1
|
Yang L, Li Q, Ge Z, Fan C, Huang W. DNA Mechanics: From Single Stranded to Self-Assembled. NANO LETTERS 2024; 24:11768-11778. [PMID: 39259830 DOI: 10.1021/acs.nanolett.4c03323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
DNA encodes genetic information and forms various structural conformations with distinct physical, chemical, and biological properties. Over the past 30 years, advancements in force manipulation technology have enabled the precise manipulation of DNA at nanometer and piconewton resolutions. This mini-review discusses these force manipulation techniques for exploring the mechanical properties of DNA at the single-molecule level. We summarize the distinct mechanical features of different DNA forms while considering the impact of the force geometry. We highlight the role of DNA mechanics in origami structures that serve as self-assembled building blocks or mechanically responsive/active nanomachines. Accordingly, we emphasize how DNA mechanics are integral to the functionality of origami structures for achieving mechanical capabilities. Finally, we provide an outlook on the intrinsic mechanical properties of DNA, from single stranded to self-assembled higher-dimensional structures. This understanding is expected to inspire new design strategies in DNA mechanics, paving the way for innovative applications and technologies.
Collapse
Affiliation(s)
- Linfeng Yang
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhilei Ge
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenmao Huang
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Liu S, Wang J, Chen Y, Fan J, Du B, Liu R, Zhu X, Wang K, Xie N, Huang J. Modular Assembled Localized Hybridization Chain Reaction for In Situ mRNA Amplified Imaging. NANO LETTERS 2024; 24:11590-11598. [PMID: 39225632 DOI: 10.1021/acs.nanolett.4c03099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
As a nonenzymatic DNA signal amplification technique, localized hybridization chain reaction (LHCR) was designed to improve the limitations in response speed and low sensitivity of conventional free diffusional HCR (hybridization chain reaction). However, it is still confronted with the challenges of complicated DNA scaffolds with low loading capacity and a time-consuming process of diffusion. Herein, we introduced modular assembly of a DNA minimal scaffold for coassembly of DNA hairpins for amplified fluorescence imaging of mRNA in situ. DNA hairpins were spatially bound to two Y-shaped modules to form H-shaped DNA modules, and then multiple H-shaped DNA modules can further assemble into an H-module-based hairpin scaffold (HHS). Benefiting from highly spatial localization and high loading capacity, the HHS system showed higher sensitivity and faster speed. It has also been proven to work perfectly in vitro and in vivo, which could provide a promising bioanalysis system for low abundance biomolecule detection.
Collapse
Affiliation(s)
- Shiyuan Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Jiaoli Wang
- School of Electrical Engineering, University of South China, Hengyang 421001, P. R. China
| | - Yu Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Jiahao Fan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Bin Du
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Ruiting Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Xiaobei Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Nuli Xie
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, P. R. China
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
3
|
Cole F, Pfeiffer M, Wang D, Schröder T, Ke Y, Tinnefeld P. Controlled mechanochemical coupling of anti-junctions in DNA origami arrays. Nat Commun 2024; 15:7894. [PMID: 39256353 PMCID: PMC11387415 DOI: 10.1038/s41467-024-51721-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/16/2024] [Indexed: 09/12/2024] Open
Abstract
Allostery is a hallmark of cellular function and important in every biological system. Still, we are only starting to mimic it in the laboratory. Here, we introduce an approach to study aspects of allostery in artificial systems. We use a DNA origami domino array structure which-upon binding of trigger DNA strands-undergoes a stepwise allosteric conformational change. Using two FRET probes placed at specific positions in the DNA origami, we zoom in into single steps of this reaction cascade. Most of the steps are strongly coupled temporally and occur simultaneously. Introduction of activation energy barriers between different intermediate states alters this coupling and induces a time delay. We then apply these approaches to release a cargo DNA strand at a predefined step in the reaction cascade to demonstrate the applicability of this concept in tunable cascades of mechanochemical coupling with both spatial and temporal control.
Collapse
Affiliation(s)
- Fiona Cole
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, München, Germany
- Center for NanoScience, Ludwig-Maximilians-Universität München, Schellingstraße 4, München, Germany
| | - Martina Pfeiffer
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, München, Germany
- Center for NanoScience, Ludwig-Maximilians-Universität München, Schellingstraße 4, München, Germany
| | - Dongfang Wang
- Wallace H. Coulter Department of Biomedical Engineering, Emory University, Atlanta, GA, USA
- Georgia Institute of Technology, Atlanta, GA, USA
- School of Biomedical Engineering, University of Science and Technology of China, Suzhou, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, China
| | - Tim Schröder
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, München, Germany
- Center for NanoScience, Ludwig-Maximilians-Universität München, Schellingstraße 4, München, Germany
| | - Yonggang Ke
- Wallace H. Coulter Department of Biomedical Engineering, Emory University, Atlanta, GA, USA.
- Georgia Institute of Technology, Atlanta, GA, USA.
| | - Philip Tinnefeld
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, München, Germany.
- Center for NanoScience, Ludwig-Maximilians-Universität München, Schellingstraße 4, München, Germany.
| |
Collapse
|
4
|
Abstract
DNA nanotechnology is a rapidly developing field that uses DNA as a building material for nanoscale structures. Key to the field's development has been the ability to accurately describe the behavior of DNA nanostructures using simulations and other modeling techniques. In this Review, we present various aspects of prediction and control in DNA nanotechnology, including the various scales of molecular simulation, statistical mechanics, kinetic modeling, continuum mechanics, and other prediction methods. We also address the current uses of artificial intelligence and machine learning in DNA nanotechnology. We discuss how experiments and modeling are synergistically combined to provide control over device behavior, allowing scientists to design molecular structures and dynamic devices with confidence that they will function as intended. Finally, we identify processes and scenarios where DNA nanotechnology lacks sufficient prediction ability and suggest possible solutions to these weak areas.
Collapse
Affiliation(s)
- Marcello DeLuca
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Sebastian Sensale
- Department of Physics, Cleveland State University, Cleveland, Ohio 44115, United States
| | - Po-An Lin
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Gaurav Arya
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
5
|
Lu Q, Xu Y, Poppleton E, Zhou K, Sulc P, Stephanopoulos N, Ke Y. DNA-Nanostructure-Guided Assembly of Proteins into Programmable Shapes. NANO LETTERS 2024; 24:1703-1709. [PMID: 38278134 PMCID: PMC10853956 DOI: 10.1021/acs.nanolett.3c04497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
The development of methods to synthesize artificial protein complexes with precisely controlled configurations will enable diverse biological and medical applications. Using DNA to link proteins provides programmability that can be difficult to achieve with other methods. Here, we use DNA origami as an "assembler" to guide the linking of protein-DNA conjugates using a series of oligonucleotide hybridization and displacement operations. We constructed several isomeric protein nanostructures, including a dimer, two types of trimer structures, and three types of tetramer assemblies, on a DNA origami platform by using a C3-symmetric building block composed of a protein trimer modified with DNA handles. Our approach expands the scope for the precise assembly of protein-based nanostructures and will enable the formulation of functional protein complexes with stoichiometric and geometric control.
