1
|
Kardam V, Bhatt V, Dubey KD. Structural and mechanistic insights into oxidative biaryl coupling to form the arylomycin core by an engineered CYP450. Dalton Trans 2024. [PMID: 39575560 DOI: 10.1039/d4dt02197e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Arylomycin, a potent antibiotic targeting bacterial signal peptidase, is difficult to synthesize experimentally due to its poor to moderate yields and the formation of a mixture of compounds. A recent experimental bioengineering work shows that the core of arylomycin can be efficiently synthesized by engineering the cytochrome P450 enzyme from Streptomyces sp.; however, the mechanism of the same was not elucidated. Herein, we have thoroughly investigated the mechanism behind the evolution of the enzyme for the synthesis of the arylomycin core via C-C bond formation in the CYP450 enzyme using hybrid QM/MM calculations, MD simulations, and DFT calculations. We show that strategic mutations such as (a) G-101 → A facilitate biaryl coupling by subtly pushing the substrate and (b) the Q-306 → H mutation creates a strong pi-pi interaction with the substrate that brings the two phenol rings of the substrate closer to undergo C-C coupling. Importantly, our QM/MM calculations show that for efficient C-C formation, the reaction should proceed via the biradical mechanism rather than hydroxylation.
Collapse
Affiliation(s)
- Vandana Kardam
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR, NH91, Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India.
| | - Vaibhav Bhatt
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR, NH91, Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India.
| | - Kshatresh Dutta Dubey
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR, NH91, Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India.
| |
Collapse
|
2
|
Wei G, Duan B, Zhou TP, Tian W, Sun C, Lin Z, Deng Z, Wang B, Zhang Z, Qu X. A nucleobase-driven P450 peroxidase system enables regio- and stereo-specific formation of C─C and C─N bonds. Proc Natl Acad Sci U S A 2024; 121:e2412890121. [PMID: 39508763 PMCID: PMC11573659 DOI: 10.1073/pnas.2412890121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024] Open
Abstract
P450 peroxidase activities are valued for their ability to catalyze complex chemical transformations using economical H2O2; however, they have been largely underexplored compared to their monooxygenase and peroxygenase activities. In this study, we identified an unconventional P450 enzyme, PtmB, which catalyzes the dimerization of purine nucleobases and tryptophan-containing diketopiperazines (TDKPs), yielding C3-nucleobase pyrroloindolines and nucleobase-TDKP dimers. Unlike typical TDKP P450 enzymes reliant on NAD(P)H cofactors and electron transfer systems, PtmB, and its analogs exhibit remarkable peroxidase activity in synthesizing adenine and other modified 6-aminopurine nucleobase-TDKP dimers. Structural analysis of the PtmB-substrate complex, mutation assays, and computational investigations reveal adenine's dual role as both substrate and acid-base catalyst in activating H2O2 to generate Compound I (Cpd I). This initiates a specific radical cascade reaction, facilitating the formation of precise C─C and C─N bonds. Biochemical assays and molecular dynamics simulations demonstrate that adenine's 6-NH2 hydrogen-bonding networks induce necessary conformational changes for H2O2 activation, thereby driving peroxidase activity. This study unveils an unusual catalytic mechanism for the P450 peroxidase system and underscores the pivotal role of nucleobases in enzyme-mediated reactions, which offers different prospects for developing P450 peroxidases and nucleobase-based biocatalysts.
Collapse
Affiliation(s)
- Guangzheng Wei
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Borui Duan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Tai-Ping Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Wenya Tian
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chenghai Sun
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhi Lin
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhengyu Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Xudong Qu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Hyun KA, Liang X, Xu Y, Kim SY, Boo KH, Park JS, Chi WJ, Hyun CG. Analysis of the Setomimycin Biosynthetic Gene Cluster from Streptomyces nojiriensis JCM3382 and Evaluation of Its α-Glucosidase Inhibitory Activity Using Molecular Docking and Molecular Dynamics Simulations. Int J Mol Sci 2024; 25:10758. [PMID: 39409089 PMCID: PMC11476836 DOI: 10.3390/ijms251910758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
The formation of atroposelective biaryl compounds in plants and fungi is well understood; however, polyketide aglycone synthesis and dimerization in bacteria remain unclear. Thus, the biosynthetic gene cluster (BGC) responsible for antibacterial setomimycin production from Streptomyces nojiriensis JCM3382 was examined in comparison with the BGCs of spectomycin, julichromes, lincolnenins, and huanglongmycin. The setomimycin BGC includes post-polyketide synthase (PKS) assembly/cycling enzymes StmD (C-9 ketoreductase), StmE (aromatase), and StmF (thioesterase) as key components. The heterodimeric TcmI-like cyclases StmH and StmK are proposed to aid in forming the setomimycin monomer. In addition, StmI (P-450) is predicted to catalyze the biaryl coupling of two monomeric setomimycin units, with StmM (ferredoxin) specific to the setomimycin BGC. The roles of StmL and StmN, part of the nuclear transport factor 2 (NTF-2)-like protein family and unique to setomimycin BGCs, could particularly interest biochemists and combinatorial biologists. α-Glucosidase, a key enzyme in type 2 diabetes, hydrolyzes carbohydrates into glucose, thereby elevating blood glucose levels. This study aimed to assess the α-glucosidase inhibitory activity of EtOAc extracts of JCM 3382 and setomimycin. The JCM 3382 EtOAc extract and setomimycin exhibited greater potency than the standard inhibitor, acarbose, with IC50 values of 285.14 ± 2.04 μg/mL and 231.26 ± 0.41 μM, respectively. Molecular docking demonstrated two hydrogen bonds with maltase-glucoamylase chain A residues Thr205 and Lys480 (binding energy = -6.8 kcal·mol-1), two π-π interactions with Trp406 and Phe450, and one π-cation interaction with Asp542. Residue-energy analysis highlighted Trp406 and Phe450 as key in setomimycin's binding to maltase-glucoamylase. These findings suggest that setomimycin is a promising candidate for further enzymological research and potential antidiabetic therapy.
Collapse
Affiliation(s)
- Kyung-A Hyun
- Department of Biotechnology, College of Applied Life Science, Jeju National University, Jeju 63243, Republic of Korea; (K.-A.H.); (K.-H.B.)
| | - Xuhui Liang
- Jeju Inside Agency and Cosmetic Science Center, Department of Beauty and Cosmetology, Jeju National University, Jeju 63243, Republic of Korea; (X.L.); (Y.X.)
| | - Yang Xu
- Jeju Inside Agency and Cosmetic Science Center, Department of Beauty and Cosmetology, Jeju National University, Jeju 63243, Republic of Korea; (X.L.); (Y.X.)
| | - Seung-Young Kim
- Department of Pharmaceutical Engineering and Biotechnology, Sunmoon University, Asan 31460, Republic of Korea;
| | - Kyung-Hwan Boo
- Department of Biotechnology, College of Applied Life Science, Jeju National University, Jeju 63243, Republic of Korea; (K.-A.H.); (K.-H.B.)
| | - Jin-Soo Park
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung 25451, Republic of Korea;
| | - Won-Jae Chi
- Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon 22689, Republic of Korea
| | - Chang-Gu Hyun
- Jeju Inside Agency and Cosmetic Science Center, Department of Beauty and Cosmetology, Jeju National University, Jeju 63243, Republic of Korea; (X.L.); (Y.X.)
| |
Collapse
|
4
|
Pierre HC, Amrine CSM, Doyle MG, Salvi A, Raja HA, Chekan JR, Huntsman AC, Fuchs JR, Liu K, Burdette JE, Pearce CJ, Oberlies NH. Verticillins: fungal epipolythiodioxopiperazine alkaloids with chemotherapeutic potential. Nat Prod Rep 2024; 41:1327-1345. [PMID: 38629495 PMCID: PMC11409914 DOI: 10.1039/d3np00068k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Covering: 1970 through June of 2023Verticillins are epipolythiodioxopiperazine (ETP) alkaloids, many of which possess potent, nanomolar-level cytotoxicity against a variety of cancer cell lines. Over the last decade, their in vivo activity and mode of action have been explored in detail. Notably, recent studies have indicated that these compounds may be selective inhibitors of histone methyltransferases (HMTases) that alter the epigenome and modify targets that play a crucial role in apoptosis, altering immune cell recognition, and generating reactive oxygen species. Verticillin A (1) was the first of 27 analogues reported from fungal cultures since 1970. Subsequent genome sequencing identified the biosynthetic gene cluster responsible for producing verticillins, allowing a putative pathway to be proposed. Further, molecular sequencing played a pivotal role in clarifying the taxonomic characterization of verticillin-producing fungi, suggesting that most producing strains belong to the genus Clonostachys (i.e., Bionectria), Bionectriaceae. Recent studies have explored the total synthesis of these molecules and the generation of analogues via both semisynthetic and precursor-directed biosynthetic approaches. In addition, nanoparticles have been used to deliver these molecules, which, like many natural products, possess challenging solubility profiles. This review summarizes over 50 years of chemical and biological research on this class of fungal metabolites and offers insights and suggestions on future opportunities to push these compounds into pre-clinical and clinical development.
