1
|
Ghosh B, Kafle P, Mukherjee R, Welles R, Herndon D, Nicholas KM, Shao Y, Sharma I. Sulfenylnitrene-mediated nitrogen-atom insertion for late-stage skeletal editing of N-heterocycles. Science 2025; 387:102-107. [PMID: 39745963 DOI: 10.1126/science.adp0974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/26/2024] [Accepted: 11/19/2024] [Indexed: 01/04/2025]
Abstract
Given the prevalence of nitrogen-containing heterocycles in commercial drugs, selectively incorporating a single nitrogen atom is a promising scaffold hopping approach to enhance chemical diversity in drug discovery libraries. We harness the distinct reactivity of sulfenylnitrenes, which insert a single nitrogen atom to transform readily available pyrroles, indoles, and imidazoles into synthetically challenging pyrimidines, quinazolines, and triazines, respectively. Our additive-free method for skeletal editing employs easily accessible, benchtop-stable sulfenylnitrene precursors over a broad temperature range (-30 to 150°C). This approach is compatible with diverse functional groups, including oxidation-sensitive functionalities such as phenols and thioethers, and has been applied to various natural products, amino acids, and pharmaceuticals. Furthermore, we have conducted mechanistic studies and explored regioselectivity outcomes through density functional theory calculations.
Collapse
Affiliation(s)
- Bidhan Ghosh
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, USA
| | - Prakash Kafle
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, USA
| | - Rishav Mukherjee
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, USA
| | - Randall Welles
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, USA
| | - Deacon Herndon
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, USA
| | - Kenneth M Nicholas
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, USA
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, USA
| | - Indrajeet Sharma
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, USA
| |
Collapse
|
2
|
Lional N, Miloserdov FM, Zuilhof H. 2-Methylimidazole-1-(N-tert-octyl)sulfonimidoyl Fluoride: A Bench-Stable Alternative to SOF 4 as Precursor to N,O-Substituted S(VI) Compounds. Angew Chem Int Ed Engl 2024; 63:e202406915. [PMID: 38856007 DOI: 10.1002/anie.202406915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/03/2024] [Accepted: 06/09/2024] [Indexed: 06/11/2024]
Abstract
S(VI) compounds with multiple N or O substituents are often difficult to make and several crucial routes, such as multimodal SuFEx (Sulfur (VI) Fluoride Exchange) chemistry, rely on the highly useful but hazardous SOF4 gas. Safety issues and inaccessibility of SOF4 strongly hamper the developments of these organic compounds. Here we describe the synthesis and applications of 2-methylimidazole-1-(N-tert-octyl)sulfonimidoyl fluoride (ImSF), a novel bench-stable analogue of SOF4. ImSF is synthesized on a gram scale via a double fluorination of t-OctNSO. We show ImSF can undergo substitution reactions with phenols and amines, which lead to sulfurimidates and sulfuramidimidates, respectively, the intrinsically chiral analogous of medicinally relevant sulfates and sulfamates in which an S=O moiety is replaced by S=NR unit. Finally we demonstrate that such substitutions can occur enantiospecifically, providing the first entry to chiral sulfurimidates and sulfuramidimidates.
Collapse
Affiliation(s)
- Natassa Lional
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, Wageningen, 6708 WE, The Netherlands
| | - Fedor M Miloserdov
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, Wageningen, 6708 WE, The Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, Wageningen, 6708 WE, The Netherlands
- School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China
| |
Collapse
|
3
|
Athawale PR, Shultz ZP, Saputo A, Hall YD, Lopchuk JM. Strain-release driven reactivity of a chiral SuFEx reagent provides stereocontrolled access to sulfinamides, sulfonimidamides, and sulfoximines. Nat Commun 2024; 15:7001. [PMID: 39143047 PMCID: PMC11324897 DOI: 10.1038/s41467-024-51224-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024] Open
Abstract
Efforts aimed at enriching the chemical and structural diversity of small molecules have invigorated synthetic exploration in the last two decades. Spatially defined molecular functionality serves as the foundation to construct unique chemical space to further advance discovery science. The chiral SuFEx reagent t-BuSF provides a modular platform for the stereocontrolled bifunctionalization of sulfur. Here we report a third functional feature of t-BuSF enabled by carbamoyl torsional strain-release that further expands the S(IV) and S(VI) chemical space accessible as showcased in over seventy examples, multiple applications in medicinal chemistry, organocatalysis, and diversity-oriented synthesis. The methods presented herein allow for rapid asymmetric diversification around a stereodefined sulfur center with readily available building blocks, improving upon the current state-of-the-art for sulfinyl and sulfonimidoyl synthesis.
Collapse
Affiliation(s)
- Paresh R Athawale
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Zachary P Shultz
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Alexandra Saputo
- Department of Chemistry, University of South Florida, Tampa, FL, USA
| | - Yvonne D Hall
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Justin M Lopchuk
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, USA.
- Department of Chemistry, University of South Florida, Tampa, FL, USA.
- Department of Oncologic Sciences, College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
4
|
Wei T, Wang HL, Tian Y, Xie MS, Guo HM. Enantioselective construction of stereogenic-at-sulfur(IV) centres via catalytic acyl transfer sulfinylation. Nat Chem 2024; 16:1301-1311. [PMID: 38719944 DOI: 10.1038/s41557-024-01522-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 03/26/2024] [Indexed: 08/15/2024]
Abstract
Chiral sulfur pharmacophores are crucial for drug discovery in bioscience and medicinal chemistry. While the catalytic asymmetric synthesis of sulfoxides and sulfinate esters with stereogenic-at-sulfur(IV) centres is well developed, the synthesis of chiral sulfinamides remains challenging, which has primarily been attributed to the high nucleophilicity and competing reactions of amines. In this study, we have developed an efficient methodology for the catalytic asymmetric synthesis of chiral sulfinamides and sulfinate esters by the sulfinylation of diverse nucleophiles, including aromatic amines and alcohols, using our bifunctional chiral 4-arylpyridine N-oxides as catalysts. The remarkable results are a testament to the efficiency, versatility and broad applicability of the developed synthetic approach, serving as a valuable tool for the synthesis of sulfur pharmacophores. Mechanistic experiments and density functional theory calculations revealed that the initiation and stereocontrol of this reaction are induced by an acyl transfer catalyst. Our research provides an efficient approach for the construction of optically pure sulfur(IV) centres.
Collapse
Affiliation(s)
- Tao Wei
- School of Environment, State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Han-Le Wang
- School of Environment, State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Yin Tian
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Ming-Sheng Xie
- School of Environment, State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China.
| | - Hai-Ming Guo
- School of Environment, State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China.
| |
Collapse
|
5
|
Wei MK, Moseley DF, Bär RM, Sempere Y, Willis MC. Palladium-Catalyzed Addition of Aryl Halides to N-Sulfinylamines for the Synthesis of Sulfinamides. J Am Chem Soc 2024; 146:19690-19695. [PMID: 38994915 PMCID: PMC11273345 DOI: 10.1021/jacs.4c06726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Sulfinamides are versatile, synthetically useful intermediates, and final motifs. Traditional methods to synthesize sulfinamides generally require substrates with preinstalled sulfur centers. However, these precursors have limited commercial availability, and the associated synthetic routes often require harsh reaction conditions and highly reactive reagents, thus severely limiting their application. Herein, we report the synthesis of sulfinamides from aryl and alkenyl (pseudo)halides and N-sulfinylamines, enabled by palladium catalysis. The reactions use mild conditions and are achieved without the use of highly reactive preformed organometallic reagents, resulting in transformations of broad generality and high functional group tolerance. In particular, substrates featuring protic and electrophilic functional groups can be used successfully. The modification of complex aryl cores and natural product derivatives demonstrates the utility of this method.