Collapse
Affiliation(s)
- Qinyi Lu
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Yang Xu
- Biodesign
Center for Molecular Design and Biomimetics, Arizona State University, Tempe, Arizona 85287, United States
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Erik Poppleton
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Kun Zhou
- Department
of Biomedical Engineering, Georgia Institute
of Technology and Emory University, Atlanta, Georgia 30322, United States
| | - Petr Sulc
- Biodesign
Center for Molecular Design and Biomimetics, Arizona State University, Tempe, Arizona 85287, United States
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Nicholas Stephanopoulos
- Biodesign
Center for Molecular Design and Biomimetics, Arizona State University, Tempe, Arizona 85287, United States
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Yonggang Ke
- Department
of Biomedical Engineering, Georgia Institute
of Technology and Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
6
|
Lee JY, Koh H, Kim DN. A computational model for structural dynamics and reconfiguration of DNA assemblies. Nat Commun 2023; 14:7079. [PMID: 37925463 PMCID: PMC10625641 DOI: 10.1038/s41467-023-42873-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023] Open
Abstract
Recent advances in constructing a structured DNA assembly whose configuration can be dynamically changed in response to external stimuli have demanded the development of an efficient computational modeling approach to expedite its design process. Here, we present a computational framework capable of analyzing both equilibrium and non-equilibrium dynamics of structured DNA assemblies at the molecular level. The framework employs Langevin dynamics with structural and hydrodynamic finite element models that describe mechanical, electrostatic, base stacking, and hydrodynamic interactions. Equilibrium dynamic analysis for various problems confirms the solution accuracy at a near-atomic resolution, comparable to molecular dynamics simulations and experimental measurements. Furthermore, our model successfully simulates a long-time-scale close-to-open-to-close dynamic reconfiguration of the switch structure in response to changes in ion concentration. We expect that the proposed model will offer a versatile way of designing responsive and reconfigurable DNA machines.
Collapse
Affiliation(s)
- Jae Young Lee
- Institute of Advanced Machines and Design, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Heeyuen Koh
- Soft Foundry Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Do-Nyun Kim
- Institute of Advanced Machines and Design, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea.
- Soft Foundry Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea.
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea.
- Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea.
| |
Collapse
|
7
|
Rossi-Gendron C, El Fakih F, Bourdon L, Nakazawa K, Finkel J, Triomphe N, Chocron L, Endo M, Sugiyama H, Bellot G, Morel M, Rudiuk S, Baigl D. Isothermal self-assembly of multicomponent and evolutive DNA nanostructures. NATURE NANOTECHNOLOGY 2023; 18:1311-1318. [PMID: 37524905 PMCID: PMC10656289 DOI: 10.1038/s41565-023-01468-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 06/26/2023] [Indexed: 08/02/2023]
Abstract
Thermal annealing is usually needed to direct the assembly of multiple complementary DNA strands into desired entities. We show that, with a magnesium-free buffer containing NaCl, complex cocktails of DNA strands and proteins can self-assemble isothermally, at room or physiological temperature, into user-defined nanostructures, such as DNA origamis, single-stranded tile assemblies and nanogrids. In situ, time-resolved observation reveals that this self-assembly is thermodynamically controlled, proceeds through multiple folding pathways and leads to highly reconfigurable nanostructures. It allows a given system to self-select its most stable shape in a large pool of competitive DNA strands. Strikingly, upon the appearance of a new energy minimum, DNA origamis isothermally shift from one initially stable shape to a radically different one, by massive exchange of their constitutive staple strands. This method expands the repertoire of shapes and functions attainable by isothermal self-assembly and creates a basis for adaptive nanomachines and nanostructure discovery by evolution.
Collapse
Affiliation(s)
- Caroline Rossi-Gendron
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Farah El Fakih
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Laura Bourdon
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Koyomi Nakazawa
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Julie Finkel
- Centre de Biologie Structurale, Université Montpellier, CNRS, Inserm, Montpellier, France
| | - Nicolas Triomphe
- Centre de Biologie Structurale, Université Montpellier, CNRS, Inserm, Montpellier, France
- Université Grenoble Alpes, CEA, Leti,, Grenoble, France
| | - Léa Chocron
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Masayuki Endo
- Organization for Research and Development of Innovative Science and Technology, Kansai University, Suita, Japan
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Kyoto, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomaecho, Kyoto, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Kyoto, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomaecho, Kyoto, Japan
| | - Gaëtan Bellot
- Centre de Biologie Structurale, Université Montpellier, CNRS, Inserm, Montpellier, France
| | - Mathieu Morel
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Sergii Rudiuk
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Damien Baigl
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France.
| |
Collapse
|
8
|
Li R, Madhvacharyula AS, Du Y, Adepu HK, Choi JH. Mechanics of dynamic and deformable DNA nanostructures. Chem Sci 2023; 14:8018-8046. [PMID: 37538812 PMCID: PMC10395309 DOI: 10.1039/d3sc01793a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023] Open
Abstract
In DNA nanotechnology, DNA molecules are designed, engineered, and assembled into arbitrary-shaped architectures with predesigned functions. Static DNA assemblies often have delicate designs with structural rigidity to overcome thermal fluctuations. Dynamic structures reconfigure in response to external cues, which have been explored to create functional nanodevices for environmental sensing and other applications. However, the precise control of reconfiguration dynamics has been a challenge due partly to flexible single-stranded DNA connections between moving parts. Deformable structures are special dynamic constructs with deformation on double-stranded parts and single-stranded hinges during transformation. These structures often have better control in programmed deformation. However, related deformability and mechanics including transformation mechanisms are not well understood or documented. In this review, we summarize the development of dynamic and deformable DNA nanostructures from a mechanical perspective. We present deformation mechanisms such as single-stranded DNA hinges with lock-and-release pairs, jack edges, helicity modulation, and external loading. Theoretical and computational models are discussed for understanding their associated deformations and mechanics. We elucidate the pros and cons of each model and recommend design processes based on the models. The design guidelines should be useful for those who have limited knowledge in mechanics as well as expert DNA designers.
