Pseudomonas aeruginosa (pa-HO) and Neisseriae meningitidis (nm-HO) have been studied with the aid of (1)H and (13)C NMR spectroscopy. These complexes have been shown to exist as an equilibrium mixture of two populations, one exhibiting an S = (1)/(2), (d(xy))(2)(d(xz), d(yz))(3) electron configuration and planar heme and a second with a novel S = (3)/(2), (d(xz), d(yz))(3)(d(xy))(1)(d(z)(2))(1) spin state and nonplanar heme. At physiologically relevant temperatures, the equilibrium shifts in the direction of the population exhibiting the latter electron configuration and nonplanar heme, whereas at temperatures approaching the freezing point of water, the equilibrium shifts in the direction of the population with the former electronic structure and planar heme. These findings indicate that the microenvironment of the distal pocket in heme oxygenase is unique among heme-containing proteins in that it lowers the sigma-donating (field strength) ability of the distal ligand and, therefore, promotes the attainment of heme electronic structures thus far only observed in heme oxygenase. When the field strength of the distal ligand is slightly lower than that of azide, such as OH(-) (J. Am. Chem. Soc. 2003, 125, 11842), the corresponding complex exists as a mixture of populations with nonplanar hemes and electronic structures that place significant spin density at the meso positions. The ease with which these unusual heme electronic structures are attained by heme oxygenase is likely related to activation of meso carbon reactivity which, in turn, facilitates hydroxylation of a meso carbon by the obligatory ferric hydroperoxide intermediate.
Collapse
Affiliation(s)
- Yuhong Zeng
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66045-7582, USA
| | | | | | | | | | | |
Collapse
|
36
|
Watson CT, Cai S, Shokhirev NV, Walker FA. NMR and EPR Studies of Low-Spin Fe(III) Complexes of meso-Tetra-(2,6-Disubstituted Phenyl)Porphyrinates Complexed to Imidazoles and Pyridines of Widely Differing Basicities. Inorg Chem 2005; 44:7468-84. [PMID: 16212373 DOI: 10.1021/ic0507316] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of bis-axially ligated complexes of iron(III) tetramesitylporphyrin, TMPFe(III), tetra-(2,6-dibromophenyl)porphyrin, (2,6-Br2)4TPPFe(III), tetra-(2,6-dichlorophenyl)porphyrin, (2,6-Cl2)4TPPFe(III), tetra-(2,6-difluorophenyl)porphyrin, (2,6-F2)4TPPFe(III), and tetra-(2,6-dimethoxyphenyl)porphyrin, (2,6-(OMe)2)4TPPFe(III), where the axial ligands are 1-methylimidazole, 2-methylimidazole, and a series of nine substituted pyridines ranging in basicity from 4-(dimethylamino)pyridine (pK(a)(PyH(+)) = 9.70) to 3- and 4-cyanopyridine (pKa(PyH+) = 1.45 and 1.1, respectively), have been prepared and characterized by EPR and 1H NMR spectroscopy. The EPR spectra, recorded at 4.2 K, show "large g(max)", rhombic, or axial signals, depending on the iron porphyrinate and axial ligand, with the g(max) value decreasing as the basicity of the pyridine decreases, thus indicating a change in electron configuration from (d(xy))2(d(xz),d(yz)3 to (d(xz),d(yz))4(d(xy))1 through each series at this low temperature. Over the temperature range of the NMR investigations (183-313 K), most of the high-basicity pyridine complexes of all five iron(III) porphyrinates exhibit simple Curie temperature dependence of their pyrrole-H paramagnetic shifts and beta-pyrrole spin densities, rho(C) approximately 0.015-0.017, that are indicative of the S = 1/2 (d(xy))(2)(d(xz),d(yz))(3) electron configuration, while the temperature dependences of the pyrrole-H resonances of the lower-basicity pyridine complexes (pK(a)(PyH(+)) < 6.00) show significant deviations from simple Curie behavior which could be fit to an expanded version of the Curie law using a temperature-dependent fitting program developed in this laboratory that includes consideration of a thermally accessible excited state. In most cases, the ground state of the lower-basicity pyridine complexes is an S = 1/2 state with a mixed (d(xy))2(d(xz),d(yz))3/(d(xz),d(yz))4(d(xy))1 electron configuration, indicating that these two are so close in energy that they cannot be separated by analysis of the NMR shifts; however, for the TMPFe(III) complexes with 3- and 4-CNPy, the ground states were found to be fairly pure (d(xz),d(yz))4(d(xy))1 electron configurations. In all but one case of the intermediate- to low-basicity pyridine complexes of the five iron(III) porphyrinates, the excited state is found to be S = 3/2, with a (d(xz),d(yz))3(d(xy))1(d(z)2)1 electron configuration, lying some 120-680 cm(-1) higher in energy, depending on the particular porphyrinate and axial ligand. Full analysis of the paramagnetic shifts to allow separation of the contact and pseudocontact contributions could be achieved only for the [TMPFe(L)2]+ series of complexes.
