1
|
Doremus JG, Lotsi B, Sharma A, McGrier PL. Photocatalytic applications of covalent organic frameworks: synthesis, characterization, and utility. NANOSCALE 2024. [PMID: 39495099 DOI: 10.1039/d4nr03204g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Photocatalysis has emerged as an energy efficient and safe method to perform organic transformations, and many semiconductors have been studied for use as photocatalysts. Covalent organic frameworks (COFs) are an established class of crystalline, porous materials constructed from organic units that are easily tunable. COFs importantly display semiconductor properties and respectable photoelectric behaviour, making them a strong prospect as photocatalysts. In this review, we summarize the design, synthetic methods, and characterization techniques for COFs. Strategies to boost photocatalytic performance are also discussed. Then the applications of COFs as photocatalysts in a variety of reactions are detailed. Finally, a summary, challenges, and future opportunities for the development of COFs as efficient photocatalysts are entailed.
Collapse
Affiliation(s)
- Jared G Doremus
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Bertha Lotsi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Aadarsh Sharma
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Psaras L McGrier
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| |
Collapse
|
2
|
Lin H, Zhang H, Li Y, Yuan F, Zheng X, He L, Li L, Zhang Y, Xiang S, Chen B, Zhang Z. A 3D Robust and Microporous B←N Framework with 8-connected Sandwich Nodes for Efficient Separation of Hexane Isomers. Angew Chem Int Ed Engl 2024:e202415968. [PMID: 39462762 DOI: 10.1002/anie.202415968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024]
Abstract
Recently B←N organic frameworks (BNFs) have gained substantial attention owing to their unique dative bond energy, which imparts them with specialized functionalities across a broad spectrum of applications. Despite previous reports on BNFs with permanent porosity, research endeavors towards three-dimensional (3D) BNFs with similar properties are scarce, with no report of robust 3D BNFs featuring permanent porosity to date. Herein, electrostatic complementary strategy is proposed to construct the first example of 3D robust and microporous BNF, BNF-100, featuring a reo topology with 8-connected sandwich nodes assembled via dative B←N bonds. The activated form BNF-100 a exhibits excellent chemical stability and permanent porosity with Langmuir surface area of 645.9 m2 g-1 and pore volume of 0.23 cm3 g-1. BNF-100 a can efficiently separate hexane isomers through sieving mechanisms, as confirmed by vapor adsorption experiments and dynamic breakthrough tests, surpassing the performance of most MOF materials. Finally, we achieved the purification of different branched hexane isomers using a single breakthrough column in a combined breakthrough and purging experiment, which is the first reported instance in the literature on hexane isomer separation.
Collapse
Affiliation(s)
- Hongyu Lin
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Hao Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Yunbin Li
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Furong Yuan
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Xiaoqing Zheng
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Lei He
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Lu Li
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Yongfan Zhang
- College of Chemistry, Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, Fuzhou, China
| | - Shengchang Xiang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Banglin Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Zhangjing Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| |
Collapse
|
3
|
Yue JY, Luo JX, Pan ZX, Xu Q, Yang P, Tang B. Phenanthridine-based Covalent Organic Frameworks for Boosting Overall Solar H 2O 2 Production. Angew Chem Int Ed Engl 2024:e202417115. [PMID: 39363753 DOI: 10.1002/anie.202417115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/05/2024]
Abstract
Solar-driven H2O2 production via the oxygen reduction reaction (ORR) and water oxidation reaction (WOR) dual channels is green and sustainable but severely restricted by the sluggish reaction kinetics. Constructing intriguing photocatalysts with effective active centers is a shortcut to breaking the kinetic bottleneck with great significance. Herein, we synthesize two novel neutral phenanthridine-based covalent organic frameworks (PD-COF1 and PD-COF2) for photosynthesizing H2O2. Compared to the no phenanthridine counterpart (AN-COF), the H2O2 photosynthetic activities of PD-COF1 and PD-COF2 are markedly boosted. In air and pure water without sacrificial agents, under Xe lamp and natural sunlight, the H2O2 photogeneration rate of PD-COF2 is 6103 and 3646 μmol g-1 h-1, respectively. Further experimental and theoretical inspections demonstrate that introducing phenanthridine units into COFs smoothly modulates the charge carrier dynamics and thermodynamically favors the generation of crucial OOH* and OH* intermediates in the ORR and WOR paths, respectively. Additionally, this is the first time the neutral phenanthridine moiety serves as the photooxidation unit for 2e- WOR towards H2O2 photoproduction. The current work sheds light on exploring novel catalytic centers for high-performance H2O2 evolution.
Collapse
Affiliation(s)
- Jie-Yu Yue
- Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, P. R. China
| | - Jing-Xian Luo
- Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, P. R. China
| | - Zi-Xian Pan
- Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, P. R. China
| | - Qing Xu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai, 201210, P. R. China
| | - Peng Yang
- Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, P. R. China
| | - Bo Tang
- Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, P. R. China
- Laoshan Laboratory, Qingdao, 266200, P. R. China
| |
Collapse
|
4
|
Meng QW, Li J, Lai Z, Xian W, Wang S, Chen F, Dai Z, Zhang L, Yin H, Ma S, Sun Q. Optimizing selectivity via membrane molecular packing manipulation for simultaneous cation and anion screening. SCIENCE ADVANCES 2024; 10:eado8658. [PMID: 39321297 PMCID: PMC11423885 DOI: 10.1126/sciadv.ado8658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 08/21/2024] [Indexed: 09/27/2024]
Abstract
Advancing membranes with enhanced solute-solute selectivity is essential for expanding membrane technology applications, yet it presents a notable challenge. Drawing inspiration from the unparalleled selectivity of biological systems, which benefit from the sophisticated spatial organization of functionalities, we posit that manipulating the arrangement of the membrane's building blocks, an aspect previously given limited attention, can address this challenge. We demonstrate that optimizing the face-to-face orientation of building blocks during the assembly of covalent-organic-framework (COF) membranes improves ion-π interactions with multivalent ions. This optimization leads to extraordinary selectivity in differentiating between monovalent cations and anions from their multivalent counterparts, achieving selectivity factors of 214 for K+/Al3+ and 451 for NO3-/PO43-. Leveraging this attribute, the COF membrane facilitates the direct extraction of NaCl from seawater with a purity of 99.57%. These findings offer an alternative approach for designing highly selective membrane materials, offering promising prospects for advancing membrane-based technologies.
Collapse
Affiliation(s)
- Qing-Wei Meng
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jianguo Li
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhuozhi Lai
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Weipeng Xian
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Sai Wang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Fang Chen
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhifeng Dai
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Li Zhang
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Hong Yin
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, 1508 W Mulberry St., Denton, TX 76201, USA
| | - Qi Sun
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
5
|
Wang K, Hou B, Dong J, Niu H, Liu Y, Cui Y. Controlling the Degree of Interpenetration in Chiral Three-Dimensional Covalent Organic Frameworks via Steric Tuning. J Am Chem Soc 2024; 146:21466-21475. [PMID: 39046143 DOI: 10.1021/jacs.4c04183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Network interpenetration plays a crucial role in functionalizing porous framework materials. However, controlling the degree of interpenetration in covalent organic frameworks (COFs) to influence their pore sizes, shapes, and functionalities still remains a significant challenge. Here, we demonstrate a steric tuning strategy to control the degree of COF interpenetration and modulate their physicochemical properties. By imine condensations of 1,1'-bi-2-naphthol-derived tetraaldehydes bearing different alkyl substituents with the monomer tetra(p-aminophenyl)-methane, we synthesized and characterized a family of two-component and three-component chiral COFs with different interpenetrated dia networks. The alkyl groups are periodically appended on the pore walls, and their types/contents that can be synthetically tuned control the interpenetration degree of COFs by minimizing repulsive interactions between the alkyl groups. Specifically, the COF with -OH groups adopts an interpenetrated dia-c5 topology, those with -OMe/-OEt groups take an interpenetrated dia-c4 topology, whereas those with the bulky -OnPr/-OnBu groups exhibit a noninterpenetrated dia-c1 topology. The multivariate COFs with both -OH and -OnBu groups display either a noninterpenetrated or dia-c5 topology, depending on the proportion of -OnBu groups. The extent of interpenetration in COFs significantly affects their porosity, thermal stability, and chemical stability, resulting in varying selective performances in the adsorption and separation of dyes and asymmetric catalysis. This work highlights the potential of using steric hindrance to tune and control interpenetration, porosity, stability, and functionalities of COFs materials, broadening the range of their applications.