Collapse
Affiliation(s)
- Ming-Kai Wei
- Department
of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Daniel F. Moseley
- Department
of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Robin M. Bär
- Research
& Development, Crop Science, Bayer AG, Alfred-Nobel-Str. 50, Monheim am Rhein 40789, Germany
| | - Yeshua Sempere
- Research
& Development, Crop Science, Bayer AG, Alfred-Nobel-Str. 50, Monheim am Rhein 40789, Germany
| | - Michael C. Willis
- Department
of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
6
|
Xia GD, Li R, Zhang L, Wei Y, Hu XQ. Iron-Catalyzed Photochemical Synthesis of Sulfinamides from Aliphatic Hydrocarbons and Sulfinylamines. Org Lett 2024; 26:3703-3708. [PMID: 38668695 DOI: 10.1021/acs.orglett.4c00612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
An iron-catalyzed photochemical sulfinamidation of hydrocarbons with N-sulfinylamines has been developed. The merger of ligand-to-metal charge transfer (LMCT) of FeCl3 with hydrogen atom transfer (HAT) process is the key for the generation of alkyl radicals from hydrocarbons, and the resultant alkyl radicals were readily trapped by N-sulfinylamines to produce structurally diverse sulfinamides. Contrary to traditional methods that inevitably use sensitive organometallic reagents and prefunctionalized substrates, our approach features simple operation and the wide availability of starting materials. Gratifyingly, the reaction is scalable, and the obtained sulfinamides can be conveniently converted to highly functionalized sulfur(VI) derivatives.
Collapse
Affiliation(s)
- Guang-Da Xia
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Run Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Long Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Yi Wei
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Xiao-Qiang Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| |
Collapse
|
7
|
Proietti G, Axelsson A, Capezza AJ, Todarwal Y, Kuzmin J, Linares M, Norman P, Szabó Z, Lendel C, Olsson RT, Dinér P. Ultralight aerogels via supramolecular polymerization of a new chiral perfluoropyridine-based sulfonimidamide organogelator. NANOSCALE 2024; 16:7603-7611. [PMID: 38512219 DOI: 10.1039/d3nr06460c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Chiral and enantiopure perfluorinated sulfonimidamides act as low-molecular weight gelators at low critical gelation concentration (<1 mg mL-1) via supramolecular polymerization in nonpolar organic solvents and more heterogenic mixtures, such as biodiesel and oil. Freeze-drying of the organogel leads to ultralight aerogel with extremely low density (1 mg mL-1). The gelation is driven by hydrogen bonding resulting in a helical molecular ordering and unique fibre assemblies as confirmed by scanning electron microscopy, CD spectroscopy, and computational modeling of the supramolecular structure.
Collapse
Affiliation(s)
- Giampiero Proietti
- Department of Chemistry, KTH Royal Institute of Technology, 10044 Stockholm, Sweden.
| | - Anton Axelsson
- Department of Chemistry, KTH Royal Institute of Technology, 10044 Stockholm, Sweden.
| | - Antonio J Capezza
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| | - Yogesh Todarwal
- Department of Chemistry, KTH Royal Institute of Technology, 10044 Stockholm, Sweden.
| | - Julius Kuzmin
- Department of Chemistry, KTH Royal Institute of Technology, 10044 Stockholm, Sweden.
| | - Mathieu Linares
- PDC Center for High Performance Computing, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - Patrick Norman
- Department of Chemistry, KTH Royal Institute of Technology, 10044 Stockholm, Sweden.
| | - Zoltán Szabó
- Department of Chemistry, KTH Royal Institute of Technology, 10044 Stockholm, Sweden.
| | - Christofer Lendel
- Department of Chemistry, KTH Royal Institute of Technology, 10044 Stockholm, Sweden.
| | - Richard T Olsson
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| | - Peter Dinér
- Department of Chemistry, KTH Royal Institute of Technology, 10044 Stockholm, Sweden.
| |
Collapse
|
8
|
Zhong Z, Ma TK, White AJP, Bull JA. Synthesis of Pyrazolesulfoximines Using α-Diazosulfoximines with Alkynes. Org Lett 2024; 26:1178-1183. [PMID: 38306458 PMCID: PMC10877601 DOI: 10.1021/acs.orglett.3c04274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/04/2024]
Abstract
Sulfoximines and pyrazoles are both important motifs in medicinal compounds. Here we report the synthesis and reactivity of sulfoximine diazo compounds as new reagents for the incorporation of sulfoximines. The use of N-silyl sulfoximines enabled formation of monosubstituted diazo compounds. Their application is demonstrated in a [3 + 2] cycloaddition with alkynes to form pyrazole sulfoximines in a new combination of these important chemotypes. Further derivatization of the pyrazole sulfoximines is demonstrated, including silyl deprotection to form unprotected pyrazolesulfoximines.
Collapse
Affiliation(s)
- Zhenhao Zhong
- Department of Chemistry, Imperial College London, Molecular Sciences Research
Hub, White City Campus, Wood Lane, London W12
0BZ, U.K.
| | - Tsz-Kan Ma
- Department of Chemistry, Imperial College London, Molecular Sciences Research
Hub, White City Campus, Wood Lane, London W12
0BZ, U.K.
| | - Andrew J. P. White
- Department of Chemistry, Imperial College London, Molecular Sciences Research
Hub, White City Campus, Wood Lane, London W12
0BZ, U.K.
| | - James A. Bull
- Department of Chemistry, Imperial College London, Molecular Sciences Research
Hub, White City Campus, Wood Lane, London W12
0BZ, U.K.
| |
Collapse
|
9
|
Yan M, Wang SF, Zhang YP, Zhao JZ, Tang Z, Li GX. Synthesis of sulfinamides via photocatalytic alkylation or arylation of sulfinylamine. Org Biomol Chem 2024; 22:348-352. [PMID: 38086690 DOI: 10.1039/d3ob01782f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Sulfinamides are a versatile class of compounds that find applications in both organic synthesis and pharmaceuticals. Here we developed an efficient photocatalytic approach for the convenient preparation of sulfinamides. Commercially available potassium trifluoro(organo)borates and readily available sulfinyl amines are rationally used and converted to a series of alkyl or aryl sulfinamides in moderate to high yields. The reaction allows for the gram-scale preparation of sulfinamides. Moreover, sulfonimidamides, sulfonimidate esters and sulfonyl amides could be obtained in one pot.
Collapse
Affiliation(s)
- Ming Yan
- Department of Basic Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030800, China.
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, 610041, China.
| | - Si-Fan Wang
- Department of Basic Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030800, China.
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, 610041, China.
| | - Yong-Po Zhang
- Department of Basic Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030800, China.
| | - Jin-Zhong Zhao
- Department of Basic Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030800, China.
| | - Zhuo Tang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, 610041, China.
| | - Guang-Xun Li
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
10
|
Dang HT, Porey A, Nand S, Trevino R, Manning-Lorino P, Hughes WB, Fremin SO, Thompson WT, Dhakal SK, Arman HD, Larionov OV. Kinetically-driven reactivity of sulfinylamines enables direct conversion of carboxylic acids to sulfinamides. Chem Sci 2023; 14:13384-13391. [PMID: 38033883 PMCID: PMC10685282 DOI: 10.1039/d3sc04727j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/08/2023] [Indexed: 12/02/2023] Open
Abstract
Sulfinamides are some of the most centrally important four-valent sulfur compounds that serve as critical entry points to an array of emergent medicinal functional groups, molecular tools for bioconjugation, and synthetic intermediates including sulfoximines, sulfonimidamides, and sulfonimidoyl halides, as well as a wide range of other S(iv) and S(vi) functionalities. Yet, the accessible chemical space of sulfinamides remains limited, and the approaches to sulfinamides are largely confined to two-electron nucleophilic substitution reactions. We report herein a direct radical-mediated decarboxylative sulfinamidation that for the first time enables access to sulfinamides from the broad and structurally diverse chemical space of carboxylic acids. Our studies show that the formation of sulfinamides prevails despite the inherent thermodynamic preference for the radical addition to the nitrogen atom, while a machine learning-derived model facilitates prediction of the reaction efficiency based on computationally generated descriptors of the underlying radical reactivity.
