1
|
Tashiro S, Yamada Y, Kringe LA, Okajima Y, Shionoya M. Intricate Low-Symmetry Ag 6L4 Capsules Formed by Anion-Templated Self-Assembly of the Stereoisomers of an Unsymmetric Ligand. J Am Chem Soc 2024; 146:34501-34509. [PMID: 39616534 DOI: 10.1021/jacs.4c11583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Metal-organic cages and capsules exhibit space-specific functions based on their discrete hollow structures. To acquire enzyme-like asymmetric or intricate structures, they have been modified by desymmetrization with two or more different ligands. There is a need to establish new strategies that can desymmetrize structures in a simple way using only one type of ligand, which is different from the mixed-ligand approach. In this study, a strategy was developed to form interconvertible stereoisomers using the unsymmetric macrocyclic ligand benzimidazole[3]arene. Single-crystal X-ray diffraction analysis revealed that the isomers assembled with silver tetrafluoroborate afforded a conformationally heteroleptic Ag6L4 capsule with an intricate structure. The six Ag ions in the capsule were desymmetrized, resulting in significantly different coordination geometries. Remarkably, the capsule encapsulates a single tetrafluoroborate anion via multipoint C-H···F-B hydrogen bonds in both the solid and solution states, suggesting that anions of appropriate size and shape can act as a template for the capsule formation. These results demonstrate that the use of isomerizable and unsymmetric ligands is the effectiveness of constructing highly dissymmetric supramolecular structures from a single ligand.
Collapse
Affiliation(s)
- Shohei Tashiro
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoshihiko Yamada
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Lea Antonia Kringe
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoshiki Okajima
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
2
|
Kurz H, Teeuwen PCP, Ronson TK, Hoffman JB, Pracht P, Wales DJ, Nitschke JR. Double-Bridging Increases the Stability of Zinc(II) Metal-Organic Cages. J Am Chem Soc 2024; 146:30958-30965. [PMID: 39496078 PMCID: PMC11565643 DOI: 10.1021/jacs.4c09742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/27/2024] [Accepted: 10/09/2024] [Indexed: 11/06/2024]
Abstract
A key feature of coordination cages is the dynamic nature of their coordinative bonds, which facilitates the synthesis of complex polyhedral structures and their post-assembly modification. However, this dynamic nature can limit cage stability. Increasing cage robustness is important for real-world use cases. Here we introduce a double-bridging strategy to increase cage stability, where designed pairs of bifunctional subcomponents combine to generate rectangular tetratopic ligands within pseudo-cubic Zn8L6 cages. These cages withstand transmetalation, the addition of competing ligands, and nucleophilic imines, under conditions where their single-bridged congeners decompose. Our approach not only increases the stability and robustness of the cages while maintaining their polyhedral structure, but also enables the incorporation of additional functional units in proximity to the cavity. The double-bridging strategy also facilitates the synthesis of larger cages, which are inaccessible as single-bridged congeners.
Collapse
Affiliation(s)
- Hannah Kurz
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Paula C. P. Teeuwen
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Tanya K. Ronson
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Jack B. Hoffman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Philipp Pracht
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - David J. Wales
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Jonathan R. Nitschke
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
3
|
Benchimol E, Ebbert KE, Walther A, Holstein JJ, Clever GH. Ligand Conformation Controls Assembly of a Helicate/Mesocate, Heteroleptic [Pd 2L 2L' 2] Cages and a Six-Jagged [Pd 6L 12] Ring. Chemistry 2024; 30:e202401850. [PMID: 38853595 DOI: 10.1002/chem.202401850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/11/2024]
Abstract
Molecular building blocks, capable of adopting several strongly deviating conformations, are of particular interest in the development of stimuli-responsive self-assemblies. The pronounced structural flexibility of a short acridone-based bridging ligand, equipped with two monodentate isoquinoline donors, is herein exploited to assemble a surprisingly diverse series of coordination-driven Pd(II) architectures. First, it can form a highly twisted Pd2L4 helicate, transformable into the corresponding mesocate, controlled by temperature, counter anion and choice of solvent. Second, it also allows the formation of heteroleptic cages, either from a mix of ligands with Pd(II) cations or by cage-to-cage transformation from homoleptic assemblies. Here, the acridone-based ligand tolerates counter ligands that carry their donors either in a diverging or converging arrangement, as it can rotate its own coordination sites by 90° and structurally adapt to both situations via shape complementarity. Third, by a near 180° rotation of only one of its arms, the ligand can adopt an S-shape conformation and form an unprecedented C6h-symmetric Pd6L12 saw-toothed six-membered ring.
Collapse
Affiliation(s)
- Elie Benchimol
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Kristina E Ebbert
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Alexandre Walther
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Julian J Holstein
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Guido H Clever
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| |
Collapse
|
4
|
Molinska P, Tarzia A, Male L, Jelfs KE, Lewis JEM. Diastereoselective Self-Assembly of Low-Symmetry Pd n L 2n Nanocages through Coordination-Sphere Engineering. Angew Chem Int Ed Engl 2023; 62:e202315451. [PMID: 37888946 PMCID: PMC10952360 DOI: 10.1002/anie.202315451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 10/28/2023]
Abstract
Metal-organic cages (MOCs) are popular host architectures assembled from ligands and metal ions/nodes. Assembling structurally complex, low-symmetry MOCs with anisotropic cavities can be limited by the formation of statistical isomer libraries. We set out to investigate the use of primary coordination-sphere engineering (CSE) to bias isomer selectivity within homo- and heteroleptic Pdn L2n cages. Unexpected differences in selectivities between alternative donor groups led us to recognise the significant impact of the second coordination sphere on isomer stabilities. From this, molecular-level insight into the origins of selectivity between cis and trans diastereoisomers was gained, highlighting the importance of both host-guest and host-solvent interactions, in addition to ligand design. This detailed understanding allows precision engineering of low-symmetry MOC assemblies without wholesale redesign of the ligand framework, and fundamentally provides a theoretical scaffold for the development of stimuli-responsive, shape-shifting MOCs.