Collapse
Affiliation(s)
- Kaixuan Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- School of Materials Science & Engineering, Anhui University, Hefei 230601, P. R. China
| | - Bang Hou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jinqiao Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Helin Niu
- Key Laboratory of Functional Inorganic Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, P. R. China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
6
|
Elewa AM, Mekhemer IMA, El-Mahdy AFM, Sabbah A, Chen SY, Ting LY, Abdelnaser S, Chou HH. Room-Temperature Synthesis of Covalent Organic Frameworks using Gamma-Irradiation in Open-Air Conditions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311472. [PMID: 38651243 DOI: 10.1002/smll.202311472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/03/2024] [Indexed: 04/25/2024]
Abstract
Covalent organic frameworks (COFs), which have layered stacking structures, extended π-conjugation, and periodic frameworks have become a promising class of materials for a wide range of applications. However, their synthetic pathways frequently need high temperatures, enclosed systems under high pressures, an inert atmosphere, and extended reaction time, which restrict their practicality in real-world applications. Herein, the use of gamma irradiation is presented to synthesize highly crystalline COFs at room temperature under an open-air condition within a short time. This is demonstrated that there is no significant difference in crystallinity of COFs by gamma irradiation under air, N2 or Ar atmosphere conditions. Moreover, this approach can successfully fabricate COFs in the vessel with different degrees of transparency or even in a plastic container. Importantly, this strategy is applicable not only to imine linkage of COFs but also effective to the imide linkages of COFs. Most importantly, these COFs demonstrate improved crystallinity, surface area, and thermal stability in comparison to the corresponding materials synthesized via the solvothermal method. Finally, a COF synthesized through gamma irradiation exhibits remarkable photocatalytic activity in promoting the sacrificial hydrogen evolution from water, displaying a more catalytic efficiency compared with that of its solvothermal analogue.
Collapse
Affiliation(s)
- Ahmed M Elewa
- Department of Chemical Engineering, National Tsing Hua University, Kuang-Fu Rd., Hsinchu, 300044, Taiwan
- Department of Nuclear Chemistry, Hot Laboratories Center, Atomic Energy Authority, Cairo, 13759, Egypt
| | - Islam M A Mekhemer
- Department of Chemical Engineering, National Tsing Hua University, Kuang-Fu Rd., Hsinchu, 300044, Taiwan
| | - Ahmed F M El-Mahdy
- Department of Materials and Optoelectronic Science, Center of Crystal Research, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Amr Sabbah
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
| | - Shih-Yuan Chen
- Energy Catalyst Technology Group, Energy Process Research Institute, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki, 305-8559, Japan
| | - Li-Yu Ting
- Department of Chemical Engineering, National Tsing Hua University, Kuang-Fu Rd., Hsinchu, 300044, Taiwan
| | - Shimaa Abdelnaser
- Department of Materials and Optoelectronic Science, Center of Crystal Research, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Ho-Hsiu Chou
- Department of Chemical Engineering, National Tsing Hua University, Kuang-Fu Rd., Hsinchu, 300044, Taiwan
- College of Semiconductor Research, National Tsing Hua University, Hsinchu, 300044, Taiwan
- Photonics Research Center, National Tsing Hua University, Hsinchu, 300044, Taiwan
| |
Collapse
|
7
|
Wu Y, Xu S, Ding F, Zhang W, Liu H. A Type of Ferrocene-Based Derivative FE-1 COF Material for Glycopeptide and Phosphopeptide Selective Enrichment. J Funct Biomater 2024; 15:185. [PMID: 39057306 PMCID: PMC11277842 DOI: 10.3390/jfb15070185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
In this work, a new type of FE-1 COF material is prepared by a reversible imine condensation reaction with diaminoferrocene and diaminodiformaldehyde as materials. The material is connected by imine bonds to form a COF skeleton, and the presence of plenty of nitrogen-containing groups gives the material good hydrophilicity; the presence of metal Fe ions provides the material application potential in the enrichment of phosphopeptides. According to the different binding abilities of N-glycopeptide and phosphopeptide on FE-1 COF, it can simultaneously enrich N-glycopeptide and phosphopeptide through different elution conditions to realize its controllable and selective enrichment. Using the above characteristics, 18 phosphopeptides were detected from α-casein hydrolysate, 8 phosphopeptides were detected from β-casein hydrolysate and 21 glycopeptides were detected from IgG hydrolysate. Finally, the gradual elution strategy was used; 16 phosphopeptides and 19 glycopeptides were detected from the α-casein hydrolysate and IgG hydrolysate. The corresponding glycopeptides and phosphopeptides were identified from the human serum. It proves that the FE-1 COF material has a good enrichment effect on phosphopeptides and glycopeptides.
Collapse
Affiliation(s)
- Yu Wu
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; (Y.W.); (S.X.)
| | - Sen Xu
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; (Y.W.); (S.X.)
| | - Fengjuan Ding
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chempistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weibing Zhang
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; (Y.W.); (S.X.)
| | - Haiyan Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chempistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
8
|
Zhang W, Sun Q, Zhu Y, Sun J, Wu Z, Tian N. High-Performance Trimethylamine Sensor Based on an Imine Covalent Organic Framework. ACS Sens 2024; 9:3262-3271. [PMID: 38809959 DOI: 10.1021/acssensors.4c00613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
As trimethylamine (TMA) is widely used in agriculture and industry, inhalation of TMA can cause very serious negative effects on human health. However, most of the current gas sensors for detecting TMA are commonly performed at high temperatures and cannot meet market needs. Inspired by this, we prepared imine covalent organic frameworks (TB-COF) synthesized from two monomers, 1,3,5-tris(4-aminophenyl)benzene (TAPB) and 1,3,5-benzotricarboxaldehyde (BTCA), using acetic acid as a catalyst at room temperature. Based on this, three sensors were prepared for gas sensitivity testing, namely, TA, BT, and TB-COF sensors. The three sensors were tested for 15 different gases at room temperature. From the whole gas sensitivity data, the TB-COF sensor made by compositing TA and BT has a higher sensitivity (6845.9%) to TMA at 500 ppm, which is 6.1 and 5.4 times higher than the response of TA and BT sensors, respectively. The TB-COF sensor adsorbs and desorbs TMA in a controlled 23 s cycle with a low detection limit of 28.6 ppb. This result indicates that TB-COF prepared at room temperature can be used as a gas-sensitive sensing material for real-time monitoring of TMA. The gas sensing results demonstrate the great potential of COFs for sensor development and application and provide ideas for further development of COFs-based gas sensors.
