1
|
Kumar Rai R, Islam A, Shankar Pati R, Roy G. Cleavage of a Peroxide Bond via a Dual Attack by Functional Mimics of Glutathione Peroxidase. Chemistry 2025; 31:e202403483. [PMID: 39417606 DOI: 10.1002/chem.202403483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/19/2024]
Abstract
Nonmetal-containing peroxidase enzymes, including glutathione peroxidase (GPx), and peroxiredoxins, control cellular redox levels by catalyzing the reduction of H2O2. The remarkably higher reactivity of GPx enzyme as compared to the fully dissociated synthetic selenolate/thiolate molecule is probably due to the dual-attack on the peroxide bond (HO1-O2H) by the enzyme; The first one is a nucleophilic attack of the selenolate/thiolate moiety to O1 atom and the second attack at the O2 atom of the peroxide bond by the acidic "parked proton" from Trp or His residue present at the enzyme's active site, leading to the facile cleavage of O-O bond. Herein, we report two synthetic compounds (1 and 2), having a selenolate (Se-) and a proton donor (imidazolium or -COOH group) moieties, which showed excellent GPx-like activity via dual-attack on the peroxide bond. The combined effect of selenolate moiety that donates electrons to the antibonding (σ*) orbital of O1-O2 bond and the imidazolium or carboxylic acid moiety at the side chain that forms a strong H-bonding with the O2 atom facilitates O-O bond cleavage of H2O2 more efficiently. 1 and 2 exhibit remarkable ability in protecting Cu(I)-complex [TpmCu(CH3CN)]+ (9) against H2O2 by acting as a sacrificial antioxidant, thereby preventing metal-mediated ROS production.
Collapse
Affiliation(s)
- Rakesh Kumar Rai
- Department of Chemistry, Indian Institute of Technology Tirupati, Tirupati, A.P., 517619, India
| | - Amirul Islam
- Department of Chemistry, Indian Institute of Technology Tirupati, Tirupati, A.P., 517619, India
| | - Rudra Shankar Pati
- Department of Chemistry, Indian Institute of Technology Tirupati, Tirupati, A.P., 517619, India
| | - Gouriprasanna Roy
- Department of Chemistry, Indian Institute of Technology Tirupati, Tirupati, A.P., 517619, India
| |
Collapse
|
2
|
Chhillar B, Sodhi N, Kadian R, Neres ER, Yadav M, Kundu M, Venkatareddy VK, Malakalapalli RR, Rafique J, Saba S, Singh VP. Naphthalene peri-Diselenide-Based BODIPY Probe for the Detection of Hydrogen Peroxide, tert-Butylhydroperoxide, Hydroxyl Radical, and Peroxynitrite Ion. ACS OMEGA 2025; 10:6396-6405. [PMID: 40028082 PMCID: PMC11865972 DOI: 10.1021/acsomega.4c05366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 03/05/2025]
Abstract
Dimethoxynaphthalene peri-diselenide-based BODIPY (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) probe has been synthesized. The probe demonstrated selectivity and sensitivity for hydrogen peroxide (H2O2) and tert-butylhydroperoxide (t-BuOOH), hydroxyl radical (•OH), and peroxynitrite ion (ONOO-) detection and reversibility upon treatment with glutathione. The limits of detection of the probe were observed to be 0.40 μM for H2O2, 0.41 μM for t-BuOOH, 0.95 μM for •OH, and 0.46 μM for ONOO-, respectively. A proposed mechanism for the "turn-on" event has been suggested and corroborated by spectroscopic and computational data. It has been proposed that electron transfer occurred from the Se center to the BODIPY moiety, followed by the photoinduced electron transfer (PET) mechanism.
Collapse
Affiliation(s)
- Babli Chhillar
- Department
of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh 160014, India
| | - Nikhil Sodhi
- Department
of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh 160014, India
| | - Rajni Kadian
- Department
of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh 160014, India
| | - Eliane Ribeiro Neres
- LabSO,
Instituto de Química – IQ, Universidade Federal de Goiás – UFG, Goiânia 74690-900, GO, Brazil
| | - Manisha Yadav
- Department
of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh 160014, India
| | - Manisha Kundu
- Department
of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh 160014, India
| | - Vinutha K. Venkatareddy
- Department
of Chemistry, Indian Institute of Technology
Dharwad, WALMI Campus, Dharwad 580011, Karnataka, India
| | - Rajeswara Rao Malakalapalli
- Department
of Chemistry, Indian Institute of Technology
Dharwad, WALMI Campus, Dharwad 580011, Karnataka, India
| | - Jamal Rafique
- LabSO,
Instituto de Química – IQ, Universidade Federal de Goiás – UFG, Goiânia 74690-900, GO, Brazil
- Instituto
de Química – INQUI, Universidade
Federal do Mato Grosso do Sul – UFMS, Campo Grande 79074-460, MS, Brazil
| | - Sumbal Saba
- LabSO,
Instituto de Química – IQ, Universidade Federal de Goiás – UFG, Goiânia 74690-900, GO, Brazil
| | - Vijay P. Singh
- Department
of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh 160014, India
- Instituto
de Química – INQUI, Universidade
Federal do Mato Grosso do Sul – UFMS, Campo Grande 79074-460, MS, Brazil
| |
Collapse
|
3
|
Chari VR, Behera RN. Reduction of hydrogen peroxide by amine-based diselenides: understanding the effect of substitutions on reactivity. J Mol Model 2025; 31:87. [PMID: 39964569 DOI: 10.1007/s00894-025-06313-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 02/07/2025] [Indexed: 03/09/2025]
Abstract
CONTEXT Many small organoselenium compounds, such as substituted diselenides, mimic the glutathione peroxidase (GPx) activity by catalysing the reduction of hydrogen peroxide. In this context, the effect of substitution in di-2(N-cyclohexyl,N-(methylamino)-methyl)phenyl diselenide (CMP) on its GPx-like activity (to reduce hydrogen peroxide) has been investigated using the density functional theory. It was observed that the presence of an electron donating group as well as secondary amino group (instead of tertiary one) favoured the peroxide reduction process, which is consistent with the experimental reports. This study revealed that the presence of electron donating group lowers the energy requirement for distortion in zwitterion of the selenol during the progress of the reaction, thereby enhancing its catalytic activity. METHODS Geometry optimizations, Natural Bond Order (NBO) and the wavefunction calculations were carried out using Gaussian16 software at B3PW91/6-31+G(d,p) level of theory. Improved energy calculations were carried out at B3PW91/6-311++ G(3df,3pd)//B3PW91/6-31+G(d,p) level of theory. The solvent effect was modelled using the self-consistent reaction field (SCRF) method utilizing polarizable continuum model (PCM). Activation Strain Model was used to study the contributions of the steric and electronic effects due to substitutions. Wavefunction analysis was carried out using Multiwfn software.
Collapse
Affiliation(s)
- Vishnu Rama Chari
- Department of Chemistry, Birla Institute of Technology and Science Pilani, K. K. Birla Goa Campus, Zuarinagar, 403726, Goa, India
- School of Chemical Sciences, Goa University, Taleigao Plateau, 403206, Goa, India
| | - Raghu Nath Behera
- Department of Chemistry, Birla Institute of Technology and Science Pilani, K. K. Birla Goa Campus, Zuarinagar, 403726, Goa, India.
| |
Collapse
|
4
|
Qian JY, Lou CY, Chen YL, Ma LF, Hou W, Zhan ZJ. A prospective therapeutic strategy: GPX4-targeted ferroptosis mediators. Eur J Med Chem 2025; 281:117015. [PMID: 39486214 DOI: 10.1016/j.ejmech.2024.117015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
As a crucial regulator of oxidative homeostasis, seleno-protein glutathione peroxidase 4 (GPX4) represents the primary defense system against ferroptosis, making it a promising target with important clinical application prospects. From the discovery of covalent and allosteric sites in GPX4, substantial advancements in GPX4-targeted small molecules have been made through diverse discovery and design strategies in recent years. Moreover, as an emerging hotspot in drug development, seleno-organic compounds can functionally mimic GPX4 to reduce hydroperoxides. To facilitate the further development of selective ferroptosis mediators as potential pharmaceutical agents, this review comprehensively covers all GPX4-targeted small molecules, including inhibitors, degraders, and activators. In addition, seleno-organic compounds as GPX mimics are also included. We also provide perspectives regarding challenges and future research directions in this field.
