1
|
Feng F, Hu Z, Wang J, Wang P, Sun C, Wang X, Bi F, Li Y, Bao X. Non-Fused π-Extension of Endcaps of Small Molecular Acceptors Enabling High-Performance Organic Solar Cells. CHEMSUSCHEM 2024; 17:e202400601. [PMID: 38782717 DOI: 10.1002/cssc.202400601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
The modular structure of small molecular acceptors (SMAs) allows for versatile modifications of the materials and boosts the photovoltaic efficiencies of organic solar cells (OSCs) in recent years. As a critical component, the endcaps of SMAs have been intensively investigated and modified to control the molecular aggregation and photo-electronic conversion. However, most of the studies focus on halogenation or π-fusion extension of the endcap moieties, but overlook the non-fused π-extension approach, which could be a promising strategy to balance the self-aggregation and compatibility behaviors. Herein, we reported two new acceptors namely BTP-Th and BTP-FTh based on non-fused π-extension of the endcap by chlorinated-thiophene, of which the latter molecule has better co-planarity and crystallinity because of the intramolecular noncovalent interactions. Paired with donor PBDB-T, the optimal device of BTP-FTh reveals a greater efficiency of 14.81 % that that of BTP-Th (13.91 %). Nevertheless, the BTP-Th based device realizes a lower energy loss, enabling BTP-Th as a good candidate to serve as guest acceptor. As a result, the ternary solar cells of PM6 : BTP-eC9 : BTP-Th output a champion efficiency up to 18.71 % with enhanced open-circuit voltage. This study highlights the significance of rational decoration of endcaps for the design of high-performance SMAs and photovoltaic cells.
Collapse
Affiliation(s)
- Fan Feng
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zunyuan Hu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China
- College of Materials Science and Engineering, Shandong University of Science and Technology, 266590, Qingdao, China
| | - Jianxiao Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China
| | - Pengchao Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China
- School of Polymer Science and Engineering, Qingdao University of Science & Technology, 266042, Qingdao, China
| | - Cheng Sun
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China
| | - Xiaoning Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Fuzhen Bi
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China
- Laboratory of Solar Energy, Shandong Energy Institute, 266101, Qingdao, China
- Qingdao New Energy Shandong Laboratory, 266101, Qingdao, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yonghai Li
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China
- Laboratory of Solar Energy, Shandong Energy Institute, 266101, Qingdao, China
- Qingdao New Energy Shandong Laboratory, 266101, Qingdao, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xichang Bao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China
- Laboratory of Solar Energy, Shandong Energy Institute, 266101, Qingdao, China
- Qingdao New Energy Shandong Laboratory, 266101, Qingdao, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
2
|
Shen Q, He C, Li S, Qiao J, Li S, Zhang Y, Shi M, Zuo L, Hao X, Chen H. Loosely Bounded Exciton with Enhanced Delocalization Capability Boosting Efficiency of Organic Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403570. [PMID: 38966891 DOI: 10.1002/smll.202403570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/20/2024] [Indexed: 07/06/2024]
Abstract
In organic solar cells (OSCs), electron acceptors have undergone multiple updates, from the initial fullerene derivatives, to the later acceptor-donor-acceptor type non-fullerene acceptors (NFAs), and now to Y-series NFAs, based on which efficiencies have reached over 19%. However, the key property responsible for further improved efficiency from molecular structure design is remained unclear. Herein, the material properties are comprehensively scanned by selecting PC71BM, IT-4F, and L8-BO as the representatives for different development stages of acceptors. For comparison, asymmetric acceptor of BTP-H5 with desired loosely bounded excitons is designed and synthesized. It's identified that the reduction of intrinsically exciton binding energy (Eb) and the enhancement of exciton delocalization capability act as the key roles in boosting the performance. Notably, 100 meV reduction in Eb has been observed from PC71BM to BTP-H5, correspondingly, electron-hole pair distance of BTP-H5 is almost two times over PC71BM. As a result, efficiency is improved from 40% of S-Q limit for PC71BM-based OSC to 60% for BTP-H5-based one, which achieves an efficiency of 19.07%, among the highest values for binary OSCs. This work reveals the confirmed function of exciton delocalization capability quantitatively in pushing the efficiency of OSCs, thus providing an enlightenment for future molecular design.
Collapse
Affiliation(s)
- Qing Shen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Chengliang He
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Shuixing Li
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, P. R. China
| | - Jiawei Qiao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Shilin Li
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Yuan Zhang
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Minmin Shi
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Lijian Zuo
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xiaotao Hao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Hongzheng Chen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, P. R. China
| |
Collapse
|
3
|
Song X, Mei L, Zhou X, Li H, Xu H, Liu X, Gao S, Xu S, Yang Y, Zhu W, Wang J, Zhang XH, Chen XK. Frenkel and Charge-Transfer Excitonic Couplings Strengthened by Thiophene-Type Solvent Enables Binary Organic Solar Cells with 19.8 % Efficiency. Angew Chem Int Ed Engl 2024; 63:e202411512. [PMID: 38988004 DOI: 10.1002/anie.202411512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/12/2024]
Abstract
Overcoming the trade-off between short-circuited current (Jsc) and open-circuited voltage (Voc) is important to achieving high-efficiency organic solar cells (OSCs). Previous works modulated the energy gap between Frenkel local exciton (LE) and charge-transfer (CT) exciton, which served as the driving force of exciton splitting. Differently, our current work focuses on the modulation of LE-CT excitonic coupling (tLE-CT) via a simple but effective strategy that the 2-chlorothiophene (2Cl-Th) solvent utilizes in the treatment of OSC active-layer films. The results of our experimental measurements and theoretical simulations demonstrated that 2Cl-Th solvent initiates tighter intermolecular interactions with non-fullerene acceptor in comparison with that of traditional chlorobenzene solvent, thus suppressing the acceptor's over-aggregation and retarding the acceptor crystallization with reduced trap. Critically, the resulting shorter distances between donor and acceptor molecules in the 2Cl-Th treated blend efficiently strengthen tLE-CT, which not only promotes exciton splitting but also reduces non-radiative recombination. The champion efficiencies of 19.8 % (small-area) with superior operational reliability (T80: 586 hours) and 17.0 % (large-area) were yielded in 2Cl-Th treated cells. This work provided a new insight into modulating the exciton dynamics to overcome the trade-off between Jsc and Voc, which can productively promote the development of the OSC field.
Collapse
Affiliation(s)
- Xin Song
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, P.R. China
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Le Mei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P.R. China
- Department of Chemistry, City University of Hong Kong Kowloon, Hong Kong, 999077, P.R. China
| | - Xinjie Zhou
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, P.R. China
| | - Hongxiang Li
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P.R. China
| | - Hao Xu
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, P.R. China
| | - Xingting Liu
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, P.R. China
| | - Shenzheng Gao
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, P.R. China
| | - Shanlei Xu
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, P.R. China
| | - Yahui Yang
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, P.R. China
| | - Weiguo Zhu
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, P.R. China
| | - Jianpu Wang
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, P.R. China
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P.R. China
| | - Xiao-Hong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P.R. China
| | - Xian-Kai Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P.R. China
| |
Collapse
|
4
|
Li K, Yuan Y, Yang H, Feng J, Hu K, Jiang X, Hu J, Wu Y, Cui C. Impact of Alkoxy Side Chains on the Quinoxaline-Based Electron Acceptors for Efficient Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53333-53342. [PMID: 39344970 DOI: 10.1021/acsami.4c13907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
In this work, three alkoxy-substituted quinoxaline core-based small-molecule acceptors (BQO-F, BQDO-F, and BQDO-Cl) are developed to elucidate the impact of ethoxy substituents on the physicochemical and photoelectric properties. Comparative analysis reveals that dialkoxy-substituted BQDO-F has a more planar molecular skeleton, a red-shifted absorption spectrum, upshifted energy levels, stronger crystallinity, and reduced energetic disorder compared to the monoalkoxy-substituted BQO-F. Although the replacement of fluorine atoms with chlorine atoms on the end-capped units of BQDO-F leads to a bathochromically shifted absorption spectrum, the resulting molecule BQDO-Cl shows worse π-π packing order compared to BQDO-F. Benefiting from the more favorable active layer morphology and improved carrier dynamics, the PBDB-T:BQDO-F-based organic solar cell achieves a much higher power conversion efficiency (PCE) of 16.41% compared to that of 14.48% obtained in the BQO-F-based device. In comparison with the BQDO-F-based device, the higher voltage loss of the BQDO-Cl-based device results in a lower PCE of 15.89%. The results clarify the effects of ethoxy substituents and end-capped substitutions of quinoxaline core-based small-molecule acceptors on efficient organic solar cells.
Collapse
Affiliation(s)
- Kui Li
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
| | - Ya Yuan
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
| | - Hang Yang
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
| | - Jun Feng
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
| | - Kewei Hu
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
| | - Xinyu Jiang
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
| | - Jianlong Hu
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yue Wu
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
| | - Chaohua Cui
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, Jiangsu, China
| |
Collapse
|
5
|
Niharika Bhuyan N, Shankar S S, Jyoti Panda S, Shekhar Purohit C, Singhal R, Sharma GD, Mishra A. An Asymmetric Coumarin-Anthracene Conjugate as Efficient Fullerene-Free Acceptor for Organic Solar Cells. Angew Chem Int Ed Engl 2024; 63:e202406272. [PMID: 38739535 DOI: 10.1002/anie.202406272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
Asymmetric wide-band gap fullerene-free acceptors (FFAs) play a crucial role in organic solar cells (OSCs). Here, we designed and synthesized a simple asymmetric coumarin-anthracene conjugate named CA-CN with optical band gap of 2.1 eV in a single-step condensation reaction. Single crystal X-ray structure analysis confirms various multiple intermolecular non-covalent interactions. The molecular orbital energy levels of CA-CN estimated from cyclic voltammetry were found to be suitable for its use as an acceptor for OSCs. Binary OSCs fabricated using CA-CN as acceptor and PTB7-Th as the donor achieve a power conversion efficiency (PCE) of 11.13 %. We further demonstrate that the insertion of 20 wt % of CA-CN as a third component in ternary OSCs with PTB7-Th : DICTF as the host material achieved an impressive PCE of 14.91 %, an improvement of ~43 % compared to the PTB7-Th : DICTF binary device (10.38 %). Importantly, the ternary blend enhances the absorption coverage from 400 to 800 nm and improves the morphology of the active layer. The findings highlight the efficacy of an asymmetric design approach for FFAs, which paves the way for developing high-efficiency OSCs at low cost.
Collapse
Affiliation(s)
| | - Shyam Shankar S
- Department of Physics, The LNM Institute of Information Technology, Deemed University), Rupa ki Nagal, Jamdoli, 302031, Jaipur, Rajasthan, India
| | - Subhra Jyoti Panda
- School of Chemical Sciences, National Institute of Science Education and Research, Jatni, 752050, Bhubaneswar, Orissa, India
| | - Chandra Shekhar Purohit
- School of Chemical Sciences, National Institute of Science Education and Research, Jatni, 752050, Bhubaneswar, Orissa, India
| | - Rahul Singhal
- Department of Physics, Malaviya National Institute of Technology, 302017, Jaipur, Rajasthan, India
| | - Ganesh D Sharma
- Department of Physics, The LNM Institute of Information Technology, Deemed University), Rupa ki Nagal, Jamdoli, 302031, Jaipur, Rajasthan, India
| | - Amaresh Mishra
- School of Chemistry, Sambalpur University, 768019, Jyoti Vihar, Sambalpur, India
| |
Collapse
|
6
|
Ali Septian MR, Estrada R, Lee CC, Iskandar J, Al Amin NR, Liman J, Harsono B, Sutanto K, Yeh PC, Chen CH, Liu SW. Enhancing Specific Detectivity and Device Stability in Vacuum-Deposited Organic Photodetectors Utilizing Nonfullerene Acceptors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48034-48042. [PMID: 39215693 DOI: 10.1021/acsami.4c10792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Organic photodetector (OPD) studies have undergone a revolutionary transformation by introducing nonfullerene acceptors (NFAs), which provide substantial benefits such as tunable band gaps and enhanced absorption in the visible spectrum. Vacuum-processed small-molecule-based OPD devices are presented in this study by utilizing a blend of boron subphthalocyanine (SubPc) and chlorinated subphthalocyanine (Cl6SubPc) as the active layer. Four different active layer thicknesses are further investigated to understand the intrinsic phenomena, unveiling the suppression of dark current density while maintaining photoexcitation and charge separation efficiency. Experimental results reveal that, at an applied bias of -3 V, the 50-nm-thick active layer achieves a remarkably low dark current density of 1.002 nA cm-2 alongside a high external quantum efficiency (EQE) of 52.932% and a responsivity of 0.226 A W-1. These impressive performance metrics lead to a specific detectivity of 1.263 × 1013 Jones. Furthermore, the findings offer new insights into intrinsic phenomena within the bulk heterojunction (BHJ), such as thermally generated current and exciton quenching. This integration is potentially well-heeled to revolutionize display technology by combining high-sensitivity photodetection, offering new possibilities for novel display panels with sensing applications.