Collapse
Affiliation(s)
- Weiyu Zhang
- School of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China
- School of Materials Science and Engineering, Xinjiang University, Urumqi, Xinjiang 830046, China
- Xinjiang Key Laboratory of Solid-State Physics and Devices, Urumqi, Xinjiang 830046, China
| | - Qihua Sun
- School of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China
- School of Materials Science and Engineering, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Yuqing Zhu
- School of Materials Science and Engineering, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Jun Sun
- School of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China
- School of Materials Science and Engineering, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Zhaofeng Wu
- School of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China
- School of Materials Science and Engineering, Xinjiang University, Urumqi, Xinjiang 830046, China
- Xinjiang Key Laboratory of Solid-State Physics and Devices, Urumqi, Xinjiang 830046, China
| | - Ning Tian
- School of Materials Science and Engineering, Xinjiang University, Urumqi, Xinjiang 830046, China
- Xinjiang Key Laboratory of Solid-State Physics and Devices, Urumqi, Xinjiang 830046, China
| |
Collapse
|
9
|
Gao Y, Li S, Gong L, Li J, Qi D, Liu N, Bian Y, Jiang J. Unprecedented POSS-Linked 3D Covalent Organic Frameworks with 2-Fold Interpenetrated scu or sqc Topology Regulated by Porphyrin Center for Photocatalytic CO 2 Reduction. Angew Chem Int Ed Engl 2024; 63:e202404156. [PMID: 38619506 DOI: 10.1002/anie.202404156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/16/2024]
Abstract
The synthesis and characterization of porphyrin center regulated three-dimensional covalent organic frameworks (COFs) with 2-fold interpenetrated scu or sqc topology have been investigated. These COFs exhibit unique structural features and properties, making them promising candidates for photocatalytic applications in CO2 reduction and artemisinin synthesis. The porphyrin center serves as an anchor for metal ions, allowing precise control over structures and functions of the frameworks. Furthermore, the metal coordination within the framework imparts desirable catalytic properties, enabling their potential use in photocatalytic reactions. Overall, these porphyrin center regulated metal-controlled COFs offer exciting opportunities for the development of advanced materials with tailored functionalities.
Collapse
Affiliation(s)
- Ying Gao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Senzhi Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Lei Gong
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, China
| | - Jing Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Dongdong Qi
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Naifang Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yongzhong Bian
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Daxing Research Institute, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Daxing Research Institute, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
10
|
Wang X, Xie H, Sengupta D, Sha F, Otake KI, Chen Y, Idrees KB, Kirlikovali KO, Son FA, Wang M, Ren J, Notestein JM, Kitagawa S, Farha OK. Precise Modulation of CO 2 Sorption in Ti 8Ce 2-Oxo Clusters: Elucidating Lewis Acidity of the Ce Metal Sites and Structural Flexibility. J Am Chem Soc 2024; 146:15130-15142. [PMID: 38795041 DOI: 10.1021/jacs.4c01092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2024]
Abstract
Investigating the structure-property correlation in porous materials is a fundamental and consistent focus in various scientific domains, especially within sorption research. Metal oxide clusters with capping ligands, characterized by intrinsic cavities formed through specific solid-state packing, demonstrate significant potential as versatile platforms for sorption investigations due to their precisely tunable atomic structures and inherent long-range order. This study presents a series of Ti8Ce2-oxo clusters with subtle variations in coordinated linkers and explores their sorption behavior. Notably, Ti8Ce2-BA (BA denotes benzoic acid) manifests a distinctive two-step profile during the CO2 adsorption, accompanied by a hysteresis loop. This observation marks a new instance within the metal oxide cluster field. Of intrigue, the presence of unsaturated Ce(IV) sites was found to be correlated with the stepped sorption property. Moreover, the introduction of an electrophilic fluorine atom, positioned ortho or para to the benzoic acid, facilitated precise control over gate pressure and stepped sorption quantities. Advanced in situ techniques systematically unraveled the underlying mechanism behind this unique sorption behavior. The findings elucidate that robust Lewis base-acid interactions are established between the CO2 molecules and Ce ions, consequently altering the conformation of coordinated linkers. Conversely, the F atoms primarily contribute to gate pressure variation by influencing the Lewis acidity of the Ce sites. This research advances the understanding in fabricating metal-oxo clusters with structural flexibility and provides profound insights into their host-guest interaction motifs. These insights hold substantial promise across diverse fields and offer valuable guidance for future adsorbent designs grounded in fundamental theories of structure-property relationships.
Collapse
Affiliation(s)
- Xingjie Wang
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Haomiao Xie
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Debabrata Sengupta
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Fanrui Sha
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Ken-Ichi Otake
- Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yongwei Chen
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Karam B Idrees
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Kent O Kirlikovali
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Florencia A Son
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Meng Wang
- Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Junli Ren
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Justin M Notestein
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Susumu Kitagawa
- Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Omar K Farha
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
11
|
Sheng X, Wang Z, Sheng G, Zhu C, Xiao D, Shan T, Xiao X, Liu M, Li G, Zhu Y, Sessler JL, Huang F. Three-Dimensional Crystalline Organic Framework Stabilized by Molecular Mortise-and-Tenon Jointing. J Am Chem Soc 2024; 146:12547-12555. [PMID: 38656766 DOI: 10.1021/jacs.4c01104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Three-dimensional (3D) crystalline organic frameworks with complex topologies, high surface area, and low densities afford a variety of application prospects. However, the design and construction of these frameworks have been largely limited to systems containing polyhedron-shaped building blocks or those relying on component interpenetration. Here, we report the synthesis of a 3D crystalline organic framework based on molecular mortise-and-tenon jointing. This new material takes advantage of tetra(4-pyridylphenyl)ethylene and chlorinated bis(benzodioxaborole)benzene as building blocks and is driven by dative B-N bonds. A single-crystal X-ray diffraction analysis of the framework reveals the presence of two-dimensional (2D) layers with helical channels that are formed presumably during the boron-nitrogen coordination process. The protrusion of dichlorobenzene units from the upper and lower surfaces of the 2D layers facilitates the key mortise-and-tenon connections. These connections enable the interlocking of adjacent layers and the stabilization of an overall 3D framework. The resulting framework is endowed with high porosity and attractive mechanical properties, rendering it potentially suitable for the removal of impurities from acetylene.
Collapse
Affiliation(s)
- Xinru Sheng
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
- Petroleum Exploration and Production Research Institute, SINOPEC, Beijing 100083, P. R. China
| | - Zeju Wang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Guan Sheng
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Chongzhi Zhu
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Ding Xiao
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
| | - Tianyu Shan
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
| | - Xuedong Xiao
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
| | - Ming Liu
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Guangfeng Li
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
| | - Yihan Zhu
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
| |
Collapse
|
12
|
Guo Z, Zhang Z, Sun J. Topological Analysis and Structural Determination of 3D Covalent Organic Frameworks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312889. [PMID: 38290005 DOI: 10.1002/adma.202312889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/24/2024] [Indexed: 02/01/2024]
Abstract
3D covalent organic frameworks (3D COFs) constitute a new type of crystalline materials that consist of a range of porous structures with numerous applications in the fields of adsorption, separation, and catalysis. However, because of the complexity of the three-periodic net structure, it is desirable to develop a thorough structural comprehension, along with a means to precisely determine the actual structure. Indeed, such advancements would considerably contribute to the rational design and application of 3D COFs. In this review, the reported topologies of 3D COFs are introduced and categorized according to the configurations of their building blocks, and a comprehensive overview of diffraction-based structural determination methods is provided. The current challenges and future prospects for these materials will also be discussed.