Collapse
Affiliation(s)
- Paulina Molinska
- School of ChemistryUniversity of Birmingham EdgbastonBirminghamB15 2TTUK
| | - Andrew Tarzia
- Department of Applied Science and TechnologyPolitecnico di TorinoCorso Duca degli Abruzzi 2410129TorinoItaly
| | - Louise Male
- School of ChemistryUniversity of Birmingham EdgbastonBirminghamB15 2TTUK
| | - Kim E. Jelfs
- Department of ChemistryImperial College London, Molecular Sciences Research Hub White City CampusWood LaneLondonW12 0BZUK
| | - James E. M. Lewis
- School of ChemistryUniversity of Birmingham EdgbastonBirminghamB15 2TTUK
| |
Collapse
|
5
|
You L. Dual reactivity based dynamic covalent chemistry: mechanisms and applications. Chem Commun (Camb) 2023; 59:12943-12958. [PMID: 37772969 DOI: 10.1039/d3cc04022d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Dynamic covalent chemistry (DCC) focuses on the reversible formation, breakage, and exchange of covalent bonds and assemblies, setting a bridge between irreversible organic synthesis and supramolecular chemistry and finding wide utility. In order to enhance structural and functional diversity and complexity, different types of dynamic covalent reactions (DCRs) are placed in one vessel, encompassing orthogonal DCC without crosstalk and communicating DCC with a shared reactive functional group. As a means of adding tautomers, widespread in chemistry, to interconnected DCRs and combining the features of orthogonal and communicating DCRs, a concept of dual reactivity based DCC and underlying structural and mechanistic insights are summarized. The manipulation of the distinct reactivity of structurally diverse ring-chain tautomers allows selective activation and switching of reaction pathways and corresponding DCRs (C-N, C-O, and C-S) and assemblies. The coupling with photoswitches further enables light-mediated formation and scission of multiple types of reversible covalent bonds. To showcase the capability of dual reactivity based DCC, the versatile applications in dynamic polymers and luminescent materials are presented, paving the way for future functionalization studies.
Collapse
Affiliation(s)
- Lei You
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| |
Collapse
|
6
|
Wu K, Ronson TK, Goh L, Xue W, Heard AW, Su P, Li X, Vinković M, Nitschke JR. A Diverse Array of Large Capsules Transform in Response to Stimuli. J Am Chem Soc 2023; 145:11356-11363. [PMID: 37191451 DOI: 10.1021/jacs.3c02491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The allosteric regulation of biomolecules, such as enzymes, enables them to adapt and alter their conformation to fit specific substrates, expressing different functionalities in response to stimuli. Different stimuli can also trigger synthetic coordination cages to change their shape, size, and nuclearity by reconfiguring the dynamic metal-ligand bonds that hold them together. Here we demonstrate an abiological system consisting of different organic subcomponents and ZnII metal ions, which can respond to simple stimuli in complex ways. A ZnII20L12 dodecahedron transforms to give a larger ZnII30L12 icosidodecahedron through subcomponent exchange, as an aldehyde that forms bidentate ligands is displaced in favor of one that forms tridentate ligands together with a penta-amine subcomponent. In the presence of a chiral template guest, the same system that produced the icosidodecahedron instead gives a ZnII15L6 truncated rhombohedral architecture through enantioselective self-assembly. Under specific crystallization conditions, a guest induces a further reconfiguration of either the ZnII30L12 or ZnII15L6 cages to yield an unprecedented ZnII20L8 pseudo-truncated octahedral structure. The transformation network of these cages shows how large synthetic hosts can undergo structural adaptation through the application of chemical stimuli, opening pathways to broader applications.
Collapse
Affiliation(s)
- Kai Wu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, U.K
| | - Tanya K Ronson
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, U.K
| | - Leonard Goh
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, U.K
| | - Weichao Xue
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, U.K
| | - Andrew W Heard
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, U.K
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge CB4 0QA, U.K
| | - Pingru Su
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Mladen Vinković
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge CB4 0QA, U.K
| | - Jonathan R Nitschke
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, U.K
| |
Collapse
|
7
|
Manick AD, Li C, Antonetti E, Albalat M, Cotelle Y, Nava P, Dutasta JP, Chatelet B, Martinez A. Probing the Importance of Host Symmetry on Carbohydrate Recognition. Chemistry 2023; 29:e202203212. [PMID: 36563113 DOI: 10.1002/chem.202203212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Indexed: 12/24/2022]
Abstract
The design of molecular cages with low symmetry could allow for more specific tuning of their properties and better mimic the unsymmetrical and complex environment of protein pockets. However, the added value of lowering symmetry of molecular receptors has been rarely demonstrated. Herein, C3 - and C1 -symmetrical cages, presenting the same recognition sites, have been synthesized and investigated as hosts for carbohydrate recognition. Structurally related derivatives of glucose, galactose and mannose were found to have greater affinity to the receptor with the lowest symmetry than to their C3 -symmetrical analogue. According to the host cavity modelling, the C1 symmetry receptor exhibits a wider opening than its C3 -symmetrical counterpart, providing easier access and thus promoting guest proximity to binding sites. Moreover, our results show the high stereo- and substrate selectivity of the C1 symmetry cage with respect to its C3 counterpart in the recognition of sugars.
Collapse
Affiliation(s)
- Anne-Doriane Manick
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397, Marseille, France
| | - Chunyang Li
- School of Materials Science and Engineering, Sichuan University of Science & Engineering, Zigong, 643000, China.,Material Corrosion and Protection Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Zigong, 643000, China
| | - Elise Antonetti
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397, Marseille, France
| | - Muriel Albalat
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397, Marseille, France
| | - Yoann Cotelle
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397, Marseille, France
| | - Paola Nava
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397, Marseille, France
| | - Jean-Pierre Dutasta
- ENSL, CNRS, Laboratoire de Chimie UMR 5182, 46 allée d'Italie, 69364, Lyon, France
| | - Bastien Chatelet
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397, Marseille, France
| | - Alexandre Martinez
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397, Marseille, France
| |
Collapse
|
8
|
Ghosh A, Slappendel L, Nguyen BNT, von Krbek LKS, Ronson TK, Castilla AM, Nitschke JR. Light-Powered Reversible Guest Release and Uptake from Zn 4L 4 Capsules. J Am Chem Soc 2023; 145:3828-3832. [PMID: 36753330 PMCID: PMC9951218 DOI: 10.1021/jacs.2c10084] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Indexed: 02/09/2023]
Abstract
A strategy for light-powered guest release from a tetrahedral capsule has been developed by incorporating azobenzene units at its vertices. A new Zn4L4 tetrahedral capsule bearing 12 diazo moieties at its metal-ion vertices was prepared from a phenyldiazenyl-functionalized subcomponent and a central trialdehyde panel. Ultraviolet irradiation caused isomerization of the peripheral diazo groups from the thermodynamically preferred trans configuration to the cis form, thereby generating steric clash and resulting in cage disassembly and concomitant guest release. Visible-light irradiation drove cage re-assembly following re-isomerization of the diazo groups to the trans form, resulting in guest re-uptake. A detailed 19F NMR study elucidated how switching led to guest release: each metal vertex tolerated only one cis-azobenzene moiety, with further isomerization leading to cage disassembly.