Collapse
Affiliation(s)
- M Rivaldi Ali Septian
- Organic Electronics Research Center, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| | - Richie Estrada
- Organic Electronics Research Center, Ming Chi University of Technology, New Taipei City 24301, Taiwan
- Department of Electrical Engineering, Krida Wacana Christian University, Jakarta 11470, Indonesia
| | - Chih-Chien Lee
- Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei 10617, Taiwan
| | - Johan Iskandar
- Organic Electronics Research Center, Ming Chi University of Technology, New Taipei City 24301, Taiwan
- Vocational School, Pakuan University, Bogor 16129, Indonesia
| | - Nurul Ridho Al Amin
- Organic Electronics Research Center, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| | - Johansah Liman
- Department of Electrical Engineering, Krida Wacana Christian University, Jakarta 11470, Indonesia
| | - Budi Harsono
- Department of Electrical Engineering, Krida Wacana Christian University, Jakarta 11470, Indonesia
| | - Kevin Sutanto
- Department of Electrical Engineering, Krida Wacana Christian University, Jakarta 11470, Indonesia
| | - Ping-Chung Yeh
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan
| | - Chih-Hsin Chen
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan
| | - Shun-Wei Liu
- Organic Electronics Research Center, Ming Chi University of Technology, New Taipei City 24301, Taiwan
- Department of Electronic Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| |
Collapse
|
7
|
Zhang T, Chen Z, Zhang W, Wang L, Yu G. Recent Progress of Fluorinated Conjugated Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403961. [PMID: 38830614 DOI: 10.1002/adma.202403961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/16/2024] [Indexed: 06/05/2024]
Abstract
In recent years, conjugated polymers have received widespread attention due to their characteristic advantages of light weight, favorable solution processability, and structural modifiability. Among various conjugated polymers, fluorinated ones have developed rapidly to achieve high-performance n-type or ambipolar polymeric semiconductors. The uniqueness of fluorinated conjugated polymers contains the high coplanarity of their structures, lower frontier molecular orbital energy levels, and strong nonbonding interactions. In this review, first the fluorinated building blocks, including fluorinated benzene and thiophene rings, fluorinated B←N bridged units, and fluoroalkyl side chains are summarized. Subsequently, different synthetic methods of fluorinated conjugated polymers are described, with a special focus on their respective advantages and disadvantages. Then, with these numerous fluorinated structures and appropriate synthetic methods bear in mind, the properties and applications of the fluorinated conjugated polymers, such as cyclopentadithiophene-, amide-, and imide-based polymers, and B←N embedded polymers, are systematically discussed. The introduction of fluorine atoms can further enhance the electron-deficiency of the backbone, influencing the charge carrier transport performance. The promising fluorinated conjugated polymers are applied widely in organic field-effect transistors, organic solar cells, organic thermoelectric devices, and other organic opto-electric devices. Finally, the outlook on the challenges and future development of fluorinated conjugated polymers is systematically discussed.
Collapse
Affiliation(s)
- Tianhao Zhang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Zhihui Chen
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liping Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
8
|
Xu R, Jiang Y, Liu F, Ran G, Liu K, Zhang W, Zhu X. High Open-Circuit Voltage Organic Solar Cells with 19.2% Efficiency Enabled by Synergistic Side-Chain Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312101. [PMID: 38544433 DOI: 10.1002/adma.202312101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/11/2024] [Indexed: 04/05/2024]
Abstract
Restricted by the energy-gap law, state-of-the-art organic solar cells (OSCs) exhibit relatively low open-circuit voltage (VOC) because of large nonradiative energy losses (ΔEnonrad). Moreover, the trade-off between VOC and external quantum efficiency (EQE) of OSCs is more distinctive; the power conversion efficiencies (PCEs) of OSCs are still <15% with VOCs of >1.0 V. Herein, the electronic properties and aggregation behaviors of non-fullerene acceptors (NFAs) are carefully considered and then a new NFA (Z19) is delicately designed by simultaneously introducing alkoxy and phenyl-substituted alkyl chains to the conjugated backbone. Z19 exhibits a hypochromatic-shifted absorption spectrum, high-lying lowest unoccupied molecular orbital energy level and ordered 2D packing mode. The D18:Z19-based blend film exhibits favorable phase separation with face-on dominated molecular orientation, facilitating charge transport properties. Consequently, D18:Z19 binary devices afford an exciting PCE of 19.2% with a high VOC of 1.002 V, surpassing Y6-2O-based devices. The former is the highest PCE reported to date for OSCs with VOCs of >1.0 V. Moreover, the ΔEnonrad of Z19- (0.200 eV) and Y6-2O-based (0.155 eV) devices are lower than that of Y6-based (0.239 eV) devices. Indications are that the design of such NFA, considering the energy-gap law, could promote a new breakthrough in OSCs.
Collapse
Affiliation(s)
- Renjie Xu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuanyuan Jiang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Feng Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P. R. China
| | - Guangliu Ran
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing, 100875, P. R. China
| | - Kerui Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing, 100875, P. R. China
| | - Xiaozhang Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
9
|
Shen X, Xiong S, Lai H, Wang Y, Li H, Deng Z, He F. Chlorinated Oligomers with Regulate Planarity Achieving Superior Photovoltaic Performance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27463-27469. [PMID: 38743927 DOI: 10.1021/acsami.4c04476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Chlorine substitution, as an effective and low-cost modification strategy, has been applied in the design of donor and acceptor structures in organic solar cells. We synthesized a series of chlorinated dimerized acceptors to investigate the effect of chlorine numbers and locations on the photovoltaic properties. The results show that the planarity and morphology of DYV-γ-2Cl are greatly improved due to the appropriate numbers and positions of the substituted chlorine atoms. Therefore, the device based on PM6:DYV-γ-2Cl achieves a superior power conversion efficiency (PCE) of 15.54% among the three oligomeric acceptors with optimized molecular planarity and film morphology. This work demonstrated the positive effect of suitable numbers and the substitution positions of chlorines on the molecular arrangement and photovoltaic properties of the corresponding dimerized acceptors.
Collapse
Affiliation(s)
- Xiangyu Shen
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shilong Xiong
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hanjian Lai
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yunpeng Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Heng Li
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zihao Deng
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Feng He
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
10
|
Meng X, Jia Z, Niu X, He C, Hou Y. Opportunities and challenges in perovskite-organic thin-film tandem solar cells. NANOSCALE 2024; 16:8307-8316. [PMID: 38568749 DOI: 10.1039/d3nr06602a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Efficiency is paramount in enhancing the performance and cost-effectiveness of solar cells. Recent advancements in single-junction perovskite solar cells (PSCs) have yielded an impressive efficiency of 26.1%, nearing their theoretical limit. Meanwhile, multi-junction tandem solar cells exhibit a remarkable efficiency potential exceeding 42%, surpassing the 33% limit of single-junction cells, thereby opening avenues for ultra-high-efficiency solar cells. Tandem solar cells (TSCs) represent a groundbreaking photovoltaic technology, offering high efficiency, low cost, and a simple fabrication process. Among various TSCs, perovskite-organic TSCs (PO TSCs) are particularly promising due to their ability to leverage the complementary strengths of PSCs and organic solar cells (OSCs). PO TSCs are poised to outperform existing TSCs in terms of device performance, manufacturing cost, and diverse applications. The introduction of Y6-series non-fullerene acceptors (NFAs) over the past three years has significantly advanced the development of OSCs, leading to remarkable progress in PO TSCs. This paper commences by elucidating the advantages and potential of OSCs as bottom sub-cells in PO TSCs, followed by an in-depth review of mainstream interconnection layer (ICL) design. It then addresses key challenges in wide bandgap PSCs, including phase segregation, photovoltage loss, energy loss, and long-term stability. The paper concludes by examining critical factors influencing the future development of PO TSCs.
Collapse
Affiliation(s)
- Xin Meng
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore.
- Solar Energy Research Institute of Singapore (SERIS), National University of Singapore, 117574, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, China
| | - Zhengrong Jia
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore.
- Solar Energy Research Institute of Singapore (SERIS), National University of Singapore, 117574, Singapore
| | - Xiuxiu Niu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore.
- Solar Energy Research Institute of Singapore (SERIS), National University of Singapore, 117574, Singapore
| | - Chunnian He
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, China
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
| | - Yi Hou
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore.
- Solar Energy Research Institute of Singapore (SERIS), National University of Singapore, 117574, Singapore
| |
Collapse
|
11
|
Ding Y, Xiong S, Li M, Pu M, Zhu Y, Lai X, Wang Y, Qiu D, Lai H, He F. Highly-Efficient 2D Nonfullerene Acceptors Enabled by Subtle Molecular Tailoring Engineering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309169. [PMID: 38072767 DOI: 10.1002/smll.202309169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/19/2023] [Indexed: 05/25/2024]
Abstract
The conjugate expansion of nonfullerene acceptors is considered to be a promising approach for improving organic photovoltaic performance because of its function in tuning morphological structure and molecular stacking behavior. In this work, two nonfullerene acceptors are designed and synthesized using a 2D π-conjugate expansion strategy, thus enabling the construction of highly-efficient organic solar cells (OSCs). Compared with YB2B (incorporating dibromophenanthrene on the quinoxaline-fused core), YB2T (incorporating dibromobenzodithiophene on the quinoxaline-fused core) has red-shifted spectral absorption and better charge transport properties. Moreover, the more orderly and tightly intermolecular stacking of YB2T provides the possibility of forming a more suitable phase separation morphology in blend films. Through characterization and analysis, the YB2T-based blend film is found to have higher exciton dissociation efficiency and less charge recombination. Consequently, the power conversion efficiency (PCE) of 17.05% is achieved in YB2T-based binary OSCs, while YB2B-based devices only reached 10.94%. This study demonstrates the significance of the aromatic-ring substitution strategy for regulating the electronic structure and aggregation behavior of 2D nonfullerene acceptors, facilitating the development of devices with superior photovoltaic performance.