Collapse
Affiliation(s)
- C Todd Watson
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721-0041, USA.
| | | | | | | |
Collapse
|
37
|
Berlicka A, Latos-Grazyński L, Lis T. 1H NMR Investigation of High-Spin and Low-Spin Iron(III) meso-Ethynylporphyrins. Inorg Chem 2005; 44:4522-33. [PMID: 15962959 DOI: 10.1021/ic050158q] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The 1H NMR spectra of iron(III) 5-ethynyl-10,15,20-tri(p-tolyl)porphyrin [(ETrTP)Fe(III)X(n)], iron(III) 5-(phenylethynyl)-10,15,20-tri(p-tolyl)porphyrin [(PETrTP)Fe(III)X(n)], iron(III) 5-(phenylbutadiynyl)-10,15,20-tri(p-tolyl)porphyrin [(PBTrTP)Fe(III)X(n)], iron(III) 5,10,15,20-tetra(phenylethynyl)porphyrin [(TPEP)Fe(III)X(n)], iron(III) 1,4-bis-[10,15,20-tri(p-tolyl)porphyrin-5-yl]-1,3-butadiyne {[(TrTP)Fe(III)X(n)]2 B}, and 5,10,15-triphenylporphyrin [(TrPP)Fe(III)X(n)] have been studied to elucidate the impact of meso-ethynyl substitution on the electronic structure and spin density distribution of high-spin (X = Cl-, n = 1) and low-spin (X = CN-, n = 2) derivatives. The meso substituents, i.e., ethynyl, phenylethynyl, and phenylbutadiynyl, provided insight into the efficiency of spin density delocalization along structural elements that are typically applied to transmit electronic effects along multipart polyporphyrinic systems. The positive spin density localized at the meso-carbon of high-spin iron(III) ethynylporphyrins is effectively delocalized along the ethyne or butadiyne fragment as illustrated by the comparison of isotropic shifts of C(meso)-H and -CC-H determined for (TrPP)Fe(III)Cl (-82.6 ppm, 293 K) and (ETrTP)Fe(III)Cl (-49.5 ppm, 298 K). The replacement of the ethynyl hydrogen by phenyl or phenylethynyl provided evidence for the pi spin density distribution around the introduced phenyl ring. An analysis of the isotropic shifts for the low-spin bis-cyanide iron(III) porphyrins series reveals the analogous mechanism of spin density transfer. Treatment of high-spin [(TrTP)Fe(III)Cl]2 B with a base resulted in formation of the cyclic [(TrTP)Fe(III)OFe(III)(TrTP)B]2 complex linked by two mu-oxo bridges. (TPEP)H2 has been characterized by X-ray crystallography as a porphyrin dication where two molecules of trifluoroacetic acid associate with two coordinated trifluoroacetate anions. The X-ray structure of bis-tetrahydrofuran 1,4-bis[10,15,20-tri(p-tolyl)porphyrinatozinc(II)-5-yl]-1,3-butadiyne complex {[(TrTP)Zn(II)(THF)]2 B} reveals two parallel, non-coplanar [(TrTP)Zn(THF)] subunits linked by the linear butadiyne moiety.