Collapse
Affiliation(s)
- Ruixin Li
- School of Mechanical Engineering, Purdue University 585 Purdue Mall West Lafayette Indiana 47907 USA
| | - Anirudh S Madhvacharyula
- School of Mechanical Engineering, Purdue University 585 Purdue Mall West Lafayette Indiana 47907 USA
| | - Yancheng Du
- School of Mechanical Engineering, Purdue University 585 Purdue Mall West Lafayette Indiana 47907 USA
| | - Harshith K Adepu
- School of Mechanical Engineering, Purdue University 585 Purdue Mall West Lafayette Indiana 47907 USA
| | - Jong Hyun Choi
- School of Mechanical Engineering, Purdue University 585 Purdue Mall West Lafayette Indiana 47907 USA
| |
Collapse
|
9
|
Watanabe K, Kawamata I, Murata S, Suzuki Y. Multi-Reconfigurable DNA Origami Nanolattice Driven by the Combination of Orthogonal Signals. JACS AU 2023; 3:1435-1442. [PMID: 37234113 PMCID: PMC10206592 DOI: 10.1021/jacsau.3c00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/01/2023] [Accepted: 04/13/2023] [Indexed: 05/27/2023]
Abstract
The progress of the scaffolded DNA origami technology has enabled the construction of various dynamic nanodevices imitating the shapes and motions of mechanical elements. To further expand the achievable configurational changes, the incorporation of multiple movable joints into a single DNA origami structure and their precise control are desired. Here, we propose a multi-reconfigurable 3 × 3 lattice structure consisting of nine frames with rigid four-helix struts connected with flexible 10-nucleotide joints. The configuration of each frame is determined by the arbitrarily selected orthogonal pair of signal DNAs, resulting in the transformation of the lattice into various shapes. We also demonstrated sequential reconfiguration of the nanolattice and its assemblies from one into another via an isothermal strand displacement reaction at physiological temperatures. Our modular and scalable design approach could serve as a versatile platform for a variety of applications that require reversible and continuous shape control with nanoscale precision.
Collapse
Affiliation(s)
- Kotaro Watanabe
- Department
of Robotics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki-Aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Ibuki Kawamata
- Department
of Robotics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki-Aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Satoshi Murata
- Department
of Robotics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki-Aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Yuki Suzuki
- Frontier
Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8578, Japan
- Department
of Chemistry for Materials, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-Cho, Tsu 514-8507, Mie, Japan
| |
Collapse
|
10
|
Wang Y, Sensale S, Pedrozo M, Huang CM, Poirier MG, Arya G, Castro CE. Steric Communication between Dynamic Components on DNA Nanodevices. ACS NANO 2023; 17:8271-8280. [PMID: 37072126 PMCID: PMC10173695 DOI: 10.1021/acsnano.2c12455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Biomolecular nanotechnology has helped emulate basic robotic capabilities such as defined motion, sensing, and actuation in synthetic nanoscale systems. DNA origami is an attractive approach for nanorobotics, as it enables creation of devices with complex geometry, programmed motion, rapid actuation, force application, and various kinds of sensing modalities. Advanced robotic functions like feedback control, autonomy, or programmed routines also require the ability to transmit signals among subcomponents. Prior work in DNA nanotechnology has established approaches for signal transmission, for example through diffusing strands or structurally coupled motions. However, soluble communication is often slow and structural coupling of motions can limit the function of individual components, for example to respond to the environment. Here, we introduce an approach inspired by protein allostery to transmit signals between two distal dynamic components through steric interactions. These components undergo separate thermal fluctuations where certain conformations of one arm will sterically occlude conformations of the distal arm. We implement this approach in a DNA origami device consisting of two stiff arms each connected to a base platform via a flexible hinge joint. We demonstrate the ability for one arm to sterically regulate both the range of motion and the conformational state (latched or freely fluctuating) of the distal arm, results that are quantitatively captured by mesoscopic simulations using experimentally informed energy landscapes for hinge-angle fluctuations. We further demonstrate the ability to modulate signal transmission by mechanically tuning the range of thermal fluctuations and controlling the conformational states of the arms. Our results establish a communication mechanism well-suited to transmit signals between thermally fluctuating dynamic components and provide a path to transmitting signals where the input is a dynamic response to parameters like force or solution conditions.
Collapse
Affiliation(s)
- Yuchen Wang
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Sebastian Sensale
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
- Department of Physics, Cleveland State University, Cleveland, Ohio 44115, United States
| | - Miguel Pedrozo
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Chao-Min Huang
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Michael G Poirier
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, United States
- Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Gaurav Arya
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Carlos E Castro
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210, United States
- Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
11
|
Zhan P, Peil A, Jiang Q, Wang D, Mousavi S, Xiong Q, Shen Q, Shang Y, Ding B, Lin C, Ke Y, Liu N. Recent Advances in DNA Origami-Engineered Nanomaterials and Applications. Chem Rev 2023; 123:3976-4050. [PMID: 36990451 PMCID: PMC10103138 DOI: 10.1021/acs.chemrev.3c00028] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Indexed: 03/31/2023]
Abstract
DNA nanotechnology is a unique field, where physics, chemistry, biology, mathematics, engineering, and materials science can elegantly converge. Since the original proposal of Nadrian Seeman, significant advances have been achieved in the past four decades. During this glory time, the DNA origami technique developed by Paul Rothemund further pushed the field forward with a vigorous momentum, fostering a plethora of concepts, models, methodologies, and applications that were not thought of before. This review focuses on the recent progress in DNA origami-engineered nanomaterials in the past five years, outlining the exciting achievements as well as the unexplored research avenues. We believe that the spirit and assets that Seeman left for scientists will continue to bring interdisciplinary innovations and useful applications to this field in the next decade.