Collapse
Affiliation(s)
- Yafei Ding
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shilong Xiong
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Mingpeng Li
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Mingrui Pu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yiwu Zhu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xue Lai
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yunpeng Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Dongsheng Qiu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hanjian Lai
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Feng He
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
12
|
Zhou Y, Liu S, Liang Z, Wu H, Wang L, Wang W, Zhao B, Cong Z, Lu G, Gao C. Terpolymer Containing a meta-Octyloxy-phenyl-Modified Dithieno[3,2- f:2',3'- h]quinoxaline Unit Enabling Efficient Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:14026-14037. [PMID: 38447136 DOI: 10.1021/acsami.3c18789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
With the rapid development of small-molecule electron acceptors, polymer electron donors are becoming more important than ever in organic photovoltaics, and there is still room for the currently available high-performance polymer donors. To further develop polymer donors with finely tunable structures to achieve better photovoltaic performances, random ternary copolymerization is a useful technique. Herein, by incorporating a new electron-withdrawing segment 2,3-bis(3-octyloxyphenyl)dithieno[3,2-f:2',3'-h]quinoxaline derivative (C12T-TQ) to PM6, a series of terpolymers were synthesized. It is worth noting that the introduction of the C12T-TQ unit can deepen the highest occupied molecular orbital energy levels of the resultant polymers. In addition, the polymer Z6 with a 10% C12T-TQ ratio possesses the highest film absorption coefficient (9.86 × 104 cm-1) among the four polymers. When blended with Y6, it exhibited superior miscibility and mutual crystallinity enhancement between Z6 and Y6, suppressed recombination, better exciton separation and charge collection characteristics, and faster hole transfer in the D-A interface. Consequently, the device of Z6:Y6 successfully achieved enhanced photovoltaic parameters and yielded an efficiency of 17.01%, higher than the 16.18% of the PM6:Y6 device, demonstrating the effectiveness of the meta-octyloxy-phenyl-modified dithieno[3,2-f:2',3'-h]quinoxaline moiety to build promising terpolymer donors for high-performance organic solar cells.
Collapse
Affiliation(s)
- Yuchen Zhou
- Xi'an Key Laboratory of Liquid Crystal and Organic Photovoltaic Materials, State Key Laboratory of Fluorine and Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Xi'an, Shaanxi 710065, P. R. China
| | - Shujuan Liu
- Xi'an Key Laboratory of Liquid Crystal and Organic Photovoltaic Materials, State Key Laboratory of Fluorine and Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Xi'an, Shaanxi 710065, P. R. China
| | - Zezhou Liang
- Key Laboratory of Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Lab of Photonic Technique for Information, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Haimei Wu
- Xi'an Key Laboratory of Liquid Crystal and Organic Photovoltaic Materials, State Key Laboratory of Fluorine and Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Xi'an, Shaanxi 710065, P. R. China
| | - Liuchang Wang
- School of Chemical Engineering, Xi'an University, No. 168 of South Taibai Road, Xi'an 710065, China
| | - Weiping Wang
- Xi'an Key Laboratory of Liquid Crystal and Organic Photovoltaic Materials, State Key Laboratory of Fluorine and Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Xi'an, Shaanxi 710065, P. R. China
| | - Baofeng Zhao
- Xi'an Key Laboratory of Liquid Crystal and Organic Photovoltaic Materials, State Key Laboratory of Fluorine and Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Xi'an, Shaanxi 710065, P. R. China
| | - Zhiyuan Cong
- Xi'an Key Laboratory of Liquid Crystal and Organic Photovoltaic Materials, State Key Laboratory of Fluorine and Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Xi'an, Shaanxi 710065, P. R. China
| | - Guanghao Lu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P. R. China
| | - Chao Gao
- Xi'an Key Laboratory of Liquid Crystal and Organic Photovoltaic Materials, State Key Laboratory of Fluorine and Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Xi'an, Shaanxi 710065, P. R. China
| |
Collapse
|
13
|
Jinnai S, Shimohara N, Ishikawa K, Hama K, Iimuro Y, Washio T, Watanabe Y, Ie Y. Green-light wavelength-selective organic solar cells for agrivoltaics: dependence of wavelength on photosynthetic rate. Faraday Discuss 2024; 250:220-232. [PMID: 37971029 DOI: 10.1039/d3fd00141e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
There is a growing demand for the development of novel solar power systems that can simultaneously solve the problems associated with both energy generation and food supply in agriculture. Green-light wavelength-selective organic solar cells (OSCs), whose transmitted blue and red light can be utilized to promote plant growth were recently reported by our group. However, the influence of wavelength variation on the photosynthetic rate in green-light wavelength-selective OSCs remains unclear. In this study, we report on the design and synthesis of new electron-accepting π-conjugated molecules containing cyclopentene-annelated thiophene with a spiro-substituted 2,7-bis(2-ethylhexyl)fluorene (FT) unit (TT-FT-ID) as a green-light wavelength-selective nonfullerene acceptor along with a reference compound TT-T-ID. Photophysical measurements indicate that the introduction of the FT unit leads to an absorption band with a small full width at half maximum in films, leading to the ability to fine-tune the absorption length. Concerning the optimization of the conditions for the fabrication of the active layers, which are composed of a green-light wavelength-selective donor polymer of poly(3-hexylthiophene) (P3HT) and the new acceptors, Bayesian optimization based on Gaussian process regression was applied to minimize the experimental batches. The green-light wavelength-selective factor (SG) and the PCEs in the green-light region (PCE-GR) of the P3HT:TT-FT-ID-based device were determined to be 0.52 and 8.6%, respectively, which are higher values than those of the P3HT:TT-T-ID blend film. The P3HT:TT-FT-ID blend film increased the photosynthetic rate of green pepper compared to that of the P3HT:TT-T-ID blend film. These results indicate that the fine-tuning of the absorbance required for crop growth is an important issue in developing green-light wavelength-selective OSCs for agrivoltaics.
Collapse
Affiliation(s)
- Seihou Jinnai
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, 8-1 Mihogaoka, Osaka 567-0047, Ibaraki, Japan.
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Naoto Shimohara
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, 8-1 Mihogaoka, Osaka 567-0047, Ibaraki, Japan.
| | - Kazunori Ishikawa
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, 8-1 Mihogaoka, Osaka 567-0047, Ibaraki, Japan.
| | - Kento Hama
- Department of Mechanical and Electrical Engineering, Faculty of Engineering, Suwa University of Science, 5000-1 Toyohira, Chino, Nagano 391-0292, Japan.
| | - Yohei Iimuro
- Department of Mechanical and Electrical Engineering, Faculty of Engineering, Suwa University of Science, 5000-1 Toyohira, Chino, Nagano 391-0292, Japan.
| | - Takashi Washio
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, 8-1 Mihogaoka, Osaka 567-0047, Ibaraki, Japan.
| | - Yasuyuki Watanabe
- Department of Mechanical and Electrical Engineering, Faculty of Engineering, Suwa University of Science, 5000-1 Toyohira, Chino, Nagano 391-0292, Japan.
| | - Yutaka Ie
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, 8-1 Mihogaoka, Osaka 567-0047, Ibaraki, Japan.
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
14
|
Chen J, Zhang G, Chen Z, Xiao J, Xia T, Li X, Yip HL. Fluorescent Conversion Agent Embedded in Zinc Oxide as an Electron-Transporting Layer for High-Performance Non-Fullerene Organic Solar Cells with Improved Photostability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306471. [PMID: 37919853 DOI: 10.1002/smll.202306471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/08/2023] [Indexed: 11/04/2023]
Abstract
Zinc oxide (ZnO) is widely used as an electron transporting layer (ETL) for organic solar cells (OSCs). Here, a low-cost commercial water/alcohol-soluble fluorescent conversion agent, sodium 2,2'-([1,1'-biphenyl]-4,4'-diyldivinylene)-bis(benzenesulfonate) (CBS), is incorporated into ZnO to develop a novel organic-inorganic hybrid ETL for high-performance OSCs. The photoinduced charge transfer from CBS to ZnO significantly improves the charge transport properties of ZnO, resulting in faster electron extraction and reduced charge recombination in OSC devices with ZnO:CBS ETLs. ZnO:CBS-based devices exhibit higher power conversion efficiencies (PCEs) than their pure ZnO-based counterparts, especially in devices with a thicker ETL, which is more suitable for roll-to-roll and large-area module processing. Furthermore, the strong ultraviolet-light absorption capability of CBS inhibits the photodegradation of the active layer, improving the photostability of ZnO:CBS based OSC devices. Therefore, this work provides a simple and effective strategy for realizing high-performance OSCs with high PCE and good photostability, which can further facilitate the commercialization of OSCs.
Collapse
Affiliation(s)
- Jinxiang Chen
- School of Advanced Manufacturing, Fuzhou University, Quanzhou, 362000, China
| | - Guichuan Zhang
- School of Semiconductor Science and Technology, South China Normal University, Foshan, Guangdong, 528225, China
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, Guangzhou, 510631, China
| | - Zhen Chen
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Jingyang Xiao
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Tian Xia
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Xin Li
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Hin-Lap Yip
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
15
|
Li D, Wang H, Chen J, Wu Q. Fluorinated Polymer Donors for Nonfullerene Organic Solar Cells. Chemistry 2024; 30:e202303155. [PMID: 38018363 DOI: 10.1002/chem.202303155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 11/30/2023]
Abstract
The rapid development of narrow-bandgap nonfullerene acceptors (NFAs) has boosted the efficiency of organic solar cells (OSCs) over 19 %. The new features of high-performance NFAs, such as visible-NIR light absorption, moderate the highest occupied molecular orbitals (HOMO), and high crystallinity, require polymer donors with matching physical properties. This emphasizes the importance of methods that can effectively tune the physical properties of polymers. Owning to very small atom size and strongest electronegativity, the fluorination has been proved the most efficient strategy to regulate the physical properties of polymer donors, including frontier energy level, absorption coefficient, dielectric constant, crystallinity and charge transport. Owing to the success of fluorination strategy, the vast majority of high-performance polymer donors possess one or more fluorine atoms. In this review, the fluorination synthetic methods, the synthetic route of well-known fluorinated building blocks, the fluorinated polymers which are categorized by the type of donor or acceptor units, and the relationships between the polymer structures, properties, and photovoltaic performances are comprehensively surveyed. We hope this review could provide the readers a deeper insight into fluorination strategy and lay a strong foundation for future innovation of fluorinated polymers.
Collapse
Affiliation(s)
- Dongyan Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou, Guangdong, 515063, China
| | - Huijuan Wang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou, Guangdong, 515063, China
| | - Jinming Chen
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou, Guangdong, 515063, China
| | - Qinghe Wu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou, Guangdong, 515063, China
| |
Collapse
|
16
|
Zhang M, Chang B, Zhang R, Li S, Liu X, Zeng L, Chen Q, Wang L, Yang L, Wang H, Liu J, Gao F, Zhang ZG. Tethered Small-Molecule Acceptor Refines Hierarchical Morphology in Ternary Polymer Solar Cells: Enhanced Stability and 19% Efficiency. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308606. [PMID: 37816121 DOI: 10.1002/adma.202308606] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/04/2023] [Indexed: 10/12/2023]
Abstract
Polymer solar cells (PSCs) are promising for efficient solar energy conversion, but achieving high efficiency and device longevity within a bulk-heterojunction (BHJ) structure remains a challenge. Traditional small-molecule acceptors (SMAs) in the BHJ blend show thermodynamic instability affecting the morphology. In contrast, tethered SMAs exhibit higher glass transition temperatures, mitigating these concerns. Yet, they might not integrate well with polymer donors, causing pronounced phase separation and overpurification of mixed domains. Herein, a novel ternary device is introduced that uses DY-P2EH, a tethered dimeric SMA with conjugated side-chains as host acceptor, and BTP-ec9, a monomeric SMA as secondary acceptor, which respectively possess hypomiscibility and hypermiscibility with the polymer donor PM6. This unique combination affords a parallel-connected ternary BHJ blend, leading to a hierarchical and stable morphology. The ternary device achieves a remarkable fill factor of 80.61% and an impressive power conversion efficiency of 19.09%. Furthermore, the ternary device exhibits exceptional stability, retaining over 85% of its initial efficiency even after enduring 1100 h of thermal stress at 85 °C. These findings highlight the potential advantage of tethered SMAs in the design of ternary devices with a refined hierarchical structure for more efficient and durable solar energy conversion technologies.
