1
|
Sylvester KR, Zovinka JR, Milrod ML, Stubin AK, Rojas-Merchan A, Alexander K, Elling BR. Allylic Epoxides Increase the Strain Energy of Cyclic Olefin Monomers for Ring-Opening Metathesis Polymerization. Angew Chem Int Ed Engl 2024:e202414872. [PMID: 39320976 DOI: 10.1002/anie.202414872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Ring-opening metathesis polymerization (ROMP) is an effective method for synthesizing functional polymers, but since the technique typically relies on high ring strain cyclic olefins, the most common monomers are norbornene derivatives. The reliance on one class of monomer limits the obtainable properties of ROMP polymers. In this work, we investigate new bicyclic monomers synthesized via epoxidation of commercial dienes. DFT estimates of these monomers' ring strains suggests a significant increase in strain for cyclic olefins containing allylic epoxides. We found that the eight-membered (3,4-COO) and five-membered (CPO) cyclic olefins were particularly effective for ROMP. CPO was of especially intriguing due to its excellent polymerizability when compared to the limited reactivity of other five-membered rings. Unlike polynorbornenes, the resulting polymers of both monomers displayed glass transition temperatures well below room temperature. Interestingly, poly(3,4-COO) showed both high stereo- and regioregularity while poly(CPO) showed little regularity. Both polymers could be readily modified via post-polymerization ring-opening of the reactive allylic epoxides. With a high epoxide density in poly(CPO), CPO is an exciting new ROMP monomer that is easily synthesized, can be polymerized to high conversion at room temperature, and may be facilely modified to yield a wide range of functional materials.
Collapse
Affiliation(s)
- Kyle R Sylvester
- Department of Chemistry, Wesleyan University, 52 Lawn Ave, Middletown, CT, USA
| | - Jessa R Zovinka
- Department of Chemistry, Wesleyan University, 52 Lawn Ave, Middletown, CT, USA
| | - Maya L Milrod
- Department of Chemistry, Wesleyan University, 52 Lawn Ave, Middletown, CT, USA
| | - Alexandra K Stubin
- Department of Chemistry, Wesleyan University, 52 Lawn Ave, Middletown, CT, USA
| | | | - Kayla Alexander
- Department of Chemistry, Wesleyan University, 52 Lawn Ave, Middletown, CT, USA
| | - Benjamin R Elling
- Department of Chemistry, Wesleyan University, 52 Lawn Ave, Middletown, CT, USA
| |
Collapse
|
2
|
Ingram AA, Wang D, Schwaneberg U, Okuda J. Grubbs-Hoveyda catalysts conjugated to a β-barrel protein: Effect of halide substitution on aqueous olefin metathesis activity. J Inorg Biochem 2024; 258:112616. [PMID: 38833874 DOI: 10.1016/j.jinorgbio.2024.112616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 06/06/2024]
Abstract
The effect of halide substitution in Grubbs-Hoveyda II catalysts (GHII catalysts) embedded in the engineered β-barrel protein nitrobindin (NB4exp) on metathesis activity in aqueous media was studied. Maleimide tagged dibromido and diiodido derivates of the GHII catalyst were synthesized and covalently conjugated to NB4exp. The biohybrid catalysts were characterized spectroscopically confirming the structural integrity. When the two chloride substituents at ruthenium center were exchanged against bromide and iodide, the diiodo derivative was found to show significantly higher catalytic activity in ring-closing metathesis of α,ω-diolefins, whereas the dibromido derivative was less efficient when compared with the parent dichlorido catalyst. Using the diiodido catalyst, high turnover numbers of up to 75 were observed for ring-closing metathesis (RCM) yielding unsaturated six- and seven-membered N-heterocycles.
Collapse
Affiliation(s)
- Aaron A Ingram
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Dong Wang
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany; Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Jun Okuda
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany.
| |
Collapse
|
3
|
Hou W, Yin X, Zhou Y, Zhou Z, Liu Z, Du J, Shi Y, Chen Y. Kinetically Controlled Preparation of Worm-like Micelles with Tunable Diameter/Length and Structural Stability. J Am Chem Soc 2024; 146:24094-24104. [PMID: 39141924 DOI: 10.1021/jacs.4c08206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Anisotropic nanoparticles such as worm-like micelles have aroused much attention due to their promising applications from templates to drug delivery. The fabrication of worm-like micelles with tunable structural stability and control over their diameter and length is of great importance but still challenging. Herein, we report a kinetically controlled ring-opening metathesis polymerization-induced self-assembly (ROMPISA) for the robust preparation of kinetically trapped worm-like micelles with tunable diameter/length at enlarged experimental windows by the rational manipulation of kinetic factors, including solvent property, temperature, and π-π stacking effects. The resultant worm structures were thermodynamically metastable and capable of excellent structural stability at room temperature due to the kinetic trapping effect. At elevated temperatures, these thermodynamically metastable worms could undergo morphology evolution into vesicular structures in a controlled manner. Moreover, the structural stability of worms could also be significantly enhanced by in situ cross-linking. Overall, this kinetically controlled ROMPISA opens a new avenue for PISA chemistry that is expected to prepare "smart" polymer materials by manipulating kinetic factors.