Collapse
Affiliation(s)
- Herma C Pierre
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, P.O. Box 26170, Greensboro, North Carolina 27402, USA.
| | - Chiraz Soumia M Amrine
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, P.O. Box 26170, Greensboro, North Carolina 27402, USA.
- Department of Physical and Earth Sciences. Arkansas Tech University, 1701 N. Boulder Ave., Russellville, Arkansas 72801, USA
| | - Michael G Doyle
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, P.O. Box 26170, Greensboro, North Carolina 27402, USA.
| | - Amrita Salvi
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, 900 S. Ashland Ave (M/C 870), Chicago, Illinois 60607, USA
| | - Huzefa A Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, P.O. Box 26170, Greensboro, North Carolina 27402, USA.
| | - Jonathan R Chekan
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, P.O. Box 26170, Greensboro, North Carolina 27402, USA.
| | - Andrew C Huntsman
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Ohio State University, 500 W. 12th Ave., Columbus, Ohio 43210, USA
| | - James R Fuchs
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Ohio State University, 500 W. 12th Ave., Columbus, Ohio 43210, USA
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology and the Georgia Cancer Center, Medical College of Georgia, Augusta, GA 30912, USA
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30904, USA
| | - Joanna E Burdette
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, 900 S. Ashland Ave (M/C 870), Chicago, Illinois 60607, USA
| | | | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, P.O. Box 26170, Greensboro, North Carolina 27402, USA.
| |
Collapse
|
5
|
Scott TZ, Movassaghi M. Unified, Biosynthesis-Inspired, Completely Stereocontrolled Total Synthesis of All Highest-Order [n + 1] Oligocyclotryptamine Alkaloids. J Am Chem Soc 2024; 146:23574-23581. [PMID: 39132870 PMCID: PMC11512586 DOI: 10.1021/jacs.4c07705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
We describe the unified enantioselective total synthesis of the polycyclotryptamine natural products (+)-quadrigemine H, (+)-isopsychotridine C, (+)-oleoidine, and (+)-caledonine. Inspired by our hypothesis for the biogenesis of these alkaloids via an iterative concatenative addition of homochiral cyclotryptamines to a meso-chimonanthine headcap, we leverage the modular, diazene-directed assembly of stereodefined cyclotryptamines to introduce successive C3a-C7' quaternary stereocenters on a heterodimeric meso-chimonanthine surrogate with full stereochemical control at each quaternary linkage. We developed a new strategy for iterative aryl-alkyl diazene synthesis using increasingly complex oligomeric hydrazide nucleophiles and a bifunctional cyclotryptamine bearing a C3a leaving group and a pendant C7 pronucleophile. The utility of this strategy is demonstrated by the first total synthesis of heptamer (+)-caledonine and hexamer (+)-oleoidine. Enabled by our completely stereoselective total syntheses and expanded characterization data sets, we provide the first complete stereochemical assignment of pentamer (+)-isopsychotridine C, provide evidence that it is identical to the alkaloid known as (+)-isopsychotridine B, and report that tetramer (+)-quadrigemine H is identical to the alkaloid called (+)-quadrigemine I, resolving longstanding questions about the structures of the highest-order [n + 1] oligocyclotryptamine alkaloids.
Collapse
Affiliation(s)
- Tony Z Scott
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mohammad Movassaghi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
6
|
Ma C, Wang W, Zhang K, Zhang F, Chang Y, Sun C, Che Q, Zhu T, Zhang G, Li D. Exploring the Diverse Landscape of Fungal Cytochrome P450-Catalyzed Regio- and Stereoselective Dimerization of Diketopiperazines. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310018. [PMID: 38687842 PMCID: PMC11234459 DOI: 10.1002/advs.202310018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/16/2024] [Indexed: 05/02/2024]
Abstract
Dimeric indole-containing diketopiperazines (di-DKPs) are a diverse group of natural products produced through cytochrome P450-catalyzed C-C or C-N coupling reactions. The regio- and stereoselectivity of these reactions plays a significant role in the structural diversity of di-DKPs. Despite their pivotal role, the mechanisms governing the selectivity in fungi are not fully understood. Employing bioinformatics analysis and heterologous expression experiments, five undescribed P450 enzymes (AmiP450, AcrP450, AtP450, AcP450, and AtuP450) responsible for the regio- and stereoselective dimerization of diketopiperazines (DKPs) in fungi are identified. The function of these P450s is consistent with phylogenetic analysis, highlighting their dominant role in controlling the dimerization modes. Combinatorial biosynthesis-based pathway reconstitution of non-native gene clusters expands the chemical space of fungal di-DKPs and reveals that the regioselectivity is influenced by the substrate. Furthermore, multiple sequence alignment and molecular docking of these enzymes demonstrate a C-terminal variable region near the substrate tunnel entrance in AtuP450 that is crucial for its regioselectivity. These findings not only reveal the secret of fungal di-DKPs diversity but also deepen understanding of the mechanisms and catalytic specificity involved in P450-catalyzed dimerization reactions.
Collapse
Affiliation(s)
- Chuanteng Ma
- Key Laboratory of Marine Drugs Ministry of EducationSchool of Medicine and PharmacySanya Oceanographic InstituteOcean University of ChinaQingdao/Sanya266000China
| | - Wenxue Wang
- Key Laboratory of Marine Drugs Ministry of EducationSchool of Medicine and PharmacySanya Oceanographic InstituteOcean University of ChinaQingdao/Sanya266000China
| | - Kaijin Zhang
- Key Laboratory of Marine Drugs Ministry of EducationSchool of Medicine and PharmacySanya Oceanographic InstituteOcean University of ChinaQingdao/Sanya266000China
| | - Falei Zhang
- Key Laboratory of Marine Drugs Ministry of EducationSchool of Medicine and PharmacySanya Oceanographic InstituteOcean University of ChinaQingdao/Sanya266000China
| | - Yimin Chang
- Key Laboratory of Marine Drugs Ministry of EducationSchool of Medicine and PharmacySanya Oceanographic InstituteOcean University of ChinaQingdao/Sanya266000China
| | - Chunxiao Sun
- Key Laboratory of Marine Drugs Ministry of EducationSchool of Medicine and PharmacySanya Oceanographic InstituteOcean University of ChinaQingdao/Sanya266000China
| | - Qian Che
- Key Laboratory of Marine Drugs Ministry of EducationSchool of Medicine and PharmacySanya Oceanographic InstituteOcean University of ChinaQingdao/Sanya266000China
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs Ministry of EducationSchool of Medicine and PharmacySanya Oceanographic InstituteOcean University of ChinaQingdao/Sanya266000China
| | - Guojian Zhang
- Key Laboratory of Marine Drugs Ministry of EducationSchool of Medicine and PharmacySanya Oceanographic InstituteOcean University of ChinaQingdao/Sanya266000China
- Laboratory for Marine Drugs and BioproductsQingdao Marine Science and Technology CenterQingdao266237China
| | - Dehai Li
- Key Laboratory of Marine Drugs Ministry of EducationSchool of Medicine and PharmacySanya Oceanographic InstituteOcean University of ChinaQingdao/Sanya266000China
- Laboratory for Marine Drugs and BioproductsQingdao Marine Science and Technology CenterQingdao266237China
| |
Collapse
|
7
|
He Q, Zhang HR, Zou Y. A Cytochrome P450 Catalyzes Oxidative Coupling Formation of Insecticidal Dimeric Indole Piperazine Alkaloids. Angew Chem Int Ed Engl 2024; 63:e202404000. [PMID: 38527935 DOI: 10.1002/anie.202404000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
Cytochrome P450 (CYP450)-catalyzed oxidative coupling is an efficient strategy for using simple building blocks to construct complex structural scaffolds of natural products. Among them, heterodimeric coupling between two different monomers is relatively scarce, and the corresponding CYP450s are largely undiscovered. In this study, we discovered a fungal CYP450 (CpsD) and its associated cps cluster from 37208 CYP450s of Pfam PF00067 family member database and subsequently identified a group of new skeleton indole piperazine alkaloids (campesines A-G) by combination of genome mining and heterologous synthesis. Importantly, CYP450 CpsD mainly catalyzes intermolecular oxidative heterocoupling of two different indole piperazine monomers to generate an unexpected 6/5/6/6/6/6/5/6 eight-ring scaffold through the formation of one C-C bond and two C-N bonds, illuminating its first dimerase role in this family of natural products. The proposed catalytic mechanism of CpsD was deeply investigated by diversified substrate derivatization. Moreover, dimeric campesine G shows good insecticidal activity against the global honeybee pest Galleria mellonella. Our study shows a representative example of discovering new skeleton monomeric and dimeric indole piperazine alkaloids from microbial resources, expands our knowledge of bond formation by CYP450s and supports further development of the newly discovered and engineered campesine family compounds as potential biopesticides.