Collapse
Affiliation(s)
- Amit Ghosh
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Laura Slappendel
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Bao-Nguyen T. Nguyen
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Larissa K. S. von Krbek
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Tanya K. Ronson
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Ana M. Castilla
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Jonathan R. Nitschke
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| |
Collapse
|
9
|
Majumder A, Sk S, Das A, Vijaykumar G, Sahoo MK, Behera JN, Bera M. Ancillary-Ligand-Assisted Variation in Nuclearities Leading to the Formation of Di-, Tri-, and Tetranuclear Copper(II) Complexes with Multifaceted Carboxylate Coordination Chemistry. ACS OMEGA 2022; 7:39985-39997. [PMID: 36385820 PMCID: PMC9647862 DOI: 10.1021/acsomega.2c04627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
The self-assembly of a carboxylate-based dinucleating ligand, N,N'-bis[2-carboxybenzomethyl]-N,N'-bis[2-pyridylmethyl]-1,3-diaminopropan-2-ol (H3cpdp), and copper(II) ions in the presence of various exogenous ancillary ligands results in the formation of the new dinuclear complex [Cu2(cpdp)(μ-Hisophth)]4·2H2isophth·21H2O (1), trinuclear complex [Cu3(Hcpdp)(Cl)4] (2), and tetranuclear complex [Cu4(cpdp)(μ-Hphth)(μ4-phth)(piconol)(Cl)2]·3H2O (3) (H2phth = phthalic acid; H2isophth = isophthalic acid; piconol = 2-pyridinemethanol; Cl- = chloride). In methanol-water, the reaction of H3cpdp with CuCl2·2H2O at room temperature leads to the formation of 2. On the other hand, 1 and 3 have been obtained by carrying out the reaction of H3cpdp with CuCl2·2H2O/m-C6H4(CO2Na)2 and CuCl2·2H2O/o-C6H4(CO2Na)2/piconol, respectively, in methanol-water in the presence of NaOH at ambient temperature. All three complexes have been characterized by elemental analysis, molar electrical conductivity and magnetic moment measurements, FTIR, UV-vis spectroscopy, and PXRD, including single-crystal X-ray structural analyses. The molecular structure of 1 is based on a μ-alkoxide and μ-isophthalate-bridged dimeric [Cu2] core; the structure of 2 represents a trimeric [Cu3] core in which a μ-alcohol-bridged dinuclear [Cu2] unit is exclusively coupled with a [CuCl2] species by two μ:η1:η1-syn-anti carboxylate groups forming a triangular motif; the structure of 3 embodies a tetrameric [Cu4] core, with two copper(II) ions in a distorted-octahedral coordination environment, one copper(II) ion in a distorted-trigonal-bipyramidal coordination environment, and the other copper(II) ion in a square-planar coordination environment. In fact, 2 and 3 represent rare examples of copper(II)-based multinuclear complexes showing outstanding features of rich coordination chemistry: (i) using a symmetrical dinucleating ligand, trinuclear complex 2 is generated with four- and five-coordination environments around copper(II) ions; (ii) the unsymmetrical tetranuclear complex 3 is obtained by using the same ligand with four-, five- and six-coordination environments around copper(II) ions; (iii) tetracopper(II) complex 3 shows four different bridging modes of carboxylate groups simultaneously such as μ:η2, μ:η1:η1, μ3:η2:η1:η1, and μ4:η1:η1:η1:η1, the μ4:η1:η1:η1:η1 mode of phthalate being unprecedented. The formation of these [Cu2], [Cu3], and [Cu4] complexes can be controlled by changing the exogenous ancillary ligands and pH of the reaction solutions, thus allowing an effective tuning of the self-assembly. The magnetic susceptibility measurements suggest that the copper centers in all three complexes are antiferromagnetically coupled. The thermal properties of 1-3 have been investigated by thermogravimetric and differential thermal analytical (TGA and DTA) techniques, indicating that the decomposition of all three complexes proceeds via multistep processes.
Collapse
Affiliation(s)
- Avishek Majumder
- Department
of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Sujan Sk
- Department
of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Arpan Das
- Department
of Chemical Sciences, Indian Institute of
Science Education & Research-Kolkata, Mohanpur, West Bengal 741246, India
| | - Gonela Vijaykumar
- Department
of Chemical Sciences, Indian Institute of
Science Education & Research-Kolkata, Mohanpur, West Bengal 741246, India
| | - Malaya K. Sahoo
- School
of Chemical Sciences, National Institute
of Science Education & Research, An OCC of Homi Bhabha National
Institute, Bhubaneswar, Khurda, Odisha 752050, India
| | - J. N. Behera
- School
of Chemical Sciences, National Institute
of Science Education & Research, An OCC of Homi Bhabha National
Institute, Bhubaneswar, Khurda, Odisha 752050, India
| | - Manindranath Bera
- Department
of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| |
Collapse
|
10
|
Wang G, Yang Y, Liu H, Chen M, Jiang Z, Bai Q, Yuan J, Jiang Z, Li Y, Wang P. Modular Construction of a Tessellated Octahedron, its Hierarchical Spherical Aggregate Behavior, and Electrocatalytic CO
2
Reduction Activity. Angew Chem Int Ed Engl 2022; 61:e202205851. [DOI: 10.1002/anie.202205851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Guotao Wang
- School of Metallurgy and Environment Central South University Changsha Hunan 410083 China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution Changsha Hunan 410083 China
| | - Yunna Yang
- School of Metallurgy and Environment Central South University Changsha Hunan 410083 China
| | - Hui Liu
- School of Metallurgy and Environment Central South University Changsha Hunan 410083 China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution Changsha Hunan 410083 China
| | - Mingzhao Chen
- Institute of Environmental Research at Greater Bay Area Key Laboratory for Water Quality and Conservation of the Pearl River Delta Ministry of Education Guangzhou Key Laboratory for Clean Energy and Materials Guangzhou University Guangzhou 510006 China
| | - Zhiyuan Jiang
- Department of Organic and Polymer Chemistry Hunan Key Laboratory of Micro & Nano Materials Interface Science College of Chemistry and Chemical Engineering Central South University Changsha Hunan 410083 China
| | - Qixia Bai
- Institute of Environmental Research at Greater Bay Area Key Laboratory for Water Quality and Conservation of the Pearl River Delta Ministry of Education Guangzhou Key Laboratory for Clean Energy and Materials Guangzhou University Guangzhou 510006 China
| | - Jie Yuan
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 China
| | - Zhilong Jiang
- Institute of Environmental Research at Greater Bay Area Key Laboratory for Water Quality and Conservation of the Pearl River Delta Ministry of Education Guangzhou Key Laboratory for Clean Energy and Materials Guangzhou University Guangzhou 510006 China
| | - Yiming Li
- Department of Organic and Polymer Chemistry Hunan Key Laboratory of Micro & Nano Materials Interface Science College of Chemistry and Chemical Engineering Central South University Changsha Hunan 410083 China
| | - Pingshan Wang
- Department of Organic and Polymer Chemistry Hunan Key Laboratory of Micro & Nano Materials Interface Science College of Chemistry and Chemical Engineering Central South University Changsha Hunan 410083 China
- Institute of Environmental Research at Greater Bay Area Key Laboratory for Water Quality and Conservation of the Pearl River Delta Ministry of Education Guangzhou Key Laboratory for Clean Energy and Materials Guangzhou University Guangzhou 510006 China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution Changsha Hunan 410083 China
| |
Collapse
|
11
|
Kang X, Stephens ER, Spector-Watts BM, Li Z, Liu Y, Liu L, Cui Y. Challenges and opportunities for chiral covalent organic frameworks. Chem Sci 2022; 13:9811-9832. [PMID: 36199638 PMCID: PMC9431510 DOI: 10.1039/d2sc02436e] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/04/2022] [Indexed: 11/21/2022] Open
Abstract
As highly versatile crystalline porous materials, covalent organic frameworks (COFs) have emerged as an ideal platform for developing novel functional materials, attributed to their precise tunability of structure and functionality. Introducing chiral functional units into frameworks produces chiral COFs (CCOFs) with chiral superiorities through chirality conservation and conversion processes. This review summarises recent research progress in CCOFs, including synthetic methods, chiroptical characterisations, and their applications in asymmetric catalysis, chiral separation, and enantioselective recognition and sensing. Challenges and limitations are discussed to uncover future opportunities in CCOF research.