Collapse
Affiliation(s)
- Pengfei Zhan
- 2nd Physics
Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Andreas Peil
- 2nd Physics
Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Qiao Jiang
- National
Center for Nanoscience and Technology, No 11, BeiYiTiao Zhongguancun, Beijing 100190, China
| | - Dongfang Wang
- School
of Biomedical Engineering and Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Shikufa Mousavi
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Qiancheng Xiong
- Department
of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, United States
- Nanobiology
Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, United States
| | - Qi Shen
- Department
of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, United States
- Nanobiology
Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, United States
- Department
of Molecular Biophysics and Biochemistry, Yale University, 266
Whitney Avenue, New Haven, Connecticut 06511, United States
| | - Yingxu Shang
- National
Center for Nanoscience and Technology, No 11, BeiYiTiao Zhongguancun, Beijing 100190, China
| | - Baoquan Ding
- National
Center for Nanoscience and Technology, No 11, BeiYiTiao Zhongguancun, Beijing 100190, China
| | - Chenxiang Lin
- Department
of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, United States
- Nanobiology
Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, United States
- Department
of Biomedical Engineering, Yale University, 17 Hillhouse Avenue, New Haven, Connecticut 06511, United States
| | - Yonggang Ke
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
| | - Na Liu
- 2nd Physics
Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- Max Planck
Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| |
Collapse
|
12
|
Wang J, Yuan J, Liu J, Zou H, Yang L, Chen H, Qu X. Point-and-shoot Strategy based on Enzyme-assisted DNA "Paper-Cutting" to Construct Arbitrary Planar DNA Nanostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207622. [PMID: 37021738 DOI: 10.1002/smll.202207622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/04/2023] [Indexed: 06/19/2023]
Abstract
DNA self-assembly provides a "bottom-up" route to fabricating complex shapes on the nanometer scale. However, each structure needs to be designed separately and carried out by professionally trained technicians, which seriously restricts its development and application. Herein, a point-and-shoot strategy based on enzyme-assisted DNA "paper-cutting" to construct planar DNA nanostructures using the same DNA origami as the template is reported. Precisely modeling the shapes with high precision in the strategy based on each staple strand of the desired shape structure hybridizes with its nearest neighbor fragments from the long scaffold strand. As a result, some planar DNA nanostructures by one-pot annealing the long scaffold strand and selected staple strands is constructed. The point-and-shoot strategy of avoiding DNA origami staple strands' re-designing based on different shapes breaks through the shape complexity limitation of the planar DNA nanostructures and enhances the simplicity of design and operation. Overall, the strategy's simple operability and great generality enable it to act as a candidate tool for manufacturing DNA nanostructures.
Collapse
Affiliation(s)
- Jingwen Wang
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province and School of Biomedical Engineering, Sun Yat-Sen University, Guangdong, 518107, China
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Junjie Yuan
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province and School of Biomedical Engineering, Sun Yat-Sen University, Guangdong, 518107, China
| | - Jiajia Liu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Haixia Zou
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province and School of Biomedical Engineering, Sun Yat-Sen University, Guangdong, 518107, China
| | - Lin Yang
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province and School of Biomedical Engineering, Sun Yat-Sen University, Guangdong, 518107, China
| | - Hong Chen
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Xiangmeng Qu
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province and School of Biomedical Engineering, Sun Yat-Sen University, Guangdong, 518107, China
| |
Collapse
|
13
|
Lachance‐Brais C, Rammal M, Asohan J, Katolik A, Luo X, Saliba D, Jonderian A, Damha MJ, Harrington MJ, Sleiman HF. Small Molecule-Templated DNA Hydrogel with Record Stiffness Integrates and Releases DNA Nanostructures and Gene Silencing Nucleic Acids. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205713. [PMID: 36752390 PMCID: PMC10131789 DOI: 10.1002/advs.202205713] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/18/2022] [Indexed: 05/31/2023]
Abstract
Deoxyribonucleic acid (DNA) hydrogels are a unique class of programmable, biocompatible materials able to respond to complex stimuli, making them valuable in drug delivery, analyte detection, cell growth, and shape-memory materials. However, unmodified DNA hydrogels in the literature are very soft, rarely reaching a storage modulus of 103 Pa, and they lack functionality, limiting their applications. Here, a DNA/small-molecule motif to create stiff hydrogels from unmodified DNA, reaching 105 Pa in storage modulus is used. The motif consists of an interaction between polyadenine and cyanuric acid-which has 3-thymine like faces-into multimicrometer supramolecular fibers. The mechanical properties of these hydrogels are readily tuned, they are self-healing and thixotropic. They integrate a high density of small, nontoxic molecules, and are functionalized simply by varying the molecule sidechain. They respond to three independent stimuli, including a small molecule stimulus. These stimuli are used to integrate and release DNA wireframe and DNA origami nanostructures within the hydrogel. The hydrogel is applied as an injectable delivery vector, releasing an antisense oligonucleotide in cells, and increasing its gene silencing efficacy. This work provides tunable, stimuli-responsive, exceptionally stiff all-DNA hydrogels from simple sequences, extending these materials' capabilities.
Collapse
Affiliation(s)
| | - Mostafa Rammal
- Department of ChemistryMcGill University801 Sherbrooke St WMontrealH3A 0B8Canada
| | - Jathavan Asohan
- Department of ChemistryMcGill University801 Sherbrooke St WMontrealH3A 0B8Canada
| | - Adam Katolik
- Department of ChemistryMcGill University801 Sherbrooke St WMontrealH3A 0B8Canada
| | - Xin Luo
- Department of ChemistryMcGill University801 Sherbrooke St WMontrealH3A 0B8Canada
| | - Daniel Saliba
- Department of ChemistryMcGill University801 Sherbrooke St WMontrealH3A 0B8Canada
| | - Antranik Jonderian
- Department of ChemistryMcGill University801 Sherbrooke St WMontrealH3A 0B8Canada
| | - Masad J. Damha
- Department of ChemistryMcGill University801 Sherbrooke St WMontrealH3A 0B8Canada
| | | | - Hanadi F. Sleiman
- Department of ChemistryMcGill University801 Sherbrooke St WMontrealH3A 0B8Canada
| |
Collapse
|
14
|
Wang W, Shen Y, Wei B. Controllable dynamics of complex DNA nanostructures. NANOSCALE 2023; 15:4795-4800. [PMID: 36806876 DOI: 10.1039/d2nr05872c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In the past four decades, a variety of self-assembly design frameworks have led to the construction of versatile DNA nanostructures with increasing complexity and controllability. The controllable dynamics of DNA nanostructures has garnered much interest and emerged as a powerful tool for conducting sophisticated tasks at the molecular level. In this minireview, we summarized the controllable reconfigurations of complex DNA nanostructures induced by nucleic acid strands, environmental stimuli and enzymatic treatments. We also envisioned that with the optimization of response time, sensitivity and specificity, dynamic DNA nanostructures have great promise in applications ranging from nanorobotics to life sciences.