Collapse
Affiliation(s)
- Ming Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Bowen Chang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Rui Zhang
- Department of Physics, Biomolecular and organic electronics, Chemistry and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| | - Shangyu Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xinpeng Liu
- School of Electronics and Information, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Liang Zeng
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qi Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Li Wang
- Department of Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of, Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Liangrong Yang
- Department of Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Haiqiao Wang
- Beijing Engineering Research Center for the Synthesis and Applications of Waterborne Polymers, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jiangang Liu
- School of Electronics and Information, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Feng Gao
- Department of Physics, Biomolecular and organic electronics, Chemistry and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| | - Zhi-Guo Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
17
|
Liu F, Jiang Y, Xu R, Su W, Wang S, Zhang Y, Liu K, Xu S, Zhang W, Yi Y, Ma W, Zhu X. Nonfullerene Acceptor Featuring Unique Self-Regulation Effect for Organic Solar Cells with 19 % Efficiency. Angew Chem Int Ed Engl 2024; 63:e202313791. [PMID: 38050643 DOI: 10.1002/anie.202313791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/16/2023] [Accepted: 12/04/2023] [Indexed: 12/06/2023]
Abstract
The blend nanomorphology of electron-donor (D) and -acceptor (A) materials is of vital importance to achieving highly efficient organic solar cells. Exogenous additives especially aromatic additives are always needed to further optimize the nanomorphology of blend films, which is hardly compatible with industrial manufacture. Herein, we proposed a unique approach to meticulously modulate the aggregation behavior of NFAs in both crystal and thin film nanomorphology via self-regulation effect. Nonfullerene acceptor Z9 was designed and synthesized by tethering phenyl groups on the inner side chains of the Y6 backbone. Compared with Y6, the tethered phenyl groups participated in the molecular aggregation via the π-π stacking of phenyl-phenyl and phenyl-2-(5,6-difluoro-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (IC-2F) groups, which induced 3D charge transport with phenyl-mediated super-exchange electron coupling. Moreover, ordered molecular packing with suitable phase separation was observed in Z9-based blend films. High power conversion efficiencies (PCEs) of 19.0 % (certified PCE of 18.6 %) for Z9-based devices were achieved without additives, indicating the great potential of the self-regulation strategy in NFA design.
Collapse
Affiliation(s)
- Feng Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Yuanyuan Jiang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Renjie Xu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenli Su
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing, 100875, China
| | - Shijie Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yaogang Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kerui Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengjie Xu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing, 100875, China
| | - Yuanping Yi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiaozhang Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
18
|
Raza A, Mehmood RF, Rashid EU, Nasr S, Yahia IS, Iqbal J, Alatawi NS, Khera RA. Amplifying the photovoltaic properties of phenylene dithiophene core based non-fused ring by engineering the terminal acceptors modification to enhance the efficiency of organic solar cells. J Mol Graph Model 2023; 124:108563. [PMID: 37480831 DOI: 10.1016/j.jmgm.2023.108563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/24/2023]
Abstract
In this study, a series of eight non-fused rings-based semiconducting acceptors (AR1-AR8) were computationally developed by making modifications to the parent molecule (PTICO). In this study, a DFT analysis was conducted at an accurately chosen level of theory to gather a comprehensive inventory of the optoelectronic characteristics of AR1-AR8 and PTICO. The findings indicate that all recently developed molecules exhibit a bathochromic shift in their maximum UV-visible absorbance (λmax) with a smaller band gap (Eg). AR1 has demonstrated the most significant red shift in UV-visible absorbance and possesses the smallest Eg when compared to other recently developed acceptors. AR2 acceptor has shown the best results both as electron and hole-transporting materials owing to its smallest value of reorganization energy for electrons and holes. J61 donor was engaged to calculate the open-circuit voltage (VOC) and the highest VOC with maximum FF % value was observed in AR4. The investigation of charge transfer was also conducted utilizing J61 in conjunction with the AR4 acceptor. Natural transition orbitals (NTO) have also been inspected to recognize the percentage electron transport contribution (% ETC) from the ground state to the first excites state (S0 to S1). The findings of this research suggest that the modified acceptors exhibit potential for practical implementation in the development of organic solar cells that possess improved photovoltaic performance.
Collapse
Affiliation(s)
- Ahmad Raza
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Rana Farhat Mehmood
- Department of Chemistry, University of Education, Township, Lahore, 54770, Pakistan D Research, Pakistan
| | - Ehsan Ullah Rashid
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Samia Nasr
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, 61413, P.O. Box 9004, Saudi Arabia; Chemistry Department, Faculty of Science, King Khalid University, Abha, 61413, P.O. Box 9004, Saudi Arabia
| | - I S Yahia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, 61413, P.O. Box 9004, Saudi Arabia; Laboratory of Nano-Smart Materials for Science and Technology (LNSMST), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia; Center of Medical and Bio-Allied Health Sciences Research (CMBHSR), Ajman University, Ajman, P.O. Box 346, United Arab Emirates
| | - Javed Iqbal
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| | - Naifa S Alatawi
- Physics Department, Faculty of Science, University of Tabuk, Tabuk, 71421, Saudi Arabia
| | - Rasheed Ahmad Khera
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| |
Collapse
|
19
|
Luo S, Li C, Zhang J, Zou X, Zhao H, Ding K, Huang H, Song J, Yi J, Yu H, Wong KS, Zhang G, Ade H, Ma W, Hu H, Sun Y, Yan H. Auxiliary sequential deposition enables 19%-efficiency organic solar cells processed from halogen-free solvents. Nat Commun 2023; 14:6964. [PMID: 37907534 PMCID: PMC10618449 DOI: 10.1038/s41467-023-41978-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/25/2023] [Indexed: 11/02/2023] Open
Abstract
High-efficiency organic solar cells are often achieved using toxic halogenated solvents and additives that are constrained in organic solar cells industry. Therefore, it is important to develop materials or processing methods that enabled highly efficient organic solar cells processed by halogen free solvents. In this paper, we report an innovative processing method named auxiliary sequential deposition that enables 19%-efficiency organic solar cells processed by halogen free solvents. Our auxiliary sequential deposition method is different from the conventional blend casting or sequential deposition methods in that it involves an additional casting of dithieno[3,2-b:2',3'-d]thiophene between the sequential depositions of the donor (D18-Cl) and acceptor (L8-BO) layers. The auxiliary sequential deposition method enables dramatic performance enhancement from 15% to over 18% compared to the blend casting and sequential deposition methods. Furthermore, by incorporating a branched-chain-engineered acceptor called L8-BO-X, device performance can be boosted to over 19% due to increased intermolecular packing, representing top-tier values for green-solvent processed organic solar cells. Comprehensive morphological and time-resolved characterizations reveal that the superior blend morphology achieved through the auxiliary sequential deposition method promotes charge generation while simultaneously suppressing charge recombination. This research underscores the potential of the auxiliary sequential deposition method for fabricating highly efficient organic solar cells using environmentally friendly solvents.
Collapse
Affiliation(s)
- Siwei Luo
- Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National, Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Chao Li
- Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National, Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- School of Chemistry, Beihang University, 100191, Beijing, China
| | - Jianquan Zhang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Xinhui Zou
- Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National, Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Heng Zhao
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, 710049, Xi'an, China
| | - Kan Ding
- Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
| | - Hui Huang
- College of New Materials and New Energies, Shenzhen Technology University, 518118, Shenzhen, Guangdong, China
| | - Jiali Song
- School of Chemistry, Beihang University, 100191, Beijing, China
| | - Jicheng Yi
- Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National, Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Han Yu
- Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National, Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Kam Sing Wong
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Guangye Zhang
- College of New Materials and New Energies, Shenzhen Technology University, 518118, Shenzhen, Guangdong, China
| | - Harald Ade
- Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, 710049, Xi'an, China
| | - Huawei Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 201620, Shanghai, China
| | - Yanming Sun
- School of Chemistry, Beihang University, 100191, Beijing, China.
| | - He Yan
- Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National, Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China.
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, 510640, Guangzhou, Guangdong Province, China.
| |
Collapse
|
20
|
Che Y, Niazi MR, Chan Q, Ghamari P, Yu T, Ruchlin C, Yu H, Yan H, Ma D, Xiao SS, Izquierdo R, Perepichka DF. Design of Furan-Based Acceptors for Organic Photovoltaics. Angew Chem Int Ed Engl 2023; 62:e202309003. [PMID: 37572307 DOI: 10.1002/anie.202309003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/30/2023] [Accepted: 08/11/2023] [Indexed: 08/14/2023]
Abstract
We explore a series of furan-based non-fullerene acceptors and report their optoelectronic properties, solid-state packing, photodegradation mechanism and application in photovoltaic devices. Incorporating furan building blocks leads to the expected enhanced backbone planarity, reduced band gap and red-shifted absorption of these acceptors. Still, their position in the molecule is critical for stability and device performance. We found that the photodegradation of these acceptors originates from two distinct pathways: electrocyclic photoisomerization and Diels-Alder cycloaddition of singlet oxygen. These mechanisms are of general significance to most non-fullerene acceptors, and the photostability depends strongly on the molecular structure. Placement of furans next to the acceptor termini leads to better photostability, well-balanced hole/electron transport, and significantly improved device performance. Methylfuran as the linker offers the best photostability and power conversion efficiency (>14 %), outperforming all furan-based acceptors reported to date and all indacenodithiophene-based acceptors. Our findings show the possibility of photostable furan-based alternatives to the currently omnipresent thiophene-based photovoltaic materials.
Collapse
Affiliation(s)
- Yuxuan Che
- Department of Chemistry, McGill University, Montreal, Quebec, H3A 0B8, Canada
| | | | - Quentin Chan
- Department of Chemistry, McGill University, Montreal, Quebec, H3A 0B8, Canada
| | - Pegah Ghamari
- Department of Chemistry, McGill University, Montreal, Quebec, H3A 0B8, Canada
| | - Ting Yu
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Varennes, Québec, J3X 1P7, Canada
| | - Cory Ruchlin
- Department of Chemistry, McGill University, Montreal, Quebec, H3A 0B8, Canada
| | - Han Yu
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - He Yan
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Dongling Ma
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Varennes, Québec, J3X 1P7, Canada
| | | | - Ricardo Izquierdo
- Department of Electrical Engineering, École de Technologie Supérieure, Université du Québec, Montréal, Québec, H3C 1K3, Canada
| | - Dmytro F Perepichka
- Department of Chemistry, McGill University, Montreal, Quebec, H3A 0B8, Canada
| |
Collapse
|
21
|
Deng S, Liu J, Meng B, Liu J, Wang L. A Highly Conductive n-Type Polythiophene Derivative: Effect of Molecular Weight on n-Doping Behavior and Thermoelectric Performance. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45190-45200. [PMID: 37703173 DOI: 10.1021/acsami.3c10601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Here, we examine the impact of the molecular weight of an n-type conjugated polymer (n-PT2) on molecular doping and thermoelectric parameters. Two common dopants TDAE and N-DMBI with different doping mechanisms are used for molecular doping of n-PT2. It turns out that n-PT2 with a higher molecular weight is more miscible with the dopant, leading to more charge carriers. Moreover, the crystal structures and morphology of n-PT2 with a higher molecular weight are more tolerant against the intrusion of dopant molecules and charging. Finally, these factors work in synergy to endow the doped n-PT2 with the best conductivity and power factor (144 S cm-1/75.0 μW m-1 K-2 and 75.4 S cm-1/98.5 μW m-1 K-2 after doping by TDAE and N-DMBI, respectively). This study indicates that regulating the molecular weight allows for synergistic regulation of conductivity and Seebeck coefficient and is a feasible means to improve the performance for a given n-type organic thermoelectric material.