Collapse
Affiliation(s)
- Hang T Dang
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Arka Porey
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Sachchida Nand
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Ramon Trevino
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Patrick Manning-Lorino
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - William B Hughes
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Seth O Fremin
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - William T Thompson
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Shree Krishna Dhakal
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Hadi D Arman
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Oleg V Larionov
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| |
Collapse
|
11
|
Austrup D, Saito F. A Sulfur Monoxide Surrogate Designed for the Synthesis of Sulfoxides and Sulfinamides. Angew Chem Int Ed Engl 2023:e202315123. [PMID: 37937482 DOI: 10.1002/anie.202315123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/09/2023]
Abstract
Sulfur monoxide (SO) is a highly reactive species that cannot be isolated in bulk. However, SO can play a pivotal role as a fundamental building block in organic synthesis. Reported herein is the design and application of a sulfinylhydrazine reagent as an easily prepared sulfur monoxide surrogate. We show facile thermal SO transfer from this reagent to dienes where a reaction using a mechanistic probe suggests the generation of singlet SO. Combined with Grignard reagents and appropriate carbon or nitrogen electrophiles, the reagent serves as an effective "SO" donor to enable the one-pot, three-component synthesis of sulfoxides and sulfinamides.
Collapse
Affiliation(s)
- David Austrup
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, Haus F, 81377, München, Germany
| | - Fumito Saito
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, Haus F, 81377, München, Germany
| |
Collapse
|
12
|
Malik M, Senatore R, Castiglione D, Roller-Prado A, Pace V. Highly chemoselective homologative assembly of the α-substituted methylsulfinamide motif from N-sulfinylamines. Chem Commun (Camb) 2023; 59:11065-11068. [PMID: 37644820 DOI: 10.1039/d3cc03326k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
α-Substituted methylsulfinamide are prepared through the homologation of electrophilic N-sulfinylamines with Li-CHXY reagents. The transformation takes place under full chemocontrol and exhibits good flexibility for preparing both N-aryl and N-alkyl analogues. Various sensitive functionalities can be accommodated on the starting materials, thus documenting a wide reaction scope.
Collapse
Affiliation(s)
- Monika Malik
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria.
| | - Raffaele Senatore
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria.
| | - Davide Castiglione
- Department of Chemistry, Via Giuria 7, University of Turin, Turin 10125, Italy
| | - Alexander Roller-Prado
- Department of Inorganic Chemistry - Functional Materials, University of Vienna, Waehringerstrasse 42, 1090, Vienna, Austria
| | - Vittorio Pace
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria.
- Department of Chemistry, Via Giuria 7, University of Turin, Turin 10125, Italy
| |
Collapse
|
13
|
Wu X, Zhang W, Sun G, Zou X, Sang X, He Y, Gao B. Turning sulfonyl and sulfonimidoyl fluoride electrophiles into sulfur(VI) radicals for alkene ligation. Nat Commun 2023; 14:5168. [PMID: 37620301 PMCID: PMC10449886 DOI: 10.1038/s41467-023-40615-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023] Open
Abstract
Sulfonyl and sulfonimidoyl fluorides are versatile substrates in organic synthesis and medicinal chemistry. However, they have been exclusively used as S(VI)+ electrophiles for defluorinative ligations. Converting sulfonyl and sulfonimidoyl fluorides to S(VI) radicals is challenging and underexplored due to the strong bond dissociation energy of SVI-F and high reduction potentials, but once achieved would enable dramatically expanded synthetic utility and downstream applications. In this report, we disclose a general platform to address this issue through cooperative organosuperbase activation and photoredox catalysis. Vinyl sulfones and sulfoximines are obtained with excellent E selectivity under mild conditions by coupling reactions with alkenes. The synthetic utility of this method in the preparation of functional polymers and dyes is also demonstrated.
Collapse
Affiliation(s)
- Xing Wu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Wenbo Zhang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Guangwu Sun
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Xi Zou
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Xiaoru Sang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yongmin He
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Bing Gao
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
14
|
Zhang X, Wang F, Tan CH. Asymmetric Synthesis of S(IV) and S(VI) Stereogenic Centers. JACS AU 2023; 3:700-714. [PMID: 37006767 PMCID: PMC10052288 DOI: 10.1021/jacsau.2c00626] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 05/22/2023]
Abstract
Sulfur can form diverse S(IV) and S(VI) stereogenic centers, of which some have gained significant attention recently due to their increasing use as pharmacophores in drug discovery programs. The preparation of these sulfur stereogenic centers in their enantiopure form has been challenging, and progress made will be discussed in this Perspective. This Perspective summarizes different strategies, with selected works, for asymmetric synthesis of these moieties, including diastereoselective transformations using chiral auxiliaries, enantiospecific transformations of enantiopure sulfur compounds, and catalytic enantioselective synthesis. We will discuss the advantages and limitations of these strategies and will provide our views on how this field will develop.
Collapse
Affiliation(s)
- Xin Zhang
- West China
School of Public Health and West China Fourth Hospital, and State
Key Laboratory of Biotherapy, Sichuan University, 610041 Chengdu, China
| | - Fucheng Wang
- West China
School of Public Health and West China Fourth Hospital, and State
Key Laboratory of Biotherapy, Sichuan University, 610041 Chengdu, China
| | - Choon-Hong Tan
- School
of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| |
Collapse
|
15
|
Jabczun M, Nosek V, Míšek J. Complementary strategies for synthesis of sulfinamides from sulfur-based feedstock. Org Biomol Chem 2023; 21:2950-2954. [PMID: 36928910 DOI: 10.1039/d3ob00050h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
We describe a straightforward one-pot reductive protocol for the synthesis of sulfinamides from sulfonyl chlorides. This method enables the preparation of sulfinamides with a broad range of functional groups. Furthermore, we have expanded a known oxidative pathway to sulfinamides starting from thiols. These methods together provide a general strategy for the synthesis of sulfinamides from common sulfur-based feedstock that is available with large structural and functional group diversity.
Collapse
Affiliation(s)
- Miloš Jabczun
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, 12843 Prague 2, Czech Republic.
| | - Vladimír Nosek
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, 12843 Prague 2, Czech Republic.
| | - Jiří Míšek
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, 12843 Prague 2, Czech Republic.
| |
Collapse
|
16
|
Yang GF, Yuan Y, Tian Y, Zhang SQ, Cui X, Xia B, Li GX, Tang Z. Synthesis of Chiral Sulfonimidoyl Chloride via Desymmetrizing Enantioselective Hydrolysis. J Am Chem Soc 2023; 145:5439-5446. [PMID: 36811577 DOI: 10.1021/jacs.2c13758] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Direct construction of chiral S(VI) from prochiral S(II) is a formidable challenge due to the inevitable formation of stable chiral S(IV). Previous synthetic strategies rely on the conversion of chiral S(IV) or enantioselective desymmetrization of preformed symmetrical S(VI) substrates. Here, we report desymmetrizing enantioselective hydrolysis of in situ-generated symmetric aza-dichlorosulfonium from sulfenamides for the preparation of chiral sulfonimidoyl chlorides, which could be used as a general stable synthon for obtaining a series of chiral S(VI) derivatives.