Collapse
Affiliation(s)
- Zi'ang Guo
- College of Chemistry and Molecular Engineering, Beijing National Laboratory of Molecular Sciences, Peking University, Beijing, 100871, P. R. China
| | - Zeyue Zhang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory of Molecular Sciences, Peking University, Beijing, 100871, P. R. China
| | - Junliang Sun
- College of Chemistry and Molecular Engineering, Beijing National Laboratory of Molecular Sciences, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
13
|
Huang W, Zhang W, Yang S, Wang L, Yu G. 3D Covalent Organic Frameworks from Design, Synthesis to Applications in Optoelectronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308019. [PMID: 38057125 DOI: 10.1002/smll.202308019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/13/2023] [Indexed: 12/08/2023]
Abstract
Covalent organic frameworks (COFs), a new class of crystalline materials connected by covalent bonds, have been developed rapidly in the past decades. However, the research on COFs is mainly focused on two-dimensional (2D) COFs, and the research on three-dimensional (3D) COFs is still in the initial stage. In 2D COFs, the covalent bonds exist only in the 2D flakes and can form 1D channels, which hinder the charge transport to some extent. In contrast, 3D COFs have a more complex pore structure and thus exhibit higher specific surface area and richer active sites, which greatly enhance the 3D charge carrier transport. Therefore, compared to 2D COFs, 3D COFs have stronger applicability in energy storage and conversion, sensing, and optoelectronics. In this review, it is first introduced the design principles for 3D COFs, and in particular summarize the development of conjugated building blocks in 3D COFs, with a special focus on their application in optoelectronics. Subsequently, the preparation of 3D COF powders and thin films and methods to improve the stability and functionalization of 3D COFs are summarized. Moreover, the applications of 3D COFs in electronics are outlined. Finally, conclusions and future research directions for 3D COFs are presented.
Collapse
Affiliation(s)
- Wei Huang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shuai Yang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liping Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
14
|
Das S, Mabuchi H, Irie T, Sasaki K, Nozaki M, Tomioka R, Wen D, Zhao Y, Ben T, Negishi Y. 3D Covalent Organic Framework with "the" Topology. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307666. [PMID: 38279566 DOI: 10.1002/smll.202307666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/16/2024] [Indexed: 01/28/2024]
Abstract
Discovery of new topology covalent organic frameworks (COFs) is a mainstay in reticular chemistry and materials research because it not only serves as a stepwise guide to the designed construction of covalent-organic architectures but also helps to comprehend function from structural design point-of-view. Proceeding on this track, the first 3D COF, TUS-38, with the topology is constructed by reticulating a planar triangular 3-c node of D3h symmetry with a tetragonal prism 8-c node of D2h symmetry via [3 + 8] reversible imine condensation reaction. TUS-38 represents a twofold interpenetrated multidirectional pore network with a high degree of crystallinity and structural integrity. Interestingly, stemming from the nitrogen-rich s-triazine rings with electron-deficient character and ─C ═ N─ linkages composing the TUS-38 framework that benefit to the charge-transfer and hence dipole-dipole electrostatic interactions between the framework and iodine in addition to exclusive topological characteristics of the exotic the net, TUS-38 achieves an exemplary capacity for iodine vapor uptake reaching 6.3 g g-1. Recyclability studies evidence that TUS-38 can be reused at least five times retaining 95% of its initial adsorption capacity; while density functional theory (DFT) calculations have heightened the understanding of the interactions between iodine molecules and the framework.
Collapse
Affiliation(s)
- Saikat Das
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Haruna Mabuchi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Tsukasa Irie
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Kohki Sasaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Mika Nozaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Rina Tomioka
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Dan Wen
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Yu Zhao
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Teng Ben
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Yuichi Negishi
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| |
Collapse
|
15
|
Ma TR, Ge F, Ke SW, Lv S, Yang ZM, Zhou XC, Liu C, Wu XJ, Yuan S, Zuo JL. Accessible Tetrathiafulvalene Moieties in a 3D Covalent Organic Framework for Enhanced Near-Infrared Photo-Thermal Conversion and Photo-Electrical Response. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308013. [PMID: 37988642 DOI: 10.1002/smll.202308013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/20/2023] [Indexed: 11/23/2023]
Abstract
Redox-active tetrathiafulvalene (TTF)-based covalent organic frameworks (COFs) exhibit distinctive electrochemical and photoelectrical properties, but their prevalent two-dimensional (2D) structure with densely packed TTF moieties limits the accessibility of redox center and constrains their potential applications. To overcome this challenge, an 8-connected TTF linker (TTF-8CHO) is designed as a new building block for the construction of three-dimensional (3D) COFs. This approach led to the successful synthesis of a 3D COF with the bcu topology, designated as TTF-8CHO-COF. In comparison to its 2D counterpart employing a 4-connected TTF linker, the 3D COF design enhances access to redox sites, facilitating controlled oxidation by I2 or Au3+ to tune physical properties. When irradiated with a 0.7 W cm-2 808 nm laser, the oxidized 3D COF samples (I X - ${\mathrm{I}}_{\mathrm{X}}^{-}$ @TTF-8CHO-COF and Au NPs@TTF-8CHO-COF) demonstrated rapid temperature increases of 239.3 and 146.1 °C, respectively, which surpassed those of pristine 3D COF (65.6 °C) and the 2D COF counterpart (6.4 °C increment after I2 treatment). Furthermore, the oxidation of the 3D COF heightened its photoelectrical responsiveness under 808 nm laser irradiation. This augmentation in photothermal and photoelectrical response can be attributed to the higher concentration of TTF·+ radicals generated through the oxidation of well-exposed TTF moieties.
Collapse
Affiliation(s)
- Tian-Rui Ma
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Feiyue Ge
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Si-Wen Ke
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Sen Lv
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Zhi-Mei Yang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Xiao-Cheng Zhou
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Cheng Liu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Xue-Jun Wu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Shuai Yuan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Jing-Lin Zuo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
16
|
Kang X, Cheng C, Chen X, Dong J, Liu Y, Cui Y. Three-Dimensional Homochiral Covalent Organic Frameworks with Intrinsic Chiral qzd Topology. J Am Chem Soc 2024; 146:8407-8416. [PMID: 38482804 DOI: 10.1021/jacs.3c14230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Although a variety of chiral porous framework materials have been reported, there are few examples known to combine molecular chirality, helicity, and three-dimensional (3D) intrinsically chiral topology in one structure, which is beneficial for chirality transfer and amplification. Here, we report the synthesis of the first two 3D covalent organic frameworks (COFs) with an intrinsic chiral qzd topology, which exhibit unusual integration of various homochiral and homohelical features. By imine condensation of 4-connected porphyrin tetraamines and 2-connected enantiopure diene dialdehyde, we prepared two isostructural COFs with a noninterpenetrated qzd topology. The specific geometry and conformation flexibility of the V-shaped diene linker control the alignment of square-planar porphyrin units with rotational linkages and facilitate the creation of homochiral extended porous structures that feature a helical arrangement of porphyrins. Post-synthetic metalation of CCOF 23 with Rh(I) affords a heterogeneous catalyst for the asymmetric Michael addition reaction of aryl boronic acids to 2-cyclohexenone, which shows higher enantioselectivities compared to their homogeneous counterparts, presumably due to the confined effect of helical channels. This finding will provide an impetus to explore multichirality materials, offering new insights into the generation and control of helicity, homochirality, and enantioselectivity in the solid state.