Collapse
Affiliation(s)
- Wen Wang
- BGI Research, BGI, Shenzhen 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen 518120, China.
| | - Yue Shen
- BGI Research, BGI, Shenzhen 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen 518120, China.
| | - Bryan Wei
- School of Life Sciences, Tsinghua University-Peking University Center for Life Sciences, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
15
|
Elbahnasawy MA, Nasr ML. DNA-nanostructure-templated assembly of planar and curved lipid-bilayer membranes. Front Chem 2023; 10:1047874. [PMID: 36844038 PMCID: PMC9944057 DOI: 10.3389/fchem.2022.1047874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/21/2022] [Indexed: 02/10/2023] Open
Abstract
Lipid-bilayer nanodiscs and liposomes have been developed to stabilize membrane proteins in order to study their structures and functions. Nanodiscs are detergent-free, water-soluble, and size-controlled planar phospholipid-bilayer platforms. On the other hand, liposomes are curved phospholipid-bilayer spheres with an aqueous core used as drug delivery systems and model membrane platforms for studying cellular activities. A long-standing challenge is the generation of a homogenous and monodispersed lipid-bilayer system with a very wide range of dimensions and curvatures (elongation, bending, and twisting). A DNA-origami template provides a way to control the shapes, sizes, and arrangements of lipid bilayers via enforcing the assembly of lipid bilayers within the cavities created by DNA nanostructures. Here, we provide a concise overview and discuss how to design planar and curved lipid-bilayer membranes by using DNA-origami nanostructures as templates. Finally, we will discuss the potential applications of DNA-origami nanostructures in the structural and functional studies of large membrane proteins and their complexes.
Collapse
Affiliation(s)
- Mostafa A. Elbahnasawy
- Immunology Laboratory, Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Mahmoud L. Nasr
- Renal Division and Engineering in Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
16
|
Cao LP, Li CM, Zhen SJ, Huang CZ. A General Signal Amplifier of Self-Assembled DNA Micelles for Sensitive Quantification of Biomarkers. Anal Chem 2023; 95:1794-1800. [PMID: 36633481 DOI: 10.1021/acs.analchem.2c05415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Owing to the excellent structural rigidity and programmable reaction sites, DNA nanostructures are more and more widely used, but they are limited by high cost, strict sequence requirements, and time-consuming preparation. Herein, a general signal amplifier based on a micelle-supported entropy-driven circuit (MEDC) was designed and prepared for sensitive quantification of biomarkers. By modifying a hydrophobic cholesterol molecule onto a hydrophilic DNA strand, the amphiphilic DNA strand was first prepared and then self-assembled into DNA micelles (DMs) driven by hydrophobic effects. The as-developed DM showed unique advantages of sequence-independence, easy preparation, and low cost. Subsequently, amplifier units DMF and DMTD were successfully fabricated by connecting fuel strands and three-strand duplexes (TDs) to DMs, respectively. Finally, the MEDC was triggered by microRNA-155 (miR-155), which herein acted as a model analyte, resulting in dynamic self-assembly of poly-DNA micelles (PDMs) and causing the recovery of cyanine 3 (Cy3) fluorescence as the DMTD dissociated. Benefiting from the "diffusion effect", the MEDC herein had a nearly 2.9-fold increase in sensitivity and a nearly 97-fold reduction in detection limit compared to conventional EDC. This amplifier exhibited excellent sensitivity of microRNAs, such as miR-155 detection in a dynamic range from 0.05 to 4 nM with a detection limit of 3.1 pM, and demonstrated outstanding selectivity with the distinguishing ability of a single-base mismatched sequence of microRNAs. Overall, the proposed strategy demonstrated that this sequence-independent DNA nanostructure improved the performance of traditional DNA probes and provided a versatile method for the development of DNA nanotechnology in biosensing.
Collapse
Affiliation(s)
- Li Ping Cao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Chun Mei Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Shu Jun Zhen
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
17
|
Li T, Xing W, Yu F, Xue Z, Yang X, Zou G, Zhu Y. Pathogen Identification: Ultrasensitive Nucleic Acid Detection via a Dynamic DNA Nanosystem-Integrated Ratiometric Electrochemical Sensing Strategy. Anal Chem 2022; 94:17725-17732. [PMID: 36472242 DOI: 10.1021/acs.analchem.2c04736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sensitively determining trace nucleic acid is of great significance for pathogen identification. Herein, a dynamic DNA nanosystem-integrated ratiometric electrochemical biosensor was proposed to determine human immunodeficiency virus-associated DNA fragment (HIV-DNA) with high sensitivity and selectivity. The dynamic DNA nanosystem was composed of a target recycling unit and a multipedal DNA walker unit. Both of them could be driven by a toehold-mediated strand displacement reaction, enabling an enzyme-free and isothermal amplification strategy for nucleic acid determination. The target recycling unit could selectively recognize HIV-DNA and activate the multipedal DNA walker unit to roll on the electrode surface, which would lead to bidirectional signal variation for ratiometric readout with cascade signal amplification. Benefiting from the synergistic effect of the dynamic DNA nanosystem and the ratiometric output mode, the ultrasensitive detection of HIV-DNA was achieved in a wide linear range of 6 orders of magnitude with a limit of detection of 36.71 aM. The actual usability of the proposed sensor was also verified in complex biological samples with acceptable performance. This dynamic DNA nanosystem-integrated ratiometric sensing strategy might be promising in the development of reliable point-of-care diagnostic devices for highly sensitive and selective pathogen identification.
Collapse
Affiliation(s)
- Tao Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan250100, China
| | - Wei Xing
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan250001, China
| | - Fengshan Yu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan250100, China
| | - Ziwei Xue
- School of Chemistry and Chemical Engineering, Shandong University, Jinan250100, China
| | - Xingdong Yang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan250100, China
| | - Guizheng Zou
- School of Chemistry and Chemical Engineering, Shandong University, Jinan250100, China
| | - Ye Zhu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan250100, China.,Shenzhen Research Institute of Shandong University, Shenzhen518000, China
| |
Collapse
|
18
|
Symmetry Breaking Charge Transfer in DNA-Templated Perylene Dimer Aggregates. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196612. [PMID: 36235149 PMCID: PMC9571668 DOI: 10.3390/molecules27196612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 11/19/2022]
Abstract
Molecular aggregates are of interest to a broad range of fields including light harvesting, organic optoelectronics, and nanoscale computing. In molecular aggregates, nonradiative decay pathways may emerge that were not present in the constituent molecules. Such nonradiative decay pathways may include singlet fission, excimer relaxation, and symmetry-breaking charge transfer. Singlet fission, sometimes referred to as excitation multiplication, is of great interest to the fields of energy conversion and quantum information. For example, endothermic singlet fission, which avoids energy loss, has been observed in covalently bound, linear perylene trimers and tetramers. In this work, the electronic structure and excited-state dynamics of dimers of a perylene derivative templated using DNA were investigated. Specifically, DNA Holliday junctions were used to template the aggregation of two perylene molecules covalently linked to a modified uracil nucleobase through an ethynyl group. The perylenes were templated in the form of monomer, transverse dimer, and adjacent dimer configurations. The electronic structure of the perylene monomers and dimers were characterized via steady-state absorption and fluorescence spectroscopy. Initial insights into their excited-state dynamics were gleaned from relative fluorescence intensity measurements, which indicated that a new nonradiative decay pathway emerges in the dimers. Femtosecond visible transient absorption spectroscopy was subsequently used to elucidate the excited-state dynamics. A new excited-state absorption feature grows in on the tens of picosecond timescale in the dimers, which is attributed to the formation of perylene anions and cations resulting from symmetry-breaking charge transfer. Given the close proximity required for symmetry-breaking charge transfer, the results shed promising light on the prospect of singlet fission in DNA-templated molecular aggregates.