Collapse
Affiliation(s)
- Gao-Feng Yang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| | - Yi Yuan
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| | - Yin Tian
- State Key Laboratory of Southwestern Chinese Medicine Resources, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shi-Qi Zhang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| | - Xin Cui
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| | - Bing Xia
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| | - Guang-Xun Li
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| | - Zhuo Tang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| |
Collapse
|
17
|
Xu Y, Liu Y, Zhang Y, Yang K, Wang Y, Peng J, Shao X, Bai Y. Nonbasic Synthesis of Thioethers via Nickel-Catalyzed Reductive Thiolation Utilizing NBS-Like N-Thioimides as Electrophilic Sulfur Donors. J Org Chem 2023; 88:2773-2783. [PMID: 36758172 DOI: 10.1021/acs.joc.2c02360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The nonbasic synthesis of unsymmetrical thioethers via nickel-catalyzed reductive thiolation between aryl(hetero) iodides and N-thioimides is illustrated. N-Bromosuccinimide (NBS)-like N-thioimides were found quite reactive toward thiolation with carbon electrophiles, and a series of structurally varied thioethers were successfully prepared under mild reaction conditions. The transformation was featured with the new application of the NBS-like reagents, good functional group tolerance, and late-stage modification of biologically active scaffolds, thus providing an expeditious and efficient platform to construct polyfunctional thioethers.
Collapse
Affiliation(s)
- Yuenian Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Yong Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Yan Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Kefang Yang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Yan Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Jiajian Peng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Xinxin Shao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Ying Bai
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| |
Collapse
|
18
|
Klein M, Troglauer DL, Waldvogel SR. Dehydrogenative Imination of Low-Valent Sulfur Compounds-Fast and Scalable Synthesis of Sulfilimines, Sulfinamidines, and Sulfinimidate Esters. JACS AU 2023; 3:575-583. [PMID: 36873686 PMCID: PMC9975850 DOI: 10.1021/jacsau.2c00663] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Herein, we describe an electrochemical pathway for the synthesis of sulfilimines, sulfoximines, sulfinamidines, and sulfinimidate esters from readily available low-valent sulfur compounds and primary amides or their analogues. The combination of solvents and supporting electrolytes together act both as an electrolyte as well as a mediator, leading to efficient use of reactants. Both can be easily recovered, enabling an atom-efficient and sustainable process. A broad scope of sulfilimines, sulfinamidines, and sulfinimidate esters with N-EWGs is accessed in up to excellent yields with broad functional group tolerance. This fast synthesis can be easily scaled up to multigram quantities with high robustness for fluctuation of current densities of up to 3 orders of magnitude. The sulfilimines are converted into the corresponding sulfoximines in an ex-cell process in high to excellent yields using electro-generated peroxodicarbonate as a green oxidizer. Thereby, preparatively valuable NH sulfoximines are accessible.
Collapse
|
19
|
Bull JA. Synthesis of aza-S(VI) motifs. PHOSPHORUS SULFUR 2023. [DOI: 10.1080/10426507.2023.2175827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- James A. Bull
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, UK
| |
Collapse
|
20
|
Synthesis of Sulfoximines and Sulfonimidamides Using Hypervalent Iodine Mediated NH Transfer. Molecules 2023; 28:molecules28031120. [PMID: 36770787 PMCID: PMC9920176 DOI: 10.3390/molecules28031120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/03/2023] [Accepted: 01/12/2023] [Indexed: 01/24/2023] Open
Abstract
The development of NH transfer reactions using hypervalent iodine and simple sources of ammonia has facilitated the synthesis of sulfoximines and sulfonimidamides for applications across the chemical sciences. Perhaps most notably, the methods have been widely applied in medicinal chemistry and in the preparation of biologically active compounds, including in the large-scale preparation of an API intermediate. This review provides an overview of the development of these synthetic methods involving an intermediate iodonitrene since our initial report in 2016 on the conversion of sulfoxides into sulfoximines. This review covers the NH transfer to sulfoxides and sulfinamides, and the simultaneous NH/O transfer to sulfides and sulfenamides to form sulfoximines and sulfonimidamides, respectively. The mechanism of the reactions and the identification of key intermediates are discussed. Developments in the choice of reagents, and in the reaction conditions and setups used are described.
Collapse
|
21
|
Zhong Z, Chesti J, Armstrong A, Bull JA. Synthesis of Sulfoximine Propargyl Carbamates under Improved Conditions for Rhodium Catalyzed Carbamate Transfer to Sulfoxides. J Org Chem 2022; 87:16115-16126. [PMID: 36379008 PMCID: PMC9724092 DOI: 10.1021/acs.joc.2c02083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sulfoximines provide aza-analogues of sulfones, with potentially improved properties for medicinal chemistry. The sulfoximine nitrogen also provides an additional vector for the inclusion of other functionality. Here, we report improved conditions for rhodium catalyzed synthesis of sulfoximine (and sulfilimine) carbamates, especially for previously low-yielding carbamates containing π-functionality. Notably we report the preparation of propargyl sulfoximine carbamates to provide an alkyne as a potential click handle. Using Rh2(esp)2 as catalyst and a DOE optimization approach provided considerably increased yields.
Collapse
|
22
|
Li L, Zhang SQ, Chen Y, Cui X, Zhao G, Tang Z, Li GX. Photoredox Alkylation of Sulfinylamine Enables the Synthesis of Highly Functionalized Sulfinamides and S(VI) Derivatives. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Ling Li
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
- College of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Shi-qi Zhang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| | - Yue Chen
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| | - Xin Cui
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| | - Gang Zhao
- College of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Zhuo Tang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| | - Guang-xun Li
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| |
Collapse
|
23
|
Banerjee S, Mishra M, Punniyamurthy T. Copper-Catalyzed C7-Selective C–H/N–H Cross-Dehydrogenative Coupling of Indolines with Sulfoximines. Org Lett 2022; 24:7997-8001. [DOI: 10.1021/acs.orglett.2c03190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sonbidya Banerjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Manmath Mishra
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | | |
Collapse
|
24
|
Andresini M, Carret S, Degennaro L, Ciriaco F, Poisson J, Luisi R. Multistep Continuous Flow Synthesis of Isolable NH 2 -Sulfinamidines via Nucleophilic Addition to Transient Sulfurdiimide. Chemistry 2022; 28:e202202066. [PMID: 35861934 PMCID: PMC9804385 DOI: 10.1002/chem.202202066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Indexed: 01/05/2023]
Abstract
The growing interest in novel sulfur pharmacophores led to recent advances in the synthesis of some S(IV) and S(VI) motifs. However, preparation and isolation of uncommon primary sulfinamidines, the aza-analogues of sulfinamides, is highly desirable. Here we report a multistep continuous flow synthesis of poorly explored NH2 -sulfinamidines by nucleophilic attack of organometallic reagents to in situ prepared N-(trimethylsilyl)-N-trityl-λ4 -sulfanediimine (Tr-N=S=N-TMS). The transformation can additionally be realized under mild conditions, at room temperature, via a highly chemoselective halogen-lithium exchange of aryl bromides and iodides with n-butyllithium. Moreover, the synthetic potential of the methodology was assessed by exploring further manipulations of the products and accessing novel S(IV) analogues of celecoxib, tasisulam, and relevant sulfinimidoylureas.