Collapse
Affiliation(s)
- Wangmeng Hou
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiuzhe Yin
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yingqing Zhou
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zhuo Zhou
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zhijia Liu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jianzhong Du
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Yi Shi
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yongming Chen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510006, China
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
4
|
Blanco C, Ramos Castellanos R, Fogg DE. Anionic Olefin Metathesis Catalysts Enable Modification of Unprotected Biomolecules in Water. ACS Catal 2024; 14:11147-11152. [PMID: 39114091 PMCID: PMC11301623 DOI: 10.1021/acscatal.4c02811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024]
Abstract
Stability problems have limited the uptake of cationic olefin metathesis catalysts in chemical biology. Described herein are anionic catalysts that improve water-solubility, robustness, and compatibility with biomolecules such as DNA. A sulfonate tag is installed on the cyclic (alkyl)(amino) carbene (CAAC) ligand platform, chosen for resistance to degradation by nucleophiles, base, water, and β-elimination. Hoveyda-Grubbs catalysts bearing the sulfonated CAAC ligands deliver record productivity in metathesis of unprotected carbohydrates and nucleosides at neutral pH. Decomposed catalyst has negligible impact on metathesis selectivity, whereas N-heterocyclic carbene (NHC) catalysts degrade rapidly in water and cause extensive C=C migration.
Collapse
Affiliation(s)
- Christian
O. Blanco
- Center
for Catalysis Research & Innovation, and Department of Chemistry
and Biomolecular Sciences, University of
Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Richard Ramos Castellanos
- Center
for Catalysis Research & Innovation, and Department of Chemistry
and Biomolecular Sciences, University of
Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Deryn E. Fogg
- Center
for Catalysis Research & Innovation, and Department of Chemistry
and Biomolecular Sciences, University of
Ottawa, Ottawa, Ontario, K1N 6N5, Canada
- Department
of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
| |
Collapse
|
5
|
Mori M, Sugai H, Sato K, Okada A, Matsuo T, Kinbara K. A bioinspired bifunctional catalyst: an amphiphilic organometallic catalyst for ring-closing metathesis forming liquid droplets in aqueous media. Chem Commun (Camb) 2024; 60:7979-7982. [PMID: 38976255 DOI: 10.1039/d4cc01117a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Inspired by phase-separated biopolymers with enzymatic activity, we developed an amphiphilic catalyst consisting of alternating hydrophilic oligo(ethylene glycol) and hydrophobic aromatic units bearing a Hoveyda-Grubbs catalyst center (MAHGII). MAHGII served as both a droplet-forming scaffold and a catalyst for ring-closing metathesis reactions, providing a new biomimetic system that promotes organic reactions in an aqueous environment.
Collapse
Affiliation(s)
- Miki Mori
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Hiroka Sugai
- Research Center for Autonomous Systems Materialogy (ASMat), Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Kohei Sato
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Asuki Okada
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Takashi Matsuo
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Kazushi Kinbara
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
- Research Center for Autonomous Systems Materialogy (ASMat), Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
6
|
Xue J, Jia Y, Qi L, Yang H, Wang Y, Guo L. Highly sensitive electrochemical quantification of carbendazim via synergistic enhancement of ring-opening metathesis polymerization and polyethyleneimine modified graphene oxide. Mikrochim Acta 2024; 191:348. [PMID: 38805077 DOI: 10.1007/s00604-024-06412-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/04/2024] [Indexed: 05/29/2024]
Abstract
A novel aptamer-based sensor was developed using the signal amplification strategy of ring-opening metathesis polymerization (ROMP) and polyethyleneimine modified graphene oxide to achieve trace detection of carbendazim (CBZ). The dual identification of aptamer and antibody was used to avoid false positive results and improve the selectivity. Polyethyleneimine modified graphene oxide (GO-PEI), as a substrate material with excellent conductivity, was modified on the surface of a glassy carbon electrode (GCE) to increase the grafting amount of aptamer on the electrode surface. Moreover, a large number of cyclopentenyl ferrocene (CFc) was aggregated to form long polymer chains through ring-opening metathesis polymerization (ROMP), so as to significantly improve the detection sensitivity of the biosensor. The linear range of this sensor was 1 pg/mL-100 ng/mL with a detection limit as low as 7.80 fg/mL. The sensor exhibited excellent reproducibility and stability, and also achieved satisfactory results in actual sample detection. The design principle of such a sensor could provide innovative ideas for sensors in the detection of other types of targets.
Collapse
Affiliation(s)
- Jinyan Xue
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China
| | - Yuzhen Jia
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China
| | - Linying Qi
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China
| | - Huaixia Yang
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China.
| | - Yanzhi Wang
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China.
| | - Liang Guo
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China.
| |
Collapse
|
7
|
Clarke BR, Witt CL, Ilton M, Crosby AJ, Watkins JJ, Tew GN. Bottlebrush Networks: A Primer for Advanced Architectures. Angew Chem Int Ed Engl 2024; 63:e202318220. [PMID: 38588310 DOI: 10.1002/anie.202318220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/10/2024]
Abstract
Bottlebrush networks (BBNs) are an exciting new class of materials with interesting physical properties derived from their unique architecture. While great strides have been made in our fundamental understanding of bottlebrush polymers and networks, an interdisciplinary approach is necessary for the field to accelerate advancements. This review aims to act as a primer to BBN chemistry and physics for both new and current members of the community. In addition to providing an overview of contemporary BBN synthetic methods, we developed a workflow and desktop application (LengthScale), enabling bottlebrush physics to be more approachable. We conclude by addressing several topical issues and asking a series of pointed questions to stimulate conversation within the community.