Collapse
Affiliation(s)
- Qian He
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Hua-Ran Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Yi Zou
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
8
|
Zhou TP, Feng J, Wang Y, Li S, Wang B. Substrate Conformational Switch Enables the Stereoselective Dimerization in P450 NascB: Insights from Molecular Dynamics Simulations and Quantum Mechanical/Molecular Mechanical Calculations. JACS AU 2024; 4:1591-1604. [PMID: 38665654 PMCID: PMC11040706 DOI: 10.1021/jacsau.4c00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024]
Abstract
P450 NascB catalyzes the coupling of cyclo-(l-tryptophan-l-proline) (1) to generate (-)-naseseazine C (2) through intramolecular C-N bond formation and intermolecular C-C coupling. A thorough understanding of its catalytic mechanism is crucial for the engineering or design of P450-catalyzed C-N dimerization reactions. By employing MD simulations, QM/MM calculations, and enhanced sampling, we assessed various mechanisms from recent works. Our study demonstrates that the most favorable pathway entails the transfer of a hydrogen atom from N7-H to Cpd I. Subsequently, there is a conformational change in the substrate radical, shifting it from the Re-face to the Si-face of N7 in Substrate 1. The Si-face conformation of Substrate 1 is stabilized by the protein environment and the π-π stacking interaction between the indole ring and heme porphyrin. The subsequent intermolecular C3-C6' bond formation between Substrate 1 radical and Substrate 2 occurs via a radical attack mechanism. The conformational switch of the Substrate 1 radical not only lowers the barrier of the intermolecular C3-C6' bond formation but also yields the correct stereoselectivity observed in experiments. In addition, we evaluated the reactivity of the ferric-superoxide species, showing it is not reactive enough to initiate the hydrogen atom abstraction from the indole NH group of the substrate. Our simulation provides a comprehensive mechanistic insight into how the P450 enzyme precisely controls both the intramolecular C-N cyclization and intermolecular C-C coupling. The current findings align with the available experimental data, emphasizing the pivotal role of substrate dynamics in governing P450 catalysis.
Collapse
Affiliation(s)
- Tai-Ping Zhou
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jianqiang Feng
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yongchao Wang
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shengying Li
- State
Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Binju Wang
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
9
|
Adhikari A, Shakya S, Shrestha S, Aryal D, Timalsina KP, Dhakal D, Khatri Y, Parajuli N. Biocatalytic role of cytochrome P450s to produce antibiotics: A review. Biotechnol Bioeng 2023; 120:3465-3492. [PMID: 37691185 DOI: 10.1002/bit.28548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/15/2023] [Accepted: 08/26/2023] [Indexed: 09/12/2023]
Abstract
Cytochrome P450s belong to a family of heme-binding monooxygenases, which catalyze regio- and stereospecific functionalisation of C-H, C-C, and C-N bonds, including heteroatom oxidation, oxidative C-C bond cleavages, and nitrene transfer. P450s are considered useful biocatalysts for the production of pharmaceutical products, fine chemicals, and bioremediating agents. Despite having tremendous biotechnological potential, being heme-monooxygenases, P450s require either autologous or heterologous redox partner(s) to perform chemical transformations. Randomly distributed P450s throughout a bacterial genome and devoid of particular redox partners in natural products biosynthetic gene clusters (BGCs) showed an extra challenge to reveal their pharmaceutical potential. However, continuous efforts have been made to understand their involvement in antibiotic biosynthesis and their modification, and this review focused on such BGCs. Here, particularly, we have discussed the role of P450s involved in the production of macrolides and aminocoumarin antibiotics, nonribosomal peptide (NRPSs) antibiotics, ribosomally synthesized and post-translationally modified peptide (RiPPs) antibiotics, and others. Several reactions catalyzed by P450s, as well as the role of their redox partners involved in the BGCs of various antibiotics and their derivatives, have been primarily addressed in this review, which would be useful in further exploration of P450s for the biosynthesis of new therapeutics.
Collapse
Affiliation(s)
- Anup Adhikari
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Sajan Shakya
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Shreesti Shrestha
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - Dipa Aryal
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Kavi Prasad Timalsina
- Department of Biotechnology, National College, Tribhuvan University, Kathmandu, Nepal
| | - Dipesh Dhakal
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, Florida, USA
| | | | - Niranjan Parajuli
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| |
Collapse
|
10
|
He BB, Liu J, Cheng Z, Liu R, Zhong Z, Gao Y, Liu H, Song ZM, Tian Y, Li YX. Bacterial Cytochrome P450 Catalyzed Post-translational Macrocyclization of Ribosomal Peptides. Angew Chem Int Ed Engl 2023; 62:e202311533. [PMID: 37767859 DOI: 10.1002/anie.202311533] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 09/29/2023]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a fascinating group of natural products that exhibit diverse structural features and bioactivities. P450-catalyzed RiPPs stand out as a unique but underexplored family. Herein, we introduce a rule-based genome mining strategy that harnesses the intrinsic biosynthetic principles of RiPPs, including the co-occurrence and co-conservation of precursors and P450s and interactions between them, successfully facilitating the identification of diverse P450-catalyzed RiPPs. Intensive BGC characterization revealed four new P450s, KstB, ScnB, MciB, and SgrB, that can catalyze the formation of Trp-Trp-Tyr (one C-C and two C-N bonds), Tyr-Trp (C-C bond), Trp-Trp (C-N bond), and His-His (ether bond) crosslinks, respectively, within three or four residues. KstB, ScnB, and MciB could accept non-native precursors, suggesting they could be promising starting templates for bioengineering to construct macrocycles. Our study highlights the potential of P450s to expand the chemical diversity of strained macrocyclic peptides and the range of biocatalytic tools available for peptide macrocyclization.
Collapse
Affiliation(s)
- Bei-Bei He
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jing Liu
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Zhuo Cheng
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Runze Liu
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Zheng Zhong
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Ying Gao
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Hongyan Liu
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Zhi-Man Song
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yongqi Tian
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yong-Xin Li
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
11
|
Stierle SA, Harken L, Li SM. P450 in C-C coupling of cyclodipeptides with nucleobases. Methods Enzymol 2023; 693:231-265. [PMID: 37977732 DOI: 10.1016/bs.mie.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Bacterial cytochrome P450 enzymes catalyze various and often intriguing tailoring reactions during the biosynthesis of natural products. In contrast to the majority of membrane-bound P450 enzymes from eukaryotes, bacterial P450 enzymes are soluble proteins and therefore represent excellent candidates for in vitro biochemical investigations. In particular, cyclodipeptide synthase-associated cytochrome P450 enzymes have recently gained attention due to the broad spectrum of reactions they catalyze, i.e. hydroxylation, aromatization, intramolecular C-C bond formation, dimerization, and nucleobase addition. The latter reaction has been described during the biosynthesis of guanitrypmycins, guatrypmethines and guatyromycines in various Streptomyces strains, where the nucleobases guanine and hypoxanthine are coupled to cyclodipeptides via C-C, C-N, and C-O bonds. In this chapter, we provide an overview of cytochrome P450 enzymes involved in the C-C coupling of cyclodipeptides with nucleobases and describe the protocols used for the successful characterization of these enzymes in our laboratory. The procedure includes cloning of the respective genes into expression vectors and subsequent overproduction of the corresponding proteins in E. coli as well as heterologous expression in Streptomyces. We describe the purification and in vitro biochemical characterization of the enzymes and protocols to isolate the produced compounds for structure elucidation.
Collapse
Affiliation(s)
- Sina A Stierle
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Marburg, Germany
| | - Lauritz Harken
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Marburg, Germany
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Marburg, Germany.
| |
Collapse
|
12
|
Liu M, Ohashi M, Zhou Q, Sanders JN, McCauley EP, Crews P, Houk KN, Tang Y. Enzymatic Benzofuranoindoline Formation in the Biosynthesis of the Strained Bridgehead Bicyclic Dipeptide (+)-Azonazine A. Angew Chem Int Ed Engl 2023; 62:e202311266. [PMID: 37589717 PMCID: PMC10868402 DOI: 10.1002/anie.202311266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/18/2023]
Abstract
We uncovered and reconstituted a concise biosynthetic pathway of the strained dipeptide (+)-azonazine A from marine-derived Aspergillus insulicola. Formation of the hexacyclic benzofuranoindoline ring system from cyclo-(l-Trp-N-methyl-l-Tyr) is catalyzed by a P450 enzyme through an oxidative cyclization. Supplementing the producing strain with various indole-substituted tryptophan derivatives resulted in the generation of a series of azonazine A analogs.
Collapse
Affiliation(s)
- Mengting Liu
- Department of Chemical and Biomolecular Engineering; Department of Chemistry and Biochemistry University of California, Los Angeles, California 90095, USA
| | - Masao Ohashi
- Department of Chemical and Biomolecular Engineering; Department of Chemistry and Biochemistry University of California, Los Angeles, California 90095, USA
| | - Qingyang Zhou
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | - Jacob N. Sanders
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | - Erin P. McCauley
- Department of Chemistry and Biochemistry, California State University–Dominguez Hills, Carson, California 90747, USA
| | - Phillip Crews
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, USA
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering; Department of Chemistry and Biochemistry University of California, Los Angeles, California 90095, USA; Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
13
|
Gering HE, Li X, Tang H, Swartz PD, Chang WC, Makris TM. A Ferric-Superoxide Intermediate Initiates P450-Catalyzed Cyclic Dipeptide Dimerization. J Am Chem Soc 2023; 145:19256-19264. [PMID: 37611404 DOI: 10.1021/jacs.3c04542] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
The cytochrome P450 (CYP) AspB is involved in the biosynthesis of the diketopiperazine (DKP) aspergilazine A. Tryptophan-linked dimeric DKP alkaloids are a large family of natural products that are found in numerous species and exhibit broad and often potent bioactivity. The proposed mechanisms for C-N bond formation by AspB, and similar C-C bond formations by related CYPs, have invoked the use of a ferryl-intermediate as an oxidant to promote substrate dimerization. Here, the parallel application of steady-state and transient kinetic approaches reveals a very different mechanism that involves a ferric-superoxide species as a primary oxidant to initiate DKP-assembly. Single turnover kinetic isotope effects and a substrate analog suggest the probable nature and site for abstraction. The direct observation of CYP-superoxide reactivity rationalizes the atypical outcome of AspB and reveals a new reaction manifold in heme enzymes.