Collapse
Affiliation(s)
- Michael Andresini
- FLAME-Lab, Flow Chemistry and Microreactor Technology LaboratoryDepartment of Pharmacy – Drug SciencesUniversity of Bari“A. Moro” Via E. Orabona 470125BariItaly
- Univ. Grenoble Alpes, CNRS, DCM301 rue de la chimie38000GrenobleFrance
| | - Sébastien Carret
- Univ. Grenoble Alpes, CNRS, DCM301 rue de la chimie38000GrenobleFrance
| | - Leonardo Degennaro
- FLAME-Lab, Flow Chemistry and Microreactor Technology LaboratoryDepartment of Pharmacy – Drug SciencesUniversity of Bari“A. Moro” Via E. Orabona 470125BariItaly
| | - Fulvio Ciriaco
- Department of ChemistryUniversity of Bari“A. Moro” Via E. Orabona 470125BariItaly
| | | | - Renzo Luisi
- FLAME-Lab, Flow Chemistry and Microreactor Technology LaboratoryDepartment of Pharmacy – Drug SciencesUniversity of Bari“A. Moro” Via E. Orabona 470125BariItaly
| |
Collapse
|
25
|
Wu P, Demaerel J, Kong D, Ma D, Bolm C. Copper-Catalyzed, Aerobic Synthesis of NH-Sulfonimidamides from Primary Sulfinamides and Secondary Amines. Org Lett 2022; 24:6988-6992. [PMID: 36125127 DOI: 10.1021/acs.orglett.2c02804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
NH-Sulfonimidamides are prepared by copper-catalyzed coupling of primary sulfinamides with secondary amines. Neither a ligand nor an additive is needed, and air is the terminal oxidant. The reactions occur at room temperature, show good functional group tolerance, and lead to products in good yields. A sulfanenitrile is proposed as an intermediate in this oxidative amination.
Collapse
Affiliation(s)
- Peng Wu
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Joachim Demaerel
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany.,Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Box 2404, 3001 Leuven, Belgium
| | - Deshen Kong
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Ding Ma
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
26
|
Gasser VCM, Makai S, Morandi B. The advent of electrophilic hydroxylamine-derived reagents for the direct preparation of unprotected amines. Chem Commun (Camb) 2022; 58:9991-10003. [PMID: 35993918 PMCID: PMC9453917 DOI: 10.1039/d2cc02431d] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/20/2022] [Indexed: 11/21/2022]
Abstract
Electrophilic aminating reagents have seen a renaissance in recent years as effective nitrogen sources for the synthesis of unprotected amino functionalities. Based on their reactivity, several noble and non-noble transition metal catalysed amination reactions have been developed. These include the aziridination and difunctionalisation of alkenes, the amination of arenes as well as the synthesis of aminated sulfur compounds. In particular, the use of hydroxylamine-derived (N-O) reagents, such as PONT (PivONH3OTf), has enabled the introduction of unprotected amino groups on various different feedstock compounds, such as alkenes, arenes and thiols. This strategy obviates undesired protecting-group manipulations and thus improves step efficiency and atom economy. Overall, this feature article gives a recent update on several reactions that have been unlocked by employing versatile hydroxylamine-derived aminating reagents, which facilitate the generation of unprotected primary, secondary and tertiary amino groups.
Collapse
Affiliation(s)
- Valentina C M Gasser
- Laboratorium für Organische Chemie ETH Zürich, Vladimir-Prelog-Weg 3, HCI, Zürich 8093, Switzerland.
| | - Szabolcs Makai
- Laboratorium für Organische Chemie ETH Zürich, Vladimir-Prelog-Weg 3, HCI, Zürich 8093, Switzerland.
| | - Bill Morandi
- Laboratorium für Organische Chemie ETH Zürich, Vladimir-Prelog-Weg 3, HCI, Zürich 8093, Switzerland.
| |
Collapse
|
27
|
Wu Z, Zeng X. Curtius-Type Rearrangement of Sulfinyl Azides: A Matrix Isolation and Computational Study. J Phys Chem A 2022; 126:4367-4375. [PMID: 35771242 DOI: 10.1021/acs.jpca.2c02469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The highly unstable methyl sulfinyl azide, CH3S(O)N3, has been synthesized and characterized for the first time. In the gas phase, CH3S(O)N3 decomposes quickly at room temperature (300 K) with an estimated half-life (t1/2) of 7 min. Upon irradiation at 266 nm in cryogenic Ar (10 K) and Ne (3 K) matrices, the azide extrudes molecular nitrogen by yielding the novel sulfinyl nitrene intermediate CH3S(O)N in the closed-shell singlet ground state, which has been characterized with matrix-isolation IR and UV-vis spectroscopy. Prolonged irradiation at 266 nm causes Curtius rearrangement of the nitrene to form N-sulfinylamine CH3NSO and S-nitrosothiol CH3SNO. By high-vacuum flash pyrolysis (HVFP) at 800 K, CH3S(O)N3 also decomposes and furnishes CH3S(O)N with minor fragmentation products HNSO and CH2 in the gas phase. A similar photo-induced Curtius-type rearrangement of trifluoromethyl sulfinyl azide CF3S(O)N3 to CF3NSO and CF3SNO has also been observed in matrices. According to the theoretical calculations at the CCSD(T)/aug-cc-pVTZ//B3LYP/6-311++G (3df,3pd) level of theory, the rearrangement of CH3S(O)N3 prefers a stepwise pathway by initial formation of the nitrene intermediate CH3S(O)N. In line with the thermal persistence of CH3S(O)N in the gas phase, the barriers for its subsequent rearrangement are higher than 30 kcal mol-1.
Collapse
Affiliation(s)
- Zhuang Wu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200437, China
| | - Xiaoqing Zeng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200437, China
| |
Collapse
|
28
|
Magre M, Ni S, Cornella J. (Hetero)aryl-S VI Fluorides: Synthetic Development and Opportunities. Angew Chem Int Ed Engl 2022; 61:e202200904. [PMID: 35303387 PMCID: PMC9322316 DOI: 10.1002/anie.202200904] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 12/12/2022]
Abstract
(Hetero)arylsulfur compounds where the S atom is in the oxidation state VI represent a large percentage of the molecular functionalities present in organic chemistry. More specifically, (hetero)aryl-SVI fluorides have recently received enormous attention because of their potential as chemical biology probes, as a result of their reactivity in a simple, modular, and efficient manner. Whereas the synthesis and application of the level 1 fluorination at SVI atoms (sulfonyl and sulfonimidoyl fluorides) have been widely studied and reviewed, the synthetic strategies towards higher levels of fluorination (levels 2 to 5) are somewhat more limited. This Minireview evaluates and summarizes the progress in the synthesis of highly fluorinated aryl-SVI compounds at all levels, discussing synthetic strategies, reactivity, the advantages and disadvantages of the synthetic procedures, the proposed mechanisms, and the potential upcoming opportunities.
Collapse
Affiliation(s)
- Marc Magre
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Shengyang Ni
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Josep Cornella
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| |
Collapse
|
29
|
Terhorst S, Jansen T, Langletz T, Bolm C. Sulfonimidamides by Sequential Mechanochemical Chlorinations and Aminations of Sulfinamides. Org Lett 2022; 24:4109-4113. [PMID: 35658444 DOI: 10.1021/acs.orglett.2c01099] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Here, we report the first mechanochemical synthesis of sulfonimidamides. The one-pot, two-step method requires neither a solvent nor inert conditions. In a mixer mill, sulfinamides are rapidly converted to sulfonimidoyl chlorides by oxidative chlorination with N-chlorosuccinimide (NCS). Subsequent substitutions with amines provides a wide range of diversely substituted sulfonimidamides.
Collapse
Affiliation(s)
- Steven Terhorst
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| | - Tim Jansen
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| | - Tim Langletz
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| | - Carsten Bolm
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| |
Collapse
|
30
|
Tilby MJ, Dewez DF, Pantaine LRE, Hall A, Martínez-Lamenca C, Willis MC. Photocatalytic Late-Stage Functionalization of Sulfonamides via Sulfonyl Radical Intermediates. ACS Catal 2022; 12:6060-6067. [PMID: 35633900 PMCID: PMC9127806 DOI: 10.1021/acscatal.2c01442] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/22/2022] [Indexed: 01/01/2023]
Abstract
![]()
A plethora of drug
molecules and agrochemicals contain the sulfonamide
functional group. However, sulfonamides are seldom viewed as synthetically
useful functional groups. To confront this limitation, a late-stage
functionalization strategy is described, which allows sulfonamides
to be converted to pivotal sulfonyl radical intermediates. This methodology
exploits a metal-free photocatalytic approach to access radical chemistry,
which is harnessed by combining pharmaceutically relevant sulfonamides
with an assortment of alkene fragments. Additionally, the sulfinate
anion can be readily obtained, further broadening the options for
sulfonamide functionalization. Mechanistic studies suggest that energy-transfer
catalysis (EnT) is in operation.