Collapse
Affiliation(s)
- Anna Berlicka
- Department of Chemistry, University of Wrocław, 50 383 Wrocław, Poland
| | | | | |
Collapse
|
38
|
Synthesis and characterization of chromium(III) octaphenylporphyrin complexes with various axial ligands: An insight into porphyrin distortion. Inorganica Chim Acta 2005. [DOI: 10.1016/j.ica.2005.01.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
39
|
Shao J, Steene E, Hoffman B, Ghosh A. EPR, ENDOR, and DFT Studies on (?-Octahalo-meso-tetraarylporphyrin)copper Complexes: Characterization of the Metal(dx2?y2)?Porphyrin(a2u) Orbital Interaction. Eur J Inorg Chem 2005. [DOI: 10.1002/ejic.200400549] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
40
|
Yatsunyk LA, Shokhirev NV, Walker FA. Magnetic Resonance Spectroscopic Investigations of the Electronic Ground and Excited States in Strongly Nonplanar Iron(III) Dodecasubstituted Porphyrins. Inorg Chem 2005; 44:2848-66. [PMID: 15819574 DOI: 10.1021/ic049089q] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of axially ligated complexes of iron(III) octamethyltetraphenylporphyrin, (OMTPP)Fe(III), octaethyltetraphenylporphyrin, (OETPP)Fe(III), its perfluorinated phenyl analogue, (F(20)OETPP)Fe(III), and tetra-(beta,beta'-tetramethylene)tetraphenylporphyrin, (TC(6)TPP)Fe(III), have been prepared and characterized by (1)H NMR spectroscopy: chloride, perchlorate, bis-4-(dimethylamino)pyridine, bis-1-methylimidazole, and bis-cyanide. Complete spectral assignments have been made using 1D and 2D techniques. The temperature dependences of the proton resonances of the complexes show significant deviations from simple Curie behavior and evidence of ligand exchange, ligand rotation, and porphyrin ring inversion at ambient temperatures. At temperatures below the point where dynamics effects contribute, the temperature dependences of the proton chemical shifts of the complexes could be fit to an expanded version of the Curie law using a temperature-dependent fitting program developed in our laboratory that includes consideration of a thermally accessible excited state. The results show that, although the ground state differs for various axial ligand complexes and is usually fully consistent with that observed by EPR spectroscopy at 4.2 K, the excited state often has S = (3)/(2) (or S = (5)/(2) in the cases where the ground state has S = (3)/(2)). The EPR spectra (4.2 K) of bis-4-(dimethylamino)pyridine and bis-1-methylimidazole complexes show "large-g(max)" signals with g(max) = 3.20 and 3.12, respectively, and the latter also shows a normal rhombic EPR signal, indicating the presence of low-spin (LS) (d(xy))(2)(d(xz),d(yz))(3) ground states for both. The bis-cyanide complex also yields a large-g(max) EPR spectrum with g = 3.49 and other features that could suggest that some molecules have the (d(xz),d(yz))(4)(d(xy))(1) ground state. The EPR spectra of all five-coordinate chloride complexes have characteristic features of predominantly S = (5)/(2) ground-state systems with admixture of 1-10% of S = (3)/(2) character.
Collapse
Affiliation(s)
- Liliya A Yatsunyk
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721-0041, USA
| | | | | |
Collapse
|
41
|
Cai S, Lichtenberger DL, Walker FA. NMR and EPR Studies of the Bis(pyridine) and Bis(tert-butyl isocyanide) Complexes of Iron(III) Octaethylchlorin. Inorg Chem 2005; 44:1890-903. [PMID: 15762715 DOI: 10.1021/ic0490876] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The NMR and EPR spectra of a series of pyridine complexes [(OEC)Fe(L)2]+ (L = 4-Me2NPy, Py, and 4-CNPy) have been investigated. The EPR spectra at 4.2 K suggest that, with a decrease of the donor strength of the axial ligands, the complexes change their ground state from (d(xy))2 (d(xz)d(yz))3 to (d(xz)d(yz))4 (d(xy))1. The NMR data from 303 to 183 K show that at any temperature within this range the chemical shifts of pyrrole-8,17-CH2 protons increase with a decrease in the donor strength of the axial ligands. The full peak assignments of the [(OEC)Fe(L)2]+ complexes of this study have been made from COSY and NOE difference experiments. The pyrrole-8,17-CH2 and pyrroline protons show large chemical shifts (hence indicating large pi spin density on the adjacent carbons which are part of the pi system), while pyrrole-12,13-CH2 and -7,18-CH2 protons show much smaller chemical shifts, as predicted by the spin densities obtained from molecular orbital calculations, both Hückel and DFT; the DFT calculations additionally show close energy spacing of the highest five filled orbitals (of the Fe(II) complex) and strong mixing of metal and chlorin character in these orbitals that is sensitive to the donor strength of the axial substituents. The pattern of chemical shifts of the pyrrole-CH2 protons of [(OEC)Fe(t-BuNC)2]+ looks somewhat like that of [(OEC)Fe(4-Me2NPy)2]+, while the chemical shifts of the meso-protons are qualitatively similar to those of [(OEP)Fe(t-BuNC)2]+. The temperature dependence of the chemical shifts of [(OEC)Fe(t-BuNC)2]+ shows that it has a mixed (d(xz)d(yz))4 (d(xy))1 and (d(xy))2 (d(xz),d(yz))3 electron configuration that cannot be resolved by temperature-dependent fitting of the proton chemical shifts, with a S = 5/2 excited state that lies somewhat more than 2kT at room temperature above the ground state; the observed pattern of chemical shifts is the approximate average of those expected for the two S = 1/2 electronic configurations, which involve the a-symmetry SOMO of a planar chlorin ring with the unpaired electron predominantly in the d(yz) orbital and the b-symmetry SOMO of a ruffled chlorin ring with the unpaired electron predominantly in the d(xy) orbital. A rapid interconversion between the two, with calculated vibrational frequency of 22 cm(-1), explains the observed pattern of chemical shifts, while a favoring of the ruffled conformation explains the negative chemical shift (and thus the negative spin density at the alpha-pyrroline ring carbons), of the pyrroline-H of [TPCFe(t-BuNC)2]CF3SO3 (Simonneaux, G.; Kobeissi, M. J. Chem. Soc., Dalton Trans. 2001, 1587-1592). Peak assignments for high-spin (OEC)FeCl have been made by saturation transfer techniques that depend on chemical exchange between this complex and its bis-4-Me2NPy adduct. The contact shifts of the pyrrole-CH2 and meso protons of the high-spin complex depend on both sigma and pi spin delocalization due to contributions from three of the occupied frontier orbitals of the chlorin ring.
Collapse
Affiliation(s)
- Sheng Cai
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721-0041, USA
| | | | | |
Collapse
|
42
|
Cai S, Belikova E, Yatsunyk LA, Stolzenberg AM, Walker FA. Magnetic Resonance and Structural Investigations of (Monooxooctaethylchlorinato)iron(III) Chloride and Its Bis(imidazole) Complex. Inorg Chem 2005; 44:1882-9. [PMID: 15762714 DOI: 10.1021/ic049088y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
(Monooxooctaethylchlorinato)iron(III) chloride, (oxo-OEC)FeCl, 1, has been investigated by X-ray crystallography and by 1H NMR spectroscopy. Its bis(imidazole-d4) complex has been studied by multidimensional 1H NMR and EPR spectroscopies, and the results are compared to those for the bis(Im-d4) complex of (octaethylchlorinato)iron(III) chloride, (OEC)FeCl, 2. EPR and NMR results show that both [(oxo-OEC)Fe(Im-d4)2]Cl and [(OEC)Fe(Im-d4)2]Cl are low-spin Fe(III) complexes with (d(xy))2 (d(xz),d(yz))3 electronic ground states, both at 4.2 K (EPR spectra) and at ambient temperatures utilized for solution NMR studies. The pattern of chemical shifts of the pyrrole-CH2 and meso protons are similar, with the 8,17-carbons having the largest and the 12,13-carbons having the smallest spin densities in each case, except that [(OEC)Fe(Im-d4)2]Cl has a slightly wider range of pyrrole-CH2 chemical shifts and more resonances are observed for [(oxo-OEC)Fe(Im-d4)2]Cl due to its lower symmetry. Full proton resonance assignments for both complexes have been made from COSY, NOESY, and NOE difference experiments.