Collapse
Affiliation(s)
- Hannah E Gering
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Xiaojun Li
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Haoyu Tang
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Paul D Swartz
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Wei-Chen Chang
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Thomas M Makris
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
14
|
Walker KL, Loach RP, Movassaghi M. Total synthesis of complex 2,5-diketopiperazine alkaloids. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2023; 90:159-206. [PMID: 37716796 PMCID: PMC10955524 DOI: 10.1016/bs.alkal.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2023]
Abstract
The 2,5-diketopiperazine (DKP) motif is present in many biologically relevant, complex natural products. The cyclodipeptide substructure offers structural rigidity and stability to proteolysis that makes these compounds promising candidates for medical applications. Due to their fascinating molecular architecture, synthetic organic chemists have focused significant effort on the total synthesis of these compounds. This review covers many such efforts on the total synthesis of DKP containing complex alkaloid natural products.
Collapse
Affiliation(s)
- Katherine L Walker
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Richard P Loach
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Mohammad Movassaghi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, United States.
| |
Collapse
|
15
|
An JS, Lee H, Kim H, Woo S, Nam H, Lee J, Lee JY, Nam SJ, Lee SK, Oh KB, Kim S, Oh DC. Discovery and Biosynthesis of Cihunamides, Macrocyclic Antibacterial RiPPs with a Unique C-N Linkage Formed by CYP450 Catalysis. Angew Chem Int Ed Engl 2023; 62:e202300998. [PMID: 37114290 DOI: 10.1002/anie.202300998] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 04/29/2023]
Abstract
Cihunamides A-D (1-4), novel antibacterial RiPPs, were isolated from volcanic-island-derived Streptomyces sp. The structures of 1-4 were elucidated by 1 H, 13 C, and 15 N NMR, MS, and chemical derivatization; they contain a tetrapeptide core composed of WNIW, cyclized by a unique C-N linkage between two Trp units. Genome mining of the producer strain revealed two biosynthetic genes encoding a cytochrome P450 enzyme and a precursor peptide. Heterologous co-expression of the core genes demonstrated the biosynthesis of cihunamides through P450-mediated oxidative Trp-Trp cross-linking. Further bioinformatic analysis uncovered 252 homologous gene clusters, including that of tryptorubins, which possess a distinct Trp-Trp linkage. Cihunamides do not display the non-canonical atropisomerism shown in tryptorubins, which are the founding members of the "atropitide" family. Therefore, we propose to use a new RiPP family name, "bitryptides", for cihunamides, tryptorubins, and their congeners, wherein the Trp-Trp linkages define the structural class rather than non-canonical atropisomerism.
Collapse
Affiliation(s)
- Joon Soo An
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 (Republic of, Korea
| | - Hyunbin Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 (Republic of, Korea
| | - Hyungyu Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 (Republic of, Korea
| | - Seungyeon Woo
- Department of Chemistry, College of Natural Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 (Republic of, Korea
| | - Hyunsung Nam
- Department of Chemistry, College of Natural Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 (Republic of, Korea
| | - Jayho Lee
- Department of Agriculture Biotechnology, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 (Republic of, Korea
| | - Ji Yun Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 (Republic of, Korea
| | - Sang-Jip Nam
- Department of Chemistry and Nanoscience, College of Natural Sciences, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760 (Republic of, Korea
| | - Sang Kook Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 (Republic of, Korea
| | - Ki-Bong Oh
- Department of Agriculture Biotechnology, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 (Republic of, Korea
| | - Seokhee Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 (Republic of, Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 (Republic of, Korea
| |
Collapse
|
16
|
Sun C, Ma BD, Li G, Tian W, Yang L, Peng H, Lin Z, Deng Z, Kong XD, Qu X. Engineering the Substrate Specificity of a P450 Dimerase Enables the Collective Biosynthesis of Heterodimeric Tryptophan-Containing Diketopiperazines. Angew Chem Int Ed Engl 2023; 62:e202304994. [PMID: 37083030 DOI: 10.1002/anie.202304994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 04/22/2023]
Abstract
Heterodimeric tryptophan-containing diketopiperazines (HTDKPs) are an important class of bioactive secondary metabolites. Biosynthesis offers a practical opportunity to access their bioactive structural diversity, however, it is restricted by the limited substrate scopes of the HTDKPs-forming P450 dimerases. Herein, by genome mining and investigation of the sequence-product relationships, we unveiled three important residues (F387, F388 and E73) in these P450s that are pivotal for selecting different diketopiperazine (DKP) substrates in the upper binding pocket. Engineering these residues in NasF5053 significantly expanded its substrate specificity and enabled the collective biosynthesis, including 12 self-dimerized and at least 81 cross-dimerized HTDKPs. Structural and molecular dynamics analysis of F387G and E73S revealed that they control the substrate specificity via reducing steric hindrance and regulating substrate tunnels, respectively.
Collapse
Affiliation(s)
- Chenghai Sun
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 201203, Shanghai, China
| | - Bao-Di Ma
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 201203, Shanghai, China
| | - Guangjun Li
- Abiochem Biotechnology Co. Ltd., 200240, Shanghai, China
| | - Wenya Tian
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 201203, Shanghai, China
| | - Lu Yang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 201203, Shanghai, China
| | - Haidong Peng
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 201203, Shanghai, China
| | - Zhi Lin
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 201203, Shanghai, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China
| | - Xu-Dong Kong
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 201203, Shanghai, China
| | - Xudong Qu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 201203, Shanghai, China
| |
Collapse
|
17
|
Shende VV, Harris NR, Sanders JN, Newmister SA, Khatri Y, Movassaghi M, Houk KN, Sherman DH. Molecular Dynamics Simulations Guide Chimeragenesis and Engineered Control of Chemoselectivity in Diketopiperazine Dimerases. Angew Chem Int Ed Engl 2023; 62:e202210254. [PMID: 36610039 PMCID: PMC10159983 DOI: 10.1002/anie.202210254] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/14/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
In the biosynthesis of the tryptophan-linked dimeric diketopiperazines (DKPs), cytochromes P450 selectively couple DKP monomers to generate a variety of intricate and isomeric frameworks. To determine the molecular basis for selectivity of these biocatalysts we obtained a high-resolution crystal structure of selective Csp2 -N bond forming dimerase, AspB. Overlay of the AspB structure onto C-C and C-N bond forming homolog NzeB revealed no significant structural variance to explain their divergent chemoselectivities. Molecular dynamics (MD) simulations identified a region of NzeB with increased conformational flexibility relative to AspB, and interchange of this region along with a single active site mutation led to a variant that catalyzes exclusive C-N bond formation. MD simulations also suggest that intermolecular C-C or C-N bond formation results from a change in mechanism, supported experimentally through use of a substrate mimic.
Collapse
Affiliation(s)
- Vikram V Shende
- Life Sciences Institute, University of Michigan, Ann Arbor, MÌ 48109, USA
| | - Natalia R Harris
- Life Sciences Institute, University of Michigan, Ann Arbor, MÌ 48109, USA
| | - Jacob N Sanders
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Sean A Newmister
- Life Sciences Institute, University of Michigan, Ann Arbor, MÌ 48109, USA
| | - Yogan Khatri
- Life Sciences Institute, University of Michigan, Ann Arbor, MÌ 48109, USA
| | - Mohammad Movassaghi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kendall N Houk
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - David H Sherman
- Life Sciences Institute, University of Michigan, Ann Arbor, MÌ 48109, USA
| |
Collapse
|
18
|
Deletti G, Green SD, Weber C, Patterson KN, Joshi SS, Khopade TM, Coban M, Veek-Wilson J, Caulfield TR, Viswanathan R, Lane AL. Unveiling an indole alkaloid diketopiperazine biosynthetic pathway that features a unique stereoisomerase and multifunctional methyltransferase. Nat Commun 2023; 14:2558. [PMID: 37137876 PMCID: PMC10156859 DOI: 10.1038/s41467-023-38168-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 04/19/2023] [Indexed: 05/05/2023] Open
Abstract
The 2,5-diketopiperazines are a prominent class of bioactive molecules. The nocardioazines are actinomycete natural products that feature a pyrroloindoline diketopiperazine scaffold composed of two D-tryptophan residues functionalized by N- and C-methylation, prenylation, and diannulation. Here we identify and characterize the nocardioazine B biosynthetic pathway from marine Nocardiopsis sp. CMB-M0232 by using heterologous biotransformations, in vitro biochemical assays, and macromolecular modeling. Assembly of the cyclo-L-Trp-L-Trp diketopiperazine precursor is catalyzed by a cyclodipeptide synthase. A separate genomic locus encodes tailoring of this precursor and includes an aspartate/glutamate racemase homolog as an unusual D/L isomerase acting upon diketopiperazine substrates, a phytoene synthase-like prenyltransferase as the catalyst of indole alkaloid diketopiperazine prenylation, and a rare dual function methyltransferase as the catalyst of both N- and C-methylation as the final steps of nocardioazine B biosynthesis. The biosynthetic paradigms revealed herein showcase Nature's molecular ingenuity and lay the foundation for diketopiperazine diversification via biocatalytic approaches.