Collapse
Affiliation(s)
- Brandon R Clarke
- University of Massachusetts Amherst, Amherst, Massachusetts, 01003, United States
| | - Connor L Witt
- University of Massachusetts Amherst, Amherst, Massachusetts, 01003, United States
| | - Mark Ilton
- Department of Physics, Harvey Mudd College, Claremont, CA 91711, United States
| | - Alfred J Crosby
- University of Massachusetts Amherst, Amherst, Massachusetts, 01003, United States
| | - James J Watkins
- University of Massachusetts Amherst, Amherst, Massachusetts, 01003, United States
| | - Gregory N Tew
- University of Massachusetts Amherst, Amherst, Massachusetts, 01003, United States
| |
Collapse
|
8
|
Davis E, Caparco AA, Jones E, Steinmetz NF, Pokorski JK. Study of uricase-polynorbornene conjugates derived from grafting-from ring-opening metathesis polymerization. J Mater Chem B 2024; 12:2197-2206. [PMID: 38323642 DOI: 10.1039/d3tb02726k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
PEGylation has been the 'gold standard' in bioconjugation due to its ability to improve the pharmacokinetics and pharmacodynamics of native proteins. However, growing clinical evidence of hypersensitivity reactions to PEG due to pre-existing anti-PEG antibodies in healthy humans have raised concerns. Advancements in controlled polymerization techniques and conjugation chemistries have paved the way for the development of protein-polymer conjugates that can circumvent these adverse reactions while retaining the benefits of such modifications. Herein, we show the development of polynorbornene based bioconjugates of therapeutically relevant urate oxidase (UO) enzymes used in the treatment of gout synthesized by grafting-from ring-opening metathesis polymerization (ROMP). Notably, these conjugates exhibit comparable levels of bioactivity to PEGylated UO and demonstrate increased stability across varying temperatures and pH conditions. Immune recognition of conjugates by anti-UO antibodies reveal low protein immunogenicity following the conjugation process. Additionally, UO conjugates employing zwitterionic polynorbornene successfully avoid recognition by anti-PEG antibodies, further highlighting a potential replacement for PEG.
Collapse
Affiliation(s)
- Elizabathe Davis
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA.
| | - Adam A Caparco
- Center for Nano-ImmunoEngineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Elizabeth Jones
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA.
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA.
- Center for Nano-ImmunoEngineering, University of California San Diego, La Jolla, CA 92093, USA
- Institute for Materials Discovery and Design, University of California San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA 92093, USA
| | - Jonathan K Pokorski
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA.
- Center for Nano-ImmunoEngineering, University of California San Diego, La Jolla, CA 92093, USA
- Institute for Materials Discovery and Design, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
9
|
Resendiz-Lara DA, Azhdari S, Gojzewski H, Gröschel AH, Wurm FR. Water-soluble polyphosphonate-based bottlebrush copolymers via aqueous ring-opening metathesis polymerization. Chem Sci 2023; 14:11273-11282. [PMID: 37860667 PMCID: PMC10583743 DOI: 10.1039/d3sc02649c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/26/2023] [Indexed: 10/21/2023] Open
Abstract
Ring-opening metathesis polymerization (ROMP) is a versatile method for synthesizing complex macromolecules from various functional monomers. In this work, we report the synthesis of water-soluble and degradable bottlebrush polymers, based on polyphosphoesters (PPEs) via ROMP. First, PPE-macromonomers were synthesized via organocatalytic anionic ring-opening polymerization of 2-ethyl-2-oxo-1,3,2-dioxaphospholane using N-(hydroxyethyl)-cis-5-norbornene-exo-2,3-dicarboximide as the initiator and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as the catalyst. The resulting norbornene-based macromonomers had degrees of polymerization (DPn) ranging from 25 to 243 and narrow molar mass dispersity (Đ ≤ 1.10). Subsequently, these macromonomers were used in ROMP with the Grubbs 3rd-generation bispyridyl complex (Ru-G3) to produce a library of well-defined bottlebrush polymers. The ROMP was carried out either in dioxane or in aqueous conditions, resulting in well-defined and water-soluble bottlebrush PPEs. Furthermore, a two-step protocol was employed to synthesize double hydrophilic diblock bottlebrush copolymers via ROMP in water at neutral pH-values. This general protocol enabled the direct combination of PPEs with ROMP to synthesize well-defined bottlebrush polymers and block copolymers in water. Degradation of the PPE side chains was proven resulting in low molar mass degradation products only. The biocompatible and biodegradable nature of PPEs makes this pathway promising for designing novel biomedical drug carriers or viscosity modifiers, as well as many other potential applications.
Collapse
Affiliation(s)
- Diego A Resendiz-Lara
- Sustainable Polymer Chemistry (SPC), Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, Universiteit Twente PO Box 217 7500 AE Enschede The Netherlands
| | - Suna Azhdari
- Sustainable Polymer Chemistry (SPC), Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, Universiteit Twente PO Box 217 7500 AE Enschede The Netherlands
- Physical Chemistry, University of Münster Corrensstraße 28-30 Münster 48149 Germany
| | - Hubert Gojzewski
- Sustainable Polymer Chemistry (SPC), Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, Universiteit Twente PO Box 217 7500 AE Enschede The Netherlands
| | - Andre H Gröschel
- Physical Chemistry, University of Münster Corrensstraße 28-30 Münster 48149 Germany
| | - Frederik R Wurm
- Sustainable Polymer Chemistry (SPC), Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, Universiteit Twente PO Box 217 7500 AE Enschede The Netherlands
| |
Collapse
|
10
|
Mandal A, Pal S, Kilbinger AFM. Controlled Ring Opening Metathesis Polymerization of a New Monomer: On Switching the Solvent-Water-Soluble Homopolymers to Degradable Copolymers. Macromol Rapid Commun 2023; 44:e2300218. [PMID: 37435988 DOI: 10.1002/marc.202300218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/12/2023] [Accepted: 06/25/2023] [Indexed: 07/13/2023]
Abstract
A new heterocyclic monomer is developed via simple Diels-Alder reaction which is reluctant to polymerize in dichloromethane (DCM) whereas undergoes facile polymerization in tetrahydrofuran with excellent control over molecular weight (Mn ) and dispersities (Đ) using Grubbs' third generation catalyst (G3). The deprotection of the tert-butoxycarbonyl group from the polymeric backbone yielded a water-soluble ring opening metathesis polymerization (ROMP) polymer easily. Moreover, in DCM this new monomer copolymerizes with 2,3-dihydrofuran under catalytic living ROMP conditions to give backbone degradable polymers. All the synthesized polymers are characterized by size exclusion chromatography (SEC) and nuclear magnetic resonance (NMR) spectroscopy. It is believed that this new route to water soluble ROMP homopolymers as well as the cost-effective and environmentally friendly route to degradable copolymers and block-copolymers could find applications in biomedicine in the near future.