Collapse
Affiliation(s)
- Xing Kang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai 200240 China
| | - Emily R Stephens
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington Wellington 6012 New Zealand
| | - Benjamin M Spector-Watts
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington Wellington 6012 New Zealand
| | - Ziping Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai 200240 China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai 200240 China
| | - Lujia Liu
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington Wellington 6012 New Zealand
- College of Biological, Chemical Sciences and Engineering, Jiaxing University Jiaxing Zhejiang 314001 China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
12
|
Li S, Cai L, Hong M, Chen Q, Sun Q. Combinatorial Self‐Assembly of Coordination Cages with Systematically Fine‐Tuned Cavities for Efficient Co‐Encapsulation and Catalysis. Angew Chem Int Ed Engl 2022; 61:e202204732. [DOI: 10.1002/anie.202204732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Indexed: 01/10/2023]
Affiliation(s)
- Shao‐Chuan Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 (P. R. China
- University of Chinese Academy of Sciences Beijing 100049 (P. R. China
| | - Li‐Xuan Cai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 (P. R. China
- University of Chinese Academy of Sciences Beijing 100049 (P. R. China
| | - Maochun Hong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 (P. R. China
- University of Chinese Academy of Sciences Beijing 100049 (P. R. China
| | - Qihui Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 (P. R. China
- University of Chinese Academy of Sciences Beijing 100049 (P. R. China
| | - Qing‐Fu Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 (P. R. China
- University of Chinese Academy of Sciences Beijing 100049 (P. R. China
| |
Collapse
|
13
|
Wang G, Yang Y, liu H, Chen M, Jiang Z, Bai Q, Yuan J, jiang Z, Li Y, Wang P. Modular Construction of a Tessellated Octahedron and its Hierarchical Spherical Aggregate Behavior. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Guotao Wang
- Central South University School of Metallurgy and Environment CHINA
| | - Yunna Yang
- Central South University School of Metallurgy and Environment CHINA
| | - Hui liu
- Central South University School of Metallurgy and Environment CHINA
| | - Mingzhao Chen
- Guangzhou University Institute of Environmental Research at Greater Bay Area CHINA
| | - Zhiyuan Jiang
- Central South University School of Chemistry and Chemical Engineering CHINA
| | - Qixia Bai
- Guangzhou University Institute of Environmental Research at Greater Bay Area CHINA
| | - Jie Yuan
- Henan Normal University School of Chemistry and Chemical Engineering CHINA
| | - Zhilong jiang
- Guangzhou University Institute of Environmental Research at Greater Bay Area CHINA
| | - Yiming Li
- Central South University College of Chemistry and Chemical Engineering CHINA
| | - Pingshan Wang
- Central South University College of Chemistry and Chemical Engineering 932 S. Lushan Rd. 410083 Changsha CHINA
| |
Collapse
|
14
|
Bierschenk SM, Pan JY, Settineri NS, Warzok U, Bergman RG, Raymond KN, Toste FD. Impact of Host Flexibility on Selectivity in a Supramolecular Host-Catalyzed Enantioselective aza-Darzens Reaction. J Am Chem Soc 2022; 144:11425-11433. [PMID: 35700232 DOI: 10.1021/jacs.2c04182] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A highly enantioselective aza-Darzens reaction (up to 99% ee) catalyzed by an enantiopure supramolecular host has been discovered. To understand the role of host structure on reaction outcome, nine new gallium(III)-based enantiopure supramolecular assemblies were prepared via substitution of the external chiral amide. Despite the distal nature of the substitution in these catalysts, changes in enantioselectivity (61 to 90% ee) in the aziridine product were observed. The enantioselectivities were correlated to the flexibility of the supramolecular host scaffold as measured by the kinetics of exchange of a model cationic guest. This correlation led to the development of a best-in-class catalyst by substituting the gallium(III)-based host with one based on indium(III), which generated the most flexible and selective catalyst.
Collapse
Affiliation(s)
- Stephen M Bierschenk
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Judy Y Pan
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Nicholas S Settineri
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Ulrike Warzok
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Robert G Bergman
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Kenneth N Raymond
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - F Dean Toste
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
15
|
Benchimol E, Nguyen BNT, Ronson TK, Nitschke JR. Transformation networks of metal-organic cages controlled by chemical stimuli. Chem Soc Rev 2022; 51:5101-5135. [PMID: 35661155 PMCID: PMC9207707 DOI: 10.1039/d0cs00801j] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Indexed: 12/29/2022]
Abstract
The flexibility of biomolecules enables them to adapt and transform as a result of signals received from the external environment, expressing different functions in different contexts. In similar fashion, coordination cages can undergo stimuli-triggered transformations owing to the dynamic nature of the metal-ligand bonds that hold them together. Different types of stimuli can trigger dynamic reconfiguration of these metal-organic assemblies, to switch on or off desired functionalities. Such adaptable systems are of interest for applications in switchable catalysis, selective molecular recognition or as transformable materials. This review highlights recent advances in the transformation of cages using chemical stimuli, providing a catalogue of reported strategies to transform cages and thus allow the creation of new architectures. Firstly we focus on strategies for transformation through the introduction of new cage components, which trigger reconstitution of the initial set of components. Secondly we summarize conversions triggered by external stimuli such as guests, concentration, solvent or pH, highlighting the adaptation processes that coordination cages can undergo. Finally, systems capable of responding to multiple stimuli are described. Such systems constitute composite chemical networks with the potential for more complex behaviour. We aim to offer new perspectives on how to design transformation networks, in order to shed light on signal-driven transformation processes that lead to the preparation of new functional metal-organic architectures.