Collapse
Affiliation(s)
- Sheng Cai
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721-0041, USA
| | | | | | | | | |
Collapse
|
43
|
Harada R, Ōkawa H, Kojima T. Synthesis, characterization, and distortion properties of vanadyl complexes of octaphenylporphyrin and dodecaphenylporphyrin. Inorganica Chim Acta 2005. [DOI: 10.1016/j.ica.2004.08.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
44
|
Rath SP, Olmstead MM, Balch AL. Oxidative Verdoheme Formation and Stabilization by Axial Isocyanide Ligation. Inorg Chem 2004; 43:7648-55. [PMID: 15554629 DOI: 10.1021/ic0491433] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effect of isocyanides as axial ligands on the formation and stability of verdoheme by oxidation has been examined. The reaction of [Fe(III)(OEPO)]2 with t-butyl isocyanide under dioxygen-free conditions results in the formation of (t-BuNC)2Fe(II)(OEPO*) with an electron paramagnetic resonance at g=2.009 with a peak-to-peak separation of 23.5 G at 4 K. (OEPO is the trianion of octaethyloxophlorin and OEPO* is the radical dianion obtained from OEPO by one-electron oxidation.) Exposure of chloroform solutions of either (2,6-xylylNC)2Fe(II)(OEPO*) or (t-BuNC)2Fe(II)(OEPO*) to dioxygen followed by the addition of ammonium hexafluorophosphate results in their transformation into the diamagnetic verdohemes, [(2,6-xylylNC)2Fe(II)(OEOP)](PF6) and [(t-BuNC)2Fe(II)(OEOP)](PF6), yields 68 and 70%, respectively. (OEOP is the anion of octaethyl-5-oxaporphyrin.) The oxidation reactions of (2,6-xylylNC)2Fe(II)(OEPO*) and (t-BuNC)2Fe(II)(OEPO*) have also been monitored by 1H NMR spectroscopy. No resonances due to paramagnetic products could be detected, the reactions appear to result only in the formation of the diamagnetic verdohemes, and the products are not susceptible to further oxidation.
Collapse
Affiliation(s)
- Sankar Prasad Rath
- Department of Chemistry, University of California at Davis, One Shields Avenue, Davis, California 95616, USA
| | | | | |
Collapse
|
45
|
Yatsunyk LA, Walker FA. NMR and EPR Spectroscopic and Structural Studies of Low-Spin, (dxz,dyz)4(dxy)1 Ground State Fe(III) Bis-tert-Butylisocyanide Complexes of Dodecasubstituted Porphyrins. Inorg Chem 2004; 43:4341-52. [PMID: 15236547 DOI: 10.1021/ic035242p] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The bis-(1,1-dimethylethylisocyanide) (tert-butylisocyanide) complexes of three iron porphyrinates (2,3,7,8,12,13,17,18-octaethyl-5,10,15,20-tetraphenylporphyrin, OETPP; 2,3,7,8,12,13,17,18-octamethyl-5,10,15,20-tetraphenylporphyrin, OMTPP; and 2,3,7,8,12,13,17,18-tetra-beta,beta'-tetramethylene-5,10,15,20-tetraphenylporphyrin, TC(6)TPP) have been prepared and studied by EPR and (1)H NMR spectroscopy. From EPR and NMR spectroscopic results it has been found that the ground states of the bis-(t-BuNC) complexes of OETPP, OMTPP, and TC(6)TPP are represented mainly (99.1-99.4%) as (d(xz,)d(yz))(4)(d(xy))(1) electron configurations, with an excited state lying 700 cm(-)(1) to higher energy for the OMTPP complex, and probably at lower and higher energies, respectively, for the OETPP and TC(6)TPP complexes. In the (1)H NMR spectra the (d(xz,)d(yz))(4)(d(xy))(1) electron configurations of all three complexes are indicated by the large and positive meso-phenyl-H shift differences, delta(m)-delta(o) and delta(m)-delta(p), and close to the diamagnetic shifts of groups (CH(3) or CH(2)) directly attached to the beta-carbons. However, in comparison to meso-only substituted porphyrinates such as [FeTPP(t-BuNC)(2)]ClO(4), the meso-phenyl shift differences are much smaller, especially for the OETPP complex. 2D NOESY spectra show that the flexibility of the porphyrin core decreases with increasing nonplanar distortion in the order TC(6)TPP > OMTPP > OETPP and in the same order the stability of the binding to t-BuNC ligands decreases. In addition, the structures of two crystalline forms of [FeOMTPP(t-BuNC)(2)]ClO(4) have been determined by X-ray crystallography. Both structures showed purely saddled porphyrin cores and somewhat off-axis binding of the isocyanide ligands. To our knowledge, this is the first example of a porphyrin complex with a purely saddled conformation that adopts the (d(xz,)d(yz))(4)(d(xy))(1) ground state. All structurally-characterized complexes of this electron configuration reported previously are ruffled. Therefore, we conclude that a ruffled geometry stabilizes the (d(xz,)d(yz))(4)(d(xy))(1) ground state, but is not necessary for its existence.