Collapse
Affiliation(s)
- Garrett Deletti
- Department of Chemistry & Biochemistry, University of North Florida, Jacksonville, FL, 32224, USA
| | - Sajan D Green
- Department of Chemistry & Biochemistry, University of North Florida, Jacksonville, FL, 32224, USA
| | - Caleb Weber
- Department of Chemistry & Biochemistry, University of North Florida, Jacksonville, FL, 32224, USA
| | - Kristen N Patterson
- Department of Chemistry & Biochemistry, University of North Florida, Jacksonville, FL, 32224, USA
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Swapnil S Joshi
- Departments of Chemistry & Biology, Indian Institute of Science Education and Research Tirupati, Tirupati, Andhra Pradesh, India
| | - Tushar M Khopade
- Departments of Chemistry & Biology, Indian Institute of Science Education and Research Tirupati, Tirupati, Andhra Pradesh, India
| | - Mathew Coban
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - James Veek-Wilson
- Department of Chemistry & Biochemistry, University of North Florida, Jacksonville, FL, 32224, USA
| | - Thomas R Caulfield
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Rajesh Viswanathan
- Department of Chemistry & Biochemistry, University of North Florida, Jacksonville, FL, 32224, USA.
- Departments of Chemistry & Biology, Indian Institute of Science Education and Research Tirupati, Tirupati, Andhra Pradesh, India.
| | - Amy L Lane
- Department of Chemistry & Biochemistry, University of North Florida, Jacksonville, FL, 32224, USA.
| |
Collapse
|
19
|
Wang Z, Diao W, Wu P, Li J, Fu Y, Guo Z, Cao Z, Shaik S, Wang B. How the Conformational Movement of the Substrate Drives the Regioselective C-N Bond Formation in P450 TleB: Insights from Molecular Dynamics Simulations and Quantum Mechanical/Molecular Mechanical Calculations. J Am Chem Soc 2023; 145:7252-7267. [PMID: 36943409 DOI: 10.1021/jacs.2c12962] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
P450 TleB catalyzes the oxidative cyclization of the dipeptide N-methylvalyl-tryptophanol into indolactam V through selective intramolecular C-H bond amination at the indole C4 position. Understanding its catalytic mechanism is instrumental for the engineering or design of P450-catalyzed C-H amination reactions. Using multiscale computational methods, we show that the reaction proceeds through a diradical pathway, involving a hydrogen atom transfer (HAT) from N1-H to Cpd I, a conformational transformation of the substrate radical species, and a second HAT from N13-H to Cpd II. Intriguingly, the conformational transformation is found to be the key to enabling efficient and selective C-N coupling between N13 and C4 in the subsequent diradical coupling reaction. The underlined conformational transformation is triggered by the first HAT, which proceeds with an energy-demanding indole ring flip and is followed by the facile approach of the N13-H group to Cpd II. Detailed analysis shows that the internal electric field (IEF) from the protein environment plays key roles in the transformation process, which not only provides the driving force but also stabilizes the flipped conformation of the indole radical. Our simulations provide a clear picture of how the P450 enzyme can smartly modulate the selective C-N coupling reaction. The present findings are in line with all available experimental data, highlighting the crucial role of substrate dynamics in controlling this highly valuable reaction.
Collapse
Affiliation(s)
- Zhanfeng Wang
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Wenwen Diao
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Peng Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Junfeng Li
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Functional-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China
| | - Yuzhuang Fu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhiyong Guo
- State Key Laboratory of Food Science and Technology, School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, and International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Zexing Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
20
|
Liu J, Li SM. Genomics-Guided Efficient Identification of 2,5-Diketopiperazine Derivatives from Actinobacteria. Chembiochem 2023; 24:e202200502. [PMID: 36098493 PMCID: PMC10092475 DOI: 10.1002/cbic.202200502] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/12/2022] [Indexed: 02/04/2023]
Abstract
Secondary metabolites derived from microorganism constitute an important part of natural products. Mining of the microbial genomes revealed a large number of uncharacterized biosynthetic gene clusters, indicating their greater potential to synthetize specialized or secondary metabolites (SMs) than identified by classic fermentation and isolation approaches. Various bioinformatics tools have been developed to analyze and identify such gene clusters, thus accelerating significantly the mining process. Heterologous expression of an individual biosynthetic gene cluster has been proven as an efficient way to activate the genes and identify the encoded metabolites that cannot be detected under normal laboratory cultivation conditions. Herein, we describe a concept of genomics-guided approach by performing genome mining and heterologous expression to uncover novel CDPS-derived DKPs and functionally characterize novel tailoring enzymes embedded in the biosynthetic pathways. Recent works focused on the identification of the nucleobase-related and dimeric DKPs are also presented.
Collapse
Affiliation(s)
- Jing Liu
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037, Marburg, Germany.,Current address: Department of Natural Products in Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043, Marburg, Germany
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037, Marburg, Germany
| |
Collapse
|
21
|
Huber EM. Epipolythiodioxopiperazine-Based Natural Products: Building Blocks, Biosynthesis and Biological Activities. Chembiochem 2022; 23:e202200341. [PMID: 35997236 PMCID: PMC10086836 DOI: 10.1002/cbic.202200341] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/19/2022] [Indexed: 01/25/2023]
Abstract
Epipolythiodioxopiperazines (ETPs) are fungal secondary metabolites that share a 2,5-diketopiperazine scaffold built from two amino acids and bridged by a sulfide moiety. Modifications of the core and the amino acid side chains, for example by methylations, acetylations, hydroxylations, prenylations, halogenations, cyclizations, and truncations create the structural diversity of ETPs and contribute to their biological activity. However, the key feature responsible for the bioactivities of ETPs is their sulfide moiety. Over the last years, combinations of genome mining, reverse genetics, metabolomics, biochemistry, and structural biology deciphered principles of ETP production. Sulfurization via glutathione and uncovering of the thiols followed by either oxidation or methylation crystallized as fundamental steps that impact expression of the biosynthesis cluster, toxicity and secretion of the metabolite as well as self-tolerance of the producer. This article showcases structure and activity of prototype ETPs such as gliotoxin and discusses the current knowledge on the biosynthesis routes of these exceptional natural products.
Collapse
Affiliation(s)
- Eva M Huber
- Chair of Biochemistry, Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Str. 8, 85748, Garching, Germany
| |
Collapse
|
22
|
Martínez C, García-Domínguez P, Álvarez R, de Lera AR. Bispyrrolidinoindoline Epi(poly)thiodioxopiperazines (BPI-ETPs) and Simplified Mimetics: Structural Characterization, Bioactivities, and Total Synthesis. Molecules 2022; 27:7585. [PMID: 36364412 PMCID: PMC9659040 DOI: 10.3390/molecules27217585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 09/08/2024] Open
Abstract
Within the 2,5-dioxopiperazine-containing natural products generated by "head-to-tail" cyclization of peptides, those derived from tryptophan allow further structural diversification due to the rich chemical reactivity of the indole heterocycle, which can generate tetracyclic fragments of hexahydropyrrolo[2,3-b]indole or pyrrolidinoindoline skeleton fused to the 2,5-dioxopiperazine. Even more complex are the dimeric bispyrrolidinoindoline epi(poly)thiodioxopiperazines (BPI-ETPs), since they feature transannular (poly)sulfide bridges connecting C3 and C6 of their 2,5-dioxopiperazine rings. Homo- and heterodimers composed of diastereomeric epi(poly)thiodioxopiperazines increase the complexity of the family. Furthermore, putative biogenetically generated downstream metabolites with C11 and C11'-hydroxylated cores, as well as deoxygenated and/or oxidized side chain counterparts, have also been described. The isolation of these complex polycyclic tryptophan-derived alkaloids from the classical sources, their structural characterization, the description of the relevant biological activities and putative biogenetic routes, and the synthetic efforts to generate and confirm their structures and also to prepare and further evaluate structurally simple analogs will be reported.