Collapse
Affiliation(s)
- Sihui Deng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jian Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Bin Meng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jun Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
22
|
Fu H, Zhang M, Zhang Y, Wang Q, Xu Z, Zhou Q, Li Z, Bai Y, Li Y, Zhang ZG. Modular-Approach Synthesis of Giant Molecule Acceptors via Lewis-Acid-Catalyzed Knoevenagel Condensation for Stable Polymer Solar Cells. Angew Chem Int Ed Engl 2023; 62:e202306303. [PMID: 37322862 DOI: 10.1002/anie.202306303] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/17/2023]
Abstract
The operational stability of polymer solar cells is a critical concern with respect to the thermodynamic relaxation of acceptor-donor-acceptor (A-D-A) or A-DA'D-A structured small-molecule acceptors (SMAs) within their blends with polymer donors. Giant molecule acceptors (GMAs) bearing SMAs as subunits offer a solution to this issue, while their classical synthesis via the Stille coupling suffers from low reaction efficiency and difficulty in obtaining mono-brominated SMA, rendering the approach impractical for their large-scale and low-cost preparation. In this study, we present a simple and cost-effective solution to this challenge through Lewis acid-catalyzed Knoevenagel condensation with boron trifluoride etherate (BF3 ⋅ OEt2 ) as catalyst. We demonstrated that the coupling of the monoaldehyde-terminated A-D-CHO unit and the methylene-based A-link-A (or its silyl enol ether counterpart) substrates can be quantitatively achieved within 30 minutes in the presence of acetic anhydride, affording a variety of GMAs connected via the flexible and conjugated linkers. The photophysical properties was fully studied, yielding a high device efficiency of over 18 %. Our findings offer a promising alternative for the modular synthesis of GMAs with high yields, easier work up, and the widespread application of such methodology will undoubtedly accelerate the progress of stable polymer solar cells.
Collapse
Affiliation(s)
- Hongyuan Fu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Ming Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Youdi Zhang
- College of Chemistry, Key Laboratory of Advanced Green Functional Materials, Changchun Normal University, 130032, Changchun, China
| | - Qingyuan Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Zheng'ao Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Qiuju Zhou
- Analysis & Testing Center, Xinyang Normal University, 464000, Xinyang, Henan, China
| | - Zhengkai Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Yang Bai
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Yongfang Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Zhi-Guo Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| |
Collapse
|
23
|
Jiang Y, Li Y, Liu F, Wang W, Su W, Liu W, Liu S, Zhang W, Hou J, Xu S, Yi Y, Zhu X. Suppressing electron-phonon coupling in organic photovoltaics for high-efficiency power conversion. Nat Commun 2023; 14:5079. [PMID: 37604923 PMCID: PMC10442373 DOI: 10.1038/s41467-023-40806-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 08/10/2023] [Indexed: 08/23/2023] Open
Abstract
The nonradiative energy loss (∆Enr) is a critical factor to limit the efficiency of organic solar cells. Generally, strong electron-phonon coupling induced by molecular motion generates fast nonradiative decay and causes high ∆Enr. How to restrict molecular motion and achieve a low ∆Enr is a sticking point. Herein, the free volume ratio (FVR) is proposed as an indicator to evaluate molecular motion, providing new molecular design rationale to suppress nonradiative decay. Theoretical and experimental results indicate proper proliferation of alkyl side-chain can decrease FVR and restrict molecular motion, leading to reduced electron-phonon coupling while maintaining ideal nanomorphology. The reduced FVR and favorable morphology are simultaneously obtained in AQx-6 with pinpoint alkyl chain proliferation, achieving a high PCE of 18.6% with optimized VOC, JSC and FF. Our study discovered aggregation-state regulation is of great importance to the reduction of electron-phonon coupling, which paves the way to high-efficiency OSCs.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yixin Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Feng Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenxuan Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenli Su
- Department of Physics and Applied Optics, Beijing Area Major Laboratory Center for Advanced Quantum Studies, Beijing Normal University, Beijing, 100875, China
| | - Wuyue Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Songjun Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenkai Zhang
- Department of Physics and Applied Optics, Beijing Area Major Laboratory Center for Advanced Quantum Studies, Beijing Normal University, Beijing, 100875, China
| | - Jianhui Hou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengjie Xu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Yuanping Yi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Xiaozhang Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
24
|
Liu K, Jiang Y, Liu F, Ran G, Huang F, Wang W, Zhang W, Zhang C, Hou J, Zhu X. Organic Solar Cells with Over 19% Efficiency Enabled by a 2D-Conjugated Non-Fullerene Acceptor Featuring Favorable Electronic and Aggregation Structures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300363. [PMID: 37243566 DOI: 10.1002/adma.202300363] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/16/2023] [Indexed: 05/29/2023]
Abstract
The π-expansion of non-fullerene acceptors is a promising method for boosting the organic photovoltaic performance by allowing the fine-tuning of electronic structures and molecular packing. In this work, highly efficient organic solar cells (OSCs) are fabricated using a 2D π-expansion strategy to design new non-fullerene acceptors. Compared with the quinoxaline-fused cores of AQx-16, the π-expanded phenazine-fused cores of AQx-18 induce more ordered and compact packing between adjacent molecules, affording an optimized morphology with rational phase separation in the blend film. This facilitates efficient exciton dissociation and inhibited charge recombination. Consequently, a power conversion efficiency (PCE) of 18.2% with simultaneously increasing Voc , Jsc , and fill factor is achieved in the AQx-18-based binary OSCs. Significantly, AQx-18-based ternary devices fabricated via a two-in-one alloy acceptor strategy exhibit a superior PCE of 19.1%, one of the highest values ever reported for OSCs, along with a high Voc of 0.928 V. These results indicate the importance of the 2D π-expansion strategy for the delicate regulation of the electronic structures and crystalline behaviors of the non-fullerene acceptors to achieve superior photovoltaic performance, aimed at significantly promoting further development of OSCs.
Collapse
Affiliation(s)
- Kerui Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids and State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanyuan Jiang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids and State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids and State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Guangliu Ran
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing, 100875, China
| | - Fei Huang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Wenxuan Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids and State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing, 100875, China
| | - Cheng Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Jianhui Hou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids and State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaozhang Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids and State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
25
|
Zhang M, Chen X, Wang L, Deng X, Tan S. Simultaneously enhancing the photovoltaic parameters of ternary organic solar cells by incorporating a fused ring electron acceptor. RSC Adv 2023; 13:17354-17361. [PMID: 37304790 PMCID: PMC10251189 DOI: 10.1039/d3ra02225k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/31/2023] [Indexed: 06/13/2023] Open
Abstract
The ternary strategy has been recognized as an effective method to improve the photovoltaic performance of organic solar cells (OSCs). In ternary OSCs, the complementary or broadened absorption spectrum, optimized morphology, and enhanced photovoltaic performance could be obtained by selecting a third rational component for the host system. In this work, a fused ring electron acceptor named BTMe-C8-2F, which possesses a high-lying lowest unoccupied molecular orbital (LUMO) energy level and a complementary absorption spectrum to PM6:Y6, was introduced to a PM6:Y6 binary system. The ternary blend film PM6:Y6:BTMe-C8-2F showed high and more balanced charge mobilities, and low charge recombination. Therefore, the OSC based on the PM6:Y6:BTMe-C8-2F (1 : 1.2 : 0.3, w/w/w) blend film achieved the highest power conversion efficiency (PCE) of 17.68%, with an open-circuit voltage (VOC) of 0.87 V, a short-circuit current (JSC) of 27.32 mA cm-2, and a fill factor (FF) of 74.05%, which are much higher than the binary devices of PM6:Y6 (PCE = 15.86%) and PM6:BTMe-C8-2F (PCE = 11.98%). This work provides more insight into the role of introducing a fused ring electron acceptor with a high-lying LUMO energy level and complementary spectrum for simultaneously enhancing the VOC and JSC to promote the performance of ternary OSCs.
Collapse
Affiliation(s)
- Min Zhang
- Modern Industry School of Advanced Ceramics, Hunan Provincial Key Laboratory of Fine Ceramics and Powder Materials, Hunan University of Humanities, Science and Technology Lou'di Hunan 417000 China
| | - Xiaoyuan Chen
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University Xiangtan 411105 China
| | - Lei Wang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University Xiangtan 411105 China
| | - Xiong Deng
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University Xiangtan 411105 China
| | - Songting Tan
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University Xiangtan 411105 China
| |
Collapse
|
26
|
Abstract
Chemical doping of organic semiconductors (OSCs) enables feasible tuning of carrier concentration, charge mobility, and energy levels, which is critical for the applications of OSCs in organic electronic devices. However, in comparison with p-type doping, n-type doping has lagged far behind. The achievement of efficient and air-stable n-type doping in OSCs would help to significantly improve electron transport and device performance, and endow new functionalities, which are, therefore, gaining increasing attention currently. In this review, the issue of doping efficiency and doping air stability in n-type doped OSCs was carefully addressed. We first clarified the main factors that influenced chemical doping efficiency in n-type OSCs and then explain the origin of instability in n-type doped films under ambient conditions. Doping microstructure, charge transfer, and dissociation efficiency were found to determine the overall doping efficiency, which could be precisely tuned by molecular design and post treatments. To further enhance the air stability of n-doped OSCs, design strategies such as tuning the lowest unoccupied molecular orbital (LUMO) energy level, charge delocalization, intermolecular stacking, in situ n-doping, and self-encapsulations are discussed. Moreover, the applications of n-type doping in advanced organic electronics, such as solar cells, light-emitting diodes, field-effect transistors, and thermoelectrics are being introduced. Finally, an outlook is provided on novel doping ways and material systems that are aimed at stable and efficient n-type doped OSCs.
Collapse
Affiliation(s)
- Dafei Yuan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Wuyue Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Xiaozhang Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
27
|
Park SH, Kwon NY, Jung SH, Harit AK, Woo HY, Cho MJ, Choi DH. Enhanced Efficiency and Stability of Novel Pseudo-ternary Polymer Solar Cells Enabled by a Conjugated Donor Block Copolymer. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20266-20277. [PMID: 37043738 DOI: 10.1021/acsami.3c00815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The recent breakthrough in power conversion efficiencies (PCEs) of polymer solar cells (PSCs) that contain an active layer of a ternary system has achieved values of 18-19%; this has sparked interest for further research. However, this system has difficulties in optimizing the composition and controlling the interaction between the three active materials. In this study, we investigated the use of a donor1 (D1)-donor2 (D2) conjugated block copolymer (CBP), PM6-b-TT, to replace the physical blend of two donors. PM6-b-TT, which exhibits an extended absorption range, was synthesized by covalently bonding PM6, a medium-band gap polymer, with PBDT-TT, a wide-band gap polymer. The blend films containing PM6-b-TT and Y6-BO acceptor, demonstrated excellent crystallinity and a film morphology favorable for PSCs. The corresponding pseudo-ternary PSC exhibited significantly higher PCE and thermal stability than the PM6:PBDT-TT-based ternary device. This study unambiguously demonstrates that the novel D1-D2 CBP strategy, combined with the conventional binary and ternary system advantages, is a promising material production strategy that can boost the performance of future PSCs.
Collapse
Affiliation(s)
- Su Hong Park
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Na Yeon Kwon
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Sung Hoon Jung
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Amit Kumar Harit
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Han Young Woo
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Min Ju Cho
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Dong Hoon Choi
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| |
Collapse
|
28
|
Wang X, Li Y, Li J, Zhang Y, Shao J, Li Y. Direct Arylation Synthesis of Small Molecular Acceptors for Organic Solar Cells. Molecules 2023; 28:molecules28083515. [PMID: 37110749 PMCID: PMC10144321 DOI: 10.3390/molecules28083515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
In recent years, small molecular acceptors (SMAs) have extensively promoted the progress of organic solar cells (OSCs). The facile tuning of chemical structures affords SMAs excellent tunability of their absorption and energy levels, and it gives SMA-based OSCs slight energy loss, enabling OSCs to achieve high power conversion efficiencies (e.g., >18%). However, SMAs always suffer complicated chemical structures requiring multiple-step synthesis and cumbersome purification, which is unfavorable to the large-scale production of SMAs and OSC devices for industrialization. Direct arylation coupling reaction via aromatic C-H bonds activation allows for the synthesis of SMAs under mild conditions, and it simultaneously reduces synthetic steps, synthetic difficulty, and toxic by-products. This review provides an overview of the progress of SMA synthesis through direct arylation and summarizes the typical reaction conditions to highlight the field's challenges. Significantly, the impacts of direct arylation conditions on reaction activity and reaction yield of the different reactants' structures are discussed and highlighted. This review gives a comprehensive view of preparing SMAs by direct arylation reactions to cause attention to the facile and low-cost synthesis of photovoltaic materials for OSCs.