Collapse
Affiliation(s)
- Elie Benchimol
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Bao-Nguyen T Nguyen
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Tanya K Ronson
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Jonathan R Nitschke
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| |
Collapse
|
16
|
McTernan C, Davies JA, Nitschke JR. Beyond Platonic: How to Build Metal-Organic Polyhedra Capable of Binding Low-Symmetry, Information-Rich Molecular Cargoes. Chem Rev 2022; 122:10393-10437. [PMID: 35436092 PMCID: PMC9185692 DOI: 10.1021/acs.chemrev.1c00763] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Indexed: 12/17/2022]
Abstract
The field of metallosupramolecular chemistry has advanced rapidly in recent years. Much work in this area has focused on the formation of hollow self-assembled metal-organic architectures and exploration of the applications of their confined nanospaces. These discrete, soluble structures incorporate metal ions as 'glue' to link organic ligands together into polyhedra.Most of the architectures employed thus far have been highly symmetrical, as these have been the easiest to prepare. Such high-symmetry structures contain pseudospherical cavities, and so typically bind roughly spherical guests. Biomolecules and high-value synthetic compounds are rarely isotropic, highly-symmetrical species. To bind, sense, separate, and transform such substrates, new, lower-symmetry, metal-organic cages are needed. Herein we summarize recent approaches, which taken together form the first draft of a handbook for the design of higher-complexity, lower-symmetry, self-assembled metal-organic architectures.
Collapse
Affiliation(s)
| | | | - Jonathan R. Nitschke
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
17
|
Yang Q, Li XL, Ashebr T, Zhao L, Tang J. Self‐assembly of lanthanide crescent‐like and macrocyclic clusters from versatile o‐vanillin‐based ligands. Chem Asian J 2022; 17:e202200496. [DOI: 10.1002/asia.202200496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/29/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Qianqian Yang
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Rare Earth Resource Utilization CHINA
| | - Xiao-Lei Li
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Rare Earth Resource Utilization CHINA
| | - Tesfay Ashebr
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Rare Earth Resource Utilization CHINA
| | - Lang Zhao
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Rare Earth Resource Utilization CHINA
| | - Jinkui Tang
- Changchun Institute of Applied Chemistry State Key Laboratory of Rare Earth Resource Utilization Renmin Street 5625 130022 Changchun CHINA
| |
Collapse
|
18
|
Li SC, Cai LX, Hong M, Chen Q, Sun QF. Combinatorial Self‐Assembly of Coordination Cages with Systematically Fine‐Tuned Cavities for Efficient Co‐Encapsulation and Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shao-Chuan Li
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Strutral Chemistry CHINA
| | - Li-Xuan Cai
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Strutral Chemistry CHINA
| | - Maochun Hong
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Strutral Chemistry CHINA
| | - Qihui Chen
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Strutral Chemistry CHINA
| | - Qing-Fu Sun
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences State Key Laboratory of Structural Chemistry 155 Yangqiao Road West 350002 Fuzhou CHINA
| |
Collapse
|
19
|
Jia P, Hu Y, Zeng Z, Wang Y, Song B, Jiang Y, Sun H, Wang M, Qiu W, Xu L. Construction of FRET-based metallacycles with efficient photosensitization efficiency and photocatalytic activity. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Liu D, Lu Y, Lin Y, Jin G. Rational Design and Integrative Assembly of Heteromeric Metalla[2]Catenanes Featuring Cp*Ir/Rh Fragments. Chemistry 2022; 28:e202104617. [DOI: 10.1002/chem.202104617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Dong Liu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials State Key Laboratory of Molecular Engineering of Polymer Department of Chemistry Fudan University Shanghai 200433 P.R. China
| | - Ye Lu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials State Key Laboratory of Molecular Engineering of Polymer Department of Chemistry Fudan University Shanghai 200433 P.R. China
| | - Yue‐Jian Lin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials State Key Laboratory of Molecular Engineering of Polymer Department of Chemistry Fudan University Shanghai 200433 P.R. China
| | - Guo‐Xin Jin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials State Key Laboratory of Molecular Engineering of Polymer Department of Chemistry Fudan University Shanghai 200433 P.R. China
| |
Collapse
|
21
|
Siddique RG, Arachchige KSA, AL‐Fayaad HA, Thoburn JD, McMurtrie JC, Clegg JK. Controlling the Complexity and Interconversion Mechanisms in Self‐Assembled [Fe
2
L
3
]
4+
Helicates and [Fe
4
L
6
]
8+
Cages. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rashid G. Siddique
- School of Chemistry and Molecular Biosciences The University of Queensland St Lucia Qld 4072 Australia
- Department of Chemistry School of Natural Sciences (SNS) National University of Science and Technology (NUST), H-12 Islamabad 46000 Pakistan
| | - Kasun S. A. Arachchige
- School of Chemistry and Molecular Biosciences The University of Queensland St Lucia Qld 4072 Australia
| | - Hydar A. AL‐Fayaad
- School of Chemistry and Molecular Biosciences The University of Queensland St Lucia Qld 4072 Australia
| | - John D. Thoburn
- Department of Chemistry Randolph-Macon College Ashland VA 23005 USA
| | - John C. McMurtrie
- School of Chemistry and Physics and Centre for Materials Science Queensland University of Technology (QUT) Brisbane Queensland 4000 Australia
| | - Jack K. Clegg
- School of Chemistry and Molecular Biosciences The University of Queensland St Lucia Qld 4072 Australia
| |
Collapse
|
22
|
Zhang D, Gan Q, Plajer AJ, Lavendomme R, Ronson TK, Lu Z, Jensen JD, Laursen BW, Nitschke JR. Templation and Concentration Drive Conversion Between a Fe II12L 12 Pseudoicosahedron, a Fe II4L 4 Tetrahedron, and a Fe II2L 3 Helicate. J Am Chem Soc 2022; 144:1106-1112. [PMID: 35014803 PMCID: PMC9097479 DOI: 10.1021/jacs.1c11536] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Indexed: 12/30/2022]
Abstract
We report the construction of three structurally distinct self-assembled architectures: FeII12L12 pseudoicosahedron 1, FeII2L3 helicate 2, and FeII4L4 tetrahedron 3, formed from a single triazatriangulenium subcomponent A under different reaction conditions. Pseudoicosahedral capsule 1 is the largest formed through subcomponent self-assembly to date, with an outer-sphere diameter of 5.4 nm and a cavity volume of 15 nm3. The outcome of self-assembly depended upon concentration, where the formation of pseudoicosahedron 1 was favored at higher concentrations, while helicate 2 exclusively formed at lower concentrations. The conversion of pseudoicosahedron 1 or helicate 2 into tetrahedron 3 occurred following the addition of a CB11H12- or B12F122- template.