Collapse
Affiliation(s)
- Jia-Yu Qian
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Chao-Yuan Lou
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Yi-Li Chen
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Lie-Feng Ma
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Wei Hou
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Zha-Jun Zhan
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China.
| |
Collapse
|
5
|
Parganiha D, Thorat RA, Dhumale AD, Upadhyay YD, Jha RK, Raju S, Kumar S. Substrate NOBINAc ligand affinity for Pd II-catalyzed enantioselective C-H activation over reactive β-C-H bonds in ferrocenyl amines. Chem Sci 2025; 16:700-708. [PMID: 39677938 PMCID: PMC11641393 DOI: 10.1039/d4sc06867j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/30/2024] [Indexed: 12/17/2024] Open
Abstract
Ferrocenyl amines as directing groups for C-H activation have limitations as they are prone to undergo oxidation, allylic deamination, and β-hydride elimination. The fundamental challenge observed here is the competition between the desired C-H activation versus the vulnerable β-C-H bond activation of amines and fine-tuning of a suitable oxidant which avoids the oxidation of the β-C-H bond and ferrocene. Herein, the potential of an axially chiral NOBINAc ligand is revealed to implement the enantioselective PdII-catalyzed C-H activation process of ferrocenyl amines. Mechanistically, the affinity between the NOBINAc ligand and sulfonate group of amine facilitated by the Cs+ cation plays an impressive role in the desired reaction outcome via an enhanced substrate ligand affinity. This approach resulted in a Pd-catalyzed enantioselective C-H activation, the first intermolecular annulation, and alkenylation of ferrocenyl amines with allenes and olefins, leading to ferrocene fused tetrahydropyridines and alkenylated ferrocenyl amines with up to 70% yields and 99 : 1 er.
Collapse
Affiliation(s)
- Devendra Parganiha
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal By-Pass Road Bhopal Madhya Pradesh 462066 India
| | - Raviraj Ananda Thorat
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal By-Pass Road Bhopal Madhya Pradesh 462066 India
| | - Ashwini Dilip Dhumale
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal By-Pass Road Bhopal Madhya Pradesh 462066 India
| | - Yagya Dutt Upadhyay
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal By-Pass Road Bhopal Madhya Pradesh 462066 India
| | - Raushan Kumar Jha
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal By-Pass Road Bhopal Madhya Pradesh 462066 India
| | - Saravanan Raju
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal By-Pass Road Bhopal Madhya Pradesh 462066 India
| | - Sangit Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal By-Pass Road Bhopal Madhya Pradesh 462066 India
| |
Collapse
|
6
|
Batabyal M, Chaurasia D, Panda PR, Jha RK, Kadu R, Kumar S. Benzoimidazolyl Organoseleniums: Antioxidant Activity and Catalysts for Selective Iodination of Arenes and Nitro-Michael Reaction. J Org Chem 2024; 89:14328-14340. [PMID: 39283162 DOI: 10.1021/acs.joc.4c01757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Here, the synthesis and catalytic activities of benzoimidazole-derived organoselenium compounds have been explored. The synthesized bis(2-benzoimidazolyl) diselenide, having increased Lewis acidity on the selenium center, outperforms simple phenyl and N-phenyl benzamide-based diselenides when compared for thiol peroxidase hydrogen peroxide decomposing antioxidant activity with a reduction rate of 18.6 ± 1.9 μM/s. The synthesized diselenide also acted as an efficient catalyst for the activation of N-iodo-succinimide toward the regioselective, monoiodination of electron-rich arenes and activation of nitro-alkene for nitro-Michael reactions for the first time.
Collapse
Affiliation(s)
- Monojit Batabyal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal by-pass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Deeksha Chaurasia
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal by-pass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Priyanka Rani Panda
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal by-pass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Raushan Kumar Jha
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal by-pass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Rahul Kadu
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal by-pass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
- MIT School of Engineering, MIT Art, Design and Technology University, Pune, Maharashtra 412201, India
| | - Sangit Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal by-pass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| |
Collapse
|
7
|
Gallo-Rodriguez C, Rodriguez JB. Organoselenium Compounds in Medicinal Chemistry. ChemMedChem 2024; 19:e202400063. [PMID: 38778500 DOI: 10.1002/cmdc.202400063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/09/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
The chemical and biological interest in this element and the molecules bearing selenium has been exponentially growing over the years. Selenium, formerly designated as a toxin, becomes a vital trace element for life that appears as selenocysteine and its dimeric form, selenocystine, in the active sites of selenoproteins, which catalyze a wide variety of reactions, including the detoxification of reactive oxygen species and modulation of redox activities. From the point of view of drug developments, organoselenium drugs are isosteres of sulfur-containing and oxygen-containing drugs with the advantage that the presence of the selenium atom confers antioxidant properties and high lipophilicity, which would increase cell membrane permeation leading to better oral bioavailability. This statement is the paramount relevance considering the big number of clinically employed compounds bearing sulfur or oxygen atoms in their structures including nucleosides and carbohydrates. Thus, in this article we have focused on the relevant features of the application of selenium in medicinal chemistry. With the increasing interest in selenium chemistry, we have attempted to highlight the most significant published data on this subject, mainly concentrating the analysis on the last years. In consequence, the recent advances of relevant pharmacological organoselenium compounds are discussed.
Collapse
Affiliation(s)
- Carola Gallo-Rodriguez
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), C1428EHA, Buenos Aires, Argentina
| | - Juan B Rodriguez
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos, Aires, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), C1428EHA, Buenos Aires, Argentina
| |
Collapse
|
8
|
Hilal B, Khan MM, Fariduddin Q. Recent advancements in deciphering the therapeutic properties of plant secondary metabolites: phenolics, terpenes, and alkaloids. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108674. [PMID: 38705044 DOI: 10.1016/j.plaphy.2024.108674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/28/2024] [Indexed: 05/07/2024]
Abstract
Plants produce a diverse range of secondary metabolites that serve as defense compounds against a wide range of biotic and abiotic stresses. In addition, their potential curative attributes in addressing various human diseases render them valuable in the development of pharmaceutical drugs. Different secondary metabolites including phenolics, terpenes, and alkaloids have been investigated for their antioxidant and therapeutic potential. A vast number of studies evaluated the specific compounds that possess crucial medicinal properties (such as antioxidative, anti-inflammatory, anticancerous, and antibacterial), their mechanisms of action, and potential applications in pharmacology and medicine. Therefore, an attempt has been made to characterize the secondary metabolites studied in medicinal plants, a brief overview of their biosynthetic pathways and mechanisms of action along with their signaling pathways by which they regulate various oxidative stress-related diseases in humans. Additionally, the biotechnological approaches employed to enhance their production have also been discussed. The outcome of the present review will lead to the development of novel and effective phytomedicines in the treatment of various ailments.
Collapse
Affiliation(s)
- Bisma Hilal
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | | | - Qazi Fariduddin
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
9
|
Batabyal M, Jaiswal S, Jha RK, Kumar S. Directing Group Strategy for the Isolation of Organoselenium(VI) Benzoselenonates: Metal-Free Catalysts for Hydrogen Evolution Reaction. J Am Chem Soc 2024; 146:57-61. [PMID: 38109785 DOI: 10.1021/jacs.3c10572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The exploration of fourth-period organoelements, particularly organoseleniums in their highest VI oxidation state, is limited owing to their stability and synthesis. Herein, the isolation of a new class of quinolinyl-embedded, hexavalent selenium(VI) benzoselenonates has been discussed and further evaluated for a metal-free electrocatalytic hydrogen evolution reaction (HER). The Se(VI) benzoselenonates exhibited high Faradaic efficiency (F.E.) of metal-free H2 gas production up to 86% with a very good turnover number (TON) up to 43 and moderate overpotential (η) of 500 mV; in the presence of mild acetic acid source in a less deprotonating DMF solvent. Taken together with various (NMR, UV-vis, and EPR) spectroscopic and DFT computation studies, a plausible HER pathway is proposed, which suggests that the electrochemical reduction of quinolinyl ring is the initiation step and Se(VI) acts as the reaction site by involving a hydridic type of intermediate for the electrochemical H2 gas generation.
Collapse
Affiliation(s)
- Monojit Batabyal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India
| | - Svastik Jaiswal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India
| | - Raushan Kumar Jha
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India
| | - Sangit Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India
| |
Collapse
|
10
|
Lee S, Sim J, Lee A. Base-Catalyzed One-Pot Synthesis of Selenosulfides: A Base Basicity-Controlled Approach. J Org Chem 2024; 89:748-755. [PMID: 38127795 DOI: 10.1021/acs.joc.3c02126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
We developed a novel and efficient sequential one-pot synthesis of selenosulfides via a base-catalyzed methodology utilizing readily available starting compounds, under mild reaction conditions. This method eliminated the need for excess oxidants or additives and simplified the synthesis procedure. Furthermore, organic amine bases served as exceptional catalysts for synthesizing the target products. The performance of a catalytic system depends on the basicity of the bases. The selection of suitable bases, based on their pKaH values, is crucial for the selective synthesis of selenosulfides without the formation of byproducts. This method provides a direct route for the preparation of selenosulfides, which are important scaffolds in organic chemistry.