Collapse
Affiliation(s)
- Liliya A Yatsunyk
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721-0041, USA
| | | |
Collapse
|
46
|
Rath SP, Olmstead MM, Balch AL. The Effects of Axial Ligands on Electron Distribution and Spin States in Iron Complexes of Octaethyloxophlorin, Intermediates in Heme Degradation. J Am Chem Soc 2004; 126:6379-86. [PMID: 15149235 DOI: 10.1021/ja0316014] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The results presented here show that the nature of the axial ligand can alter the distribution of electrons between the metal and the porphyrin in complexes where there is an oxygen atom replacing one of the meso protons. The complexes (1-MeIm)(2)Fe(III)(OEPO) and (2,6-xylylNC)(2)Fe(II)(OEPO(*)) (where OEPO is the trianionic octaethyloxophlorin ligand and OEPO(*) is the dianionic octaethyloxophlorin radical) were prepared by addition of an excess of the appropriate axial ligand to a slurry of [Fe(III)(OEPO)](2) in chloroform under anaerobic conditions. The magnetic moment of (2,6-xylylNC)(2)Fe(II)(OEPO(*)) is temperature invariant and consistent with a simple S = (1)/(2) ground state. This complex with an EPR resonance at g = 2.004 may be considered as a model for the free-radical like EPR signal seen when the meso-hydroxylated heme/heme oxygenase complex is treated with carbon monoxide. In contrast, the magnetic moment of (1-MeIm)(2)Fe(III)(OEPO) drops with temperature and indicates a spin-state change from an S = (5)/(2) or an admixed S = (3)/(2),(5)/(2) state at high temperatures (near room temperature) to an S = (1)/(2) state at temperatures below 100 K. X-ray diffraction studies show that each complex crystallizes in centrosymmetric form with the expected six-coordinate geometry. The structure of (1-MeIm)(2)Fe(III)(OEPO) has been determined at 90, 129, and 296 K and shows a gradual and selective lengthening of the Fe-N(axial bond). This behavior is consistent with population of a higher spin state at elevated temperatures.
Collapse
Affiliation(s)
- Sankar Prasad Rath
- Department of Chemistry, University of California, Davis, California 95616, USA
| | | | | |
Collapse
|
47
|
Ohgo Y, Ikeue T, Takahashi M, Takeda M, Nakamura M. Anomalous Difference in Magnetic Behavior between Highly Saddled Iron(III) Porphyrin Complexes in the Solid State. Eur J Inorg Chem 2004. [DOI: 10.1002/ejic.200300566] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
48
|
Yatsunyk LA, Walker FA. Structural, NMR, and EPR Studies of S = 1/2 and S = 3/2 Fe(III) Bis(4-Cyanopyridine) Complexes of Dodecasubstituted Porphyrins. Inorg Chem 2003; 43:757-77. [PMID: 14731040 DOI: 10.1021/ic035010q] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The NMR and EPR spectra for three complexes, iron(III) octamethyltetraphenylporphyrin bis(4-cyanopyridine) perchlorate, [FeOMTPP(4-CNPy)(2)]ClO(4), and its octaethyl- and tetra-beta,beta'-tetramethylenetetraphenylporphyrin analogues, [FeOETPP(4-CNPy)(2)]ClO(4) and [FeTC(6)TPP(4-CNPy)(2)]ClO(4), are presented. The crystal structures of two different forms of [FeOETPP(4-CNPy)(2)]ClO(4) and one form of [FeOMTPP(4-CNPy)(2)]ClO(4) are also reported. Attempts to crystallize [FeTC(6)TPP(4-CNPy)(2)]ClO(4) were not successful. The crystal structure of [FeOMTPP(4-CNPy)(2)]ClO(4) reveals a saddled porphyrin core, a small dihedral angle between the axial ligand planes, 64.3 degrees, and an unusually large tilt angle (24.4 degrees ) of one of the axial 4-cyanopyridine ligands with respect to the normal to the porphyrin mean plane. There are 4 and 2 independent molecules in the asymmetric units of [FeOETPP(4-CNPy)(2)]ClO(4) crystallized from CD(2)Cl(2)/dodecane (1-4) and CDCl(3)/cyclohexane (5-6), respectively. The geometries of the porphyrin cores in 1-6 vary from purely saddled to saddled with 15% ruffling admixture. In all structures, the Fe-N(p) distances (1.958-1.976 A) are very short due to strong nonplanar distortion of the porphyrin cores, while the Fe-N(ax) distances are relatively long ( approximately 2.2 A) compared to the same distances in S = (1)/(2) bis(pyridine)iron(III) porphyrin complexes. An axial EPR signal is observed (g( perpendicular ) = 2.49, g( parallel ) = 1.6) in frozen solutions of both [FeOMTPP(4-CNPy)(2)]ClO(4) and [FeTC(6)TPP(4-CNPy)(2)]ClO(4) at 4.2 K, indicative of the low spin (LS, S = (1)/(2)), (d(yz)d(xz))(4)(d(xy))(1) electronic ground state for these two complexes. In agreement with a recent publication (Ikeue, T.; Ohgo, Y.; Ongayi, O.; Vicente, M. G. H.; Nakamura, M. Inorg. Chem. 2003, 42, 5560-5571), the EPR spectra of [FeOETPP(4-CNPy)(2)]ClO(4) are typical of the S = (3)/(2) state, with g values of 5.21, 4.25, and 2.07. A small amount of LS species with g = 3.03 is also present. However, distinct from previous conclusions, large negative phenyl-H shift differences delta(m) - delta(o) and delta(m) - delta(p) in the (1)H NMR spectra indicate significant negative spin density at the meso-carbons, and the larger than expected positive average CH(2) shifts are also consistent with a significant population of the S = 2 Fe(II), S = (1)/(2) porphyrin pi-cation radical state, with antiferromagnetic coupling between the metal and porphyrin unpaired electrons. This is the first example of this type of porphyrin-to-metal electron transfer to produce a partial or complete porphyrinate radical state, with antiferromagnetic coupling between metal and macrocycle unpaired electrons in an iron porphyrinate. The kinetics of ring inversion were studied for the [FeOETPP(4-CNPy)(2)]ClO(4) complex using NOESY/EXSY techniques and for the [FeTC(6)TPP(4-CNPy)(2)]ClO(4) complex using DNMR techniques. For the former, the free energy of activation, deltaG, and rate of ring inversion in CD(2)Cl(2) extrapolated to 298 K are 63(2) kJ mol(-)(1) and 59 s(-)(1), respectively, while for the latter the rate of ring inversion at 298 K is at least 4.4 x 10(7) s(-)(1), which attests to the much greater flexibility of the TC(6)TPP ring. The NMR and EPR data are consistent with solution magnetic susceptibility measurements that show S = (3)/(2) in the temperature range from 320 to 180 K for [FeOETPP(4-CNPy)(2)](+), while both [FeOMTPP(4-CNPy)(2)](+) and [FeTC(6)TPP(4-CNPy)(2)](+) change their spin state from S = (3)/(2) at room temperature to mainly LS (S = (1)/(2)) upon cooling to 180 K.