Collapse
Affiliation(s)
- Michael J. Tilby
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Damien F. Dewez
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Loïc R. E. Pantaine
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Adrian Hall
- UCB Biopharma SPRL, 1420 Braine-l’Alleud, 1070 Brussels, Belgium
| | | | - Michael C. Willis
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
31
|
Greed S, Symes O, Bull JA. Stereospecific reaction of sulfonimidoyl fluorides with Grignard reagents for the synthesis of enantioenriched sulfoximines. Chem Commun (Camb) 2022; 58:5387-5390. [PMID: 35416220 DOI: 10.1039/d2cc01219g] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Sulfonimidoyl halides have previously shown poor stability and selectivity in reaction with organometallic reagents. Here we report the preparation of enantioenriched sulfonimidoyl fluorides and their stereospecific reaction at sulfur with Grignard reagents. Notably the first enantioenriched alkyl sulfonimidoyl fluorides are prepared, including methyl. The nature of the N-group is important to the success of the stereocontrolled sequence to sulfoximines.
Collapse
Affiliation(s)
- Stephanie Greed
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, UK.
| | - Oliver Symes
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, UK.
| | - James A Bull
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, UK.
| |
Collapse
|
32
|
Organocatalytic atroposelective construction of axially chiral N, N- and N, S-1,2-azoles through novel ring formation approach. Nat Commun 2022; 13:1933. [PMID: 35410417 PMCID: PMC9001698 DOI: 10.1038/s41467-022-29557-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/14/2022] [Indexed: 11/08/2022] Open
Abstract
Abstract1,2-Azoles are privileged structures in ligand/catalyst design and widely exist in many important natural products and drugs. In this report, two types of axially chiral 1,2-azoles (naphthyl-isothiazole S-oxides with a stereogenic sulfur center and atropoisomeric naphthyl pyrazoles) are synthesized via modified vinylidene ortho-quinone methide intermediates. Diverse products are acquired in satisfying yields and good to excellent enantioselectivities. The vinylidene ortho-quinone methide intermediates bearing two hetero atoms at 5-position have been demonstrated as a platform molecule for the atroposelective synthesis of axially chiral 1,2-azoles. This finding not only enrich our knowledge of vinylidene ortho-quinone methide chemistry but also provide the easy preparation method for diverse atropisomeric heterobiaryls that were inaccessible by existing methodologies. The obtained chiral naphthyl-isothiazole S-oxides and naphthyl-pyrazoles have demonstrated their potential application in further synthetic transformations and therapeutic agents.
Collapse
|
33
|
Zhang X, Ang ECX, Yang Z, Kee CW, Tan CH. Synthesis of chiral sulfinate esters by asymmetric condensation. Nature 2022; 604:298-303. [PMID: 35158370 PMCID: PMC8985065 DOI: 10.1038/s41586-022-04524-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 02/04/2022] [Indexed: 12/02/2022]
Abstract
Achiral sulfur functional groups, such as sulfonamide, sulfone, thiol and thioether, are common in drugs and natural products. By contrast, chiral sulfur functional groups are often neglected as pharmacophores1-3, although sulfoximine, with its unique physicochemical and pharmacokinetic properties4,5, has been recently incorporated into several clinical candidates. Thus, other sulfur stereogenic centres, such as sulfinate ester, sulfinamide, sulfonimidate ester and sulfonimidamide, have started to attract attention. The diversity and complexity of these sulfur stereogenic centres have the potential to expand the chemical space for drug discovery6-10. However, the installation of these structures enantioselectively into drug molecules is highly challenging. Here we report straightforward access to enantioenriched sulfinate esters via asymmetric condensation of prochiral sulfinates and alcohols using pentanidium as an organocatalyst. We successfully coupled a wide range of sulfinates and bioactive alcohols stereoselectively. The initial sulfinates can be prepared from existing sulfone and sulfonamide drugs, and the resulting sulfinate esters are versatile for transformations to diverse chiral sulfur pharmacophores. Through late-stage diversification11,12 of celecoxib and other drug derivatives, we demonstrate the viability of this unified approach towards sulfur stereogenic centres.
Collapse
Affiliation(s)
- Xin Zhang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore.
| | - Esther Cai Xia Ang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Ziqi Yang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Choon Wee Kee
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
- Process and Catalysis Research, Institute of Chemical and Engineering Sciences, Singapore, Singapore
| | - Choon-Hong Tan
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
34
|
Magre M, Ni S, Cornella J. (Hetero)aryl‒S(VI) Fluorides: Synthetic Development and Opportunities. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Marc Magre
- Max-Planck-Institut für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Organometallic Chemistry Kaiser-Wilhelm-Platz 1Muelheim an der Ruhr 45470 Muelheim an der Ruhr GERMANY
| | - Shengyang Ni
- Max-Planck-Institut für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Organometallic Chemistry Kaiser-Wilhelm-Platz 1Muelheim an der Ruhr 45470 Muelheim an der Ruhr GERMANY
| | - Josep Cornella
- Max-Planck-Institut für Kohlenforschung Organometallic Chemistry Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr GERMANY
| |
Collapse
|
35
|
Feng J, Liu H, Yao Y, Lu CD. Synthesis of Enantioenriched Primary tert-Butanesulfonimidamides via Imination-Hydrazinolysis of N'- tert-Butanesulfinyl Amidines. J Org Chem 2022; 87:5005-5016. [PMID: 35275481 DOI: 10.1021/acs.joc.2c00095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The first synthesis of primary tert-butanesulfonimidamides with high enantiopurity was realized by imination (or imination/N-functionalization) of enantioenriched N'-tert-butanesulfinyl amidines, followed by hydrazinolysis. N'-Sulfinyl amidines served as imination precursors during copper-catalyzed sulfonyl nitrene transfer or iodonitrene-based NH transfer. Further transformations allowed access to primary tert-butanesulfonimidamides with diverse substitutions on the nitrogen of S═N.
Collapse
Affiliation(s)
- Jie Feng
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Hui Liu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Yun Yao
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Chong-Dao Lu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.,School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| |
Collapse
|
36
|
Ding M, Zhang ZX, Davies TQ, Willis MC. A Silyl Sulfinylamine Reagent Enables the Modular Synthesis of Sulfonimidamides via Primary Sulfinamides. Org Lett 2022; 24:1711-1715. [PMID: 35188396 PMCID: PMC9084605 DOI: 10.1021/acs.orglett.2c00347] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
A new N-silyl sulfinylamine
reagent allows the
rapid preparation of a broad range of (hetero)aryl, alkenyl, and alkyl
primary sulfinamides, using Grignard, organolithium, or organozinc
reagents to introduce the carbon fragment. Treatment of these primary
sulfinamides with an amine in the presence of a hypervalent iodine
reagent leads directly to NH-sulfonimidamides. This two-step sequence
is straightforward to perform and provides a modular approach to sulfonimidamides,
allowing ready variation of both reaction components, including primary
and secondary amines.