Collapse
Affiliation(s)
- Xing Kang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cheng Cheng
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xu Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinqiao Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
17
|
Neumann SE, Kwon J, Gropp C, Ma L, Giovine R, Ma T, Hanikel N, Wang K, Chen T, Jagani S, Ritchie RO, Xu T, Yaghi OM. The propensity for covalent organic frameworks to template polymer entanglement. Science 2024; 383:1337-1343. [PMID: 38513024 DOI: 10.1126/science.adf2573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 02/14/2024] [Indexed: 03/23/2024]
Abstract
The introduction of molecularly woven three-dimensional (3D) covalent organic framework (COF) crystals into polymers of varying types invokes different forms of contact between filler and polymer. Whereas the combination of woven COFs with amorphous and brittle polymethyl methacrylate results in surface interactions, the use of the liquid-crystalline polymer polyimide induces the formation of polymer-COF junctions. These junctions are generated by the threading of polymer chains through the pores of the nanocrystals, thus allowing for spatial arrangement of polymer strands. This offers a programmable pathway for unthreading polymer strands under stress and leads to the in situ formation of high-aspect-ratio nanofibrils, which dissipate energy during the fracture. Polymer-COF junctions also strengthen the filler-matrix interfaces and lower the percolation thresholds of the composites, enhancing strength, ductility, and toughness of the composites by adding small amounts (~1 weight %) of woven COF nanocrystals. The ability of the polymer strands to closely interact with the woven framework is highlighted as the main parameter to forming these junctions, thus affecting polymer chain penetration and conformation.
Collapse
Affiliation(s)
- S Ephraim Neumann
- Department of Chemistry, University of California-Berkeley, Berkeley, CA 94720, USA
- Kavli Energy NanoSciences Institute, Berkeley, CA 94720, USA
| | - Junpyo Kwon
- Department of Mechanical Engineering, University of California-Berkeley, Berkeley, CA 94720, USA
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Cornelius Gropp
- Department of Chemistry, University of California-Berkeley, Berkeley, CA 94720, USA
- Kavli Energy NanoSciences Institute, Berkeley, CA 94720, USA
| | - Le Ma
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Materials Science & Engineering, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Raynald Giovine
- Department of Chemistry, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Tianqiong Ma
- Department of Chemistry, University of California-Berkeley, Berkeley, CA 94720, USA
- Kavli Energy NanoSciences Institute, Berkeley, CA 94720, USA
| | - Nikita Hanikel
- Department of Chemistry, University of California-Berkeley, Berkeley, CA 94720, USA
- Kavli Energy NanoSciences Institute, Berkeley, CA 94720, USA
| | - Kaiyu Wang
- Department of Chemistry, University of California-Berkeley, Berkeley, CA 94720, USA
- Kavli Energy NanoSciences Institute, Berkeley, CA 94720, USA
| | - Tiffany Chen
- Department of Chemistry, University of California-Berkeley, Berkeley, CA 94720, USA
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Shaan Jagani
- Department of Materials Science & Engineering, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Robert O Ritchie
- Department of Mechanical Engineering, University of California-Berkeley, Berkeley, CA 94720, USA
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Materials Science & Engineering, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Ting Xu
- Department of Chemistry, University of California-Berkeley, Berkeley, CA 94720, USA
- Kavli Energy NanoSciences Institute, Berkeley, CA 94720, USA
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Materials Science & Engineering, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Omar M Yaghi
- Department of Chemistry, University of California-Berkeley, Berkeley, CA 94720, USA
- Kavli Energy NanoSciences Institute, Berkeley, CA 94720, USA
- Bakar Institute of Digital Materials for the Planet, Division of Computing, Data Science, and Society, University of California-Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
18
|
Li Z, Xu G, Zhang C, Ma S, Jiang Y, Xiong H, Tian G, Wu Y, Wei Y, Chen X, Yang Y, Wei F. Synthesis of 12-Connected Three-Dimensional Covalent Organic Framework with lnj Topology. J Am Chem Soc 2024; 146:4327-4332. [PMID: 38277433 DOI: 10.1021/jacs.3c12995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
The structural exploration of three-dimensional covalent organic frameworks (3D COFs) is of great significance to the development of COF materials. Different from structurally diverse MOFs, which have a variety of connectivity (3-24), now the valency of 3D COFs is limited to only 4, 6, and 8. Therefore, the exploration of organic building blocks with higher connectivity is a necessary path to broaden the scope of 3D COF structures. Herein, for the first time, we have designed and synthesized a 12-connected triptycene-based precursor (triptycene-12-CHO) with 12 symmetrical distributions of aldehyde groups, which is also the highest valency reported until now. Based on this unique 12-connected structure, we have successfully prepared a novel 3D COF with lnj topology (termed 3D-lnj-COF). The as-synthesized 3D COF exhibits honeycomb main pores and permanent porosity with a Brunauer-Emmett-Teller surface area of 1159.6 m2 g-1. This work not only provides a strategy for synthesizing precursors with a high connectivity but also provides inspiration for enriching the variety of 3D COFs.
Collapse
Affiliation(s)
- Zonglong Li
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Guojie Xu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Chenxi Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Ordos Laboratory, Ordos, Inner Mongolia 017010, China
- Institute for Carbon Neutrality, Tsinghua University, Beijing 100084, China
| | - Shuan Ma
- National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, The State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084, China
| | - Yaxin Jiang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Hao Xiong
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Guo Tian
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yanzhou Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Yen Wei
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xiao Chen
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yang Yang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Fei Wei
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Ordos Laboratory, Ordos, Inner Mongolia 017010, China
| |
Collapse
|
19
|
Rong Q, Chen X, Li S, He S. Dual Regulation of Charge Separation and the Oxygen Reduction Pathway by Encapsulating Phosphotungstic Acid into the Cationic Covalent Organic Framework for Efficient Photocatalytic Hydrogen Peroxide Production. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5758-5768. [PMID: 38273463 DOI: 10.1021/acsami.3c14870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Previous research on covalent organic framework (COF)-based photocatalytic H2O2 synthesis from oxygen reduction focuses more on charge carrier separation but less on the electron utilization efficiency of O2. Herein, we put forward a facile approach to simultaneously promote charge separation and tailor the oxygen reduction pathway by introducing phosphotungstic acid (PTA) into the cationic COF skeleton. Experiments verified that PTA, as an electron transport medium, establishes a fast electron transfer channel from the COF semiconductor conductor band to the substrate O2; meanwhile, the reaction path is optimized by its catalytic cycle for preferable dioxygen capture and reduction in oxygen reduction reaction (ORR) kinetics. The existence of PTA promotes the rate and tendency of converting O2 into •O2- intermediates, which is conducive to boosting the photocatalytic activity and selectivity toward the sequential two-step single-electron ORR. As expected, compared to the pristine TTB-EB, the optimal PTA0.5@TTB-EB achieves a 2.2-fold improvement of visible-light-driven photocatalytic performance with a H2O2 production rate of 897.94 μmol·L-1·h-1 in pure water without using any sacrificial agents. In addition, owing to the robust electrostatic interaction and the confinement effect of porous TTB-EB channels, the PTA@TTB-EB composite possessed favorable stability.
Collapse
Affiliation(s)
- Qinfeng Rong
- School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
| | - Xianlan Chen
- School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
| | - Shuying Li
- School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
| | - Sijing He
- School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
20
|
Mabuchi H, Irie T, Sakai J, Das S, Negishi Y. Covalent Organic Frameworks: Cutting-Edge Materials for Carbon Dioxide Capture and Water Harvesting from Air. Chemistry 2024; 30:e202303474. [PMID: 38078517 DOI: 10.1002/chem.202303474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Indexed: 01/12/2024]
Abstract
The implacable rise of carbon dioxide (CO2 ) concentration in the atmosphere and acute water stress are one of the central challenges of our time. Present-day chemistry is strongly inclined towards more sustainable solutions. Covalent organic frameworks (COFs), attributable to their structural designability with atomic precision, functionalizable chemical environment and robust extended architectures, have demonstrated promising performances in CO2 trapping and water harvesting from air. In this Review, we discuss the major developments in this field as well as sketch out the opportunities and shortcomings that remain over large-scale COF synthesis, device engineering, and long-term performance in real environments.