Collapse
Affiliation(s)
- Dawei Zhang
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, School of
Chemistry and Molecular Engineering, East
China Normal University, Shanghai 200062, People’s Republic
of China
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United
Kingdom
| | - Quan Gan
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United
Kingdom
- Hubei Key
Laboratory of Bioinorganic Chemistry & Materia Medica, School
of Chemistry and Chemical Engineering, Huazhong
University of Science and Technology, Wuhan 430074, People’s Republic of China
| | - Alex J. Plajer
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United
Kingdom
- Oxford Chemistry, Chemical Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, U.K.
| | - Roy Lavendomme
- COMOC—Center
for Ordered Materials, Organometallics and Catalysis, Department of
Chemistry, Ghent University, Krijgslaan 281-S3, 9000 Ghent, Belgium
| | - Tanya K. Ronson
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United
Kingdom
| | - Zifei Lu
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United
Kingdom
| | - Jesper D. Jensen
- Department
of Chemistry & Nano-Science Center, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Bo W. Laursen
- Department
of Chemistry & Nano-Science Center, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Jonathan R. Nitschke
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United
Kingdom
| |
Collapse
|
23
|
Kumar A, Banerjee R, Zangrando E, Mukherjee PS. Solvent and Counteranion Assisted Dynamic Self-Assembly of Molecular Triangles and Tetrahedral Cages. Inorg Chem 2022; 61:2368-2377. [PMID: 35029966 DOI: 10.1021/acs.inorgchem.1c03797] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Self-assembly of naked PdII ions separately with newly designed bis(3-pyridyl)benzothiadiazole (L1) and bis(3-pyridyl)thiazolo[5,4-d]thiazole (L2) donors separately, under varying experimental conditions, yielded Pd4L8 (L= L1 or L2) tetrahedral cages and their homologous Pd3L6 (L= L1 or L2) double-walled triangular macrocycles. The resulting assemblies exhibited solvent, temperature, and counteranion induced dynamic equilibrium. Treatment of L1 with Pd(BF4)2 in acetonitrile (ACN) resulted in selective formation of a tetrahedral cage [Pd4(L1)8](BF4)8 (1a), which is in dynamic equilibrium with its homologue triangle [Pd3(L1)6](BF4)6 (2a) in dimethyl sulfoxide (DMSO). On the other hand, similar self-assembly using L2 instead of L1 yielded an equilibrium mixture of tetrahedral cage [Pd4(L2)8](BF4)8 (3a) and triangle [Pd3(L2)6](BF4)6 (4a) forms in both ACN and DMSO. The assembles were characterized by multinuclear NMR and ESI-MS while the structure of the tetrahedral cage (1a) was determined by single crystal X-ray diffraction. Existence of a dynamic equilibrium between the assemblies in solution has been investigated via variable temperature 1H NMR. The equilibrium constant K = ([Pd4L8]3/[Pd3L6]4) was calculated at each experimental temperature and fitted with the Van't Hoff equation to determine the standard enthalpy (ΔH°) and entropy (ΔS°) associated with the interconversion of the double-walled triangle to tetrahedral cage. The thermodynamic feasibility of structural interconversion was analyzed from the change in ΔG°, which suggests favorable conversion of Pd3L6 triangle to Pd4L8 cage at elevated temperature for L1 in DMSO and L2 in ACN. Interestingly, similar self-assembly reactions of L1 and L2 with Pd(NO3)2 instead of Pd(BF4)2 resulted in selective formation of a tetrahedral cage [Pd4(L1)8](NO3)8 (1b) and double-walled triangle [Pd3(L2)6](NO3)6 (4b), respectively.
Collapse
Affiliation(s)
- Atul Kumar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Ranit Banerjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Ennio Zangrando
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste 34127, Italy
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
24
|
Macreadie LK, Gilchrist AM, McNaughton DA, Ryder WG, Fares M, Gale PA. Progress in anion receptor chemistry. Chem 2022. [DOI: 10.1016/j.chempr.2021.10.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
25
|
Bhandari P, Modak R, Bhattacharyya S, Zangrando E, Mukherjee PS. Self-Assembly of Octanuclear Pt II/Pd II Coordination Barrels and Uncommon Structural Isomerization of a Photochromic Guest in Molecular Space. JACS AU 2021; 1:2242-2248. [PMID: 34977895 PMCID: PMC8715494 DOI: 10.1021/jacsau.1c00361] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Indexed: 06/03/2023]
Abstract
Two tetragonal molecular barrels TB1 and TB2 were successfully synthesized by coordination-driven self-assembly of a tetrapyridyl donor (L) of the thiazolo[5,4-d]thiazole backbone with cis-blocked 90° Pd(II) and Pt(II) acceptors, respectively. The single-crystal structure analysis of TB1 revealed the formation of a two-face opened tetragonal Pd8 molecular barrel architecture. In contrast, the isostructural Pt(II) barrel (TB2) is water-soluble. The large confined hydrophobic molecular cavity including wide open windows and good water solubility of the barrel TB2 made it a potential molecular container for the encapsulation of guests with different sizes and properties. This has been exploited to encapsulate and stabilize the open form of a photochromic molecule (G2) in water, while the same photochromic molecule exists exclusively in a cyclic zwitterionic form in aqueous medium in the absence of the barrel TB2. This cyclic form is very stable in water and does not go back to its parent open form under common external stimuli. Surprisingly, reverse switching of the cyclic form to a colored hydrophobic open form was also possible instantly in water upon addition of the solid barrel TB2 into an aqueous solution of G2. Such a fast reverse isomerization of an irreversible process in aqueous medium by utilizing host-guest interaction of the barrel TB2 and the guest G2 is interesting. The barrel TB2 was also capable of encapsulating the water-insoluble radical initiator G1 in aqueous medium.
Collapse
Affiliation(s)
- Pallab Bhandari
- Department
of Inorganic and Physical Chemistry, Indian
Institute of Science, Bangalore 560012, India
| | - Ritwik Modak
- Department
of Inorganic and Physical Chemistry, Indian
Institute of Science, Bangalore 560012, India
| | - Soumalya Bhattacharyya
- Department
of Inorganic and Physical Chemistry, Indian
Institute of Science, Bangalore 560012, India
| | - Ennio Zangrando
- Department
of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste 34127, Italy
| | - Partha Sarathi Mukherjee
- Department
of Inorganic and Physical Chemistry, Indian
Institute of Science, Bangalore 560012, India
| |
Collapse
|
26
|
Purba PC, Venkateswaralu M, Bhattacharyya S, Mukherjee PS. Silver(I)-Carbene Bond-Directed Rigidification-Induced Emissive Metallacage for Picric Acid Detection. Inorg Chem 2021; 61:713-722. [PMID: 34932355 DOI: 10.1021/acs.inorgchem.1c03527] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new triphenylamine-based tetraimidazolium salt L was developed for silver(I)-carbene bond-directed synthesis of tetranuclear silver(I) octacarbene ([Ag4(L)2](PF6)4) metallacage 1. Interestingly, after assembly formation, metallacage 1 showed a nine-fold emission enhancement in dilute solution while ligand L was weakly fluorescent. This is attributed to the rigidity induced to the system by metal-carbene bond formation where the metal center acts as a rigidification unit. The enhanced emission intensity in dilute solution and the presence of the triphenylamine core made 1 a potential candidate for recognition of picric acid (PA). This recognition can be ascribed to the dual effect of ground-state charge-transfer complex formation and resonance energy transfer between the picrate and metallacage 1. For metallacage 1, a considerable detection limit toward PA was observed. The use of such metal-carbene bond-directed rigidification-induced enhanced emission for PA sensing is noteworthy.