Collapse
Affiliation(s)
- Mingyan Ding
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, U.K
| | - Ze-Xin Zhang
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, U.K
| | - Thomas Q. Davies
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, U.K
| | - Michael C. Willis
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, U.K
| |
Collapse
|
37
|
Stereospecific α-(hetero)arylation of sulfoximines and sulfonimidamides. NATURE SYNTHESIS 2022; 1:170-179. [PMID: 35415722 DOI: 10.1038/s44160-021-00011-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The occurrence of sulfoximines and sulfonimidoyl groups in biologically active molecules within pharmaceuticals and agrochemicals has notably increased in the past decade. This increase has prompted a wave of discovery of methods to install S(VI) functionality into complex organic molecules. Traditional synthetic methods to form α-substituted sulfonimidoyl motifs rely on S-C bond disconnections and typically require control of the stereogenic S-centre or late-stage modification at sulfur, and comprise multistep routes. Here, we report the development of a stereospecific, modular SNAr approach for the introduction of sulfonimidoyl functional groups into heterocyclic cores. This strategy has been demonstrated across 85 examples, in good to excellent yield, of complex and diverse heterocycles. Sulfoximines, sulfonimidamides and sulfondiimines are all compatible nucleophiles in the SNAr reaction and hence, the methodology was applied to the synthesis of four sulfoximine-containing pharmaceuticals. Of these synthetic applications, most notably ceralasertib, an ATR inhibitor currently in clinical trials, was synthesized in an eight-step procedure on a gram-scale.
Collapse
|
38
|
|
39
|
Andresini M, Tota A, Degennaro L, Bull JA, Luisi R. Synthesis and Transformations of NH-Sulfoximines. Chemistry 2021; 27:17293-17321. [PMID: 34519376 PMCID: PMC9291533 DOI: 10.1002/chem.202102619] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Indexed: 11/17/2022]
Abstract
Recent years have seen a marked increase in the occurrence of sulfoximines in the chemical sciences, often presented as valuable motifs for medicinal chemistry. This has been prompted by both pioneering works taking sulfoximine containing compounds into clinical trials and the concurrent development of powerful synthetic methods. This review covers recent developments in the synthesis of sulfoximines concentrating on developments since 2015. This includes extensive developments in both S-N and S-C bond formations. Flow chemistry processes for sulfoximine synthesis are also covered. Finally, subsequent transformations of sulfoximines, particularly in N-functionalization are reviewed, including N-S, N-P, N-C bond forming processes and cyclization reactions.
Collapse
Affiliation(s)
- Michael Andresini
- Department of Pharmacy-Drug SciencesUniversity of Bari “A. Moro”Via E. Orabona 470125BariItaly
| | - Arianna Tota
- Department of Pharmacy-Drug SciencesUniversity of Bari “A. Moro”Via E. Orabona 470125BariItaly
| | - Leonardo Degennaro
- Department of Pharmacy-Drug SciencesUniversity of Bari “A. Moro”Via E. Orabona 470125BariItaly
| | - James A. Bull
- Department of Chemistry Imperial College LondonMolecular Sciences Research Hub White City Campus, Wood LaneLondonW12 0BZUK
| | - Renzo Luisi
- Department of Pharmacy-Drug SciencesUniversity of Bari “A. Moro”Via E. Orabona 470125BariItaly
| |
Collapse
|
40
|
Tilby MJ, Dewez DF, Hall A, Martínez Lamenca C, Willis MC. Exploiting Configurational Lability in Aza‐Sulfur Compounds for the Organocatalytic Enantioselective Synthesis of Sulfonimidamides. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Michael J. Tilby
- Department of Chemistry University of Oxford Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Damien F. Dewez
- Department of Chemistry University of Oxford Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | | | | | - Michael C. Willis
- Department of Chemistry University of Oxford Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
41
|
Oliver GA, Loch MN, Augustin AU, Steinbach P, Sharique M, Tambar UK, Jones PG, Bannwarth C, Werz DB. Cycloadditions of Donor-Acceptor Cyclopropanes and -butanes using S=N-Containing Reagents: Access to Cyclic Sulfinamides, Sulfonamides, and Sulfinamidines. Angew Chem Int Ed Engl 2021; 60:25825-25831. [PMID: 34499800 PMCID: PMC9298015 DOI: 10.1002/anie.202106596] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/08/2021] [Indexed: 11/09/2022]
Abstract
We present (3+2)- and (4+2)-cycloadditions of donor-acceptor (D-A) cyclopropanes and cyclobutanes with N-sulfinylamines and a sulfur diimide, along with a one-pot, two-step strategy for the formal insertion of HNSO2 into D-A cyclopropanes. These are rare examples of cycloadditions with D-A cyclopropanes and cyclobutanes whereby the 2π component consists of two different heteroatoms, thus leading to five- and six-membered rings containing adjacent heteroatoms.
Collapse
Affiliation(s)
- Gwyndaf A. Oliver
- Technische Universität BraunschweigInstitute of Organic ChemistryHagenring 3038106BraunschweigGermany
| | - Maximilian N. Loch
- Technische Universität BraunschweigInstitute of Organic ChemistryHagenring 3038106BraunschweigGermany
| | - André U. Augustin
- Technische Universität BraunschweigInstitute of Organic ChemistryHagenring 3038106BraunschweigGermany
| | - Pit Steinbach
- Institute of Physical ChemistryRWTH Aachen UniversityMelatener Str. 2052056AachenGermany
| | - Mohammed Sharique
- Department of BiochemistryThe University of Texas Southwestern Medical Center5323 Harry Hines BoulevardDallasTX75390-9038USA
| | - Uttam K. Tambar
- Department of BiochemistryThe University of Texas Southwestern Medical Center5323 Harry Hines BoulevardDallasTX75390-9038USA
| | - Peter G. Jones
- Technische Universität BraunschweigInstitute of Inorganic and Analytical ChemistryHagenring 3038106BraunschweigGermany
| | - Christoph Bannwarth
- Institute of Physical ChemistryRWTH Aachen UniversityMelatener Str. 2052056AachenGermany
| | - Daniel B. Werz
- Technische Universität BraunschweigInstitute of Organic ChemistryHagenring 3038106BraunschweigGermany
| |
Collapse
|
42
|
Tilby MJ, Dewez DF, Hall A, Martínez Lamenca C, Willis MC. Exploiting Configurational Lability in Aza-Sulfur Compounds for the Organocatalytic Enantioselective Synthesis of Sulfonimidamides. Angew Chem Int Ed Engl 2021; 60:25680-25687. [PMID: 34558788 PMCID: PMC9298307 DOI: 10.1002/anie.202109160] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/20/2021] [Indexed: 11/19/2022]
Abstract
Methods for establishing the absolute configuration of sulfur‐stereogenic aza‐sulfur derivatives are scarce, often relying on cumbersome protocols and a limited pool of enantioenriched starting materials. We have addressed this by exploiting, for the first time, a feature of sulfonimidamides in which it is possible for tautomeric structures to also be enantiomeric. Such sulfonimidamides can readily generate prochiral ions, which we have exploited in an enantioselective alkylation process. Selectivity is achieved using a readily prepared bis‐quaternized phase‐transfer catalyst. The overall process establishes the capability of configurationally labile aza‐sulfur species to be used in asymmetric catalysis.