Collapse
|
11
|
Maurya SK, Tripathi A, Karuthapandi S, Singh HB. Synthesis and glutathione peroxidase (GPx)-like activity of selenocystine (SeC) bioconjugates of biotin and lipoic acid. Amino Acids 2023; 55:1981-1989. [PMID: 37971575 DOI: 10.1007/s00726-023-03348-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/10/2023] [Indexed: 11/19/2023]
Abstract
The conjugation of active biomolecules provides insight into their bioreactivity, leading to many applications in biotechnology and materials science. Herein, we report L-selenocystine (SeC) bioconjugates of lipoic acid (universal antioxidant) and biotin (Vitamin-H). The SeC-bioconjugates, SeC-Biotin (1) and SeC-Lipoic acid (2) were synthesized using solid phase peptide synthesis (SPPS) method and were characterized by multinuclear 1D (1H, 13C, 77Se) and 2D (1H-1H COSY and 1H-13C TOCSY) NMR spectroscopy, ESI-MS spectrometry, and RP-HPLC. The GPx-like enzyme mimicking activity of the SeC-bioconjugates 1 and 2 has been investigated through the coupled reductase assay method for the catalytic reductions of hydrogen peroxide into water. A significant enhancement in GPx-like enzymatic activity was observed for both novel bioconjugates SeC-Biotin (1) and SeC-Lipoic acid (2) as compared to diphenyl diselenide (Ph2Se2), L-selenocystine (SeC), biotin, lipoic acid, and ebselen.
Collapse
Affiliation(s)
- Shakti K Maurya
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Abhishek Tripathi
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Selvakumar Karuthapandi
- Department of Chemistry, School of Advanced Sciences, VIT-AP University, Amaravati, AP, 522241, India.
| | - Harkesh B Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
12
|
Sonego JM, de Diego SI, Szajnman SH, Gallo-Rodriguez C, Rodriguez JB. Organoselenium Compounds: Chemistry and Applications in Organic Synthesis. Chemistry 2023; 29:e202300030. [PMID: 37378970 DOI: 10.1002/chem.202300030] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/18/2023] [Accepted: 06/28/2023] [Indexed: 06/29/2023]
Abstract
Selenium, originally described as a toxin, turns out to be a crucial trace element for life that appears as selenocysteine and its dimer, selenocystine. From the point of view of drug developments, selenium-containing drugs are isosteres of sulfur and oxygen with the advantage that the presence of the selenium atom confers antioxidant properties and high lipophilicity, which would increase cell membrane permeation leading to better oral bioavailability. In this article, we have focused on the relevant features of the selenium atom, above all, the corresponding synthetic approaches to access a variety of organoselenium molecules along with the proposed reaction mechanisms. The preparation and biological properties of selenosugars, including selenoglycosides, selenonucleosides, selenopeptides, and other selenium-containing compounds will be treated. We have attempted to condense the most important aspects and interesting examples of the chemistry of selenium into a single article.
Collapse
Affiliation(s)
- Juan M Sonego
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| | - Sheila I de Diego
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| | - Sergio H Szajnman
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| | - Carola Gallo-Rodriguez
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), C1428EHA, Buenos Aires, Argentina
| | - Juan B Rodriguez
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| |
Collapse
|
13
|
Pálla T, Mirzahosseini A, Noszál B. Properties of Selenolate-Diselenide Redox Equilibria in View of Their Thiolate-Disulfide Counterparts. Antioxidants (Basel) 2023; 12:antiox12040822. [PMID: 37107197 PMCID: PMC10134987 DOI: 10.3390/antiox12040822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/19/2023] [Accepted: 03/25/2023] [Indexed: 03/30/2023] Open
Abstract
Selenium, the multifaceted redox agent, is characterized in terms of oxidation states, with emphasis on selenol and diselenide in proteinogenic compounds. Selenocysteine, selenocystine, selenocysteamine, and selenocystamine are depicted in view of their co-dependent, interfering acid-base, and redox properties. The pH-dependent, apparent (conditional), and pH-independent, highly specific, microscopic forms of the redox equilibrium constants are described. Experimental techniques and evaluation methods for the determination of the equilibrium and redox parameters are discussed, with a focus on nuclear magnetic resonance spectroscopy, which is the prime technique to observe selenium properties in organic compounds. The correlation between redox, acid-base, and NMR parameters is shown in diagrams and tables. The fairly accessible NMR and acid-base parameters are discussed to assess the predictive power of these methods to estimate the site-specific redox properties of selenium-containing moieties in large molecules.
Collapse
|
14
|
Kumar M, Chhillar B, Verma D, Nain S, Singh VP. Introduction of Methyl Group in Substituted Isoselenazolones: Catalytic and Mechanistic Study. J Org Chem 2023; 88:4273-4285. [PMID: 36930142 DOI: 10.1021/acs.joc.2c02831] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Copper-catalyzed direct selenation of substituted 2-bromo-N-phenylbenzamide substrates with elemental selenium powder provided a series of methoxy-substituted isoselenazolones via the C-Se and Se-N bond formations. Phenolic substituted isoselenazolones have been obtained by O-demethylation of the corresponding methoxy-substituted analogues using boron tribromide. Some isoselenazolones have been structurally characterized by X-ray single-crystal analysis. The glutathione peroxidase (GPx)-like antioxidant activity of isoselenazolones has been evaluated both in thiophenol and coupled-reductase assays. All isoselenazolones showed good GPx-like activities in the coupled-reductase assay. The ferric-reducing antioxidant power of phenolic antioxidants has also been evaluated. The best phenolic antioxidants were found to be good ferric-reducing antioxidant power agents. The single electron transfer, hydrogen atom transfer, and proton-coupled electron transfer mechanisms for the antioxidant properties of all catalysts have been supported by density functional theory calculations. The catalytic cycle was proposed for one of the phenolic isoselenazolones involving diselenide, selenenyl sulfide, selenol, and selenenic acid as intermediates using 77Se{1H} NMR spectroscopy.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh 160 014, India
| | - Babli Chhillar
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh 160 014, India
| | - Divya Verma
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh 160 014, India
| | - Sumit Nain
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh 160 014, India
| | - Vijay P Singh
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh 160 014, India
| |
Collapse
|
15
|
Synthesis and characterization of unsymmetrical Selenoethers: Facile cleavage of the Se-C bond. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2022.121289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Liu J, Zhou M, Deng R, Zheng P, Chi YR. Chalcogen bond-guided conformational isomerization enables catalytic dynamic kinetic resolution of sulfoxides. Nat Commun 2022; 13:4793. [PMID: 35970848 PMCID: PMC9378665 DOI: 10.1038/s41467-022-32428-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/01/2022] [Indexed: 11/29/2022] Open
Abstract
Conformational isomerization can be guided by weak interactions such as chalcogen bonding (ChB) interactions. Here we report a catalytic strategy for asymmetric access to chiral sulfoxides by employing conformational isomerization and chalcogen bonding interactions. The reaction involves a sulfoxide bearing two aldehyde moieties as the substrate that, according to structural analysis and DFT calculations, exists as a racemic mixture due to the presence of an intramolecular chalcogen bond. This chalcogen bond formed between aldehyde (oxygen atom) and sulfoxide (sulfur atom), induces a conformational locking effect, thus making the symmetric sulfoxide as a racemate. In the presence of N-heterocyclic carbene (NHC) as catalyst, the aldehyde moiety activated by the chalcogen bond selectively reacts with an alcohol to afford the corresponding chiral sulfoxide products with excellent optical purities. This reaction involves a dynamic kinetic resolution (DKR) process enabled by conformational locking and facile isomerization by chalcogen bonding interactions.
Collapse
Affiliation(s)
- Jianjian Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Mali Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Rui Deng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Pengcheng Zheng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China.
| | - Yonggui Robin Chi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China.
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore.
| |
Collapse
|
17
|
Rai RK, Karri R, Dubey KD, Roy G. Regulation of Tyrosinase Enzyme Activity by Glutathione Peroxidase Mimics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9730-9747. [PMID: 35861245 DOI: 10.1021/acs.jafc.2c02359] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hydrogen peroxide plays a crucial role in the melanogenesis process by regulating the activity of the key melanin-forming enzyme tyrosinase, responsible for the browning of fruits, vegetables, and seafood. Therefore, a molecule with dual activities, both efficient tyrosinase inhibition and strong hydrogen peroxide degrading ability, may act as a promising antibrowning agent. Herein, we report highly efficient selone-based mushroom tyrosinase inhibitors 2 and 3 with remarkable glutathione peroxidase (GPx) enzyme-like activity. The presence of benzimidazole moiety enhances the tyrosinase inhibition efficiency of selone 2 (IC50 = 0.4 μM) by almost 600 times higher than imidazole-based selone 1 (IC50 = 238 μM). Interestingly, the addition of another aromatic ring to the benzimidazole moiety has led to the development of an efficient lipid-soluble tyrosinase inhibitor 3 (IC50 = 2.4 μM). The selenium center and the -NH group of 2 and 3 are extremely crucial to exhibit high GPx-like activity and tyrosinase inhibition potency. The hydrophobic moiety of the inhibitors (2 and 3) further assists them in tightly binding at the active site of the enzyme and facilitates the C═Se group to strongly coordinate with the copper ions. Inhibitor 2 exhibited excellent antibrowning and polyphenol oxidase inhibition properties in banana and apple juice extracts.