Collapse
|
19
|
Zhang J, Yu J, Jin J, Zhou X, Liang H, Zhou F, Jiang W. Bridge DNA guided assembly of nanoparticles to program chemical reaction networks. NANOSCALE 2022; 14:12162-12173. [PMID: 35968811 DOI: 10.1039/d2nr03948f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bridge DNA is an essential structure for programming chemical reaction networks. In this work, a bridge DNA guided assembly of nanoparticles has been constructed to program one-step and multi-step reactions via toehold-mediated strand displacement reaction for higher structural complexity and dynamic regulation behaviors. The structures of the bridge DNA linker and the length of the toeholds have an essential effect on successful construction of a molecular machine and achievement of multi-step reactions. A six-base toehold is enough to achieve the toehold-mediated strand displacement reaction in bridge DNA. When the difference between toehold length-2 and toehold length-1 is equal to or larger than one, the multi-step reaction can be triggered and performed by the driving of bridge DNA. For application, both simultaneous detection of two target DNA strands as well as the construction of logic gates can be achieved by changing the four single-stranded tails on the bridge DNA. In principle, this approach of the bridge DNA guiding the assembly of AuNPs can implement any behavior that can be expressed mathematically.
Collapse
Affiliation(s)
- Jianing Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jiayu Yu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jing Jin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Xiang Zhou
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Haojun Liang
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Feng Zhou
- Personalized Prescribing Inc., Toronto, ON M3C 3E5, Canada
| | - Wei Jiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
20
|
Eze NA, Milam VT. Quantitative Analysis of In Situ Locked Nucleic Acid and DNA Competitive Displacement Events on Microspheres. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6871-6881. [PMID: 35617467 DOI: 10.1021/acs.langmuir.2c00220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Synthetic analogues of natural oligonucleotides known as locked nucleic acids (LNAs) offer superior nuclease resistance and cytocompatibility for numerous scenarios ranging from in vitro detection to intracellular imaging of nucleic acids. While recognized as stronger hybridization partners than equivalent DNA residues, quantitative analysis of LNA hybridization activity is lacking, especially with respect to competitive displacement of the original hybridization partner by another oligonucleotide. In the current study, we perform in situ measurements of toehold-mediated competitive displacement of soluble, fluorescently labeled primary targets from probe strands immobilized on microspheres using high throughput flow cytometry. Both LNA-DNA hybrid sequences and pure DNA sequences are employed as the immobilized strands, as soluble, fluorescently labeled 9-base-long primary targets, and as unlabeled 15-base-long secondary or competitive targets. In addition to comparing chemically substituted and unsubstituted sequences, we explore the effects of mismatched primary targets and the location of the toehold segment within the primary duplexes on the resulting displacement profiles. The primary duplex or double-stranded probe (dsprobe) systems implemented here exhibited varying responses to unlabeled secondary targets ranging from surprisingly modest primary target displacement activity despite the presence of a six base-long nucleotide toehold segment at the dsprobe free end to distinctive displacement profiles sensitive to LNA substitutions and the placement of the toehold segment closer to the microsphere surface.
Collapse
|
21
|
Yu L, Cheng J, Wang D, Pan V, Chang S, Song J, Ke Y. Stress in DNA Gridiron Facilitates the Formation of Two-Dimensional Crystalline Structures. J Am Chem Soc 2022; 144:9747-9752. [PMID: 35578912 DOI: 10.1021/jacs.2c02009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Programmable DNA nanotechnology has generated some of the most intricate self-assembled nanostructures and has been employed in a growing number of applications, including functional nanomaterials, nanofabrication, biophysics, photonics, molecular machines, and drug delivery. An important design rule for DNA nanostructures is to minimize the mechanical stress to reduce the potential energy in these nanostructures whenever it is possible. This work revisits the DNA gridiron design consisting of Holliday junctions and compares the self-assembly of the canonical DNA gridiron with a new design of DNA gridiron, which has a higher degree of mechanical stress because of the interweaving of DNA helices. While the interweaving DNA gridiron indeed exhibits lower yield, compared to its canonical counterpart of a similar size, we discover that the mechanical stress within the interweaving gridiron can promote the formation of the two-dimensional crystalline lattice instead of nanotubes. Furthermore, tuning the design of interweaving gridiron leads to the change of overall crystal size and regularity of geometry. Interweaving DNA double helices represents a new design strategy in the self-assembly of DNA nanostructures. Furthermore, the discovery of the new role of mechanical stress in the self-assembly of DNA nanostructures provides useful knowledge to DNA nanotechnology practitioners: a more balanced view regarding mechanical stress can be considered when designing future DNA nanostructures.
Collapse
Affiliation(s)
- Lei Yu
- The State Key Laboratory of Refractories and Metallurgy, the Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
| | - Jin Cheng
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dongfang Wang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
| | - Victor Pan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
| | - Shuai Chang
- The State Key Laboratory of Refractories and Metallurgy, the Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Jie Song
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences; The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yonggang Ke
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
22
|
Chowdhury A, Díaz S, Huff JS, Barclay MS, Chiriboga M, Ellis GA, Mathur D, Patten LK, Sup A, Hallstrom N, Cunningham PD, Lee J, Davis PH, Turner DB, Yurke B, Knowlton WB, Medintz IL, Melinger JS, Pensack RD. Tuning between Quenching and Energy Transfer in DNA-Templated Heterodimer Aggregates. J Phys Chem Lett 2022; 13:2782-2791. [PMID: 35319215 PMCID: PMC8978177 DOI: 10.1021/acs.jpclett.2c00017] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/15/2022] [Indexed: 05/07/2023]
Abstract
Molecular excitons, which propagate spatially via electronic energy transfer, are central to numerous applications including light harvesting, organic optoelectronics, and nanoscale computing; they may also benefit applications such as photothermal therapy and photoacoustic imaging through the local generation of heat via rapid excited-state quenching. Here we show how to tune between energy transfer and quenching for heterodimers of the same pair of cyanine dyes by altering their spatial configuration on a DNA template. We assemble "transverse" and "adjacent" heterodimers of Cy5 and Cy5.5 using DNA Holliday junctions. We find that the transverse heterodimers exhibit optical properties consistent with excitonically interacting dyes and fluorescence quenching, while the adjacent heterodimers exhibit optical properties consistent with nonexcitonically interacting dyes and disproportionately large Cy5.5 emission, suggestive of energy transfer between dyes. We use transient absorption spectroscopy to show that quenching in the transverse heterodimer occurs via rapid nonradiative decay to the ground state (∼31 ps) and that in the adjacent heterodimer rapid energy transfer from Cy5 to Cy5.5 (∼420 fs) is followed by Cy5.5 excited-state relaxation (∼700 ps). Accessing such drastically different photophysics, which may be tuned on demand for different target applications, highlights the utility of DNA as a template for dye aggregation.