Collapse
Affiliation(s)
- Haruna Mabuchi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Tsukasa Irie
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Jin Sakai
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Saikat Das
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| |
Collapse
|
21
|
Yun Q, Ge Y, Shi Z, Liu J, Wang X, Zhang A, Huang B, Yao Y, Luo Q, Zhai L, Ge J, Peng Y, Gong C, Zhao M, Qin Y, Ma C, Wang G, Wa Q, Zhou X, Li Z, Li S, Zhai W, Yang H, Ren Y, Wang Y, Li L, Ruan X, Wu Y, Chen B, Lu Q, Lai Z, He Q, Huang X, Chen Y, Zhang H. Recent Progress on Phase Engineering of Nanomaterials. Chem Rev 2023. [PMID: 37962496 DOI: 10.1021/acs.chemrev.3c00459] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
As a key structural parameter, phase depicts the arrangement of atoms in materials. Normally, a nanomaterial exists in its thermodynamically stable crystal phase. With the development of nanotechnology, nanomaterials with unconventional crystal phases, which rarely exist in their bulk counterparts, or amorphous phase have been prepared using carefully controlled reaction conditions. Together these methods are beginning to enable phase engineering of nanomaterials (PEN), i.e., the synthesis of nanomaterials with unconventional phases and the transformation between different phases, to obtain desired properties and functions. This Review summarizes the research progress in the field of PEN. First, we present representative strategies for the direct synthesis of unconventional phases and modulation of phase transformation in diverse kinds of nanomaterials. We cover the synthesis of nanomaterials ranging from metal nanostructures such as Au, Ag, Cu, Pd, and Ru, and their alloys; metal oxides, borides, and carbides; to transition metal dichalcogenides (TMDs) and 2D layered materials. We review synthesis and growth methods ranging from wet-chemical reduction and seed-mediated epitaxial growth to chemical vapor deposition (CVD), high pressure phase transformation, and electron and ion-beam irradiation. After that, we summarize the significant influence of phase on the various properties of unconventional-phase nanomaterials. We also discuss the potential applications of the developed unconventional-phase nanomaterials in different areas including catalysis, electrochemical energy storage (batteries and supercapacitors), solar cells, optoelectronics, and sensing. Finally, we discuss existing challenges and future research directions in PEN.
Collapse
Affiliation(s)
- Qinbai Yun
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Department of Chemical and Biological Engineering & Energy Institute, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yiyao Ge
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Zhenyu Shi
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Jiawei Liu
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), Singapore, 627833, Singapore
| | - Xixi Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - An Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Biao Huang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Yao Yao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Qinxin Luo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Li Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Jingjie Ge
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
| | - Yongwu Peng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chengtao Gong
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Meiting Zhao
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Yutian Qin
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Chen Ma
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Gang Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Qingbo Wa
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xichen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Zijian Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Siyuan Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Wei Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Hua Yang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yi Ren
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yongji Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Lujing Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xinyang Ruan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yuxuan Wu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Bo Chen
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Qipeng Lu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhuangchai Lai
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Qiyuan He
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Xiao Huang
- Institute of Advanced Materials (IAM), School of Flexible Electronics (SoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
22
|
Han X, Neumann SE, Nannenga BL, Wang K, Li KKY, Mirzaei S, Yao X, Zhu C, Gao MY, Zhang YB, Cui Y, Yaghi OM. Directing Molecular Weaving of Covalent Organic Frameworks and Their Dimensionality by Angular Control. J Am Chem Soc 2023; 145:22885-22889. [PMID: 37844128 DOI: 10.1021/jacs.3c09691] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Although reticular chemistry has commonly utilized mutually embracing tetrahedral metal complexes as crossing points to generate three-dimensional molecularly woven structures, weaving in two dimensions remains largely unexplored. We report a new strategy to access 2D woven COFs by controlling the angle of the usually linear linker, resulting in the successful synthesis of a 2D woven pattern based on chain-link fence. The synthesis was accomplished by linking aldehyde-functionalized copper(I) bisphenanthroline complexes with bent 4,4'-oxydianiline building units. This results in the formation of a crystalline solid, termed COF-523-Cu, whose structure was characterized by spectroscopic techniques and electron and X-ray diffraction techniques to reveal a molecularly woven, twofold-interpenetrated chain-link fence. The present work significantly advances the concept of molecular weaving and its practice in the design of complex chemical structures.
Collapse
Affiliation(s)
- Xing Han
- Department of Chemistry and Kavli Energy Nanoscience Institute, University of California, Berkeley, California 94720, United States
- Bakar Institute of Digital Materials for the Planet, College of Computing, Data Science, and Society, University of California, Berkeley, California 94720, United States
| | - S Ephraim Neumann
- Department of Chemistry and Kavli Energy Nanoscience Institute, University of California, Berkeley, California 94720, United States
- Bakar Institute of Digital Materials for the Planet, College of Computing, Data Science, and Society, University of California, Berkeley, California 94720, United States
| | - Brent L Nannenga
- Chemical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Kaiyu Wang
- Department of Chemistry and Kavli Energy Nanoscience Institute, University of California, Berkeley, California 94720, United States
- Bakar Institute of Digital Materials for the Planet, College of Computing, Data Science, and Society, University of California, Berkeley, California 94720, United States
| | - Kelvin Kam-Yun Li
- Department of Chemistry and Kavli Energy Nanoscience Institute, University of California, Berkeley, California 94720, United States
- Bakar Institute of Digital Materials for the Planet, College of Computing, Data Science, and Society, University of California, Berkeley, California 94720, United States
| | - Saber Mirzaei
- Department of Chemistry and Kavli Energy Nanoscience Institute, University of California, Berkeley, California 94720, United States
- Bakar Institute of Digital Materials for the Planet, College of Computing, Data Science, and Society, University of California, Berkeley, California 94720, United States
| | - Xuan Yao
- Shanghai Key Laboratory of High-Resolution Electron Microscopy, School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chenhui Zhu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Mei-Yan Gao
- Department of Chemistry and Kavli Energy Nanoscience Institute, University of California, Berkeley, California 94720, United States
- Bakar Institute of Digital Materials for the Planet, College of Computing, Data Science, and Society, University of California, Berkeley, California 94720, United States
| | - Yue-Biao Zhang
- Shanghai Key Laboratory of High-Resolution Electron Microscopy, School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Omar M Yaghi
- Department of Chemistry and Kavli Energy Nanoscience Institute, University of California, Berkeley, California 94720, United States
- Bakar Institute of Digital Materials for the Planet, College of Computing, Data Science, and Society, University of California, Berkeley, California 94720, United States
- KACST-UC Berkeley Center of Excellence for Nanomaterials for Clean Energy Applications, King Abdulaziz City for Science and TechnologyRiyadh 11442, Saudi Arabia
| |
Collapse
|
23
|
Yun H, Kang M, Kang DW, Kim H, Choe JH, Kim SY, Hong CS. Aminal-Linked Covalent Organic Frameworks with hxl-a and Quasi-hcb Topologies for Efficient C 2 H 6 /C 2 H 4 Separation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303640. [PMID: 37287400 DOI: 10.1002/smll.202303640] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Indexed: 06/09/2023]
Abstract
In reticular chemistry, topology is a powerful concept for defining the structures of covalent organic frameworks (COFs). However, due to the lack of diversity in the symmetry and reaction stoichiometry of the monomers, only 5% of the two-dimensional topologies have been reported to be COFs. To overcome the limitations of COF connectivity and pursue novel topologies in COF structures, two aminal-linked COFs, KUF-2 and KUF-3, are prepared, with dumbbell-shaped secondary building units. Linear dialdehydes and piperazine are condensed at a ratio of 1:2 to construct an aminal linkage, leading to unreported hxl-a (KUF-2) and quasi-hcb (KUF-3) structures. Notably, KUF-3 displays top-tier C2 H6 /C2 H4 selectivity and C2 H6 uptake at 298 K, outperforming most porous organic materials. The intrinsic aromatic ring-rich and Lewis basic pore environments, and appropriate pore widths enable the selective adsorption of C2 H6 , as confirmed by Grand Canonical Monte Carlo simulations. Dynamic breakthrough curves revealed that C2 H6 can be selectively separated from a gas mixture of C2 H6 and C2 H4 . This study suggests that topology-based design of aminal-COFs is an effective strategy for expanding the field of reticular chemistry and provides the facile integration of strong Lewis basic sites for selective C2 H6 /C2 H4 separation.