Collapse
Affiliation(s)
- Rakesh Kumar Rai
- Department of Chemistry, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh 517506, India
| | - Ramesh Karri
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Kshatresh Dutta Dubey
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Gouriprasanna Roy
- Department of Chemistry, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh 517506, India
| |
Collapse
|
18
|
Villamizar C CP, Sharma P, Anzaldo B, Gonzalez R, Gutierrez R, Kumar A. 1,2-Disubstituted ferrocenylated hybrid water-soluble selenoether and telluroether ligands and their palladium complexes: CV and variable temperature NMR studies. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
19
|
Batabyal M, Upadhyay A, Kadu R, Birudukota NC, Chopra D, Kumar S. Tetravalent Spiroselenurane Catalysts: Intramolecular Se···N Chalcogen Bond-Driven Catalytic Disproportionation of H 2O 2 to H 2O and O 2 and Activation of I 2 and NBS. Inorg Chem 2022; 61:8729-8745. [PMID: 35638247 DOI: 10.1021/acs.inorgchem.2c00651] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chalcogen-bonding interactions have recently gained considerable attention in the field of synthetic chemistry, structure, and bonding. Here, three organo-spiroselenuranes, having a Se(IV) center with a strong intramolecular Se···N chalcogen-bonded interaction, have been isolated by the oxidation of the respective bis(2-benzamide) selenides derived from an 8-aminoquinoline ligand. Further, the synthesized spiroselenuranes, when assayed for their antioxidant activity, show disproportionation of hydrogen peroxide into H2O and O2 with first-order kinetics with respect to H2O2 for the first time by any organoselenium molecules as monitored by 1H NMR spectroscopy. Electron-donating 5-methylthio-benzamide ring-substituted spiroselenurane disproportionates hydrogen peroxide at a high rate of 15.6 ± 0.4 × 103 μM min-1 with a rate constant of 8.57 ± 0.50 × 10-3 s-1, whereas 5-methoxy and unsubstituted-benzamide spiroselenuranes catalyzed the disproportionation of H2O2 at rates of 7.9 ± 0.3 × 103 and 2.9 ± 0.3 × 103 μM min-1 with rate constants of 1.16 ± 0.02 × 10-3 and 0.325 ± 0.025 × 10-3 s-1, respectively. The evolved oxygen gas from the spiroselenurane-catalyzed disproportion of H2O2 has also been confirmed by a gas chromatograph-thermal conductivity detector (GCTCD) and a portable digital polarographic dissolved O2 probe. Additionally, the synthesized spiroselenuranes exhibit thiol peroxidase antioxidant activities for the reduction of H2O2 by a benzenethiol co-reductant monitored by UV-visible spectroscopy. Next, the Se···N bonded spiroselenuranes have been explored as catalysts in synthetic oxidation iodolactonization and bromination of arenes. The synthesized spiroselenurane has activated I2 toward the iodolactonization of alkenoic acids under base-free conditions. Similarly, efficient chemo- and regioselective monobromination of various arenes with NBS catalyzed by chalcogen-bonded synthesized spiroselenuranes has been achieved. Mechanistic insight into the spiroselenuranes in oxidation reactions has been gained by 77Se NMR, mass spectrometry, UV-visible spectroscopy, single-crystal X-ray structure, and theoretical (DFT, NBO, and AIM) studies. It seems that the highly electrophilic nature of the selenium center is attributed to the presence of an intramolecular Se···N interaction and a vacant coordination site in spiroselenuranes is crucial for the activation of H2O2, I2, and NBS. The reaction of H2O2, I2, and NBS with tetravalent spiroselenurane would lead to an octahedral-Se(VI) intermediate, which is reduced back to Se(IV) due to thermodynamic instability of selenium in its highest oxidation state and the presence of a strong intramolecular N-donor atom.
Collapse
Affiliation(s)
- Monojit Batabyal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri Bhopal 462 066, Madhya Pradesh, India
| | - Aditya Upadhyay
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri Bhopal 462 066, Madhya Pradesh, India
| | - Rahul Kadu
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri Bhopal 462 066, Madhya Pradesh, India.,MIT School of Engineering, MIT Art, Design and Technology University Pune, Loni Kalbhor, Maharashtra 412201, India
| | - Nihal Chaitanya Birudukota
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri Bhopal 462 066, Madhya Pradesh, India
| | - Deepak Chopra
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri Bhopal 462 066, Madhya Pradesh, India
| | - Sangit Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri Bhopal 462 066, Madhya Pradesh, India
| |
Collapse
|
20
|
Wang J, Lu X, Tan X, Yan Y, Zhang P, Chao S, Liu L, Shang X, Chu Z. Electrophilic Selenocyanogen Cyclization of Alkynes; Synthesis of Benzofurylselenocyanates, Benzothienylselenocyanates and Indolylselenocyanates. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Jia Wang
- School of Basic Medical Sciences Xinxiang Medical University Xinxiang Henan, 453003 People's Republic of China
| | - Xiao‐Xiao Lu
- School of Basic Medical Sciences Xinxiang Medical University Xinxiang Henan, 453003 People's Republic of China
| | - Xin‐Qiang Tan
- School of Basic Medical Sciences Xinxiang Medical University Xinxiang Henan, 453003 People's Republic of China
| | - Yun‐Hui Yan
- School of Basic Medical Sciences Xinxiang Medical University Xinxiang Henan, 453003 People's Republic of China
| | - Pengbo Zhang
- School of Public Health Xinxiang Medical University Xinxiang Henan 453003 People's Republic of China
| | - Shu‐Jun Chao
- School of Basic Medical Sciences Xinxiang Medical University Xinxiang Henan, 453003 People's Republic of China
| | - Lixia Liu
- School of Basic Medical Sciences Xinxiang Medical University Xinxiang Henan, 453003 People's Republic of China
| | - Xuefang Shang
- School of Basic Medical Sciences Xinxiang Medical University Xinxiang Henan, 453003 People's Republic of China
| | - Zhi‐Li Chu
- School of Basic Medical Sciences Xinxiang Medical University Xinxiang Henan, 453003 People's Republic of China
| |
Collapse
|
21
|
Alnemari RM, Brüßler J, Keck CM. Assessing the Oxidative State of the Skin by Combining Classical Tape Stripping with ORAC Assay. Pharmaceuticals (Basel) 2022; 15:ph15050520. [PMID: 35631347 PMCID: PMC9146784 DOI: 10.3390/ph15050520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 12/31/2022] Open
Abstract
The antioxidant barrier system of the skin acts as the main defence against environmental pro-oxidants. Impaired skin oxidative state is linked to unhealthy conditions such as skin autoimmune diseases and cancer. Thus, the evaluation of the overall oxidative state of the skin plays a key role in further understanding and prevention of these disorders. This study aims to present a novel ex vivo model to evaluate the skin oxidative state by the measurement of its antioxidant capacity (AOC). For this the ORAC assay was combined with classical tape stripping and infrared densitometry to evaluate the oxidative state of the stratum corneum (SC). Outcomes implied the suitability of the used model to determine the intrinsic antioxidant capacity (iAOC) of the skin. The average iAOC of untreated skin was determined as 140 ± 7.4 µM TE. Skin exposure to UV light for 1 h reduced the iAOC by about 17%, and exposure for 2 h decreased the iAOC by about 30%. Treatment with ascorbic acid (AA) increased the iAOC in a dose-dependent manner and reached an almost two-fold iAOC when 20% AA solution was applied on the skin. The application of coenzyme Q10 resulted in an increase in the iAOC at low doses but decreased the iAOC when doses > 1% were applied on the skin. The results show that the combination of classical tape stripping and ORAC assay is a cost-effective and versatile method to evaluate the skin oxidative state and the pro-oxidate and antioxidative effects of topical skin treatments on the iAOC of the skin. Therefore, the model can be considered to be a valuable tool in skin research.