Collapse
Affiliation(s)
- Xiaochen Wang
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Yuechen Li
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jianfeng Li
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen 518055, China
| | - Yuan Zhang
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jinjun Shao
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211816, China
| | - Yongfang Li
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
29
|
Lowrie W, Westbrook RJE, Guo J, Gonev HI, Marin-Beloqui J, Clarke TM. Organic photovoltaics: The current challenges. J Chem Phys 2023; 158:110901. [PMID: 36948814 DOI: 10.1063/5.0139457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
Organic photovoltaics are remarkably close to reaching a landmark power conversion efficiency of 20%. Given the current urgent concerns regarding climate change, research into renewable energy solutions is crucially important. In this perspective article, we highlight several key aspects of organic photovoltaics, ranging from fundamental understanding to implementation, that need to be addressed to ensure the success of this promising technology. We cover the intriguing ability of some acceptors to undergo efficient charge photogeneration in the absence of an energetic driving force and the effects of the resulting state hybridization. We explore one of the primary loss mechanisms of organic photovoltaics-non-radiative voltage losses-and the influence of the energy gap law. Triplet states are becoming increasingly relevant owing to their presence in even the most efficient non-fullerene blends, and we assess their role as both a loss mechanism and a potential strategy to enhance efficiency. Finally, two ways in which the implementation of organic photovoltaics can be simplified are addressed. The standard bulk heterojunction architecture could be superseded by either single material photovoltaics or sequentially deposited heterojunctions, and the attributes of both are considered. While several important challenges still lie ahead for organic photovoltaics, their future is, indeed, bright.
Collapse
Affiliation(s)
- William Lowrie
- Department of Chemistry, University College London, Christopher Ingold Building, London WC1H 0AJ, United Kingdom
| | - Robert J E Westbrook
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Junjun Guo
- Department of Chemistry, University College London, Christopher Ingold Building, London WC1H 0AJ, United Kingdom
| | - Hristo Ivov Gonev
- Department of Chemistry, University College London, Christopher Ingold Building, London WC1H 0AJ, United Kingdom
| | - Jose Marin-Beloqui
- Departamento de Química Física, Universidad de Malaga, Campus Teatinos s/n, 29071 Málaga, Spain
| | - Tracey M Clarke
- Department of Chemistry, University College London, Christopher Ingold Building, London WC1H 0AJ, United Kingdom
| |
Collapse
|
30
|
Haroon M, Akhtar T, Khalid M, Mehmood H, Asghar MA, Baby R, Orfali R, Perveen S. Synthesis, characterization and exploration of photovoltaic behavior of hydrazide based scaffolds: a concise experimental and DFT study. RSC Adv 2023; 13:7237-7249. [PMID: 36891493 PMCID: PMC9986803 DOI: 10.1039/d3ra00431g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/16/2023] [Indexed: 03/08/2023] Open
Abstract
Solar energy being a non-depleting energy resource, has attracted scientists' attention to develop efficient solar cells to meet energy demands. Herein, a series of hydrazinylthiazole-4-carbohydrazide organic photovoltaic compounds (BDTC1-BDTC7) with an A1-D1-A2-D2 framework was synthesized with 48-62% yields, and their spectroscopic characterization was accomplished using FT-IR, HRMS, 1H and 13C-NMR techniques. Density functional theory (DFT) and time dependent DFT analyses were performed utilizing the M06/6-31G(d,p) functional to calculate the photovoltaic and optoelectronic properties of BDTC1-BDTC7via numerous simulations of the frontier molecular orbitals (FMOs), transition density matrix (TDM), open circuit voltage (V oc) and density of states (DOS). Moreover, the conducted analysis on the FMOs revealed efficient transference of charge from the highest occupied to the lowest unoccupied molecular orbitals (HOMO → LUMO), further supported by TDM and DOS analyses. Furthermore, the values of binding energy (E b = 0.295 to 1.150 eV), as well as reorganization energy of the holes (-0.038-0.025 eV) and electrons (-0.023-0.00 eV), were found to be smaller for all the studied compounds, which suggests a higher exciton dissociation rate with greater hole mobility in BDTC1-BDTC7. V oc analysis was accomplished with respect to HOMOPBDB-T-LUMOACCEPTOR. Among all the synthesized molecules, BDTC7 was found to have a reduced band gap (3.583 eV), with a bathochromic shift and absorption maximum at 448.990 nm, and a promising V oc (1.97 V), thus it is regarded as a potential candidate for high performance photovoltaic applications.
Collapse
Affiliation(s)
- Muhammad Haroon
- Department of Chemistry, Mirpur University of Science and Technology (MUST) 10250-Mirpur AJK Pakistan .,Department of Chemistry, Government Major Muhammad Afzal Khan (Shaheed), Boys Degree College Afzalpur, Mirpur (Affiliated with Mirpur University of Science and Technology (MUST)) 10250-Mirpur AJK Pakistan
| | - Tashfeen Akhtar
- Department of Chemistry, Mirpur University of Science and Technology (MUST) 10250-Mirpur AJK Pakistan
| | - Muhammad Khalid
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan .,Center for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Hasnain Mehmood
- Department of Chemistry, Mirpur University of Science and Technology (MUST) 10250-Mirpur AJK Pakistan
| | - Muhammad Adnan Asghar
- Department of Chemistry, Division of Science and Technology, University of Education Lahore Pakistan
| | - Rabia Baby
- Department of Education, Sukkur IBA University 65200 Pakistan
| | - Raha Orfali
- Department of Pharmacognosy, Collage of Pharmacy, King Saud University PO Box 2457 Riyadh 11451 Saudi Arabia
| | - Shagufta Perveen
- Department of Chemistry, School of Computer, Mathematical and Natural Sciences, Morgan State University Baltimore MD 21251 USA
| |
Collapse
|
31
|
Xu X, Li Y, Peng Q. Ternary Blend Organic Solar Cells: Understanding the Morphology from Recent Progress. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107476. [PMID: 34796991 DOI: 10.1002/adma.202107476] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Ternary blend organic solar cells (TB-OSCs) incorporating multiple donor and/or acceptor materials into the active layer have emerged as a promising strategy to simultaneously improve the overall device parameters for realizing higher performances than binary devices. Whereas introducing multiple materials also results in a more complicated morphology than their binary blend counterparts. Understanding the morphology is crucially important for further improving the device performance of TB-OSC. This review introduces the solubility and miscibility parameters that affect the morphology of ternary blends. Then, this review summarizes the recent processes of morphology study on ternary blends from the aspects of molecular crystallinity, molecular packing orientation, domain size and purity, directly observation of morphology, vertical phase separation as well as morphological stability. Finally, summary and prospects of TB-OSCs are concluded.
Collapse
Affiliation(s)
- Xiaopeng Xu
- School of Chemical Engineering, Key Laboratory of Green Chemistry and Technology of Ministry of Education and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Ying Li
- School of Chemical Engineering, Key Laboratory of Green Chemistry and Technology of Ministry of Education and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Qiang Peng
- School of Chemical Engineering, Key Laboratory of Green Chemistry and Technology of Ministry of Education and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
32
|
Bhattacharya L, Brown A, Sharma S, Sahu S. Computational Design of Crescent Shaped Promising Nonfullerene Acceptors with 1,4-Dihydro-2,3-quinoxalinedione Core and Different Electron-withdrawing Terminal Units for Photovoltaic Applications. J Phys Chem A 2022; 126:7110-7126. [PMID: 36178932 DOI: 10.1021/acs.jpca.2c03906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study aims to design a series of nonfullerene acceptors (NFAs) for photovoltaic applications having 1,4-dihydro-2,3-quinoxalinedione fused thiophene derivative as the core unit and 1,1-dicyanomethylene-3-indanone (IC) derivatives and different π-conjugated molecules other than IC as terminal acceptor units. All the investigated NFAs are found air-stable as the computed highest occupied molecular orbitals (HOMOs) are below the air oxidation threshold (ca. -5.27 eV vs saturated calomel electrode). The studied NFAs can act as potential nonfullerene acceptor candidates as they are found to have sufficient open-circuit voltage (Voc) and fill factor (FF) ranging from 0.62 to 1.41 V and 83%-91%, respectively. From the anisotropic mobility analysis, it is noticed that the studied NFAs except dicyano-rhodanine terminal unit containing NFA, exhibit better electron mobility than the hole mobility, and therefore, they can be more promising electron transporting acceptor materials in the active layer of an organic photovoltaic cell. From the optical absorption analysis, it is noted that all the designed NFAs have the maximum absorption spectra ranging from 597 nm-730 nm, which lies in the visible region and near-infrared (IR) region of the solar spectrum. The computed light-harvesting efficiencies for the PM6 (thiophene derivative donor selected in our study):NFA blends are found to lie in the range of 0.96-0.99, which indicates efficient light-harvesting by the PM6:NFA blends during photovoltaic device operation.
Collapse
Affiliation(s)
- Labanya Bhattacharya
- Computational Materials Research Lab, Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, 826004, India
| | - Alex Brown
- Department of Chemistry, University of Alberta, Edmonton, AlbertaT6G 2G2, Canada
| | - Sagar Sharma
- Department of Chemistry, S. B. Deorah College, Bora Service, Ulubari, Guwahati, 781007, AssamIndia
| | - Sridhar Sahu
- Computational Materials Research Lab, Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, 826004, India
| |
Collapse
|
33
|
Meng X, Li M, Jin K, Zhang L, Sun J, Zhang W, Yi C, Yang J, Hao F, Wang G, Xiao Z, Ding L. A 4‐Arm Small Molecule Acceptor with High Photovoltaic Performance. Angew Chem Int Ed Engl 2022; 61:e202207762. [DOI: 10.1002/anie.202207762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Xianyi Meng
- Center for Excellence in Nanoscience Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS) National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Mingjie Li
- Center for Excellence in Nanoscience Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS) National Center for Nanoscience and Technology Beijing 100190 China
- Hefei National Research Center for Physical Sciences at the Microscale University of Science and Technology of China Hefei 230026 China
| | - Ke Jin
- Center for Excellence in Nanoscience Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS) National Center for Nanoscience and Technology Beijing 100190 China
| | - Lixiu Zhang
- Center for Excellence in Nanoscience Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS) National Center for Nanoscience and Technology Beijing 100190 China
| | - Jie Sun
- Center for Excellence in Nanoscience Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS) National Center for Nanoscience and Technology Beijing 100190 China
| | - Wenhua Zhang
- School of Materials and Energy Yunnan University Kunming 650091 China
| | - Chenyi Yi
- Department of Electrical Engineering Tsinghua University Beijing 100084 China
| | - Junliang Yang
- State Key Laboratory of Powder Metallurgy School of Physics and Electronics Central South University Changsha 410083 China
| | - Feng Hao
- School of Materials and Energy University of Electronic Science and Technology of China Chengdu 611731 China
| | - Guan‐Wu Wang
- Hefei National Research Center for Physical Sciences at the Microscale University of Science and Technology of China Hefei 230026 China
| | - Zuo Xiao
- Center for Excellence in Nanoscience Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS) National Center for Nanoscience and Technology Beijing 100190 China
| | - Liming Ding
- Center for Excellence in Nanoscience Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS) National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
34
|
Alkyl Chain Engineering of Low Bandgap Non-Fullerene Acceptors for High-Performance Organic Solar Cells: Branched vs. Linear Alkyl Side Chains. Polymers (Basel) 2022; 14:polym14183812. [PMID: 36145959 PMCID: PMC9502987 DOI: 10.3390/polym14183812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
In this work, we report the synthesis and photovoltaic properties of IEBICO-4F, IEHICO-4F, IOICO-4F, and IDICO-4F non-fullerene acceptors (NFAs) bearing different types of alkyl chains (2-ehtylhexyl (EH), 2-ethylbutyl (EB), n-octyl (O), and n-decyl (D), respectively). These NFAs are based on the central indacenodithiophene (IDT) donor core and the same terminal group of 2-(5,6-difluoro-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (IC-2F), albeit with different side chains appended to the thiophene bridge unit. Although the side chains induced negligible differences between the NFAs in terms of optical band gaps and molecular energy levels, they did lead to changes in their melting points and crystallinity. The NFAs with branched alkyl chains exhibited weaker intermolecular interactions and crystallinity than those with linear alkyl chains. Organic solar cells (OSCs) were fabricated by blending these NFAs with the p-type polymer PTB7-Th. The NFAs with appended branched alkyl chains (IEHICO-4F and IEBICO-4F) possessed superior photovoltaic properties than those with appended linear alkyl chains (IOICO-4F and IDICO-4F). This result can be ascribed mainly to the thin-film morphology. Furthermore, the NFA-based blend films with appended branched alkyl chains exhibited the optimal degree of aggregation and miscibility, whereas the NFA-based blend films with appended linear alkyl chains exhibited higher levels of self-aggregation and lower miscibility between the NFA molecule and the PTB7-Th polymer. We demonstrate that changing the alkyl chain on the π-bridging unit in fused-ring-based NFAs is an effective strategy for improving their photovoltaic performance in bulk heterojunction-type OSCs.