Collapse
Affiliation(s)
- Ankita Mandal
- Department of Chemistry, University of Fribourg, Fribourg, CH-1700, Switzerland
| | - Subhajit Pal
- Department of Chemistry, University of Fribourg, Fribourg, CH-1700, Switzerland
| | | |
Collapse
|
11
|
Boisvert EJY, Max HC, Fogg DE. Rapid Aerial Oxidation of Ruthenium-Dithiocatecholate Catalysts: A Challenge to Stereoretentive Olefin Metathesis. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Affiliation(s)
- Eliza-Jayne Y. Boisvert
- Center for Catalysis Research & Innovation, and Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Harrison C. Max
- Center for Catalysis Research & Innovation, and Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Deryn E. Fogg
- Center for Catalysis Research & Innovation, and Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
| |
Collapse
|
12
|
Gandra U, Podiyanachari SK, Bazzi HS, Al-Hashimi M. Recent Advances in Drug Release, Sensing, and Cellular Uptake of Ring-Opening Metathesis Polymerization (ROMP) Derived Poly(olefins). ACS OMEGA 2023; 8:1724-1738. [PMID: 36687055 PMCID: PMC9850466 DOI: 10.1021/acsomega.2c05563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
The synthesis and applications of ring-opening metathesis polymerization (ROMP) derived poly(olefins) have emerged as an exciting area of great interest in the field of biomaterials science. The major focus of this mini-review is to present recent advances in the synthesis of functional materials using ROMP-derived poly(olefins) utilized for drug release, sensing, and cellular uptake in the past seven years (2015-2022). This review reveals that materials synthesized by ROMP-derived well-defined functional poly(olefins) stand to be highly promising systems for medical as well as biological studies. Thus, this review may prove to be beneficial for the design and development of new smart and flexible-functionality ROMP-based polymeric materials for various biological applications.
Collapse
Affiliation(s)
- Upendar
Reddy Gandra
- Division
of Arts and Sciences, Texas A&M University
at Qatar, P.O. Box 23874, Doha 23874, Qatar
- Department
of Chemistry, Ulsan National Institute of
Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | | | - Hassan S. Bazzi
- Division
of Arts and Sciences, Texas A&M University
at Qatar, P.O. Box 23874, Doha 23874, Qatar
- Department
of Materials Science & Engineering, Texas A&M University, 209 Reed MacDonald Building, College Station, Texas 77843-3003, United States
| | - Mohammed Al-Hashimi
- Division
of Arts and Sciences, Texas A&M University
at Qatar, P.O. Box 23874, Doha 23874, Qatar
| |
Collapse
|
13
|
Blanco C, Fogg DE. Water-Accelerated Decomposition of Olefin Metathesis Catalysts. ACS Catal 2023; 13:1097-1102. [PMID: 36714054 PMCID: PMC9872090 DOI: 10.1021/acscatal.2c05573] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/22/2022] [Indexed: 01/04/2023]
Abstract
Water is ubiquitous in olefin metathesis, at levels ranging from contaminant to cosolvent. It is also non-benign. Water-promoted catalyst decomposition competes with metathesis, even for "robust" ruthenium catalysts. Metathesis is hence typically noncatalytic for demanding reactions in water-rich environments (e.g., chemical biology), a challenge as the Ru decomposition products promote unwanted reactions such as DNA degradation. To date, only the first step of the decomposition cascade is understood: catalyst aquation. Here we demonstrate that the aqua species dramatically accelerate both β-elimination of the metallacyclobutane intermediate and bimolecular decomposition of four-coordinate [RuCl(H2O)n(L)(=CHR)]Cl. Decomposition can be inhibited by blocking aquation and β-elimination.