Collapse
|
22
|
Haridas A, Bedajna S, Ghosh S. Substitution at B-H vertices of group 5 metallaborane clusters. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2021.122250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Design, Synthesis, and Anticancer Activity of a Selenium-Containing Galectin-3 and Galectin-9N Inhibitor. Int J Mol Sci 2022; 23:ijms23052581. [PMID: 35269724 PMCID: PMC8910629 DOI: 10.3390/ijms23052581] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 12/24/2022] Open
Abstract
Galectins are soluble β-D-galactoside-binding proteins whose implication in cancer progression and disease outcome makes them prominent targets for therapeutic intervention. In this frame, the development of small inhibitors that block selectively the activity of galectins represents an important strategy for cancer therapy which is, however, still relatively underdeveloped. To this end, we designed here a rationally and efficiently novel diglycosylated compound, characterized by a selenoglycoside bond and the presence of a lipophilic benzyl group at both saccharide residues. The relatively high binding affinity of the new compound to the carbohydrate recognition domain of two galectins, galectin 3 and galectin 9, its good antiproliferative and anti-migration activity towards melanoma cells, as well as its anti-angiogenesis properties, pave the way for its further development as an anticancer agent.
Collapse
|
24
|
Someșan A, Vieriu S, Crăciun A, Silvestru C, Chiroi P, Nutu A, Jurj A, Lajos R, Berindan‐Neagoe I, Varga RA. C
,
O
‐Chelated organotin(IV) derivatives as potential anticancer agents: Synthesis, characterization, and cytotoxic activity. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Adrian‐Alexandru Someșan
- Supramolecular Organic and Organometallic Chemistry Centre, Department of Chemistry and Chemical Engineering Babeș‐Bolyai University Cluj‐Napoca Romania
| | - Sabina‐Mădălina Vieriu
- Supramolecular Organic and Organometallic Chemistry Centre, Department of Chemistry and Chemical Engineering Babeș‐Bolyai University Cluj‐Napoca Romania
| | - Alexandru Crăciun
- Supramolecular Organic and Organometallic Chemistry Centre, Department of Chemistry and Chemical Engineering Babeș‐Bolyai University Cluj‐Napoca Romania
| | - Cristian Silvestru
- Supramolecular Organic and Organometallic Chemistry Centre, Department of Chemistry and Chemical Engineering Babeș‐Bolyai University Cluj‐Napoca Romania
| | - Paul Chiroi
- Research Center for Functional Genomics, Biomedicine and Translational Medicine Iuliu Hatieganu University of Medicine and Pharmacy Cluj‐Napoca Romania
| | - Andreea Nutu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine Iuliu Hatieganu University of Medicine and Pharmacy Cluj‐Napoca Romania
| | - Ancuta Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine Iuliu Hatieganu University of Medicine and Pharmacy Cluj‐Napoca Romania
| | - Raduly Lajos
- Research Center for Functional Genomics, Biomedicine and Translational Medicine Iuliu Hatieganu University of Medicine and Pharmacy Cluj‐Napoca Romania
| | - Ioana Berindan‐Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine Iuliu Hatieganu University of Medicine and Pharmacy Cluj‐Napoca Romania
| | - Richard A. Varga
- Supramolecular Organic and Organometallic Chemistry Centre, Department of Chemistry and Chemical Engineering Babeș‐Bolyai University Cluj‐Napoca Romania
| |
Collapse
|
25
|
Kumar M, Singh VP. Synthesis and antioxidant activities of N-thiophenyl ebselenamines: a 77Se{ 1H} NMR mechanistic study. NEW J CHEM 2022. [DOI: 10.1039/d2nj01225a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis of N-thiophenyl ebselenamines and selenenyl sulphides as efficient radical-trapping and hydroperoxide-decomposing antioxidants, respectively has been described.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh 160 014, India
| | - Vijay P. Singh
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh 160 014, India
| |
Collapse
|
26
|
Yun B, King M, Draz MS, Kline T, Rodriguez-Palacios A. Oxidative reactivity across kingdoms in the gut: Host immunity, stressed microbiota and oxidized foods. Free Radic Biol Med 2022; 178:97-110. [PMID: 34843918 DOI: 10.1016/j.freeradbiomed.2021.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species play a major role in the induction of programmed cell death and numerous diseases. Production of reactive oxygen species is ubiquitous in biological systems such as humans, bacteria, fungi/yeasts, and plants. Although reactive oxygen species are known to cause diseases, little is known about the importance of the combined oxidative stress burden in the gut. Understanding the dynamics and the level of oxidative stress 'reactivity' across kingdoms could help ascertain the combined consequences of free radical accumulation in the gut lumen. Here, we present fundamental similarities of oxidative stress derived from the host immune cells, bacteria, yeasts, plants, and the therein-derived diets, which often accentuate the burden of free radicals by accumulation during storage and cooking conditions. Given the described similarities, oxidative stress could be better understood and minimized by monitoring the levels of oxidative stress in the feces to identify pro-inflammatory factors. However, we illustrate that dietary studies rarely monitor oxidative stress markers in the feces, and therefore our knowledge on fecal oxidative stress monitoring is limited. A more holistic approach to understanding oxidative stress 'reactivity' in the gut could help improve strategies to use diet and microbiota to prevent intestinal diseases.
Collapse
Affiliation(s)
- Bahda Yun
- Division of Gastroenterology & Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Maria King
- Division of Gastroenterology & Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Mohamed S Draz
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Terence Kline
- Veterinary Technology Program, Cuyahoga Community College, Cleveland, OH, USA
| | - Alex Rodriguez-Palacios
- Division of Gastroenterology & Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Germ-free and Gut Microbiome Core, Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA; University Hospitals Research and Education Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
| |
Collapse
|
27
|
Kundu D, Roy A, Panja S. Transition Metal Catalyst, Solvent, Base Free Synthesis of Diaryl Diselenides under Mechanical Ball Milling. Curr Org Synth 2021; 19:COS-EPUB-119687. [PMID: 34951576 DOI: 10.2174/1570179419666211224144932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/16/2021] [Accepted: 11/15/2021] [Indexed: 11/22/2022]
Abstract
A convenient, efficient, and general procedure for the synthesis of diaryl diselenides has been developed by the reaction of aryl diazonium tetrafluoroborates and Potassium Selenocyanate on the surface of alumina under ball-milling in absence of any solvent, transition metal catalyst and base in room temperature. A wide range of functionalized diaryl diselenides are obtained in high purity and high yield by this procedure. BACKGROUND Synthesis of diaryl diselenides was restricted into only few Cu-catalyzed C-Se Cross coupling protocol where use of ligands, high reaction temp, long reaction time were required. OBJECTIVE To achieve a sustainable protocol for the synthesis of diaryl diselenides Method: Reaction of aryl diazonium fluoroborate with KSeCN was successfully performed under ball milling in absence of any ransition metal catalyst, ligands, base and external heating to get diaryl diselenides. RESULTS A library of diaryl diselenides were obtained in good yields with different functional groups. CONCLUSION First transition metal free protocol for the synthesis of diaryl diselenides has been developed successfully.
Collapse
Affiliation(s)
- Debasish Kundu
- Department of Chemistry, Government General Degree College at Mangalkote, Affiliated to The University of Burdwan, Purba Bardhaman-713132, India
| | - Anup Roy
- Department of Chemistry, Government General Degree College at Mangalkote, Affiliated to The University of Burdwan, Purba Bardhaman-713132, India
| | - Subir Panja
- Department of Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| |
Collapse
|
28
|
Pawar K, Jayaram RV, Bhagwat SS. The solubilization of diphenyl diselenide in surfactant solutions. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.2006687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Kunal Pawar
- Department of Chemistry, Institute of Chemical Technology, Mumbai, India
| | - Radha V. Jayaram
- Department of Chemistry, Institute of Chemical Technology, Mumbai, India
| | - Sunil S. Bhagwat
- Chemical Engineering Department, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
29
|
Affiliation(s)
- Damiano Tanini
- University of Florence Department of Chemistry ‘‘Ugo Schiff'' Via della Lastruccia 3–13 I-50019 Sesto Fiorentino Italy
| | - Antonella Capperucci
- University of Florence Department of Chemistry ‘‘Ugo Schiff'' Via della Lastruccia 3–13 I-50019 Sesto Fiorentino Italy
| |
Collapse
|
30
|
Wang J, Wang Y, Liu Y, Yan X, Yan Y, Chao S, Shang X, Ni T, Zhou P. Synthesis of Isoquinolylselenocyanates and Quinolylselenocyanates via Electrophilic Selenocyanogen Cyclization Induced by Pseudohalogen (SeCN)
2
Generated
in situ. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101169] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jia Wang
- School of Basic Medical Sciences Xinxiang Medical University Xinxiang Henan 453003 People's Republic of China
| | - Yun‐Zhe Wang
- School of Pharmaceutical Sciences Zhengzhou University Zhengzhou Henan 450001 People's Republic of China
| | - Yu‐Jie Liu
- College of Pharmacy Xinxiang Medical University Xinxiang Henan 453003 People's Republic of China
| | - Xin‐Xin Yan
- College of Pharmacy Xinxiang Medical University Xinxiang Henan 453003 People's Republic of China
| | - Yun‐Hui Yan
- School of Basic Medical Sciences Xinxiang Medical University Xinxiang Henan 453003 People's Republic of China
| | - Shu‐Jun Chao
- School of Basic Medical Sciences Xinxiang Medical University Xinxiang Henan 453003 People's Republic of China
| | - Xuefang Shang
- School of Basic Medical Sciences Xinxiang Medical University Xinxiang Henan 453003 People's Republic of China
| | - Tianjun Ni
- School of Basic Medical Sciences Xinxiang Medical University Xinxiang Henan 453003 People's Republic of China
| | - Ping‐Xin Zhou
- School of Basic Medical Sciences Xinxiang Medical University Xinxiang Henan 453003 People's Republic of China
| |
Collapse
|
31
|
Martynov VI, Pakhomov AA. BODIPY derivatives as fluorescent reporters of molecular activities in living cells. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Abstract
Fluorescent compounds have become indispensable tools for imaging molecular activities in the living cell. 4,4-Difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) is currently one of the most popular fluorescent reporters due to its unique photophysical properties. This review provides a general survey and presents a summary of recent advances in the development of new BODIPY-based cellular biomarkers and biosensors. The review starts with the consideration of the properties of BODIPY derivatives required for their application as cellular reporters. Then review provides examples of the design of sensors for different biologically important molecules, ions, membrane potential, temperature and viscosity defining the live cell status. Special attention is payed to BODPY-based phototransformable reporters.