Collapse
|
35
|
Li L, Meng F, Zhang M, Zhang Z, Zhao D. Revisiting the Dithienophthalimide Building Block: Improved Synthetic Method Yielding New High‐Performance Polymer Donors for Organic Solar Cells. Angew Chem Int Ed Engl 2022; 61:e202206311. [DOI: 10.1002/anie.202206311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Lianghui Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry Haihe Laboratory of Sustainable Chemical Transformations College of Chemistry Nankai University Tianjin 300071 China
| | - Fei Meng
- State Key Laboratory and Institute of Elemento-Organic Chemistry Haihe Laboratory of Sustainable Chemical Transformations College of Chemistry Nankai University Tianjin 300071 China
| | - Ming Zhang
- State Key Laboratory of Chemical Resource Engineering Beijing Engineering Research Center for the Synthesis and Applications of Waterborne Polymers Beijing University of Chemical Technology Beijing 100029 China
| | - Zhi‐Guo Zhang
- State Key Laboratory of Chemical Resource Engineering Beijing Engineering Research Center for the Synthesis and Applications of Waterborne Polymers Beijing University of Chemical Technology Beijing 100029 China
| | - Dongbing Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry Haihe Laboratory of Sustainable Chemical Transformations College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
36
|
Li Y, Yu J, Zhou Y, Li Z. Molecular Insights of Non‐fused Ring Acceptors for High‐Performance Non‐fullerene Organic Solar Cells. Chemistry 2022; 28:e202201675. [DOI: 10.1002/chem.202201675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Yibin Li
- Key Laboratory for Material Chemistry of Energy Conversion and Storage Ministry of Education Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering Huazhong University of Science and Technology 1037 Luoyu Road Wuhan P. R. China
| | - Jiangsheng Yu
- MIIT Key Laboratory of Advanced Solid Laser School of Electronic and Optical Engineering Nanjing University of Science and Technology 200 Xiaolingwei Street, Xuanwu District Nanjing P. R. China
| | - Yinhua Zhou
- Wuhan National Laboratory for Optoelectronics Huazhong University of Science and Technology 1037 Luoyu Road Wuhan P. R. China
| | - Zhong'an Li
- Key Laboratory for Material Chemistry of Energy Conversion and Storage Ministry of Education Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering Huazhong University of Science and Technology 1037 Luoyu Road Wuhan P. R. China
| |
Collapse
|
37
|
Over 18% binary organic solar cells enabled by isomerization of non-fullerene acceptors with alkylthiophene side chains. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1290-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
38
|
Zhang G, Lin FR, Qi F, Heumüller T, Distler A, Egelhaaf HJ, Li N, Chow PCY, Brabec CJ, Jen AKY, Yip HL. Renewed Prospects for Organic Photovoltaics. Chem Rev 2022; 122:14180-14274. [PMID: 35929847 DOI: 10.1021/acs.chemrev.1c00955] [Citation(s) in RCA: 182] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Organic photovoltaics (OPVs) have progressed steadily through three stages of photoactive materials development: (i) use of poly(3-hexylthiophene) and fullerene-based acceptors (FAs) for optimizing bulk heterojunctions; (ii) development of new donors to better match with FAs; (iii) development of non-fullerene acceptors (NFAs). The development and application of NFAs with an A-D-A configuration (where A = acceptor and D = donor) has enabled devices to have efficient charge generation and small energy losses (Eloss < 0.6 eV), resulting in substantially higher power conversion efficiencies (PCEs) than FA-based devices. The discovery of Y6-type acceptors (Y6 = 2,2'-((2Z,2'Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]-thiadiazolo[3,4-e]-thieno[2″,3″:4',5']thieno-[2',3':4,5]pyrrolo-[3,2-g]thieno-[2',3':4,5]thieno-[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile) with an A-DA' D-A configuration has further propelled the PCEs to go beyond 15% due to smaller Eloss values (∼0.5 eV) and higher external quantum efficiencies. Subsequently, the PCEs of Y6-series single-junction devices have increased to >19% and may soon approach 20%. This review provides an update of recent progress of OPV in the following aspects: developments of novel NFAs and donors, understanding of the structure-property relationships and underlying mechanisms of state-of-the-art OPVs, and tasks underpinning the commercialization of OPVs, such as device stability, module development, potential applications, and high-throughput manufacturing. Finally, an outlook and prospects section summarizes the remaining challenges for the further development of OPV technology.
Collapse
Affiliation(s)
- Guichuan Zhang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.,School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, China
| | - Francis R Lin
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Feng Qi
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Thomas Heumüller
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058 Erlangen, Germany.,Helmholtz Institute Erlangen-Nürnberg (HI ERN), Immerwahrstrasse 2, 91058 Erlangen, Germany
| | - Andreas Distler
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058 Erlangen, Germany
| | - Hans-Joachim Egelhaaf
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058 Erlangen, Germany.,Helmholtz Institute Erlangen-Nürnberg (HI ERN), Immerwahrstrasse 2, 91058 Erlangen, Germany
| | - Ning Li
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Philip C Y Chow
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam 999077, Hong Kong, China
| | - Christoph J Brabec
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058 Erlangen, Germany.,Helmholtz Institute Erlangen-Nürnberg (HI ERN), Immerwahrstrasse 2, 91058 Erlangen, Germany
| | - Alex K-Y Jen
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Hin-Lap Yip
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.,Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| |
Collapse
|
39
|
meng X, Li M, Jin K, zhang L, Yi C, yang J, hao F, wang GW, xiao Z, Ding L, Sun J, Zhang W. A 4‐Arm Small Molecule Acceptor with High Photovoltaic Performance. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- xianyi meng
- National Center for Nanoscience and Technology Key Laboratory of Nanosystem and Hierarchical Fabrication CHINA
| | - Mingjie Li
- National Center for Nanoscience and Technology Key Laboratory of Nanosystem and Hierarchical Fabrication CHINA
| | - Ke Jin
- National Center for Nanoscience and Technology Key Laboratory of Nanosystem and Hierarchical Fabrication CHINA
| | - Lixiu zhang
- National Center for Nanoscience and Technology Key Laboratory of Nanosystem and Hierarchical Fabrication CHINA
| | - Chenyi Yi
- Tsinghua University electrical engineering CHINA
| | | | - Feng hao
- University of Electronic Science and Technology of China materials and energy CHINA
| | - Guan-Wu wang
- USTC: University of Science and Technology of China Hefei National Research Center for Physical Sciences at the Microscale CHINA
| | - zuo xiao
- National Center for Nanoscience and Technology Key Laboratory of Nanosystem and Hierarchical Fabrication CHINA
| | - Liming Ding
- National Center for Nanoscience and Technology No.11 Beiyitiao, Zhongguancun 100190 Beijing CHINA
| | - Jie Sun
- National Center for Nanoscience and Technology Key Laboratory of Nanosystem and Hierarchical Fabrication CHINA
| | - Wenhua Zhang
- Yunnan University School of Materials and Energy CHINA
| |
Collapse
|
40
|
Guo Y, Han G, Yi Y. The Intrinsic Role of the Fusion Mode and Electron-Deficient Core in Fused-Ring Electron Acceptors for Organic Photovoltaics. Angew Chem Int Ed Engl 2022; 61:e202205975. [PMID: 35604363 DOI: 10.1002/anie.202205975] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Indexed: 11/08/2022]
Abstract
The A-DA'D-A fused-ring electron acceptors with an angular fusion mode and electron-deficient core has significantly boosted organic photovoltaic efficiency. Here, the intrinsic role of the peculiar structure is revealed by comparing representative A-DA'D-A acceptor Y6 with its A-D-A counterparts having different fusion modes. Owing to the more delocalized HOMO and deeper LUMO level, Y6 exhibits stronger and red-shifted absorption relative to the linear and angular fused A-D-A acceptors, respectively. Moreover, the change from linear to angular fusion substantially reduces the electron-vibration couplings, which is responsible for the faster exciton diffusion, exciton dissociation, and electron transport for Y6 than the linear fused A-D-A acceptor. Notably, the electron-vibration coupling for exciton dissociation is further decreased by introducing the electron-deficient core, thus contributing to the efficient charge generation under low driving forces in the Y6-based devices.
Collapse
Affiliation(s)
- Yuan Guo
- Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.,Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Guangchao Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuanping Yi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy Sciences, Beijing, 100049, China
| |
Collapse
|
41
|
Zhang Y, Wei Q, He Z, Wang Y, Shan T, Fu Y, Guo X, Zhong H. Efficient Optoelectronic Devices Enabled by Near-Infrared Organic Semiconductors with a Photoresponse beyond 1050 nm. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31066-31074. [PMID: 35762628 DOI: 10.1021/acsami.2c06277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Organic optoelectronic devices exhibit distinctive photoresponse to the near-infrared (NIR) light and show great potential in many fields. However, the optoelectronic properties of the existing devices hardly meet the technical requirements of new applications such as energy conversion and health sensing, thus raising the demand to develop high-performance NIR organic semiconductors. To address this issue, a new NIR material, namely, BFIC, is designed and synthesized by inserting fluorothieno[3,4-b]thiophene (FTT) as a π-bridge. Since the introduction of FTT can extend the conjugation, stabilize the quinoid resonant structure, and enhance the intramolecular charge transfer, BFIC displays a broad and intense absorption in the NIR region, ranging from 700 to 1050 nm. As a result, the organic solar cell based on BFIC and a polymer donor PTB7-Th realizes a power conversion efficiency of 10.38%. The semitransparent organic solar cell (OSC) shows a power conversion efficiency of 6.15%, accompanied by an average visible transmittance of 38.79% due to the selective photoresponse in the NIR range. The organic photodetector based on PTB7-Th:BFIC delivers a broad spectral response ranging from 330 to 1030 nm with a specific detectivity over 1013 Jones under the self-powered mode, which is one of the highest detectivities among the broad-band organic photodetectors.