Collapse
Affiliation(s)
- Hongryeol Yun
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Minjung Kang
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Dong Won Kang
- Department of Chemistry and Chemical Engineering, Inha University, 100 Inha-Ro, Michuhol-Gu, Incheon, 22212, Republic of Korea
| | - Hyojin Kim
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Jong Hyeak Choe
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Sun Young Kim
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Chang Seop Hong
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
24
|
Li H, Dilipkumar A, Abubakar S, Zhao D. Covalent organic frameworks for CO 2 capture: from laboratory curiosity to industry implementation. Chem Soc Rev 2023; 52:6294-6329. [PMID: 37591809 DOI: 10.1039/d2cs00465h] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
CO2 concentration in the atmosphere has increased by about 40% since the 1960s. Among various technologies available for carbon capture, adsorption and membrane processes have been receiving tremendous attention due to their potential to capture CO2 at low costs. The kernel for such processes is the sorbent and membrane materials, and tremendous progress has been made in designing and fabricating novel porous materials for carbon capture. Covalent organic frameworks (COFs), a class of porous crystalline materials, are promising sorbents for CO2 capture due to their high surface area, low density, controllable pore size and structure, and preferable stabilities. However, the absence of synergistic developments between materials and engineering processes hinders achieving the qualitative leap for net-zero emissions. Considering the lack of a timely review on the combination of state-of-the-art COFs and engineering processes, in this Tutorial Review, we emphasize the developments of COFs for meeting the challenges of carbon capture and disclose the strategies of fabricating COFs for realizing industrial implementation. Moreover, this review presents a detailed and basic description of the engineering processes and industrial status of carbon capture. It highlights the importance of machine learning in integrating simulations of molecular and engineering levels. We aim to stimulate both academia and industry communities for joined efforts in bringing COFs to practical carbon capture.
Collapse
Affiliation(s)
- He Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| | - Akhil Dilipkumar
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| | - Saifudin Abubakar
- ExxonMobil Asia Pacific Pte. Ltd., 1 HarbourFront Place, #06-00 HarbourFront Tower 1, 098633, Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| |
Collapse
|
25
|
Vardhan H, Rummer G, Deng A, Ma S. Large-Scale Synthesis of Covalent Organic Frameworks: Challenges and Opportunities. MEMBRANES 2023; 13:696. [PMID: 37623757 PMCID: PMC10456518 DOI: 10.3390/membranes13080696] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023]
Abstract
Connecting organic building blocks by covalent bonds to design porous crystalline networks has led to covalent organic frameworks (COFs), consequently transferring the flexibility of dynamic linkages from discrete architectures to extended structures. By virtue of the library of organic building blocks and the diversity of dynamic linkages and topologies, COFs have emerged as a novel field of organic materials that propose a platform for tailor-made complex structural design. Progress over the past two decades in the design, synthesis, and functional exploration of COFs in diverse applications successively established these frameworks in materials chemistry. The large-scale synthesis of COFs with uniform structures and properties is of profound importance for commercialization and industrial applications; however, this is in its infancy at present. An innovative designing and synthetic approaches have paved novel ways to address future hurdles. This review article highlights the fundamental of COFs, including designing principles, coupling reactions, topologies, structural diversity, synthetic strategies, characterization, growth mechanism, and activation aspects of COFs. Finally, the major challenges and future trends for large-scale COF fabrication are outlined.
Collapse
Affiliation(s)
- Harsh Vardhan
- Department of Chemistry and Fermentation Sciences, Appalachian State University, 525 Rivers Street, Boone, NC 28608, USA
| | - Grace Rummer
- Department of Chemistry and Fermentation Sciences, Appalachian State University, 525 Rivers Street, Boone, NC 28608, USA
| | - Angela Deng
- Department of Chemistry and Fermentation Sciences, Appalachian State University, 525 Rivers Street, Boone, NC 28608, USA
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, Denton, TX 76203, USA
| |
Collapse
|
26
|
Xiao Y, Ling Y, Wang K, Ren S, Ma Y, Li L. Constructing a 3D Covalent Organic Framework from 2D hcb Nets through Inclined Interpenetration. J Am Chem Soc 2023. [PMID: 37338385 DOI: 10.1021/jacs.3c03699] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Three-dimensional covalent organic frameworks (3D COFs) have been of great interest due to their inherent numerous open sites and pore confinement effect. However, it has remained challenging to build 3D frameworks via interdigitation (also known as inclined interpenetration) by generating an entangled network formed by multiple 2D layers inclined with respect to each other. Herein, we report the first case of constructing a 3D COF, termed COF-904, through interdigitating 2D hcb nets, which was formed via [3+2] imine condensation reactions by the use of 1,3,5-triformylbenzene and 2,3,5,6-tetramethyl-1,4-phenylenediamine. The single-crystal structure of COF-904 is solved, and the locations of all non-hydrogen atoms are determined by 3D electron diffraction with a resolution up to 0.8 Å. These results not only broaden the strategy for achieving 3D COFs via interdigitation but also demonstrate that structurally complex extended frameworks can arise from simple molecules.
Collapse
Affiliation(s)
- Yueyuan Xiao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Yang Ling
- School of Physical Science and Technology and Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Kuixing Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Shijie Ren
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Yanhang Ma
- School of Physical Science and Technology and Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Longyu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| |
Collapse
|
27
|
Zhu D, Zhu Y, Chen Y, Yan Q, Wu H, Liu CY, Wang X, Alemany LB, Gao G, Senftle TP, Peng Y, Wu X, Verduzco R. Three-dimensional covalent organic frameworks with pto and mhq-z topologies based on Tri- and tetratopic linkers. Nat Commun 2023; 14:2865. [PMID: 37208348 DOI: 10.1038/s41467-023-38538-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 05/06/2023] [Indexed: 05/21/2023] Open
Abstract
Three-dimensional (3D) covalent organic frameworks (COFs) possess higher surface areas, more abundant pore channels, and lower density compared to their two-dimensional counterparts which makes the development of 3D COFs interesting from a fundamental and practical point of view. However, the construction of highly crystalline 3D COF remains challenging. At the same time, the choice of topologies in 3D COFs is limited by the crystallization problem, the lack of availability of suitable building blocks with appropriate reactivity and symmetries, and the difficulties in crystalline structure determination. Herein, we report two highly crystalline 3D COFs with pto and mhq-z topologies designed by rationally selecting rectangular-planar and trigonal-planar building blocks with appropriate conformational strains. The pto 3D COFs show a large pore size of 46 Å with an extremely low calculated density. The mhq-z net topology is solely constructed from totally face-enclosed organic polyhedra displaying a precise uniform micropore size of 1.0 nm. The 3D COFs show a high CO2 adsorption capacity at room temperature and can potentially serve as promising carbon capture adsorbents. This work expands the choice of accessible 3D COF topologies, enriching the structural versatility of COFs.