The bibliography includes 339 references.
Collapse
|
32
|
Dhau JS, Singh A, Brandão P, Felix V. Synthesis, characterization, X-ray crystal structure and antibacterial activity of bis[3-(4-chloro-N,N-diethylpyridine-2-carboxamide)] diselenide. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
33
|
Upadhyay A, Kumar Jha R, Batabyal M, Dutta T, Koner AL, Kumar S. Janus -faced oxidant and antioxidant profiles of organo diselenides. Dalton Trans 2021; 50:14576-14594. [PMID: 34590653 DOI: 10.1039/d1dt01565f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To date, organoseleniums are pre-eminent for peroxide decomposition and radical quenching antioxidant activities. On the contrary, here, a series of Janus-faced aminophenolic diselenides have been prepared from substituted 2-iodoaniline and selenium powder using copper-catalyzed methodology. Subsequently, condensation with substituted salicylaldehyde afforded the Schiff base, which on reduction, yielded the desired substituted aminophenolic diselenides in 72%-88% yields. The generation of reactive oxygen species (ROS) from oxygen gas by the synthesized aminophenolic diselenides was studied by analyzing the oxidation of dichlorofluorescein diacetate (DCFDA) dye and para-nitro-thiophenol by fluorescence and UV-Visible spectroscopic methods. Furthermore, density functional theory calculations and crystal structure analysis revealed the role of functional amine and hydroxyl sites present in the Janus-faced organoselenium catalyst for the activation of molecular oxygen, where NH and phenolic groups bring the oxygen molecule close to the catalyst by N-H⋯O and O-H⋯O intermolecular interactions. Additionally, these functionalities stabilize the selenium-centered radical in the formed transition states. Antioxidant activities of the synthesized diselenides have been explored as the catalyst for the decomposition of hydrogen peroxide using benzenethiol sacrificial co-reductant by a well-established thiol assay. Radical quenching antioxidant activity was studied by the quenching of DPPH radicals at 516 nm by UV-Visible spectroscopy. The structure activity correlation suggests that the electron-rich phenol and electron-rich and sterically hindered selenium center enhance the oxidizing property of the aminophenolic diselenides. Janus-faced diselenides were also evaluated for their cytotoxic effect on HeLa cancer cells via MTT assay, which suggests that the compounds are effective at 15-18 μM concentration against cancer cells. Moreover, the combination with therapeutic anticancer drugs Erlotinib and Doxorubicin showed promising cytotoxicity at the nanomolar concentration (8-28 nM), which is sufficient to suppress the growth of the cancer cells.
Collapse
Affiliation(s)
- Aditya Upadhyay
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal Bhauri By-pass Road, Bhopal 462066, Madhya Pradesh, India.
| | - Raushan Kumar Jha
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal Bhauri By-pass Road, Bhopal 462066, Madhya Pradesh, India.
| | - Monojit Batabyal
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal Bhauri By-pass Road, Bhopal 462066, Madhya Pradesh, India.
| | - Tanoy Dutta
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal Bhauri By-pass Road, Bhopal 462066, Madhya Pradesh, India.
| | - Apurba Lal Koner
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal Bhauri By-pass Road, Bhopal 462066, Madhya Pradesh, India.
| | - Sangit Kumar
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal Bhauri By-pass Road, Bhopal 462066, Madhya Pradesh, India.
| |
Collapse
|
34
|
Tripathi A, Daolio A, Pizzi A, Guo Z, Turner DR, Baggioli A, Famulari A, Deacon GB, Resnati G, Singh HB. Chalcogen Bonds in Selenocysteine Seleninic Acid, a Functional GPx Constituent, and in Other Seleninic or Sulfinic Acid Derivatives. Chem Asian J 2021; 16:2351-2360. [PMID: 34214252 PMCID: PMC8456948 DOI: 10.1002/asia.202100545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/01/2021] [Indexed: 11/24/2022]
Abstract
The controlled oxidation reaction of L-selenocystine under neutral pH conditions affords selenocysteine seleninic acid (3-selenino-L-alanine) which is characterized also by means of single-crystal X-ray diffraction. This technique shows that selenium forms three chalcogen bonds (ChBs), one of them being outstandingly short. A survey of seleninic acid derivatives in the Cambridge Structural Database (CSD) confirms that the C-Se(=O)O- functionality tends to act as a ChB donor robust enough to systematically influence the interactional landscape in the solid. Quantum Theory of Atom in Molecules (QTAIM) analysis proves the attractive nature of the short contacts observed in crystals containing the seleninic functionality and calculation of surface molecular electrostatic potential (MEP) reveals that remarkably positive σ-holes can frequently be found opposite to the covalent bonds at selenium. Both CSD searches and QTAIM and MEP approaches show that also the sulfinic acid moiety can function as a ChB donor, albeit less frequently than the seleninic acid one. These findings may contribute to a better understanding, at the atomic level, of the mechanism of action of the enzymes that control oxidative stress and ROS deactivation and that contain selenocysteine seleninic acid and cysteine sulfinic acid in the active site.
Collapse
Affiliation(s)
- Abhishek Tripathi
- Department of ChemistryIndian Institute of Technology BombayMumbai400076India
- School of ChemistryMonash UniversityClaytonVictoria3800Australia
- IITB-Monash Research AcademyMonash UniversityPowai, Mumbai400076India
| | - Andrea Daolio
- Department of Chemistry, Materials and Chemical Engineering“Giulio Natta”Politecnico di MilanoVia Luigi Mancinelli 720131MilanoItaly
| | - Andrea Pizzi
- Department of Chemistry, Materials and Chemical Engineering“Giulio Natta”Politecnico di MilanoVia Luigi Mancinelli 720131MilanoItaly
| | - Zhifang Guo
- School of ChemistryMonash UniversityClaytonVictoria3800Australia
| | - David R. Turner
- School of ChemistryMonash UniversityClaytonVictoria3800Australia
- IITB-Monash Research AcademyMonash UniversityPowai, Mumbai400076India
| | - Alberto Baggioli
- Department of Chemistry, Materials and Chemical Engineering“Giulio Natta”Politecnico di MilanoVia Luigi Mancinelli 720131MilanoItaly
| | - Antonino Famulari
- Department of Chemistry, Materials and Chemical Engineering“Giulio Natta”Politecnico di MilanoVia Luigi Mancinelli 720131MilanoItaly
| | - Glen B. Deacon
- School of ChemistryMonash UniversityClaytonVictoria3800Australia
- IITB-Monash Research AcademyMonash UniversityPowai, Mumbai400076India
| | - Giuseppe Resnati
- Department of Chemistry, Materials and Chemical Engineering“Giulio Natta”Politecnico di MilanoVia Luigi Mancinelli 720131MilanoItaly
| | - Harkesh B. Singh
- Department of ChemistryIndian Institute of Technology BombayMumbai400076India
- IITB-Monash Research AcademyMonash UniversityPowai, Mumbai400076India
| |
Collapse
|
35
|
Popa RA, Lippolis V, Silvestru A. Cu(II) and Ag(I) complexes of the pyrazole-derived diorganoselenide (pzCH2CH2)2Se. Synthesis, solid state structure and solution behavior. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Parcheta M, Świsłocka R, Orzechowska S, Akimowicz M, Choińska R, Lewandowski W. Recent Developments in Effective Antioxidants: The Structure and Antioxidant Properties. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1984. [PMID: 33921014 PMCID: PMC8071393 DOI: 10.3390/ma14081984] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 12/15/2022]
Abstract
Since the last few years, the growing interest in the use of natural and synthetic antioxidants as functional food ingredients and dietary supplements, is observed. The imbalance between the number of antioxidants and free radicals is the cause of oxidative damages of proteins, lipids, and DNA. The aim of the study was the review of recent developments in antioxidants. One of the crucial issues in food technology, medicine, and biotechnology is the excess free radicals reduction to obtain healthy food. The major problem is receiving more effective antioxidants. The study aimed to analyze the properties of efficient antioxidants and a better understanding of the molecular mechanism of antioxidant processes. Our researches and sparing literature data prove that the ligand antioxidant properties complexed by selected metals may significantly affect the free radical neutralization. According to our preliminary observation, this efficiency is improved mainly by the metals of high ion potential, e.g., Fe(III), Cr(III), Ln(III), Y(III). The complexes of delocalized electronic charge are better antioxidants. Experimental literature results of antioxidant assays, such as diphenylpicrylhydrazyl (DPPH) and ferric reducing activity power assay (FRAP), were compared to thermodynamic parameters obtained with computational methods. The mechanisms of free radicals creation were described based on the experimental literature data. Changes in HOMO energy distribution in phenolic acids with an increasing number of hydroxyl groups were observed. The antioxidant properties of flavonoids are strongly dependent on the hydroxyl group position and the catechol moiety. The number of methoxy groups in the phenolic acid molecules influences antioxidant activity. The use of synchrotron techniques in the antioxidants electronic structure analysis was proposed.