Collapse
Affiliation(s)
| | | | | | - Angel R. de Lera
- CINBIO, ORCHID Group, Departmento de Química Orgánica, Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
23
|
Kelly SP, Shende VV, Flynn AR, Dan Q, Ye Y, Smith JL, Tsukamoto S, Sigman MS, Sherman DH. Data Science-Driven Analysis of Substrate-Permissive Diketopiperazine Reverse Prenyltransferase NotF: Applications in Protein Engineering and Cascade Biocatalytic Synthesis of (-)-Eurotiumin A. J Am Chem Soc 2022; 144:19326-19336. [PMID: 36223664 PMCID: PMC9831672 DOI: 10.1021/jacs.2c06631] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Prenyltransfer is an early-stage carbon-hydrogen bond (C-H) functionalization prevalent in the biosynthesis of a diverse array of biologically active bacterial, fungal, plant, and metazoan diketopiperazine (DKP) alkaloids. Toward the development of a unified strategy for biocatalytic construction of prenylated DKP indole alkaloids, we sought to identify and characterize a substrate-permissive C2 reverse prenyltransferase (PT). As the first tailoring event within the biosynthesis of cytotoxic notoamide metabolites, PT NotF catalyzes C2 reverse prenyltransfer of brevianamide F. Solving a crystal structure of NotF (in complex with native substrate and prenyl donor mimic dimethylallyl S-thiolodiphosphate (DMSPP)) revealed a large, solvent-exposed active site, intimating NotF may possess a significantly broad substrate scope. To assess the substrate selectivity of NotF, we synthesized a panel of 30 sterically and electronically differentiated tryptophanyl DKPs, the majority of which were selectively prenylated by NotF in synthetically useful conversions (2 to >99%). Quantitative representation of this substrate library and development of a descriptive statistical model provided insight into the molecular origins of NotF's substrate promiscuity. This approach enabled the identification of key substrate descriptors (electrophilicity, size, and flexibility) that govern the rate of NotF-catalyzed prenyltransfer, and the development of an "induced fit docking (IFD)-guided" engineering strategy for improved turnover of our largest substrates. We further demonstrated the utility of NotF in tandem with oxidative cyclization using flavin monooxygenase, BvnB. This one-pot, in vitro biocatalytic cascade enabled the first chemoenzymatic synthesis of the marine fungal natural product, (-)-eurotiumin A, in three steps and 60% overall yield.
Collapse
Affiliation(s)
- Samantha P. Kelly
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.,Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA.,These authors contributed equally: Samantha P. Kelly, Vikram V. Shende
| | - Vikram V. Shende
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.,Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA.,These authors contributed equally: Samantha P. Kelly, Vikram V. Shende
| | - Autumn R. Flynn
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Qingyun Dan
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ying Ye
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Janet L. Smith
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sachiko Tsukamoto
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
| | - Matthew S. Sigman
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - David H. Sherman
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
24
|
Feng S, Li Y, Zhang R, Zhang Q, Wang W. Origin of metabolites diversity and selectivity of P450 catalyzed benzo[a]pyrene metabolic activation. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:129008. [PMID: 35490637 DOI: 10.1016/j.jhazmat.2022.129008] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Polycyclic Aromatic Hydrocarbon (PAHs) presents one of the most abundant class of environmental pollutants. Recent study shows a lab-synthesized PAHs derivative, helicenium, can selectively kill cancer cells rather than normal cells, calling for the in-depth understanding of the metabolic process. However, the origin of metabolites diversity and selectivity of P450 catalyzed PAHs metabolic activation is still unclear to a great extent. Here we systematically investigated P450 enzymes catalyzed activation mechanism of a representative PAHs, benzo[a]pyrene (BaP), and found the corresponding activation process mainly involves two elementary steps: electrophilic addition and epoxidation. Electrophilic addition step is evidenced to be rate determining step. Two representative binding modes of BaP with P450 were found, which enables the electrophilic addition of Heme (FeO) to almost all the carbons of BaP. This electrophilic addition was proposed to be accelerated by the P450 enzyme environment when compared with the gas phase and water solvent. To dig deeper on the origin of metabolites diversity, we built several linear regression models to explore the structural-energy relationships. The selectivity was eventually attributed to the integrated effects of structural (e.g. O-C distance and O-C-Fe angle) and electrostatic parameters (e.g. charge of C and O) from both BaP and P450.
Collapse
Affiliation(s)
- Shanshan Feng
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Yanwei Li
- Environment Research Institute, Shandong University, Qingdao 266237, PR China.
| | - Ruiming Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
25
|
Chemo-enzymatic synthesis of natural products and their analogs. Curr Opin Biotechnol 2022; 77:102759. [PMID: 35908314 DOI: 10.1016/j.copbio.2022.102759] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 11/20/2022]
Abstract
Enzymes continue to gain recognition as valuable tools in synthetic chemistry as they enable transformations, which elude conventional organochemical approaches. As such, the progressing expansion of the biocatalytic arsenal has introduced unprecedented opportunities for new synthetic strategies and retrosynthetic disconnections. As a result, enzymes have found a solid foothold in modern natural product synthesis for applications ranging from the generation of early chiral synthons to endgame transformations, convergent synthesis, and cascade reactions for the rapid construction of molecular complexity. As a primer to the state-of-the-art concerning strategic uses of enzymes in natural product synthesis and the underlying concepts, this review highlights selected recent literature examples, which make a strong case for the admission of enzymatic methodologies into the standard repertoire for complex small-molecule synthesis.
Collapse
|
26
|
Recent developments in promiscuous enzymatic reactions for carbon-nitrogen bond formation. Bioorg Chem 2022; 127:106014. [PMID: 35841668 DOI: 10.1016/j.bioorg.2022.106014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/07/2022] [Accepted: 07/06/2022] [Indexed: 11/21/2022]
Abstract
Biocatalytic promiscuity is a new field of enzyme application in biochemistry, which has received much attention and has developed rapidly in recent years. The promiscuous biocatalysis has been promoted as a useful supplement to traditional strategy for the formation of C-heteroatom bonds. The generation of carbon-nitrogen (CN) bonds is an important issue in synthetic chemistry and is indispensable for the manufacturing of various pharmaceuticals and agrochemicals. Therefore, numerous efficient and reliable synthetic methods for the formation of CN bonds have been developed in recent years. Enzymatic CN bond forming reactions catalyzed by lipases, cytochrome P450 monooxygenases, glycosyltransferases, amine dehydrogenases, proteases, acylases, amylases and halohydrin dehalogenases are well established for synthetic purposes. This review introduces the recent progress in the construction of CN bonds using promiscuous enzymes.
Collapse
|
27
|
Sun C, Tian W, Lin Z, Qu X. Biosynthesis of pyrroloindoline-containing natural products. Nat Prod Rep 2022; 39:1721-1765. [PMID: 35762180 DOI: 10.1039/d2np00030j] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Covering: up to 2022Pyrroloindoline is a privileged tricyclic indoline motif widely present in many biologically active and medicinally valuable natural products. Thus, understanding the biosynthesis of this molecule is critical for developing convenient synthetic routes, which is highly challenging for its chemical synthesis due to the presence of rich chiral centers in this molecule, especially the fully substituted chiral carbon center at the C3-position of its rigid tricyclic structure. In recent years, progress has been made in elucidating the biosynthetic pathways and enzymatic mechanisms of pyrroloindoline-containing natural products (PiNPs). This article reviews the main advances in the past few decades based on the different substitutions on the C3 position of PiNPs, especially the various key enzymatic mechanisms involved in the biosynthesis of different types of PiNPs.
Collapse
Affiliation(s)
- Chenghai Sun
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Wenya Tian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Zhi Lin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China. .,Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xudong Qu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China. .,Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
28
|
Liu J, Harken L, Yang Y, Xie X, Li SM. Widely Distributed Bifunctional Bacterial Cytochrome P450 Enzymes Catalyze both Intramolecular C-C Bond Formation in cyclo-l-Tyr-l-Tyr and Its Coupling with Nucleobases. Angew Chem Int Ed Engl 2022; 61:e202200377. [PMID: 35201649 PMCID: PMC9401060 DOI: 10.1002/anie.202200377] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Indexed: 12/30/2022]
Abstract
Tailoring enzymes are important modification biocatalysts in natural product biosynthesis. We report herein six orthologous two‐gene clusters for mycocyclosin and guatyromycine biosynthesis. Expression of the cyclodipeptide synthase genes gymA1–gymA6 in Escherichia coli resulted in the formation of cyclo‐l‐Tyr‐l‐Tyr as the major product. Reconstruction of the biosynthetic pathways in Streptomyces albus and biochemical investigation proved that the cytochrome P450 enzymes GymB1–GymB6 act as both intramolecular oxidases and intermolecular nucleobase transferases. They catalyze not only the oxidative C−C coupling within cyclo‐l‐Tyr‐l‐Tyr, leading to mycocyclosin, but also its connection with guanine and hypoxanthine, and are thus responsible for the formation of tyrosine‐containing guatyromycines, instead of the reported tryptophan‐nucleobase adducts. Phylogenetic data suggest the presence of at least 47 GymB orthologues, indicating the occurrence of a widely distributed enzyme class.