Collapse
Affiliation(s)
- Liliya A Yatsunyk
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721-0041, USA
| | | |
Collapse
|
49
|
Ikeue T, Ohgo Y, Ongayi O, Vicente MGH, Nakamura M. Difference in spin crossover pathways among saddle-shaped six-coordinated iron(III) porphyrin complexes. Inorg Chem 2003; 42:5560-71. [PMID: 12950204 DOI: 10.1021/ic0300969] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The electronic states of a series of saddle-shaped porphyrin complexes [Fe(OMTPP)L(2)](+) and [Fe(TBTXP)L(2)](+) have been examined in solution by (1)H NMR, (13)C NMR, and EPR spectroscopy and by magnetic measurements. While [Fe(OMTPP)(DMAP)(2)](+) and [Fe(TBTXP)(DMAP)(2)](+) maintain the low-spin (S = (1)/(2)) state, [Fe(OMTPP)(THF)(2)](+) and [Fe(TBTXP)(THF)(2)](+) exhibit an essentially pure intermediate-spin (S = (3)/(2)) state over a wide range of temperatures. In contrast, the Py and 4-CNPy complexes of OMTPP and TBTXP exhibit a spin transition from S = (3)/(2) to S = (1)/(2) as the temperature was decreased from 300 to 200 K. Thus, the magnetic behavior of these complexes is similar to that of [Fe(OETPP)Py(2)](+) reported in our previous paper (Ikeue, T.; Ohgo, Y.; Yamaguchi, T.; Takahashi, M.; Takeda, M.; Nakamura, M. Angew. Chem., Int. Ed. 2001, 40, 2617-2620) in the context that all these complexes exhibit a novel spin crossover phenomenon in solution. Close examination of the NMR and EPR data of [Fe(OMTPP)L(2)](+) and [Fe(TBTXP)L(2)](+) (L = Py, 4-CNPy) revealed, however, that these complexes adopt the less common (d(xz), d(yz))(4)(d(xy))(1) electron configuration at low temperature in contrast to [Fe(OETPP)Py(2)](+) which shows the common (d(xy))(2)(d(xz), d(yz))(3) electron configuration. These observations have been attributed to the flexible nature of the OMTPP and TBTXP cores as compared with that of OETPP; the relatively flexible OMTPP and TBTXP cores can ruffle the porphyrin ring and adopt the (d(xz), d(yz))(4)(d(xy))(1) electron configuration at low temperature. Therefore, this study reveals that the rigidity of porphyrin cores is an important factor in determining the spin crossover pathways.
Collapse
Affiliation(s)
- Takahisa Ikeue
- Department of Chemistry, School of Medicine, Toho University, Tokyo 143-8540, Japan
| | | | | | | | | |
Collapse
|
50
|
Caignan GA, Deshmukh R, Zeng Y, Wilks A, Bunce RA, Rivera M. The Hydroxide Complex of Pseudomonas aeruginosa Heme Oxygenase as a Model of the Low-Spin Iron(III) Hydroperoxide Intermediate in Heme Catabolism: 13C NMR Spectroscopic Studies Suggest the Active Participation of the Heme in Macrocycle Hydroxylation. J Am Chem Soc 2003; 125:11842-52. [PMID: 14505406 DOI: 10.1021/ja036147i] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
13C NMR spectroscopic studies have been conducted with the hydroxide complex of Pseudomonas aeruginosa heme oxygenase (Fe(III)-OH), where OH(-) has been used as a model of the OOH(-) ligand to gain insights regarding the elusive ferric hydroperoxide (Fe(III)-OOH) intermediate in heme catabolism at ambient temperatures. Analysis of the heme core carbon resonances revealed that the coordination of hydroxide in the distal site of the enzyme results in the formation of at least three populations of Fe(III)-OH complexes with distinct electronic configurations and nonplanar ring distortions that are in slow exchange relative to the NMR time scale. The most abundant population exhibits a spin crossover between S = (1)/(2) and S = (3)/(2) spin states, and the two less abundant populations exhibit pure, S = (3)/(2) and S = (1)/(2), (d(xy)())(1) electronic configurations. We propose that the highly organized network of water molecules in the distal pocket of heme oxygenase, by virtue of donating a hydrogen bond to the coordinated hydroxide ligand, lowers its ligand field strength, thereby increasing the field strength of the porphyrin (equatorial) ligand, which results in nonplanar deformations of the macrocycle. This tendency to deform from planarity, which is imparted by the ligand field strength of the coordinated OH(-), is likely reinforced by the flexibility of the distal pocket in HO. These findings suggest that if the ligand field strength of the coordinated OOH(-) in heme oxygenase is modulated in a similar manner, the resultant large spin density at the meso carbons and nonplanar deformations of the pophyrin ring prime the macrocycle to actively participate in its own hydroxylation.
Collapse
Affiliation(s)
- Gregori A Caignan
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66045-7582, USA
| | | | | | | | | | | |
Collapse
|