Collapse
Affiliation(s)
- Monika Parcheta
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E, 15-351 Bialystok, Poland; (M.P.); (W.L.)
| | - Renata Świsłocka
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E, 15-351 Bialystok, Poland; (M.P.); (W.L.)
| | - Sylwia Orzechowska
- Solaris National Synchrotron Radiation Centre, Jagiellonian University, Czerwone Maki 98, 30-392 Krakow, Poland;
- M. Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Monika Akimowicz
- Prof. Waclaw Dabrowski Institute of Agriculture and Food Biotechnology–State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland; (M.A.); (R.C.)
| | - Renata Choińska
- Prof. Waclaw Dabrowski Institute of Agriculture and Food Biotechnology–State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland; (M.A.); (R.C.)
| | - Włodzimierz Lewandowski
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E, 15-351 Bialystok, Poland; (M.P.); (W.L.)
| |
Collapse
|
37
|
Madibone K, Deshmukh PP, Navalkar A, Maji SK, Badani PM, Manjare ST. Cyclic Organoselenide BODIPY-Based Probe: Targeting Superoxide in MCF-7 Cancer Cells. ACS OMEGA 2020; 5:14186-14193. [PMID: 32566887 PMCID: PMC7301547 DOI: 10.1021/acsomega.0c02074] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
All aerobic cells contain reactive oxygen species (ROSs) in balance with biochemical antioxidants. Oxidative stress is developed when this balance gets disturbed because of excessive production of ROSs or depletion of antioxidants. Here, in this work, we have developed the first cyclic diselenide BODIPY-based (organoselenium-containing) probe for the selective detection of superoxide. The probe demonstrates excellent selective response for superoxide over other ROSs with nine-fold increase in fluorescence intensity. The detection limit was found to be 0.924 μM. The plausible "turn-on" mechanism has been proposed based on the spectroscopic and quantum chemical data. Usefulness of the probe for selective detection of superoxide was confirmed in mammalian breast cancer cell lines.
Collapse
Affiliation(s)
| | | | - Ambuja Navalkar
- Department
of Biosciences and Bioengineering, IIT Bombay, Mumbai 400076, India
| | - Samir K. Maji
- Department
of Biosciences and Bioengineering, IIT Bombay, Mumbai 400076, India
| | - Purav M. Badani
- Department
of Chemistry, University of Mumbai, Santacruz (E), Mumbai 400098, India
| | - Sudesh T. Manjare
- Department
of Chemistry, University of Mumbai, Santacruz (E), Mumbai 400098, India
| |
Collapse
|
38
|
Li J, Jia W, Ma G, Zhang X, An S, Wang T, Shi S. Construction of pH sensitive smart glutathione peroxidase (GPx) mimics based on pH responsive pseudorotaxanes. Org Biomol Chem 2020; 18:3125-3134. [PMID: 32255146 DOI: 10.1039/d0ob00122h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two organoselenium compounds, both of which were modified with two primary amine groups, were designed and synthesized to mimic the catalytic properties of glutathione peroxidase (GPx). It was demonstrated that the catalytic mechanism of the diselenide organoselenium compound (compound 1) was a ping-pong mechanism while that of the selenide organoselenium compound (compound 2) was a sequential mechanism. The pH-controlled switching of the catalytic activities was achieved by controlling the formation and dissociation of the pseudorotaxanes based on the organoselenium compounds and cucurbit[6]uril (CB[6]). Moreover, the switching was reversible at pH between 7 and 9 for compound 1 or between 7 and 10 for compound 2.
Collapse
Affiliation(s)
- Jiaxi Li
- College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, People's Republic of China.
| | - Wenlong Jia
- College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, People's Republic of China.
| | - Ganghui Ma
- College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, People's Republic of China.
| | - Xiaoyin Zhang
- College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, People's Republic of China.
| | - Shaojie An
- College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, People's Republic of China.
| | - Tao Wang
- College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, People's Republic of China.
| | - Shan Shi
- College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, People's Republic of China.
| |
Collapse
|
39
|
Fourmigué M, Dhaka A. Chalcogen bonding in crystalline diselenides and selenocyanates: From molecules of pharmaceutical interest to conducting materials. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213084] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
40
|
Xu H, Su X, Liu XQ, Zhang KP, Hou Z, Guo C. Design, synthesis and biological evaluation of novel semicarbazone-selenochroman-4-ones hybrids as potent antifungal agents. Bioorg Med Chem Lett 2019; 29:126726. [DOI: 10.1016/j.bmcl.2019.126726] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 09/19/2019] [Accepted: 09/30/2019] [Indexed: 10/25/2022]
|
41
|
Jiao S, Liang X, Zhang R, Zhong S, Zheng Y, Wang S, Liu M, Hu X, Yin Y. Facile Construction of Microgel based Biomimetic Glutathione Peroxidase with Temperature Responsive Catalytic Activity. ChemistrySelect 2019. [DOI: 10.1002/slct.201903025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shufei Jiao
- Qinzhou Key Laboratory of Biowaste Resources for Selenium-enriched Functional UtilizationCollege of Petroleum and Chemical EngineeringBeibu Gulf University Qinzhou 535011 China
| | - Xingtang Liang
- Qinzhou Key Laboratory of Biowaste Resources for Selenium-enriched Functional UtilizationCollege of Petroleum and Chemical EngineeringBeibu Gulf University Qinzhou 535011 China
| | - Ruirui Zhang
- Qinzhou Key Laboratory of Biowaste Resources for Selenium-enriched Functional UtilizationCollege of Petroleum and Chemical EngineeringBeibu Gulf University Qinzhou 535011 China
| | - Shuming Zhong
- Qinzhou Key Laboratory of Biowaste Resources for Selenium-enriched Functional UtilizationCollege of Petroleum and Chemical EngineeringBeibu Gulf University Qinzhou 535011 China
| | - Yunying Zheng
- Qinzhou Key Laboratory of Biowaste Resources for Selenium-enriched Functional UtilizationCollege of Petroleum and Chemical EngineeringBeibu Gulf University Qinzhou 535011 China
| | - Shuangshuang Wang
- Qinzhou Key Laboratory of Biowaste Resources for Selenium-enriched Functional UtilizationCollege of Petroleum and Chemical EngineeringBeibu Gulf University Qinzhou 535011 China
| | - Min Liu
- Qinzhou Key Laboratory of Biowaste Resources for Selenium-enriched Functional UtilizationCollege of Petroleum and Chemical EngineeringBeibu Gulf University Qinzhou 535011 China
| | - Xiaoxi Hu
- Qinzhou Key Laboratory of Biowaste Resources for Selenium-enriched Functional UtilizationCollege of Petroleum and Chemical EngineeringBeibu Gulf University Qinzhou 535011 China
| | - Yanzhen Yin
- Qinzhou Key Laboratory of Biowaste Resources for Selenium-enriched Functional UtilizationCollege of Petroleum and Chemical EngineeringBeibu Gulf University Qinzhou 535011 China
| |
Collapse
|
42
|
Tiezza MD, Ribaudo G, Orian L. Organodiselenides: Organic Catalysis and Drug Design Learning from Glutathione Peroxidase. CURR ORG CHEM 2019. [DOI: 10.2174/1385272822666180803123137] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Organodiselenides are an important class of compounds characterized by the
presence of two adjacent covalently bonded selenium nuclei. Among them,
diaryldiselenides and their parent compound diphenyl diselenide attract continuing interest
in chemistry as well as in close disciplines like medicinal chemistry, pharmacology and
biochemistry. A search in SCOPUS database has revealed that in the last three years 105
papers have been published on the archetypal diphenyl diselenide and its use in organic
catalysis and drug tests. The reactivity of the Se-Se bond and the redox properties of selenium
make diselenides efficient catalysts for numerous organic reactions, such as Bayer-
Villiger oxidations of aldehydes/ketones, epoxidations of alkenes, oxidations of alcohols
and nitrogen containing compounds. In addition, organodiselenides might find application
as mimics of glutathione peroxidase (GPx), a family of enzymes, which, besides performing other functions,
regulate the peroxide tone in the cells and control the oxidative stress level. In this review, the essential synthetic
and reactivity aspects of organoselenides are collected and rationalized using the results of accurate
computational studies, which have been carried out mainly in the last two decades. The results obtained in
silico provide a clear explanation of the anti-oxidant activity of organodiselenides and more in general of their
ability to reduce hydroperoxides. At the same time, they are useful to gain insight into some aspects of the enzymatic
activity of the GPx, inspiring novel elements for rational catalyst and drug design.