Collapse
Affiliation(s)
- Jing Liu
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037, Marburg, Germany
| | - Lauritz Harken
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037, Marburg, Germany
| | - Yiling Yang
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037, Marburg, Germany
| | - Xiulan Xie
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032, Marburg, Germany
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037, Marburg, Germany
| |
Collapse
|
29
|
Li X, Xu J, Wang P, Ding W. Novel indole diketopiperazine stereoisomers from a marine-derived fungus Aspergillus sp. Mycology 2022; 14:1-10. [PMID: 36816774 PMCID: PMC9930829 DOI: 10.1080/21501203.2022.2069173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/18/2022] [Indexed: 01/17/2023] Open
Abstract
Four dimeric diketopiperazine stereoisomers (1-4) including two new ones (1-2) had been isolated from the culture broth of one marine-derived fungus Aspergillus sp. Z3, which was found in the gut of a marine isopod Ligia exotica. The planner structures and absolute configurations of the new compounds were determined by combination of NMR, HRESIMS, electronic circular dichroism calculation, Marfey's method as well as single-crystal X-ray diffraction. Their cytotoxicity against the prostate cancer PC3 cell line was assayed by the MTT method.
Collapse
Affiliation(s)
- Xinyang Li
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, China
| | - Jinzhong Xu
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, China
| | - Pinmei Wang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, China
| | - Wanjing Ding
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, China
| |
Collapse
|
30
|
García-Domínguez P, Areal A, Alvarez R, de Lera AR. Chemical synthesis in competition with global genome mining and heterologous expression for the preparation of dimeric tryptophan-derived 2,5-dioxopiperazines. Nat Prod Rep 2022; 39:1172-1225. [PMID: 35470828 DOI: 10.1039/d2np00006g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: up to the end of 2021Within the 2,5-dioxopiperazines-containing natural products, those generated from tryptophan allow further structural diversification due to the rich chemical reactivity of the indole heterocycle. The great variety of natural products, ranging from simple dimeric bispyrrolidinoindoline dioxopiperazines and tryptophan-derived dioxopiperazine/pyrrolidinoindoline dioxopiperazine analogs to complex polycyclic downstream metabolites containing transannular connections between the subunits, will be covered. These natural products are constructed by Nature using hybrid polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) assembly lines. Mining of microbial genome sequences has more recently allowed the study of the metabolic routes and the discovery of their hidden biosynthetic potential. The competition (ideally, also the combined efforts) between their isolation from the cultures of the producing microorganisms after global genome mining and heterologous expression and the synthetic campaigns, has more recently allowed the successful generation and structural confirmation of these natural products. Their biological activities as well as their proposed biogenetic routes and computational studies on biogenesis will also be covered.
Collapse
Affiliation(s)
| | - Andrea Areal
- CINBIO and Universidade de Vigo, 36310 Vigo, Spain.
| | | | | |
Collapse
|
31
|
Zetzsche LE, Chakrabarty S, Narayan ARH. The Transformative Power of Biocatalysis in Convergent Synthesis. J Am Chem Soc 2022; 144:5214-5225. [PMID: 35290055 PMCID: PMC10082969 DOI: 10.1021/jacs.2c00224] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Achieving convergent synthetic strategies has long been a gold standard in constructing complex molecular skeletons, allowing for the rapid generation of complexity in comparatively streamlined synthetic routes. Traditionally, biocatalysis has not played a prominent role in convergent laboratory synthesis, with the application of biocatalysts in convergent strategies primarily limited to the synthesis of chiral fragments. Although the use of enzymes to enable convergent synthetic approaches is relatively new and emerging, combining the efficiency of convergent transformations with the selectivity achievable through biocatalysis creates new opportunities for efficient synthetic strategies. This Perspective provides an overview of recent developments in biocatalytic strategies for convergent transformations and offers insights into the advantages of these methods compared to their small molecule-based counterparts.
Collapse
Affiliation(s)
- Lara E. Zetzsche
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Suman Chakrabarty
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alison R. H. Narayan
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
32
|
Ma Z, Zhou A, Xia C. Strategies for total synthesis of bispyrrolidinoindoline alkaloids. Nat Prod Rep 2022; 39:1015-1044. [PMID: 35297915 DOI: 10.1039/d1np00060h] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covering up to 2021Complex cyclotryptamine alkaloids with a bispyrrolidino[2,3-b]indoline (BPI) skeleton are an intriguing family of natural products, exhibiting wide systematic occurrences, large structural diversity, and multiple biological activities. Based on their structural characteristics, BPI alkaloids can be classified into chimonanthine-type BPI alkaloids, BPI diketopiperazines, and BPI epipolythiodiketopiperazines. These intricate molecules have captivated great attention soon after their isolation and identification in the 1960s. Due to the structural complexity, the total synthesis of these cyclotryptamine alkaloids is challenging. Nevertheless, remarkable progress has been achieved in the last six decades; in particular, several methods have been successfully established for the construction of vicinal all-carbon quaternary stereocenters. In this review, the structural diversity and chemical synthesis of these BPI alkaloids were summarized. BPI alkaloids are mainly synthesized by the methods of oxidative dimerization, reductive dimerization, and alkylation of bisoxindole. The purpose of this review is to present overall strategies for assembling the BPI skeleton and efforts towards controlling the stereocenters.
Collapse
Affiliation(s)
- Zhixian Ma
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, and Yunnan University Library, Yunnan University, Kunming 650091, China.
| | - Ankun Zhou
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, and Yunnan University Library, Yunnan University, Kunming 650091, China.
| | - Chengfeng Xia
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, and Yunnan University Library, Yunnan University, Kunming 650091, China.
| |
Collapse
|
33
|
Abstract
The natural product himastatin has an unusual homodimeric structure that presents a substantial synthetic challenge. We report the concise total synthesis of himastatin from readily accessible precursors, incorporating a final-stage dimerization strategy that was inspired by a detailed consideration of the compound's biogenesis. Combining this approach with a modular synthesis enabled expedient access to more than a dozen designed derivatives of himastatin, including synthetic probes that provide insight into its antibiotic activity.
Collapse
Affiliation(s)
- Kyan A. D’Angelo
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Carly K. Schissel
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Bradley L. Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States,Corresponding authors. ,
| | - Mohammad Movassaghi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States,Corresponding authors. ,
| |
Collapse
|
34
|
Liu J, Harken L, Yang Y, Xie X, Li SM. Widely Distributed Bifunctional Bacterial Cytochrome P450 Enzymes Catalyze both Intramolecular C‐C Bond Formation in cyclo‐l‐Tyr‐l‐Tyr and Its Coupling with Nucleobases. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jing Liu
- Philipps-Universitat Marburg Universitatsbibliothek: Philipps-Universitat Marburg Pharmazie GERMANY
| | - Lauritz Harken
- Philipps-Universität Marburg: Philipps-Universitat Marburg Pharmazie GERMANY
| | - Yiling Yang
- Philipps-Universitat Marburg Institut Pharm.Biol.Biotechnol. GERMANY
| | - Xiulan Xie
- Philipps-Universität Marburg: Philipps-Universitat Marburg Chemie GERMANY
| | - Shu-Ming Li
- Philipps-Universität Marburg Institut für Pharmazeutische Biologie Robert-Koch-Str. 4 35037 Marburg GERMANY
| |
Collapse
|
35
|
Scarel M, Marchesan S. Diketopiperazine Gels: New Horizons from the Self-Assembly of Cyclic Dipeptides. Molecules 2021; 26:3376. [PMID: 34204905 PMCID: PMC8199760 DOI: 10.3390/molecules26113376] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023] Open
Abstract
Cyclodipeptides (CDPs) or 2,5-diketopiperazines (DKPs) can exert a variety of biological activities and display pronounced resistance against enzymatic hydrolysis as well as a propensity towards self-assembly into gels, relative to the linear-dipeptide counterparts. They have attracted great interest in a variety of fields spanning from functional materials to drug discovery. This concise review will analyze the latest advancements in their synthesis, self-assembly into gels, and their more innovative applications.
Collapse
Affiliation(s)
- Marco Scarel
- Chemical and Pharmaceutical Sciences Department, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy;
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy;
- National Interuniversity Consortium of Materials Science and Technology (INSTM), University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
36
|
Sun C, Peng H, Zhang W, Zheng M, Tian W, Zhang Y, Liu H, Lin Z, Deng Z, Qu X. Production of Heterodimeric Diketopiperazines Employing a Mycobacterium-Based Whole-Cell Biocatalysis System. J Org Chem 2021; 86:11189-11197. [PMID: 33886315 DOI: 10.1021/acs.joc.1c00380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Heterodimeric tryptophan-containing diketopiperazines (HTDKPs) are an important class of bioactive secondary metabolites. P450-mediated biocatalysis offers a practical avenue to access their structural diversity; however, many of these enzymes are insoluble in Escherichia coli and difficult to operate in Streptomyces. Through validation of the functions of two pairs Mycobacterium smegmatis sourced redox partners in vitro, and comparing the efficiency of different biocatalytic systems with tricky P450s in vivo, we herein demonstrated that M. smegmatis is much more efficient, robust, and cleaner in metabolites background than the regularly used E. coli or Streptomyces systems. The M. smegmatis-based system can completely convert 1 g L-1 of cyclodipeptide into HTDKPs within 18 h with minimal background metabolites. On the basis of this efficient system, 12 novel HTDPKs were readily obtained by using two HTDKP-forming P450s (NasbB and NASS1868). Among them, five compounds have neuroprotective properties. Our study significantly expands the bioactive chemical scope of HTDKPs and provides an excellent biocatalysis platform for dealing with problematic enzymes from Actinomycetes.