Collapse
Affiliation(s)
- Azhad
U. Chowdhury
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, and Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Sebastián
A. Díaz
- Center for Bio/Molecular
Science and Engineering Code 6900 and Electronics Science
and Technology Division Code 6800, U.S.
Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Jonathan S. Huff
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, and Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Matthew S. Barclay
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, and Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Matthew Chiriboga
- Center for Bio/Molecular
Science and Engineering Code 6900 and Electronics Science
and Technology Division Code 6800, U.S.
Naval Research Laboratory, Washington, D.C. 20375, United States
- Volgenau
School of Engineering, George Mason University, Fairfax, Virginia 22030, United States
| | - Gregory A. Ellis
- Center for Bio/Molecular
Science and Engineering Code 6900 and Electronics Science
and Technology Division Code 6800, U.S.
Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Divita Mathur
- Center for Bio/Molecular
Science and Engineering Code 6900 and Electronics Science
and Technology Division Code 6800, U.S.
Naval Research Laboratory, Washington, D.C. 20375, United States
- College
of
Science, George Mason University, Fairfax, Virginia 22030, United States
| | - Lance K. Patten
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, and Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Aaron Sup
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, and Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Natalya Hallstrom
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, and Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Paul D. Cunningham
- Center for Bio/Molecular
Science and Engineering Code 6900 and Electronics Science
and Technology Division Code 6800, U.S.
Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Jeunghoon Lee
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, and Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Paul H. Davis
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, and Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Daniel B. Turner
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, and Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Bernard Yurke
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, and Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - William B. Knowlton
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, and Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Igor L. Medintz
- Center for Bio/Molecular
Science and Engineering Code 6900 and Electronics Science
and Technology Division Code 6800, U.S.
Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Joseph S. Melinger
- Center for Bio/Molecular
Science and Engineering Code 6900 and Electronics Science
and Technology Division Code 6800, U.S.
Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Ryan D. Pensack
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, and Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| |
Collapse
|
23
|
Zhou Y, Dong J, Zhou C, Wang Q. Finite Assembly of Three-Dimensional DNA Hierarchical Nanoarchitectures through Orthogonal and Directional Bonding. Angew Chem Int Ed Engl 2022; 61:e202116416. [PMID: 35147275 DOI: 10.1002/anie.202116416] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Indexed: 01/01/2023]
Abstract
Reliable orthogonal bonding with precise and flexible orientation control would be ideal for building finite complex nanostructures via self-assembly. Employing a three-dimensional (3D) DNA origami, hexagonal prism DNA origami (HDO), as building block, we demonstrate it is practical to construct finite hierarchical nanoarchitectures with complicated conformations through orthogonal and directional bonding. The as-designed HDO building block has twelve prescribed directional valences in 3D space and each of them supports two opposite orientations, yielding the capability to generate abundant directional bonding. Meanwhile, we minimize the thorny non-specific interactions among HDOs and enable the orthogonal bonding between any two valences based on self-similar designing. Consequently, various hierarchical nanostructures are prepared at will simply by the combination of HDOs with appropriate valences. We believe this route towards hierarchically assembly is inspiring and hope it will facilitate the fabrication of functional superstructures.
Collapse
Affiliation(s)
- Yihao Zhou
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, China.,School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, China
| | - Jinyi Dong
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, China
| | - Chao Zhou
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, China.,School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, China
| | - Qiangbin Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, China.,School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, China.,College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, China
| |
Collapse
|
24
|
Zhou Y, Dong J, Zhou C, Wang Q. Finite Assembly of Three‐Dimensional DNA Hierarchical Nanoarchitectures through Orthogonal and Directional Bonding. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yihao Zhou
- CAS Key Laboratory of Nano-Bio Interface Suzhou Key Laboratory of Functional Molecular Imaging Technology Division of Nanobiomedicine and i-Lab Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences China
- School of Nano-Tech and Nano-Bionics University of Science and Technology of China China
| | - Jinyi Dong
- CAS Key Laboratory of Nano-Bio Interface Suzhou Key Laboratory of Functional Molecular Imaging Technology Division of Nanobiomedicine and i-Lab Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences China
| | - Chao Zhou
- CAS Key Laboratory of Nano-Bio Interface Suzhou Key Laboratory of Functional Molecular Imaging Technology Division of Nanobiomedicine and i-Lab Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences China
- School of Nano-Tech and Nano-Bionics University of Science and Technology of China China
| | - Qiangbin Wang
- CAS Key Laboratory of Nano-Bio Interface Suzhou Key Laboratory of Functional Molecular Imaging Technology Division of Nanobiomedicine and i-Lab Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences China
- School of Nano-Tech and Nano-Bionics University of Science and Technology of China China
- College of Materials Sciences and Opto-Electronic Technology University of Chinese Academy of Sciences China
| |
Collapse
|
25
|
Lee JY, Kim M, Lee C, Kim DN. Characterizing and Harnessing the Mechanical Properties of Short Single-Stranded DNA in Structured Assemblies. ACS NANO 2021; 15:20430-20441. [PMID: 34870958 DOI: 10.1021/acsnano.1c08861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Precise engineering of DNA structures is of growing interest to solve challenging problems in biomolecular applications and beyond. The introduction of single-stranded DNA (ssDNA) into the DNA structure can play a pivotal role in providing high controllability of critical structural features. Herein, we present a computational model of ssDNA with structural applications to harness its characteristics. The nonlinear properties of nucleotide gaps are systematically characterized to construct a structural model of the ssDNA across length scales with the incorporation of a finite element framework. The proposed method shows the programmability of structural bending, twisting, and persistence length by implementing the ssDNA in various DNA structures with experimental validation. Our results have significant implications for DNA nanotechnology in expanding the boundary of design and analysis of structural shape and stiffness.