Collapse
Affiliation(s)
- Marco Dalla Tiezza
- Dipartimento di Scienze Chimiche, Universita degli Studi di, Via Marzolo 1, 35131 Padova, Italy
| | - Giovanni Ribaudo
- Dipartimento di Scienze del Farmaco, Universita degli Studi di Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Laura Orian
- Dipartimento di Scienze Chimiche, Universita degli Studi di, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
43
|
Pop A, Silvestru A. Organoselenium compounds with N,C,N pincer groups. Synthesis, structure and reactivity. Polyhedron 2019. [DOI: 10.1016/j.poly.2018.12.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Putta VPRK, Gujjarappa R, Tyagi U, Pujar PP, Malakar CC. A metal- and base-free domino protocol for the synthesis of 1,3-benzoselenazines, 1,3-benzothiazines and related scaffolds. Org Biomol Chem 2019; 17:2516-2528. [PMID: 30758005 DOI: 10.1039/c8ob03058h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Efficient protocols have been described for the synthesis of 1,3-benzoselenazines, 1,3-benzothiazines, 2-aryl thiazin-4-ones and diaryl[b,f][1,5]diazocine-6,12(5H,11H)-diones. These transformations were successfully driven towards the product formation under mild acid catalyzed reaction conditions at room temperature using 2-amino aryl/hetero-aryl alkyl alcohols and amides as substrates. The merits of the present methods also rely on the easy access of rarely explored bioactive scaffolds like 1,3-benzoselenazine derivatives, for which well-documented methods are rarely known in the literature. A broad range of substrates with both electron-rich and electron-deficient groups were well-tolerated under the developed conditions to furnish the desired products in yields up to 98%. The scope of the devised method is not only restricted to the synthesis of 1,3-benzoselenazines, but it was also further extended towards the synthesis of 1,3-benzothiazines, 1,3-benzothiazinones and the corresponding eight membered N-heterocycles such as diaryl[b,f][1,5]diazocine-6,12(5H,11H)-diones.
Collapse
|
45
|
Bhat MA, Lone SH, Agim J, Butcher RJ, Srivastava SK. Synthesis, spectral characterization, crystallographic analysis, DFT studies, bioevaluation and anion exchange reactions of 1-(3-chlorophenyl)-4-(3-phenylseleno propyl) piperazinium chloride. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.08.062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
46
|
Yasuike S, Kanasaki K, Murata Y, Kondo K, Kakusawa N, Matsumura M. Visible-Light-Promoted Se-Arylation of Diaryl Diselenides with 2-Phenylimidazopyridines in the Presence of Ammonium Iodide: Synthesis of 2-Phenyl-3-(arylselanyl)imidazo[1,2-α]pyridines. HETEROCYCLES 2019. [DOI: 10.3987/com-18-s(f)3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
47
|
Jiao S, Zhang R, Yin Y, Zhong S, Liu Z, Zheng Y, Hu X, Liang X, Huang Z. One-pot synthesis of biomimetic glutathione peroxidase with temperature responsive catalytic behaviors. RSC Adv 2019; 9:28814-28822. [PMID: 35529614 PMCID: PMC9071214 DOI: 10.1039/c9ra05775g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 08/30/2019] [Indexed: 01/23/2023] Open
Abstract
Excessive reactive oxygen free radicals (ROS) are the main cause of various oxidative diseases. It is of great significance to develop antioxidant drugs that can intelligently regulate free radical concentrations. The biomimetic simulation of glutathione peroxidase (GPx) can provide an important theoretical basis for the development of antioxidant drugs. In order to explore a simple and efficient strategy for constructing biomimetic GPx, a microgel biomimetic GPx (PNTegel) with temperature responsive catalytic activity was prepared by a one-pot synthesis method. The PNTegel, with typical enzymatic catalytic characteristics, exhibited a maximum catalytic activity at 37 °C (υ0 = 11.51 mM min−1). The investigation of the catalytic mechanism of PNTegel suggested that the binding of different hydrophobic substrates to PNTegel was altered by the change of hydrophobicity of poly(N-isopropylacrylamide) (PNIPAM) in the microgel scaffold of PNTegel during the temperature response process. The change of hydrophobicity was the main factor for regulating the catalytic activity of PNTegel, which resulted in a temperature responsive catalytic behavior of PNTegel. This new strategy for the simple and efficient construction of biomimetic GPx by a one-pot method provides important theoretical support for exploring the preparation of highly effective antioxidant drugs. A microgel-based biomimetic glutathione peroxidase with temperature responsive catalytic behavior is synthesized by integrating atom transfer radical polymerization (ATRP) technology into one-pot synthesis.![]()
Collapse
Affiliation(s)
- Shufei Jiao
- Qinzhou Key Laboratory of Biowaste Resources for Selenium-enriched Functional Utilization
- College of Petroleum and Chemical Engineering
- Beibu Gulf University
- Qinzhou 535011
- China
| | - Ruirui Zhang
- Qinzhou Key Laboratory of Biowaste Resources for Selenium-enriched Functional Utilization
- College of Petroleum and Chemical Engineering
- Beibu Gulf University
- Qinzhou 535011
- China
| | - Yanzhen Yin
- Qinzhou Key Laboratory of Biowaste Resources for Selenium-enriched Functional Utilization
- College of Petroleum and Chemical Engineering
- Beibu Gulf University
- Qinzhou 535011
- China
| | - Shuming Zhong
- Qinzhou Key Laboratory of Biowaste Resources for Selenium-enriched Functional Utilization
- College of Petroleum and Chemical Engineering
- Beibu Gulf University
- Qinzhou 535011
- China
| | - Zijie Liu
- Qinzhou Key Laboratory of Biowaste Resources for Selenium-enriched Functional Utilization
- College of Petroleum and Chemical Engineering
- Beibu Gulf University
- Qinzhou 535011
- China
| | - Yunying Zheng
- Qinzhou Key Laboratory of Biowaste Resources for Selenium-enriched Functional Utilization
- College of Petroleum and Chemical Engineering
- Beibu Gulf University
- Qinzhou 535011
- China
| | - Xiaoxi Hu
- Qinzhou Key Laboratory of Biowaste Resources for Selenium-enriched Functional Utilization
- College of Petroleum and Chemical Engineering
- Beibu Gulf University
- Qinzhou 535011
- China
| | - Xingtang Liang
- Qinzhou Key Laboratory of Biowaste Resources for Selenium-enriched Functional Utilization
- College of Petroleum and Chemical Engineering
- Beibu Gulf University
- Qinzhou 535011
- China
| | - Zuqiang Huang
- School of Chemistry and Chemical Engineering
- Guangxi University
- Nanning 530004
- China
| |
Collapse
|
48
|
Bueno D, Meinerz D, Waczuk E, de Souza D, Batista Rocha J. Toxicity of organochalcogens in human leukocytes is associated, but not directly related with reactive species production, apoptosis and changes in antioxidant gene expression. Free Radic Res 2018; 52:1158-1169. [DOI: 10.1080/10715762.2018.1536824] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Diones Bueno
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Daiane Meinerz
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Emily Waczuk
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Diego de Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - João Batista Rocha
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, Brazil
| |
Collapse
|
49
|
Behavior of I4
σ(4c-6e) in tellurolane system and related species, elucidated by QTAIM dual functional analysis with QC calculations. HETEROATOM CHEMISTRY 2018. [DOI: 10.1002/hc.21462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
50
|
Singh P, Singh HB, Butcher RJ. Synthesis and characterization of selenium(I/II) and tellurium(IV) derivatives of amino acids. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.08.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|