Collapse
Affiliation(s)
- Christian
O. Blanco
- Center
for Catalysis Research & Innovation and Department of Chemistry
and Biomolecular Sciences, University of
Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - Deryn E. Fogg
- Center
for Catalysis Research & Innovation and Department of Chemistry
and Biomolecular Sciences, University of
Ottawa, Ottawa, Ontario, Canada K1N 6N5,Department
of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway,,
| |
Collapse
|
14
|
Bermesheva EV, Medentseva EI, Khrychikova AP, Wozniak AI, Guseva MA, Nazarov IV, Morontsev AA, Karpov GO, Topchiy MA, Asachenko AF, Danshina AA, Nelyubina YV, Bermeshev MV. Air-Stable Single-Component Pd-Catalysts for Vinyl-Addition Polymerization of Functionalized Norbornenes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Evgeniya V. Bermesheva
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninskiy pr., Moscow 119991, Russia
- I.M. Sechenov First Moscow State Medical University, Trubetskaya str., 8, building 2, Moscow 119991, Russia
| | - Ekaterina I. Medentseva
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninskiy pr., Moscow 119991, Russia
| | - Anna P. Khrychikova
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninskiy pr., Moscow 119991, Russia
- D.I. Mendeleyev University of Chemical Technology of Russia, 9 Miusskaya sq., Moscow 125047, Russia
| | - Alyona I. Wozniak
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninskiy pr., Moscow 119991, Russia
| | - Marina A. Guseva
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninskiy pr., Moscow 119991, Russia
| | - Ivan V. Nazarov
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninskiy pr., Moscow 119991, Russia
| | - Alexander A. Morontsev
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninskiy pr., Moscow 119991, Russia
| | - Gleb O. Karpov
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninskiy pr., Moscow 119991, Russia
| | - Maxim A. Topchiy
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninskiy pr., Moscow 119991, Russia
| | - Andrey F. Asachenko
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninskiy pr., Moscow 119991, Russia
| | - Anastasia A. Danshina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, Moscow 119991, Russia
- Moscow Institute of Physics and Technology (National Research University), Institutskiy per., 9, Dolgoprudny, Moscow Region 141701, Russia
| | - Yulia V. Nelyubina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, Moscow 119991, Russia
| | - Maxim V. Bermeshev
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninskiy pr., Moscow 119991, Russia
| |
Collapse
|
15
|
Lages M, Gil N, Galanopoulo P, Mougin J, Lefay C, Guillaneuf Y, Lansalot M, D’Agosto F, Nicolas J. Degradable Vinyl Copolymer Nanoparticles/Latexes by Aqueous Nitroxide-Mediated Polymerization-Induced Self-Assembly. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maëlle Lages
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, F–91400 Orsay, France
| | - Noémie Gil
- Aix-Marseille-Univ., CNRS, Institut de Chimie Radicalaire, UMR 7273, F-13397 Marseille, France
| | - Paul Galanopoulo
- Univ Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5128, Catalysis, Polymerization, Processes and Materials (CP2M), Villeurbanne F-69616, France
| | - Julie Mougin
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, F–91400 Orsay, France
| | - Catherine Lefay
- Aix-Marseille-Univ., CNRS, Institut de Chimie Radicalaire, UMR 7273, F-13397 Marseille, France
| | - Yohann Guillaneuf
- Aix-Marseille-Univ., CNRS, Institut de Chimie Radicalaire, UMR 7273, F-13397 Marseille, France
| | - Muriel Lansalot
- Univ Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5128, Catalysis, Polymerization, Processes and Materials (CP2M), Villeurbanne F-69616, France
| | - Franck D’Agosto
- Univ Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5128, Catalysis, Polymerization, Processes and Materials (CP2M), Villeurbanne F-69616, France
| | - Julien Nicolas
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, F–91400 Orsay, France
| |
Collapse
|
16
|
Church DC, Davis E, Caparco AA, Takiguchi L, Chung YH, Steinmetz NF, Pokorski JK. Polynorbornene-based bioconjugates by aqueous grafting-from ring-opening metathesis polymerization reduce protein immunogenicity. CELL REPORTS. PHYSICAL SCIENCE 2022; 3:101067. [PMID: 36816463 PMCID: PMC9933924 DOI: 10.1016/j.xcrp.2022.101067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Protein-polymer conjugates (PPCs) improve therapeutic efficacy of proteins and have been widely used for the treatment of various diseases such as cancer, diabetes, and hepatitis. PEGylation is considered as the "gold standard" in bioconjugation, although in practice its clinical applications are becoming limited because of extensive evidence of immunogenicity induced by pre-existing anti-PEG antibodies in patients. Here, optimized reaction conditions for living aqueous grafting-from ring-opening metathesis polymerization (ROMP) are utilized to synthesize water-soluble polynorbornene (PNB)-based PPCs of lysozyme (Lyz-PPCs) and bacteriophage Qβ (Qβ-PPCs) as PEG alternatives. Lyz-PPCs retain nearly 100% bioactivity and Qβ-PPCs exhibit up to 35% decrease in protein immunogenicity. Qβ-PPCs derived from NB-PEG show no reduction in recognition by anti-PEG antibodies while Qβ-PPCs derived from NB-Zwit show >95% reduction as compared with Qβ-PEG. This work demonstrates a new method for PPC synthesis and the utility of grafting from PPCs to evade immune recognition.