Collapse
Affiliation(s)
- Prioti Choudhury Purba
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Mangili Venkateswaralu
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Soumalya Bhattacharyya
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
27
|
Siddique RG, Arachchige KSA, Al-Fayaad HA, Thoburn JD, McMurtrie JC, Clegg JK. Controlling the Complexity and Interconversion Mechanisms in Self-Assembled [Fe 2 L 3 ] 4+ Helicates and [Fe 4 L 6 ] 8+ Cages. Angew Chem Int Ed Engl 2021; 61:e202115555. [PMID: 34897921 DOI: 10.1002/anie.202115555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Indexed: 11/06/2022]
Abstract
Self-assembled coordination cages and metal-organic frameworks have relied extensively on symmetric ligands in their formation. Here we have prepared a relatively simple system employing an unsymmetric ligand that results in two distinct self-assembled structures, a [Fe2 L3 ]4+ helicate and a [Fe4 L6 ]8+ cage composed of 10 interconverting diastereomers and their enantiomers. We show that the steric profile of the ligand controls the complexity, thermodynamics and kinetics of interconversion of the system.
Collapse
Affiliation(s)
- Rashid G Siddique
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Qld 4072, Australia.,Department of Chemistry, School of Natural Sciences (SNS), National University of Science and Technology (NUST), H-12, Islamabad, 46000, Pakistan
| | - Kasun S A Arachchige
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Qld 4072, Australia
| | - Hydar A Al-Fayaad
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Qld 4072, Australia
| | - John D Thoburn
- Department of Chemistry, Randolph-Macon College, Ashland, VA 23005, USA
| | - John C McMurtrie
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, Queensland 4000, Australia
| | - Jack K Clegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Qld 4072, Australia
| |
Collapse
|
28
|
Siddique RG, Arachchige KSA, Al-Fayaad HA, Brock AJ, Micallef AS, Luis ET, Thoburn JD, McMurtrie JC, Clegg JK. The kinetics and mechanism of interconversion within a system of [Fe 2L 3] 4+ helicates and [Fe 4L 6] 8+ cages. Chem Commun (Camb) 2021; 57:4918-4921. [PMID: 33870998 DOI: 10.1039/d1cc01583d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Nature builds simple molecules into highly complex assemblies, which are involved in all fundamental processes of life. Some of the most intriguing biological assemblies are those that can be precisely reconfigured to achieve different functions using the same building blocks. Understanding the reconfiguration of synthetic self-assembled systems will allow us to better understand the complexity of proteins and design useful artificial chemical systems. Here we have prepared a relatively simple system in which two distinct self-assembled structures, a [Fe2L3]4+ helicate and a [Fe4L6]8+ cage that are formed from the same precursors, coexist at equilibrium. We have measured the rates of interconversion of these two species and propose a mechanism for the transformation.
Collapse
Affiliation(s)
- Rashid G Siddique
- School of Chemistry and Molecular Biosciences, The University of Queensland St Lucia, Qld, 4072, Australia.
| | - Kasun S A Arachchige
- School of Chemistry and Molecular Biosciences, The University of Queensland St Lucia, Qld, 4072, Australia.
| | - Hydar A Al-Fayaad
- School of Chemistry and Molecular Biosciences, The University of Queensland St Lucia, Qld, 4072, Australia.
| | - Aidan J Brock
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, Queensland 4000, Australia
| | - Aaron S Micallef
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, Queensland 4000, Australia
| | - Ena T Luis
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, Queensland 4000, Australia
| | - John D Thoburn
- Department of Chemistry, Randolph-Macon College, Ashland, VA 23005, USA
| | - John C McMurtrie
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, Queensland 4000, Australia
| | - Jack K Clegg
- School of Chemistry and Molecular Biosciences, The University of Queensland St Lucia, Qld, 4072, Australia.
| |
Collapse
|
29
|
Purba PC, Maity M, Bhattacharyya S, Mukherjee PS. A Self-Assembled Palladium(II) Barrel for Binding of Fullerenes and Photosensitization Ability of the Fullerene-Encapsulated Barrel. Angew Chem Int Ed Engl 2021; 60:14109-14116. [PMID: 33834590 DOI: 10.1002/anie.202103822] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Indexed: 11/07/2022]
Abstract
Fullerene extracts obtained from fullerene soot lack their real application due to their poor solubility in common solvents and difficulty in purification. Encapsulation of these extracts in a suitable host is an important approach to address these issues. We present a new Pd6 barrel (1), which is composed of three 1,4-dihydropyrrolo[3,2-b]pyrrole panels, clipped through six cis-PdII acceptors. Large open windows and cavity make it an efficient host for a large guest. Favorable interactions between the ligand and fullerene (C60 and C70 ) allows the barrel to encapsulate fullerene efficiently. Thorough investigation reveals that barrel 1 has a stronger binding affinity towards C70 over C60 , resulting in the predominant extraction of C70 from a mixture of the two. Finally, the fullerene encapsulated barrels C60 ⊂1 and C70 ⊂1 were found to be efficient for visible-light-induced singlet oxygen generation. Such preferential binding of C70 and photosensitizing ability of C60 ⊂1 and C70 ⊂1 are noteworthy.
Collapse
Affiliation(s)
- Prioti Choudhury Purba
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Manoranjan Maity
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Soumalya Bhattacharyya
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
30
|
Purba PC, Maity M, Bhattacharyya S, Mukherjee PS. A Self‐Assembled Palladium(II) Barrel for Binding of Fullerenes and Photosensitization Ability of the Fullerene‐Encapsulated Barrel. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103822] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Prioti Choudhury Purba
- Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012 India
| | - Manoranjan Maity
- Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012 India
| | - Soumalya Bhattacharyya
- Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012 India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012 India
| |
Collapse
|
31
|
Akine S. Control of guest binding behavior of metal-containing host molecules by ligand exchange. Dalton Trans 2021; 50:4429-4444. [PMID: 33877165 DOI: 10.1039/d1dt00048a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review describes the control of guest binding behavior of metal-containing host molecules that is driven by ligand exchange reactions at the metal centers. Recently, a vast number of metal-containing host molecules including metal-assisted self-assembled structures have been developed, and the structural transformation after construction of the host framework has now been of interest from the viewpoint of functional switching and tuning. Among the various kinds of chemical transformations, ligand exchange has a great advantage in the structural conversions of metal-containing hosts, because ligand exchange usually proceeds under mild conditions that do not affect the host framework. In this review, the structural transformations are classified into three types: (1) weak-link approach, (2) subcomponent substitution, and (3) post-metalation modification, according to the type of coordination motif. The control of their guest binding behavior by the structural transformations is discussed in detail.