Collapse
Affiliation(s)
- Michael J Tilby
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Damien F Dewez
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Adrian Hall
- UCB Biopharma, 1420, Braine-l'Alleud, Belgium
| | | | - Michael C Willis
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
43
|
Oliver GA, Loch MN, Augustin AU, Steinbach P, Sharique M, Tambar UK, Jones PG, Bannwarth C, Werz DB. Cycloadditions of Donor–Acceptor Cyclopropanes and ‐butanes using S=N‐Containing Reagents: Access to Cyclic Sulfinamides, Sulfonamides, and Sulfinamidines. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106596] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Gwyndaf A. Oliver
- Technische Universität Braunschweig Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Maximilian N. Loch
- Technische Universität Braunschweig Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| | - André U. Augustin
- Technische Universität Braunschweig Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Pit Steinbach
- Institute of Physical Chemistry RWTH Aachen University Melatener Str. 20 52056 Aachen Germany
| | - Mohammed Sharique
- Department of Biochemistry The University of Texas Southwestern Medical Center 5323 Harry Hines Boulevard Dallas TX 75390-9038 USA
| | - Uttam K. Tambar
- Department of Biochemistry The University of Texas Southwestern Medical Center 5323 Harry Hines Boulevard Dallas TX 75390-9038 USA
| | - Peter G. Jones
- Technische Universität Braunschweig Institute of Inorganic and Analytical Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Christoph Bannwarth
- Institute of Physical Chemistry RWTH Aachen University Melatener Str. 20 52056 Aachen Germany
| | - Daniel B. Werz
- Technische Universität Braunschweig Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| |
Collapse
|
44
|
Affiliation(s)
- Hans‐Joachim Gais
- Institute of Organic Chemistry RWTH Aachen University Professor-Pirlet Strasse 1 52074 Aachen Germany
| |
Collapse
|
45
|
Lo PKT, Willis MC. Nickel(II)-Catalyzed Addition of Aryl and Heteroaryl Boroxines to the Sulfinylamine Reagent TrNSO: The Catalytic Synthesis of Sulfinamides, Sulfonimidamides, and Primary Sulfonamides. J Am Chem Soc 2021; 143:15576-15581. [PMID: 34533921 DOI: 10.1021/jacs.1c08052] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We report a redox-neutral Ni(II)-catalyzed addition of (hetero)aryl boroxines to N-sulfinyltritylamine (TrNSO). The reactions use a catalyst generated from the combination of commercial, air-stable NiCl2·(glyme) and a commercially available bipyridine ligand, and deliver sulfinamide products. The scope of the reaction is established using a sulfonimidamide synthesis, in which the initially formed sulfinamides undergo oxidative chlorination with the inexpensive and safe chlorinating agent, trichloroisocyanuric acid (TCCA), to produce sulfonimidoyl chlorides as key intermediates. These are combined in situ with a range of amines to deliver sulfonimidamides. The sulfonimidoyl chlorides can also be elaborated into primary sulfonamides via hydrolysis, and sulfonimidoyl fluorides via treatment with fluoride. These transformations are all achieved using one-pot procedures. Unprotected, primary sulfinamides are also available. For larger-scale reactions, the catalyst loading can be reduced to 1 mol %.
Collapse
Affiliation(s)
- Pui Kin Tony Lo
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Michael C Willis
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
46
|
Andresini M, Spennacchio M, Colella M, Losito G, Aramini A, Degennaro L, Luisi R. Sulfinimidate Esters as an Electrophilic Sulfinimidoyl Motif Source: Synthesis of N-Protected Sulfilimines from Grignard Reagents. Org Lett 2021; 23:6850-6854. [PMID: 34387503 DOI: 10.1021/acs.orglett.1c02413] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work we investigated, for the first time, the reactivity of sulfinimidate esters as an electrophilic sulfinimidoyl motif source. The reaction of such sulfinimidate esters with Grignard reagents enables the preparation of protected sulfilimines in high yields and with a remarkable structural variability. Moreover, the transformation can be performed in CPME (cyclopentyl methyl ether) as a green solvent under environmentally responsible conditions.
Collapse
Affiliation(s)
- Michael Andresini
- Flow Chemistry and Microreactor Technology FLAME-Lab, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, Bari I-70125, Italy
| | - Mauro Spennacchio
- Flow Chemistry and Microreactor Technology FLAME-Lab, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, Bari I-70125, Italy
| | - Marco Colella
- Flow Chemistry and Microreactor Technology FLAME-Lab, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, Bari I-70125, Italy
| | - Gianluca Losito
- Flow Chemistry and Microreactor Technology FLAME-Lab, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, Bari I-70125, Italy
| | - Andrea Aramini
- Department of Discovery, Dompé Farmaceutici S.p.A., Via Campo di Pile, L'Aquila I-67100, Italy
| | - Leonardo Degennaro
- Flow Chemistry and Microreactor Technology FLAME-Lab, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, Bari I-70125, Italy
| | - Renzo Luisi
- Flow Chemistry and Microreactor Technology FLAME-Lab, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, Bari I-70125, Italy
| |
Collapse
|
47
|
Tilby MJ, Willis MC. How do we address neglected sulfur pharmacophores in drug discovery? Expert Opin Drug Discov 2021; 16:1227-1231. [PMID: 34212815 DOI: 10.1080/17460441.2021.1948008] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Michael J Tilby
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Michael C Willis
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| |
Collapse
|
48
|
Abstract
Sulfinylamines (R-N=S=O), monoaza analogues of sulfur dioxide, have been known for well over a century, and their reactivity as sulfur electrophiles and in Diels-Alder reactions is well-established. However, they have only rarely been used in organic synthesis in recent decades despite the increasing prominence of compounds containing N=S=O functionality, such as sulfoximines and sulfonimidamides. This Minireview aims to bring wider visibility to the unique chemistry enabled by this class of compounds. We focus on advances from the last 10 years, including the first examples of their use in the one-pot syntheses of sulfoximines and sulfonimidamides. Also covered are the reactions of sulfinylamines with carbon-centred radicals, their use for formation of heterocycles through cycloadditions, and catalytic enantioselective allylic oxidation of alkenes via a hetero-ene reaction. These examples highlight the different reactivity modes of sulfinylamines and their underappreciated potential for forming molecules which contain high- or low-valent sulfur, or even no sulfur at all.
Collapse
Affiliation(s)
- Thomas Q. Davies
- Chemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Michael C. Willis
- Chemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| |
Collapse
|
49
|
Craven GB, Briggs EL, Zammit CM, McDermott A, Greed S, Affron DP, Leinfellner C, Cudmore HR, Tweedy RR, Luisi R, Bull JA, Armstrong A. Synthesis and Configurational Assignment of Vinyl Sulfoximines and Sulfonimidamides. J Org Chem 2021; 86:7403-7424. [PMID: 34003635 DOI: 10.1021/acs.joc.1c00373] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Vinyl sulfones and sulfonamides are valued for their use as electrophilic warheads in covalent protein inhibitors. Conversely, the S(VI) aza-isosteres thereof, vinyl sulfoximines and sulfonimidamides, are far less studied and have yet to be applied to the field of protein bioconjugation. Herein, we report a range of different synthetic methodologies for constructing vinyl sulfoximine and vinyl sulfonimidamide architectures that allows access to new areas of electrophilic chemical space. We demonstrate how late-stage functionalization can be applied to these motifs to incorporate alkyne tags, generating fully functionalized probes for future chemical biology applications. Finally, we establish a workflow for determining the absolute configuration of enantioenriched vinyl sulfoximines and sulfonimidamides by comparing experimentally and computationally determined electronic circular dichroism spectra, enabling access to configurationally assigned enantiomeric pairs by separation.
Collapse
Affiliation(s)
- Gregory B Craven
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, U.K.,The Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, U.K
| | - Edward L Briggs
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, U.K
| | - Charlotte M Zammit
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, U.K
| | - Alexander McDermott
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, U.K
| | - Stephanie Greed
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, U.K
| | - Dominic P Affron
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, U.K
| | - Charlotte Leinfellner
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, U.K
| | - Hannah R Cudmore
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, U.K
| | - Ruth R Tweedy
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, U.K
| | - Renzo Luisi
- Department of Pharmacy-Drug Sciences, University of Bari, "A. Moro" Via E. Orabona 4, Bari 70125, Italy
| | - James A Bull
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, U.K
| | - Alan Armstrong
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, U.K
| |
Collapse
|
50
|
Tummanapalli S, Gulipalli KC, Bodige S, Vemula D, Endoori S, Pommidi AK, Punna SK. Direct one step dehydrogenative C-H sulfonimidation of unfunctionalized arenes: A conveneient protocol to emerging medicinal chemistry motifs without prefunctionalized arenes. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|