Collapse
Affiliation(s)
- Derek C. Church
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
- These authors contributed equally
| | - Elizabathe Davis
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
- These authors contributed equally
| | - Adam A. Caparco
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lauren Takiguchi
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Young Hun Chung
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nicole F. Steinmetz
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
- Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Radiology, University of California, San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jonathan K. Pokorski
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
- Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, CA 92093, USA
- Lead contact
| |
Collapse
|
17
|
Blosch SE, Scannelli SJ, Alaboalirat M, Matson JB. Complex Polymer Architectures Using Ring-Opening Metathesis Polymerization: Synthesis, Applications, and Practical Considerations. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Sarah E. Blosch
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Samantha J. Scannelli
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Mohammed Alaboalirat
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - John B. Matson
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
18
|
Occhipinti G, Nascimento DL, Foscato M, Fogg DE, Jensen VR. The Janus face of high trans-effect carbenes in olefin metathesis: gateway to both productivity and decomposition. Chem Sci 2022; 13:5107-5117. [PMID: 35655574 PMCID: PMC9093171 DOI: 10.1039/d2sc00855f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/19/2022] [Indexed: 11/25/2022] Open
Abstract
Ruthenium–cyclic(alkyl)(amino)carbene (CAAC) catalysts, used at ppm levels, can enable dramatically higher productivities in olefin metathesis than their N-heterocyclic carbene (NHC) predecessors. A key reason is the reduced susceptibility of the metallacyclobutane (MCB) intermediate to decomposition via β-H elimination. The factors responsible for promoting or inhibiting β-H elimination are explored via density functional theory (DFT) calculations, in metathesis of ethylene or styrene (a representative 1-olefin) by Ru–CAAC and Ru–NHC catalysts. Natural bond orbital analysis of the frontier orbitals confirms the greater strength of the orbital interactions for the CAAC species, and the consequent increase in the carbene trans influence and trans effect. The higher trans effect of the CAAC ligands inhibits β-H elimination by destabilizing the transition state (TS) for decomposition, in which an agostic MCB Cβ–H bond is positioned trans to the carbene. Unproductive cycling with ethylene is also curbed, because ethylene is trans to the carbene ligand in the square pyramidal TS for ethylene metathesis. In contrast, metathesis of styrene proceeds via a ‘late’ TS with approximately trigonal bipyramidal geometry, in which carbene trans effects are reduced. Importantly, however, the positive impact of a strong trans-effect ligand in limiting β-H elimination is offset by its potent accelerating effect on bimolecular coupling, a major competing means of catalyst decomposition. These two decomposition pathways, known for decades to limit productivity in olefin metathesis, are revealed as distinct, antinomic, responses to a single underlying phenomenon. Reconciling these opposing effects emerges as a clear priority for design of robust, high-performing catalysts. In ruthenium catalysts for olefin metathesis, carbene ligands of high trans influence/effect suppress decomposition via β-H elimination, but increase susceptibility to bimolecular decomposition.![]()
Collapse
Affiliation(s)
- Giovanni Occhipinti
- Department of Chemistry, University of Bergen Allégaten 41 N-5007 Bergen Norway
| | - Daniel L Nascimento
- Center for Catalysis Research & Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa Ottawa Canada K1N 6N5
| | - Marco Foscato
- Department of Chemistry, University of Bergen Allégaten 41 N-5007 Bergen Norway
| | - Deryn E Fogg
- Department of Chemistry, University of Bergen Allégaten 41 N-5007 Bergen Norway .,Center for Catalysis Research & Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa Ottawa Canada K1N 6N5
| | - Vidar R Jensen
- Department of Chemistry, University of Bergen Allégaten 41 N-5007 Bergen Norway
| |
Collapse
|
19
|
Blosch SE, Alaboalirat M, Eades CB, Scannelli SJ, Matson JB. Solvent Effects in Grafting-through Ring-Opening Metathesis Polymerization. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00254] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Sarah E. Blosch
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg 24061, Virginia, United States
| | - Mohammed Alaboalirat
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg 24061, Virginia, United States
| | - Cabell B. Eades
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg 24061, Virginia, United States
| | - Samantha J. Scannelli
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg 24061, Virginia, United States
| | - John B. Matson
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg 24061, Virginia, United States
| |
Collapse
|
20
|
Tunalı Z, Sagdic K, Inci F, Öztürk BÖ. Encapsulation of the Hoveyda–Grubbs 2nd generation catalyst in magnetically separable alginate/mesoporous carbon beads for olefin metathesis reactions in water. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00058j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A magnetically separable catalyst is developed through encapsulation of mesoporous carbon, HG2 and γ-Fe2O3 within alginate gels. The catalytic showed superior performance in metathesis reactions of hydrophobic olefins in water under air atmosphere.
Collapse
Affiliation(s)
- Zeynep Tunalı
- Hacettepe University, Faculty of Science, Chemistry Department, 06800, Beytepe-Ankara, Turkey
| | - Kutay Sagdic
- UNAM—National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara, Turkey
| | - Fatih Inci
- UNAM—National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara, Turkey
| | - Bengi Özgün Öztürk
- Hacettepe University, Faculty of Science, Chemistry Department, 06800, Beytepe-Ankara, Turkey
| |
Collapse
|
21
|
|
22
|
Toward E-selective Olefin Metathesis: Computational Design and Experimental Realization of Ruthenium Thio-Indolate Catalysts. Top Catal 2021. [DOI: 10.1007/s11244-021-01468-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractThe selective transformation of 1-alkenes into E-olefins is a long-standing challenge in olefin metathesis. Density functional theory (DFT) calculations predict high E-selectivity for catalysts incorporating a bidentate, dianionic thio-indolate ligand within a RuXX’(NHC)(py)(= CHR) platform (NHC = N-heterocyclic carbene; py = pyridine). Such complexes are predicted to yield E-olefins by favoring anti-disposed substituents in the transition state expected to be rate-determining: specifically, that for cycloreversion of the metallacyclobutane intermediate. Three pyridine-stabilized catalysts Ru21a-c were synthesized, in which the thio-indolate ligand bears a H, Me, or Ph substituent at the C2 position, and the NHC ligand is the unsaturated imidazoline-2-ylidene Me2IMes (which bears N-mesityl groups and methyl groups on the C4,5 backbone). Single-crystal X-ray diffraction analysis of Ru21c confirms the ligand orientation required for E-selective metathesis, with the thio-indolate sulfur atom binding cis to the NHC, and the indolate nitrogen atom trans to the NHC. However, whereas the new complexes mediated metathetic exchange of their 2-thienylmethylidene ligand in the presence of the common metathesis substrates styrene and allylbenzene, no corresponding self-metathesis products were obtained. Only small amounts of 2-butene (73% (Z)-2-butene) were obtained in self-metathesis of propene using Ru21a. Detailed DFT analysis of this process revealed that product release is surprisingly slow, limiting the reaction rate and explaining the low metathesis activity. With the barrier to dissociation of (Z)-2-butene being lower than that of (E)-2-butene, the calculations also account for the observed Z-selectivity of Ru21a. These findings provide guidelines for catalyst redesign in pursuit of the ambitious goal of E-selective 1-alkene metathesis.