Collapse
Affiliation(s)
- Jae Young Lee
- Institute of Advanced Machines and Design, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Myoungseok Kim
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Chanseok Lee
- Institute of Advanced Machines and Design, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Do-Nyun Kim
- Institute of Advanced Machines and Design, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
- Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| |
Collapse
|
26
|
Huff JS, Turner DB, Mass OA, Patten LK, Wilson CK, Roy SK, Barclay MS, Yurke B, Knowlton WB, Davis PH, Pensack RD. Excited-State Lifetimes of DNA-Templated Cyanine Dimer, Trimer, and Tetramer Aggregates: The Role of Exciton Delocalization, Dye Separation, and DNA Heterogeneity. J Phys Chem B 2021; 125:10240-10259. [PMID: 34473494 PMCID: PMC8450906 DOI: 10.1021/acs.jpcb.1c04517] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
DNA-templated molecular
(dye) aggregates are a novel class of materials
that have garnered attention in a broad range of areas including light
harvesting, sensing, and computing. Using DNA to template dye aggregation
is attractive due to the relative ease with which DNA nanostructures
can be assembled in solution, the diverse array of nanostructures
that can be assembled, and the ability to precisely position dyes
to within a few Angstroms of one another. These factors, combined
with the programmability of DNA, raise the prospect of designer materials
custom tailored for specific applications. Although considerable progress
has been made in characterizing the optical properties and associated
electronic structures of these materials, less is known about their
excited-state dynamics. For example, little is known about how the
excited-state lifetime, a parameter essential to many applications,
is influenced by structural factors, such as the number of dyes within
the aggregate and their spatial arrangement. In this work, we use
a combination of transient absorption spectroscopy and global target
analysis to measure excited-state lifetimes in a series of DNA-templated
cyanine dye aggregates. Specifically, we investigate six distinct
dimer, trimer, and tetramer aggregates—based on the ubiquitous
cyanine dye Cy5—templated using both duplex and Holliday junction
DNA nanostructures. We find that these DNA-templated Cy5 aggregates
all exhibit significantly reduced excited-state lifetimes, some by
more than 2 orders of magnitude, and observe considerable variation
among the lifetimes. We attribute the reduced excited-state lifetimes
to enhanced nonradiative decay and proceed to discuss various structural
factors, including exciton delocalization, dye separation, and DNA
heterogeneity, that may contribute to the observed reduction and variability
of excited-state lifetimes. Guided by insights from structural modeling,
we find that the reduced lifetimes and enhanced nonradiative decay
are most strongly correlated with the distance between the dyes. These
results inform potential tradeoffs between dye separation, excitonic
coupling strength, and excited-state lifetime that motivate deeper
mechanistic understanding, potentially via further dye and dye template
design.
Collapse
Affiliation(s)
- Jonathan S Huff
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Daniel B Turner
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Olga A Mass
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Lance K Patten
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Christopher K Wilson
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Simon K Roy
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Matthew S Barclay
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Bernard Yurke
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States.,Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - William B Knowlton
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States.,Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Paul H Davis
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Ryan D Pensack
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
| |
Collapse
|
27
|
Wei W, Lin H, Hao T, Wang S, Hu Y, Guo Z, Luo X. DNA walker-mediated biosensor for target-triggered triple-mode detection of Vibrio parahaemolyticus. Biosens Bioelectron 2021; 186:113305. [PMID: 33990037 DOI: 10.1016/j.bios.2021.113305] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/27/2021] [Accepted: 05/02/2021] [Indexed: 01/04/2023]
Abstract
Herein, we have constructed a target-triggered and DNA walker-mediated biosensor with triple signal (BTS) outputs mode for sensitive and reliable detection of pathogenic bacteria. Vibrio parahaemolyticus (VP) being the detection target model, the aptamer conformational changes induced by VP have been designed to activate the DNA walk on the modifiable and conductive surface of Fe3O4 nanoparticles to generate triple signal outputs, including electrochemiluminescence (ECL), fast scan cyclic voltammetry (FSCV) and fluorescent pixel counting (FLPC). Limits of quantification (LOQ) of VP were as low as 1 CFU⋅mL-1 by ECL with a linear range of 1-106 CFU⋅mL-1, 1 CFU⋅mL-1 by FSCV with a linear range of 1-106 CFU⋅mL-1, and 10 CFU⋅mL-1 by FLPC with a linear range of 10-107 CFU⋅mL-1 respectively, all squared correlation coefficients R2 being > 0.99. In addition, optical and electrochemical results, signal-on and signal-off results, electrode phase and solution phase results could be mutually verified by integrating of multiple detection techniques in one biosensor, greatly improving the accuracy and reliability. Therefore, the designed BTS has provided a powerful strategy for pathogenic bacteria detection considering its high detection sensitivity and accuracy, exhibiting great potential in food safety, water quality and biological contamination.
Collapse
Affiliation(s)
- Wenting Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Han Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
| | - Tingting Hao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Sui Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Yufang Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Zhiyong Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
| | - Xingyu Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| |
Collapse
|
28
|
Abstract
Structural DNA nanotechnology is a pioneering biotechnology that presents the opportunity to engineer DNA-based hardware that will mediate a profound interface to the nanoscale. To date, an enormous library of shaped 3D DNA nanostructures have been designed and assembled. Moreover, recent research has demonstrated DNA nanostructures that are not only static but can exhibit specific dynamic motion. DNA nanostructures have thus garnered significant research interest as a template for pursuing shape and motion-dependent nanoscale phenomena. Potential applications have been explored in many interdisciplinary areas spanning medicine, biosensing, nanofabrication, plasmonics, single-molecule chemistry, and facilitating biophysical studies. In this review, we begin with a brief overview of general and versatile design techniques for 3D DNA nanostructures as well as some techniques and studies that have focused on improving the stability of DNA nanostructures in diverse environments, which is pivotal for its reliable utilization in downstream applications. Our main focus will be to compile a wide body of existing research on applications of 3D DNA nanostructures that demonstrably rely on the versatility of their mechanical design. Furthermore, we frame reviewed applications into three primary categories, namely encapsulation, surface templating, and nanomechanics, that we propose to be archetypal shape- or motion-related functions of DNA nanostructures found in nanoscience applications. Our intent is to identify core concepts that may define and motivate specific directions of progress in this field as we conclude the review with some perspectives on the future.
Collapse
|