Collapse
Affiliation(s)
- Shigehisa Akine
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| |
Collapse
|
32
|
Cheng PM, Cai LX, Li SC, Hu SJ, Yan DN, Zhou LP, Sun QF. Guest-Reaction Driven Cage to Conjoined Twin-Cage Mitosis-Like Host Transformation. Angew Chem Int Ed Engl 2020; 59:23569-23573. [PMID: 32902925 DOI: 10.1002/anie.202011474] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Indexed: 12/12/2022]
Abstract
We report here a guest-reaction-induced mitosis-like host transformation from a known Pd4 L2 cage 1 to a conjoined Pd6 L3 twin-cage 2 featuring two separate cavities. The encapsulation of 1-hydroxymethyl-2-naphthol (G1), a known ortho-quinone methide (o-QMs) precursor, within the hydrophobic cavity of cage 1 is found crucial to realize the cage to twin-cage conversion. Confined G1 molecules within the nanocavity undergo self-coupling dimerization reaction to form 2,2'-dihydroxy-1,1'-dinaphthylmethane (G2) which then triggers the cage to twin-cage mitosis. The same conversion also proceeds, in a much faster rate, via the direct templation of G2, confirming the induced-fit transformation mechanism. The structure of the (G2)2 ⊂2 host-guest complex has been established by X-ray crystallographic study, where cis- to trans- conformational switch on one bridging ligand is revealed.
Collapse
Affiliation(s)
- Pei-Ming Cheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, PR China.,College of Chemistry and Material Science, Fujian Normal University, Fuzhou, 350007, PR China
| | - Li-Xuan Cai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, PR China
| | - Shao-Chuan Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, PR China.,University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Shao-Jun Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, PR China.,University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Dan-Ni Yan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, PR China.,University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Li-Peng Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, PR China
| | - Qing-Fu Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, PR China.,University of Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
33
|
Sun XW, Wang ZH, Li YJ, Zhang YF, Zhang YM, Yao H, Wei TB, Lin Q. Tri-pillar[5]arene-Based Multifunctional Stimuli-Responsive Supramolecular Polymer Network with Conductivity, Aggregation-Induced Emission, Thermochromism, Fluorescence Sensing, and Separation Properties. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01972] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Xiao-Wen Sun
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Zhong-Hui Wang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Ying-Jie Li
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yun-Fei Zhang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - You-Ming Zhang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Hong Yao
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Tai-Bao Wei
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Qi Lin
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
34
|
Mondal B, Bhandari P, Mukherjee PS. Nucleation of Tiny Silver Nanoparticles by Using a Tetrafacial Organic Molecular Barrel: Potential Use in Visible-Light-Triggered Photocatalysis. Chemistry 2020; 26:15007-15015. [PMID: 32770587 DOI: 10.1002/chem.202003390] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Indexed: 12/12/2022]
Abstract
Coordination-driven self-assembly of discrete molecular architectures of diverse shapes and sizes has been well studied in the last three decades. Use of dynamic imine bonds for designing analogous metal-free architectures has become a growing challenge recently. This article reports an organic molecular barrel (OB4R ) as a potential template for nucleation and stabilization of very tiny (<1.5 nm) Ag nanoparticles (AgNPs). Imine bond condensation of a rigid tetra-aldehyde with a flexible diamine followed by imine-bond reduction yielded the discrete tetragonal organic barrel (OB4R ). The presence of a molecular pocket ornamented with eight diamine moieties gives the potential for encapsulation of silver(I). The organic barrel was finally used as a molecular vessel for the controlled nucleation of silver nanoparticles (AgNPs) with fine size tuning through binding of AgI ions in the confined space of the barrel followed by reduction. Transmission electron microscopy (TEM) analysis of the Ag0 @OB4R composite revealed that the mean particle size is 1.44±0.16 nm. The composite material has approximately 52 wt % silver loading. The barrel-supported ultrafine AgNPs [Ag0 @OB4R ] are found to be an efficient photocatalyst for facile Ullmann-type aryl-amination coupling of haloarenes at ambient temperature without using any additives. The catalyst was stable for several cycles of reuse without any agglomeration. The new composite Ag0 @OB4R represents the first example of discrete organic barrel-supported AgNPs employed as a photocatalyst in Ullmann-type coupling reactions at room temperature.
Collapse
Affiliation(s)
- Bijnaneswar Mondal
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Pallab Bhandari
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
35
|
Bhattacharyya S, Ali SR, Venkateswarulu M, Howlader P, Zangrando E, De M, Mukherjee PS. Self-Assembled Pd12 Coordination Cage as Photoregulated Oxidase-Like Nanozyme. J Am Chem Soc 2020; 142:18981-18989. [DOI: 10.1021/jacs.0c09567] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Soumalya Bhattacharyya
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Sk Rajab Ali
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Mangili Venkateswarulu
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Prodip Howlader
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Ennio Zangrando
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste 34127, Italy
| | - Mrinmoy De
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
36
|
Cheng P, Cai L, Li S, Hu S, Yan D, Zhou L, Sun Q. Guest‐Reaction Driven Cage to Conjoined Twin‐Cage Mitosis‐Like Host Transformation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011474] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Pei‐Ming Cheng
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 PR China
- College of Chemistry and Material Science Fujian Normal University Fuzhou 350007 PR China
| | - Li‐Xuan Cai
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 PR China
| | - Shao‐Chuan Li
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Shao‐Jun Hu
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Dan‐Ni Yan
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Li‐Peng Zhou
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 PR China
| | - Qing‐Fu Sun
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| |
Collapse
|
37
|
Howlader P, Bhandari P, Chakraborty D, Clegg JK, Mukherjee PS. Self-Assembly of a Pd8 Macrocycle and Pd12 Homochiral Tetrahedral Cages Using Poly(tetrazolate) Linkers. Inorg Chem 2020; 59:15454-15459. [DOI: 10.1021/acs.inorgchem.0c02452] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Prodip Howlader
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Pallab Bhandari
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Debsena Chakraborty
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Jack K. Clegg
- School of Chemistry and Molecular Biosciences, The University of Queensland—St. Lucia, St. Lucia, Queensland 4072, Australia
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
38
|
Bhattacharyya S, Venkateswarulu M, Sahoo J, Zangrando E, De M, Mukherjee PS. Self-Assembled PtII8 Metallosupramolecular Tubular Cage as Dual Warhead Antibacterial Agent in Water. Inorg Chem 2020; 59:12690-12699. [DOI: 10.1021/acs.inorgchem.0c01777] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Soumalya Bhattacharyya
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Mangili Venkateswarulu
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Jagabandhu Sahoo
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Ennio Zangrando
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste 34127, Italy
| | - Mrinmoy De
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
39
|
Zhu JL, Ling QH, Wu A, Xu L. Coordination-driven self-assembly of discrete supramolecular double-metallacycles. Dalton Trans 2020; 49:17511-17519. [DOI: 10.1039/d0dt03186k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This review comprehensively summarizes the recent advances in the coordination-driven self-assembly of discrete supramolecular double-metallacycles.
Collapse
Affiliation(s)
- Jun-Long Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- P. R. China
| | - Qing-Hui Ling
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- P. R. China
| | - Aibin Wu
- School of Chemistry and Environmental Engineering
- Yangtze University
- Jingzhou
- China
| | - Lin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- P. R. China
| |
Collapse
|