Graphic abstract
Collapse
|
23
|
Nascimento D, Foscato M, Occhipinti G, Jensen VR, Fogg DE. Bimolecular Coupling in Olefin Metathesis: Correlating Structure and Decomposition for Leading and Emerging Ruthenium-Carbene Catalysts. J Am Chem Soc 2021; 143:11072-11079. [PMID: 34270895 PMCID: PMC8397316 DOI: 10.1021/jacs.1c04424] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Indexed: 12/19/2022]
Abstract
Bimolecular catalyst decomposition is a fundamental, long-standing challenge in olefin metathesis. Emerging ruthenium-cyclic(alkyl)(amino)carbene (CAAC) catalysts, which enable breakthrough advances in productivity and general robustness, are now known to be extraordinarily susceptible to this pathway. The details of the process, however, have hitherto been obscure. The present study provides the first detailed mechanistic insights into the steric and electronic factors that govern bimolecular decomposition. Described is a combined experimental and theoretical study that probes decomposition of the key active species, RuCl2(L)(py)(═CH2) 1 (in which L is the N-heterocyclic carbene (NHC) H2IMes, or a CAAC ligand: the latter vary in the NAr group (NMes, N-2,6-Et2C6H3, or N-2-Me,6-iPrC6H3) and the substituents on the quaternary site flanking the carbene carbon (i.e., CMe2 or CMePh)). The transiently stabilized pyridine adducts 1 were isolated by cryogenic synthesis of the metallacyclobutanes, addition of pyridine, and precipitation. All are shown to decompose via second-order kinetics at -10 °C. The most vulnerable CAAC species, however, decompose more than 1000-fold faster than the H2IMes analogue. Computational studies reveal that the key factor underlying accelerated decomposition of the CAAC derivatives is their stronger trans influence, which weakens the Ru-py bond and increases the transient concentration of the 14-electron methylidene species, RuCl2(L)(═CH2) 2. Fast catalyst initiation, a major design goal in olefin metathesis, thus has the negative consequence of accelerating decomposition. Inhibiting bimolecular decomposition offers major opportunities to transform catalyst productivity and utility, and to realize the outstanding promise of olefin metathesis.
Collapse
Affiliation(s)
- Daniel
L. Nascimento
- Center
for Catalysis Research & Innovation, and Department of Chemistry
and Biomolecular Sciences, University of
Ottawa, Ottawa, Canada K1N 6N5
| | - Marco Foscato
- Department
of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
| | - Giovanni Occhipinti
- Department
of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
| | - Vidar R. Jensen
- Department
of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
| | - Deryn E. Fogg
- Center
for Catalysis Research & Innovation, and Department of Chemistry
and Biomolecular Sciences, University of
Ottawa, Ottawa, Canada K1N 6N5
- Department
of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
| |
Collapse
|
24
|
Blanco C, Nascimento DL, Fogg DE. Routes to High-Performing Ruthenium-Iodide Catalysts for Olefin Metathesis: Ligand Lability Is Key to Efficient Halide Exchange. Organometallics 2021; 40:1811-1816. [PMID: 34295013 PMCID: PMC8289337 DOI: 10.1021/acs.organomet.1c00253] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Indexed: 12/14/2022]
Abstract
Clean, high-yielding routes are described to ruthenium-diiodide catalysts that were recently shown to enable high productivity in olefin metathesis. For the second-generation Grubbs and Hoveyda catalysts (GII: RuCl2(H2IMes)(PCy3)(=CHPh); HII: RuCl2(H2IMes)(=CHAr), Ar = C6H4-2-O i Pr), slow salt metathesis is shown to arise from the low lability of the ancillary PCy3 or ether ligands, which retards access to the four-coordinate intermediate required for efficient halide exchange. To exploit the lability of the first-generation catalysts, the diiodide complex RuI2(PCy3)(=CHAr) HI-I 2 was prepared by treating "Grubbs I" (RuCl2(PCy3)2(=CHPh), GI) with NaI, H2C=CHAr (1a), and a phosphine-scavenging Merrifield iodide (MF-I) resin. Subsequent installation of H2IMes or cyclic (alkyl)(amino)carbene (CAAC) ligands afforded the second-generation iodide catalysts in good to excellent yields. Given the incompatibility of the nitro group with a free carbene, the iodo-Grela catalyst RuI2(H2IMes)(=CHAr') (nG-I 2 : Ar' = C6H3-2-O i Pr-4-NO2) was instead accessed by sequential salt metathesis of GI with NaI, installation of H2IMes, and finally cross-metathesis with the nitrostyrenyl ether H2C=CHAr' (1b), with MF-I as the phosphine scavenger. The bulky iodide ligands improve the selectivity for macrocyclization in ring-closing metathesis.
Collapse
Affiliation(s)
- Christian
O. Blanco
- Center
for Catalysis Research & Innovation and Department of Chemistry
and Biomolecular Sciences, University of
Ottawa, Ottawa, ON, Canada K1N 6N5
| | - Daniel L. Nascimento
- Center
for Catalysis Research & Innovation and Department of Chemistry
and Biomolecular Sciences, University of
Ottawa, Ottawa, ON, Canada K1N 6N5
| | - Deryn E. Fogg
- Center
for Catalysis Research & Innovation and Department of Chemistry
and Biomolecular Sciences, University of
Ottawa, Ottawa, ON, Canada K1N 6N5
- Department
of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
| |
Collapse
|
25
|
Arkinstall LA, Husband JT, Wilks TR, Foster JC, O'Reilly RK. DNA-polymer conjugates via the graft-through polymerisation of native DNA in water. Chem Commun (Camb) 2021; 57:5466-5469. [PMID: 33954310 PMCID: PMC8168459 DOI: 10.1039/d0cc08008j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/23/2021] [Indexed: 12/20/2022]
Abstract
The direct, graft-through, ring-opening metathesis polymerisation (ROMP) of unprotected DNA macromonomers is reported. By tuning the polymerisation conditions, good control is achieved, enabling the rapid and efficient synthesis of DNA-containing bottlebrush copolymers, without the need for protection of the DNA bases.