Collapse
Affiliation(s)
- Chenghai Sun
- State Key Laboratory of Microbial Metabolism & School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haidong Peng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Wenlu Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Mei Zheng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Wenya Tian
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Yanan Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Huanhuan Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Zhi Lin
- State Key Laboratory of Microbial Metabolism & School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism & School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Xudong Qu
- State Key Laboratory of Microbial Metabolism & School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
37
|
Hu Z, Ye Y, Zhang Y. Large-scale culture as a complementary and practical method for discovering natural products with novel skeletons. Nat Prod Rep 2021; 38:1775-1793. [PMID: 33650608 DOI: 10.1039/d0np00069h] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Covering: up to July 2020Fungal metabolites with diverse and novel scaffolds can be assembled from well-known biosynthetic precursors through various mechanisms. Recent examples of novel alkaloids (e.g., cytochalasans and diketopiperazine derivatives), terpenes (e.g., sesterterpenes and diterpenes) and polyketides produced by fungi are presented through case studies. We show that large-scale culture is a complementary and practical method for genome mining and OSMAC approaches to discover natural products of unprecedented skeletal classes from fungi. We also summarize the discovery strategies and challenges for characterizing these compounds.
Collapse
Affiliation(s)
- Zhengxi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China.
| | - Ying Ye
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China.
| |
Collapse
|
38
|
Harken L, Li SM. Modifications of diketopiperazines assembled by cyclodipeptide synthases with cytochrome P 450 enzymes. Appl Microbiol Biotechnol 2021; 105:2277-2285. [PMID: 33625545 PMCID: PMC7954767 DOI: 10.1007/s00253-021-11178-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 12/22/2022]
Abstract
2,5-Diketopiperazines are the smallest cyclic peptides comprising two amino acids connected via two peptide bonds. They can be biosynthesized in nature by two different enzyme families, either by nonribosomal peptide synthetases or by cyclodipeptide synthases. Due to the stable scaffold of the diketopiperazine ring, they can serve as precursors for further modifications by different tailoring enzymes, such as methyltransferases, prenyltransferases, oxidoreductases like cyclodipeptide oxidases, 2-oxoglutarate-dependent monooxygenases and cytochrome P450 enzymes, leading to the formation of intriguing secondary metabolites. Among them, cyclodipeptide synthase-associated P450s attracted recently significant attention, since they are able to catalyse a broader variety of astonishing reactions than just oxidation by insertion of an oxygen. The P450-catalysed reactions include hydroxylation at a tertiary carbon, aromatisation of the diketopiperazine ring, intramolecular and intermolecular carbon-carbon and carbon-nitrogen bond formation of cyclodipeptides and nucleobase transfer reactions. Elucidation of the crystal structures of three P450s as cyclodipeptide dimerases provides a structural basis for understanding the reaction mechanism and generating new enzymes by protein engineering. This review summarises recent publications on cyclodipeptide modifications by P450s.Key Points• Intriguing reactions catalysed by cyclodipeptide synthase-associated cytochrome P450s• Homo- and heterodimerisation of diketopiperazines• Coupling of guanine and hypoxanthine with diketopiperazines.
Collapse
Affiliation(s)
- Lauritz Harken
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Str. 4, 35037, Marburg, Germany
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Str. 4, 35037, Marburg, Germany.
| |
Collapse
|
39
|
He CT, Han XL, Zhang YX, Du ZT, Si CM, Wei BG. Sc(OTf) 3-catalyzed [3 + 2]-cycloaddition of nitrones with ynones. Org Biomol Chem 2021; 19:457-466. [PMID: 33336677 DOI: 10.1039/d0ob02158j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient approach to access functionalized (2,3-dihydroisoxazol-4-yl) ketones has been developed by reacting nitrones 4 with ynones 7 or terminal ynones 10 in a one-pot fashion. The reaction went through a formal Sc(OTf)3-catalyzed [3 + 2]-cycloaddition process to generate a number of functionalized (2,3-dihydroisoxazol-4-yl) ketones 11aa-11aw, 11ba-11la and 12aa-12ae in moderate to good yields.
Collapse
Affiliation(s)
- Chun-Ting He
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China. and College of Science, Northwest A&F University, 22 Xinong Road, Shaanxi, Yangling 712100, China
| | - Xiao-Li Han
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| | - Yan-Xue Zhang
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| | - Zhen-Ting Du
- College of Science, Northwest A&F University, 22 Xinong Road, Shaanxi, Yangling 712100, China
| | - Chang-Mei Si
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| | - Bang-Guo Wei
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| |
Collapse
|
40
|
Liu J, Liu A, Hu Y. Enzymatic dimerization in the biosynthetic pathway of microbial natural products. Nat Prod Rep 2021; 38:1469-1505. [PMID: 33404031 DOI: 10.1039/d0np00063a] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Covering: up to August 2020The dramatic increase in the identification of dimeric natural products generated by microorganisms and plants has played a significant role in drug discovery. The biosynthetic pathways of these products feature inherent dimerization reactions, which are valuable for biosynthetic applications and chemical transformations. The extraordinary mechanisms of the dimerization of secondary metabolites should advance our understanding of the uncommon chemical rules for natural product biosynthesis, which will, in turn, accelerate the discovery of dimeric reactions and molecules in nature and provide promising strategies for the total synthesis of natural products through dimerization. This review focuses on the enzymes involved in the dimerization in the biosynthetic pathway of microbial natural products, with an emphasis on cytochrome P450s, laccases, and intermolecular [4 + 2] cyclases, along with other atypical enzymes. The identification, characterization, and catalytic landscapes of these enzymes are also introduced.
Collapse
Affiliation(s)
- Jiawang Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| | | | | |
Collapse
|
41
|
Wang C, Wu P, Wang Z, Wang B. The molecular mechanism of P450-catalyzed amination of the pyrrolidine derivative of lidocaine: insights from multiscale simulations. RSC Adv 2021; 11:27674-27680. [PMID: 35480638 PMCID: PMC9037892 DOI: 10.1039/d1ra04564d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/09/2021] [Indexed: 11/23/2022] Open
Abstract
Nitrogen heterocycles are key and prevalent motifs in drugs. Evolved variants of cytochrome P450BM3 (CYP102A1) from Bacillus megaterium employ high-valent oxo-iron(iv) species to catalyze the synthesis of imidazolidine-4-ones via an intramolecular C–H amination. Herein, we use multi-scale simulations, including classical molecular dynamics (MD) simulations, quantum mechanical/molecular mechanical (QM/MM) calculations and QM calculations, to reveal the molecular mechanism of the intramolecular C–H amination of the pyrrolidine derivative of lidocaine bearing cyclic amino moieties catalyzed by the variant RP/FV/EV of P450BM3, which bears five mutations compared to wild type. Our calculations show that overall catalysis includes both the enzymatic transformation in P450 and non-enzymatic transformation in water solution. The enzymatic transformation involves the exclusive hydroxylation of the C–H bond of the pyrrolidine derivative of lidocaine, leading to the hydroxylated intermediate, during which the substrate radical would be bypassed. The following dehydration and C–N coupling reactions are found to be much favored in aqueous situation compared to that in the non-polar protein environment. The present findings expand our understanding of the P450-catalyzed C(sp3)–H amination reaction. Nitrogen heterocycles are key and prevalent motifs in drugs.![]()
Collapse
Affiliation(s)
- Conger Wang
- State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Peng Wu
- State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Zhanfeng Wang
- State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
42
|
Molecular basis of regio- and stereo-specificity in biosynthesis of bacterial heterodimeric diketopiperazines. Nat Commun 2020; 11:6251. [PMID: 33288748 PMCID: PMC7721796 DOI: 10.1038/s41467-020-20022-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/03/2020] [Indexed: 11/24/2022] Open
Abstract
Bacterial heterodimeric tryptophan-containing diketopiperazines (HTDKPs) are a growing family of bioactive natural products. They are challenging to prepare by chemical routes due to the polycyclic and densely functionalized backbone. Through functional characterization and investigation, we herein identify a family of three related HTDKP-forming cytochrome P450s (NasbB, NasS1868 and NasF5053) and reveal four critical residues (Qln65, Ala86, Ser284 and Val288) that control their regio- and stereo-selectivity to generate diverse dimeric DKP frameworks. Engineering these residues can alter the specificities of the enzymes to produce diverse frameworks. Determining the crystal structures (1.70–1.47 Å) of NasF5053 (ligand-free and substrate-bound NasF5053 and its Q65I-A86G and S284A-V288A mutants) and molecular dynamics simulation finally elucidate the specificity-conferring mechanism of these residues. Our results provide a clear molecular and mechanistic basis into this family of HTDKP-forming P450s, laying a solid foundation for rapid access to the molecular diversity of HTDKP frameworks through rational engineering of the P450s. Bacterial heterodimeric tryptophan-containing diketopiperazines (HTDKPs) are bioactive natural products that are difficult to access chemically. Here, the authors identify a family of three related HTDKP-forming cytochrome P450s and engineer key amino acid residues to produce distinct diketopiperazines frameworks.
Collapse
|