Collapse
Affiliation(s)
- Yi Zhang
- School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Qingyun Wei
- School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhilong He
- School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Wang
- School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tong Shan
- School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yanyan Fu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Xiaojun Guo
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hongliang Zhong
- School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| |
Collapse
|
42
|
Li L, Meng F, Zhang M, Zhang ZG, Zhao D. Revisiting the Dithenophthalimide Building Block: Improved Synthetic Method Yielding New High‐Performance Polymer Donors of Organic Solar Cells. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lianghui Li
- Nankai University College of Chemistry Chemistry CHINA
| | - Fei Meng
- Nankai University College of Chemistry Chemistry CHINA
| | - Ming Zhang
- Beijing University of Chemical Technology Chemistry and Chemical Engineering CHINA
| | - Zhi-Guo Zhang
- Beijing University of Chemical Technology Chemistry and Chemical Engineering CHINA
| | - Dongbing Zhao
- Nankai University State Key Laboratory and Institute of Elemento-Organic Chemistry Weijin Rd. 94 300071 Tianjin CHINA
| |
Collapse
|
43
|
Ge J, Hong L, Ma H, Ye Q, Chen Y, Xie L, Song W, Li D, Chen Z, Yu K, Zhang J, Wei Z, Huang F, Ge Z. Asymmetric Substitution of End-Groups Triggers 16.34% Efficiency for All-Small-Molecule Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202752. [PMID: 35603901 DOI: 10.1002/adma.202202752] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Asymmetric substitution of end-groups is first applied in molecular donors. Three commonly used end-groups of 2-ethylhexyl cyanoacetate (CA), 2-ethylhexyl rhodanine (Reh), and 1H-indene-1,3(2H)-dione (ID) are combined to construct a series of symmetric and asymmetric donors. Correspondingly, the asymmetric donors SM-CA-Reh and SM-CA-ID show largely increased dipole moments (2.14 and 3.39 D, respectively) and enhanced aggregation propensity, as compared to those of symmetric donors of SM-CA, SM-Reh, and SM-ID. Using N3 as acceptor, interestingly, SM-CA-Reh integrates the photovoltaic characteristics of high fill factor (FF) for SM-CA and high short-circuit current density for SM-Reh, and delivers a record power conversion efficiency (PCE) of 16.34% with a high FF of 77.5%, which is much higher than 15.41% for SM-CA and 14.76% for SM-Reh. However, SM-CA-ID and SM-ID give the lower PCE of 8.20% and 2.76%. Characterization results suggest that the π-π interaction mainly dictates the packing morphology of blend films instead of dipole effect or crystallinity. Mono-substitution of Reh facilitates the molecular demixing appropriately but keeps the characteristic of the fine bicontinuous network of SM-CA:N3. SM-CA-Reh:N3 shows more efficient exciton extraction, higher hole transport, and better miscibility. These results well explain the merits integration and improved photovoltaic performance.
Collapse
Affiliation(s)
- Jinfeng Ge
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ling Hong
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Houying Ma
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Qinrui Ye
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yanwei Chen
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Lin Xie
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Wei Song
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Dandan Li
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhenyu Chen
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Kuibao Yu
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Jianqi Zhang
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhixiang Wei
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Fei Huang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Ziyi Ge
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
44
|
Pozov S, Andritsos K, Theodorakos I, Georgiou E, Ioakeimidis A, Kabla A, Melamed S, de la Vega F, Zergioti I, Choulis SA. Indium Tin Oxide-Free Inverted Organic Photovoltaics Using Laser-Induced Forward Transfer Silver Nanoparticle Embedded Metal Grids. ACS APPLIED ELECTRONIC MATERIALS 2022; 4:2689-2698. [PMID: 35782157 PMCID: PMC9245438 DOI: 10.1021/acsaelm.2c00217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/24/2022] [Indexed: 05/30/2023]
Abstract
Laser-induced forward transfer (LIFT) printing has emerged as a valid digital printing technique capable of transferring and printing a wide range of electronic materials. In this paper, we present for the first time LIFT printing as a method to fabricate silver (Ag) nanoparticle (np) grids for the development of indium tin oxide (ITO)-free inverted PM6:Y6 nonfullerene acceptor organic photovoltaics (OPVs). Limitations of the direct use of LIFT-printed Ag np grids in inverted ITO-free OPVs are addressed through a Ag grid embedding process. The embedded laser-printed Ag grid lines have high electrical conductivity, while the Ag metal grid transparency is varied by altering the number of Ag grid lines within the inverted OPVs' ITO-free bottom electrode. Following the presented Ag-grid embedding (EMP) process, metal-grid design optimizations, and device engineering methods incorporating an EMB-nine-line Ag np grid/PH500/AI4083/ZnO bottom electrode, we have demonstrated inverted ITO-free OPVs incorporating laser-printed Ag grids with 11.0% power conversion efficiency.
Collapse
Affiliation(s)
- Sergey
M. Pozov
- Molecular
Electronics and Photonics Research Unit, Department of Mechanical
Engineering and Materials Science and Engineering, Cyprus University of Technology, Limassol 3603, Cyprus
| | - Kostas Andritsos
- School
of Applied Mathematical and Physical Sciences, National Technical University of Athens, Iroon Polytechniou 9, Athens 15780, Greece
| | - Ioannis Theodorakos
- School
of Applied Mathematical and Physical Sciences, National Technical University of Athens, Iroon Polytechniou 9, Athens 15780, Greece
| | - Efthymios Georgiou
- Molecular
Electronics and Photonics Research Unit, Department of Mechanical
Engineering and Materials Science and Engineering, Cyprus University of Technology, Limassol 3603, Cyprus
| | - Apostolos Ioakeimidis
- Molecular
Electronics and Photonics Research Unit, Department of Mechanical
Engineering and Materials Science and Engineering, Cyprus University of Technology, Limassol 3603, Cyprus
| | - Ayala Kabla
- PV
Nano Cell, 8 Hamasger
St., Migdal HaEmek 2310102, Israel
| | - Semyon Melamed
- PV
Nano Cell, 8 Hamasger
St., Migdal HaEmek 2310102, Israel
| | | | - Ioanna Zergioti
- School
of Applied Mathematical and Physical Sciences, National Technical University of Athens, Iroon Polytechniou 9, Athens 15780, Greece
| | - Stelios A. Choulis
- Molecular
Electronics and Photonics Research Unit, Department of Mechanical
Engineering and Materials Science and Engineering, Cyprus University of Technology, Limassol 3603, Cyprus
| |
Collapse
|
45
|
Liu SY, Wang D, Wen TJ, Zhou GQ, Zhu HM, Chen HZ, Li CZ. Unaxisymmetric Non-Fused Electron Acceptors for Efficient Polymer Solar Cells. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2750-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
46
|
Guo Y, Han G, Yi Y. The Intrinsic Role of the Fusion Mode and Electron‐Deficient Core in Fused‐Ring Electron Acceptors for Organic Photovoltaics. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yuan Guo
- Faculty of Light Industry Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 China
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Guangchao Han
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Yuanping Yi
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy Sciences Beijing 100049 China
| |
Collapse
|
47
|
Lavanya DR, Darshan GP, Malleshappa J, Premkumar HB, Sharma SC, Hariprasad SA, Nagabhushana H. One material, many possibilities via enrichment of luminescence in La 2Zr 2O 7:Tb 3+ nanophosphors for forensic stimuli aided applications. Sci Rep 2022; 12:8898. [PMID: 35614081 PMCID: PMC9132173 DOI: 10.1038/s41598-022-11980-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/13/2022] [Indexed: 12/28/2022] Open
Abstract
Engineering a single material with multidirectional applications is crucial for improving productivity, low cost, flexibility, least power consumption, etc. To achieve these requirements, novel design structures and high-performance materials are in urgent need. Lanthanide-doped nanophosphors have the greatest strengths and ability in order to tune their applications in various dimensions. However, applications of nanophosphor in latent fingerprints visualization, anti-counterfeiting, and luminescent gels/films are still in their infancy. This study demonstrated a simple strategy to enhance the luminescence of Tb3+ (1-11 mol %) doped La2Zr2O7 nanophosphors by conjugating various fluxes via a simple solution combustion route. The photoluminescence emission spectra reveal intense peaks at ~ 491, 546, 587, and 622 nm, which arises from 5D4 → 7FJ (J = 6, 5, 4, 3) transitions of Tb3+ ions, respectively. The highest emission intensity was achieved in the NH4Cl flux assisted nanophosphor as compared to NaBr and NH4F assisted samples. The colorimetric images of fingerprints visualized using the optimized nanophosphor on forensic related surfaces exhibit level -III ridge details, including sweat pores, the width of the ridges, bifurcation angle, and the successive distance between sweat pores, etc. These results are decisive parameters that clearly support the statement "no two persons have ever been found to have the same fingerprints". The anti-counterfeiting security ink was formulated using optimized nanophosphor and various patterns were designed by simple screen printing and dip pen technologies. The encoded information was decrypted only under ultraviolet 254 nm light. All the designed patterns are exhibit not just what it looks/feel like and how better it works. As a synergetic contribution of enhanced luminescence of the prepared nanophosphor, the green-emissive films were fabricated, which display excellent flexibility, uniformity, and transparency in the normal and ultraviolet 254 nm light illumination. The aforementioned results revealed that the prepared NH4Cl flux-assisted La2Zr2O7: Tb3+(7 mol %) NPs are considered to be the best candidate for multi-dimensional applications.
Collapse
Affiliation(s)
- D R Lavanya
- Department of Physics, University College of Science, Tumkur University, Tumkur, 572103, India
| | - G P Darshan
- Department of Physics, Faculty of Mathematical and Physical Sciences, M. S. Ramaiah University of Applied Sciences, Bengaluru, 560054, India.
| | - J Malleshappa
- Department of Physics, University College of Science, Tumkur University, Tumkur, 572103, India
| | - H B Premkumar
- Department of Physics, Faculty of Mathematical and Physical Sciences, M. S. Ramaiah University of Applied Sciences, Bengaluru, 560054, India
| | - S C Sharma
- Honarory Professor, Jain Deemed to be University, Bengaluru, 560069, India
| | | | - H Nagabhushana
- Prof. C.N.R. Rao Centre for Advanced Materials, Tumkur University, Tumkur, 572103, India.
| |
Collapse
|
48
|
Tasić M, Ruiz-Soriano A, Strand D. Copper(I) Catalyzed Decarboxylative Synthesis of Diareno[ a, e]cyclooctatetraenes. J Org Chem 2022; 87:7501-7508. [PMID: 35587005 PMCID: PMC9490866 DOI: 10.1021/acs.joc.2c00286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Diareno[a,e]cyclooctatetraenes
find widespread applications as building blocks, ligands, and responsive
cores in topologically switchable materials. However, current synthetic
methods to these structures suffer from low yields or operational
disadvantages. Here, we describe a practical three-step approach to
diareno[a,e]cyclooctatetraenes using
an efficient copper(I) catalyzed double decarboxylation as the key
step. The sequence relies on cheap and abundant reagents, is readily
performed on scale, and is amenable also to unsymmetrical derivatives
that expand the utility of this intriguing class of structures.
Collapse
Affiliation(s)
- Magdalena Tasić
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-221 00 Lund, Sweden
| | - Albert Ruiz-Soriano
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-221 00 Lund, Sweden
| | - Daniel Strand
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
49
|
Xu X, Peng Q. Hole/Electron Transporting Materials for Nonfullerene Organic Solar Cells. Chemistry 2022; 28:e202104453. [PMID: 35224789 DOI: 10.1002/chem.202104453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Indexed: 12/27/2022]
Abstract
Nonfullerene acceptor based organic solar cells (NF-OSCs) have witnessed rapid progress over the past few years owing to the intensive research efforts on novel electron donor and nonfullerene acceptor (NFA) materials, interfacial engineering, and device processing techniques. Interfacial layers including electron transporting layers (ETL) and hole transporting layers (HTLs) are crucially important in the OSCs for facilitating electron and hole extraction from the photoactive blend to the respective electrodes. In this review, the lates progress in both ETLs and HTLs for the currently prevailing NF-OSCs are discussed, in which the ETLs are summarized from the categories of metal oxides, metal chelates, non-conjugated electrolytes and conjugated electrolytes, and the HTLs are summarized from the categories of inorganic and organic materials. In addition, some bifunctional interlayer materials served as both ETLs and HTLs are also introduced. Finally, the prospects of ETL/HTL materials for NF-OSCs are provided.
Collapse
Affiliation(s)
- Xiaopeng Xu
- School of Chemical Engineering, Key Laboratory of Green Chemistry and Technology of Ministry of Education and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Qiang Peng
- School of Chemical Engineering, Key Laboratory of Green Chemistry and Technology of Ministry of Education and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
50
|
Liu M, Zheng Z, Jiang X, Guo F, Mola GT, Gao S, Zhao L, Zhang Y. Fluorinated phenanthrenequinoxaline-based D-A type copolymers for non-fullerene polymer solar cells. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|