Collapse
Affiliation(s)
- Lucy A Arkinstall
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Jonathan T Husband
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Thomas R Wilks
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Jeffrey C Foster
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Rachel K O'Reilly
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
26
|
Matsuo T. Functionalization of Hoveyda-Grubbs-type Complexes for Application to Biomolecules. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Takashi Matsuo
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology
| |
Collapse
|
27
|
Functionalization of Ruthenium Olefin-Metathesis Catalysts for Interdisciplinary Studies in Chemistry and Biology. Catalysts 2021. [DOI: 10.3390/catal11030359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Hoveyda–Grubbs-type complexes, ruthenium catalysts for olefin metathesis, have gained increased interest as a research target in the interdisciplinary research fields of chemistry and biology because of their high functional group selectivity in olefin metathesis reactions and stabilities in aqueous media. This review article introduces the application of designed Hoveyda–Grubbs-type complexes for bio-relevant studies including the construction of hybrid olefin metathesis biocatalysts and the development of in-vivo olefin metathesis reactions. As a noticeable issue in the employment of Hoveyda–Grubbs-type complexes in aqueous media, the influence of water on the catalytic activities of the complexes and strategies to overcome the problems resulting from the water effects are also discussed. In connection to the structural effects of protein structures on the reactivities of Hoveyda–Grubbs-type complexes included in the protein, the regulation of metathesis activities through second-coordination sphere effect is presented, demonstrating that the reactivities of Hoveyda–Grubbs-type complexes are controllable by the structural modification of the complexes at outer-sphere parts. Finally, as a new-type reaction based on the ruthenium-olefin specific interaction, a recent finding on the ruthenium complex transfer reaction between Hoveyda–Grubbs-type complexes and biomolecules is introduced.
Collapse
|
28
|
Blanco CO, Sims J, Nascimento DL, Goudreault AY, Steinmann SN, Michel C, Fogg DE. The Impact of Water on Ru-Catalyzed Olefin Metathesis: Potent Deactivating Effects Even at Low Water Concentrations. ACS Catal 2021; 11:893-899. [PMID: 33614193 PMCID: PMC7886052 DOI: 10.1021/acscatal.0c04279] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/29/2020] [Indexed: 12/14/2022]
Abstract
Ruthenium catalysts for olefin metathesis are widely viewed as water-tolerant. Evidence is presented, however, that even low concentrations of water cause catalyst decomposition, severely degrading yields. Of 11 catalysts studied, fast-initiating examples (e.g., the Grela catalyst RuCl2(H2IMes)(=CHC6H4-2-O i Pr-5-NO2) were most affected. Maximum water tolerance was exhibited by slowly initiating iodide and cyclic (alkyl)(amino)carbene (CAAC) derivatives. Computational investigations indicated that hydrogen bonding of water to substrate can also play a role, by retarding cyclization relative to decomposition. These results have important implications for olefin metathesis in organic media, where water is a ubiquitous contaminant, and for aqueous metathesis, which currently requires superstoichiometric "catalyst" for demanding reactions.
Collapse
Affiliation(s)
- Christian O. Blanco
- Center for Catalysis Research & Innovation, and
Department of Chemistry and Biomolecular Sciences, University of
Ottawa, Ottawa, Ontario K1N 6N57, Canada
| | - Joshua Sims
- Univ. Lyon, ENS de Lyon,
CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratorie de Chimie, F-69342
Lyon, France
| | - Daniel L. Nascimento
- Center for Catalysis Research & Innovation, and
Department of Chemistry and Biomolecular Sciences, University of
Ottawa, Ottawa, Ontario K1N 6N57, Canada
| | - Alexandre Y. Goudreault
- Center for Catalysis Research & Innovation, and
Department of Chemistry and Biomolecular Sciences, University of
Ottawa, Ottawa, Ontario K1N 6N57, Canada
| | - Stephan N. Steinmann
- Univ. Lyon, ENS de Lyon,
CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratorie de Chimie, F-69342
Lyon, France
| | - Carine Michel
- Univ. Lyon, ENS de Lyon,
CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratorie de Chimie, F-69342
Lyon, France
| | - Deryn E. Fogg
- Center for Catalysis Research & Innovation, and
Department of Chemistry and Biomolecular Sciences, University of
Ottawa, Ottawa, Ontario K1N 6N57, Canada
- Department of Chemistry, University of
Bergen, Allégaten 41, N-5007 Bergen,
Norway
| |
Collapse
|
29
|
Jatmika C, Wakabayashi K, Tamaki R, Akiyama N, Nakamura I, Hirota S, Yamaguchi H, Matsuo T. Ligand Exchange Strategy for Delivery of Ruthenium Complex Unit to Biomolecules Based on Ruthenium–Olefin Specific Interactions. CHEM LETT 2020. [DOI: 10.1246/cl.200590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Catur Jatmika
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Kazumo Wakabayashi
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Ryosei Tamaki
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Naoki Akiyama
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Ibuki Nakamura
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Shun Hirota
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Hiroyasu Yamaguchi
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Takashi Matsuo
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| |
Collapse
|