Collapse
Affiliation(s)
- Dongyang Zhu
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, MS-362, Houston, TX, 77005, USA
| | - Yifan Zhu
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, MS-325, Houston, TX, 77005, USA
| | - Yu Chen
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, MS-362, Houston, TX, 77005, USA
| | - Qianqian Yan
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, MS-325, Houston, TX, 77005, USA
| | - Han Wu
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Chun-Yen Liu
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, MS-362, Houston, TX, 77005, USA
| | - Xu Wang
- Shared Equipment Authority, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Lawrence B Alemany
- Shared Equipment Authority, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Guanhui Gao
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, MS-325, Houston, TX, 77005, USA
- Shared Equipment Authority, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Thomas P Senftle
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, MS-362, Houston, TX, 77005, USA
| | - Yongwu Peng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Xiaowei Wu
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Fujian Institute of Research on the Structure of Matter, Haixi Institutes, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Rafael Verduzco
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, MS-362, Houston, TX, 77005, USA.
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, MS-325, Houston, TX, 77005, USA.
| |
Collapse
|
28
|
Liu W, Wang K, Zhan X, Liu Z, Yang X, Jin Y, Yu B, Gong L, Wang H, Qi D, Yuan D, Jiang J. Highly Connected Three-Dimensional Covalent Organic Framework with Flu Topology for High-Performance Li-S Batteries. J Am Chem Soc 2023; 145:8141-8149. [PMID: 36989190 DOI: 10.1021/jacs.3c01102] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Lithium-sulfur batteries (LSBs) have been considered as a promising candidate for next-generation energy storage devices, which however still suffer from the shuttle effect of the intermediate lithium polysulfides (LiPSs). Covalent-organic frameworks (COFs) have exhibited great potential as sulfur hosts for LSBs to solve such a problem. Herein, a pentiptycene-based D2h symmetrical octatopic polyaldehyde, 6,13-dimethoxy-2,3,9,10,18,19,24,25-octa(4'-formylphenyl)pentiptycene (DMOPTP), was prepared and utilized as a building block toward preparing COFs. Condensation of DMOPTP with 4-connected tetrakis(4-aminophenyl)methane affords an expanded [8 + 4] connected network 3D-flu-COF, with a flu topology. The non-interpenetrated nature of the flu topology endows 3D-flu-COF with a high Brunauer-Emmett-Teller surface area of 2860 m2 g-1, large octahedral cavities, and cross-linked tunnels in the framework, enabling a high loading capacity of sulfur (∼70 wt %), strong LiPS adsorption capability, and facile ion diffusion. Remarkably, when used as a sulfur host for LSBs, 3D-flu-COF delivers a high capacity of 1249 mA h g-1 at 0.2 C (1.0 C = 1675 mA g-1), outstanding rate capability (764 mA h g-1 at 5.0 C), and excellent stability, representing one of the best results among the thus far reported COF-based sulfur host materials for LSBs and being competitive with the state-of-the-art inorganic host materials.
Collapse
Affiliation(s)
- Wenbo Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kang Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaoning Zhan
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhixin Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiya Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yucheng Jin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Baoqiu Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lei Gong
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hailong Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Dongdong Qi
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Daqiang Yuan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
29
|
Lai YL, Su J, Wu LX, Luo D, Wang XZ, Zhou XC, Zhou CW, Zhou XP, Li D. Selective separation of pyrene from mixed polycyclic aromatic hydrocarbons by a hexahedral metal-organic cage. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
30
|
Xiang G, He X, Zhuge W, Liu Y, Zhang C, Peng J. Quinoxaline-based conjugated microporous polymer-grafted graphene sensors for the sensitive detection of rifampicin. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
31
|
Designed Synthesis of Three-Dimensional Covalent Organic Frameworks: A Mini Review. Polymers (Basel) 2023; 15:polym15040887. [PMID: 36850171 PMCID: PMC9959482 DOI: 10.3390/polym15040887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
Covalent organic frameworks are porous crystals of polymers with two categories based on their covalent linkages: layered structures with two dimensions and networks with three-dimensional structures. Three-dimensional covalent organic frameworks are porous, have large surface areas, and have highly ordered structures. Since covalent bonds are responsible for the formation of three-dimensional covalent organic frameworks, their synthesis has been a challenge and different structures are generated during the synthesis. Moreover, initially, their topologies have been limited to dia, ctn, and bor which are formed by the condensation of triangular or linear units with tetrahedral units. There are very few building units available for their synthesis. Finally, the future perspective of 3D COFs has been designated for the future development of three-dimensional covalent organic frameworks.
Collapse
|
32
|
Bag S, Sasmal HS, Chaudhary SP, Dey K, Blätte D, Guntermann R, Zhang Y, Položij M, Kuc A, Shelke A, Vijayaraghavan RK, Ajithkumar TG, Bhattacharyya S, Heine T, Bein T, Banerjee R. Covalent Organic Framework Thin-Film Photodetectors from Solution-Processable Porous Nanospheres. J Am Chem Soc 2023; 145:1649-1659. [PMID: 36622362 DOI: 10.1021/jacs.2c09838] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The synthesis of homogeneous covalent organic framework (COF) thin films on a desired substrate with decent crystallinity, porosity, and uniform thickness has great potential for optoelectronic applications. We have used a solution-processable sphere transmutation process to synthesize 300 ± 20 nm uniform COF thin films on a 2 × 2 cm2 TiO2-coated fluorine-doped tin oxide (FTO) surface. This process controls the nucleation of COF crystallites and molecular morphology that helps the nanospheres to arrange periodically to form homogeneous COF thin films. We have synthesized four COF thin films (TpDPP, TpEtBt, TpTab, and TpTta) with different functional backbones. In a close agreement between the experiment and density functional theory, the TpEtBr COF film showed the lowest optical band gap (2.26 eV) and highest excited-state lifetime (8.52 ns) among all four COF films. Hence, the TpEtBr COF film can participate in efficient charge generation and separation. We constructed optoelectronic devices having a glass/FTO/TiO2/COF-film/Au architecture, which serves as a model system to study the optoelectronic charge transport properties of COF thin films under dark and illuminated conditions. Visible light with a calibrated intensity of 100 mW cm-2 was used for the excitation of COF thin films. All of the COF thin films exhibit significant photocurrent after illumination with visible light in comparison to the dark. Hence, all of the COF films behave as good photoactive substrates with minimal pinhole defects. The fabricated out-of-plane photodetector device based on the TpEtBr COF thin film exhibits high photocurrent density (2.65 ± 0.24 mA cm-2 at 0.5 V) and hole mobility (8.15 ± 0.64 ×10-3 cm2 V-1 S-1) compared to other as-synthesized films, indicating the best photoactive characteristics.
Collapse
Affiliation(s)
- Saikat Bag
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur741246, India.,Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur741246, India
| | - Himadri Sekhar Sasmal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur741246, India.,Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur741246, India
| | - Sonu Pratap Chaudhary
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur741246, India.,Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur741246, India
| | - Kaushik Dey
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur741246, India.,Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur741246, India
| | - Dominic Blätte
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13 (E), 81377Munich, Germany
| | - Roman Guntermann
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13 (E), 81377Munich, Germany
| | - Yingying Zhang
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Bergstrasse 66c, 01069Dresden, Germany
| | - Miroslav Položij
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Bergstrasse 66c, 01069Dresden, Germany
| | - Agnieszka Kuc
- Helmholtz-Zentrum Dresden-Rossendorf, Abteilung Ressourcenökologie, Forschungsstelle Leipzig, 04318Leipzig, Germany
| | - Ankita Shelke
- Central NMR Facility and Physical/Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune411008, India
| | - Ratheesh K Vijayaraghavan
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur741246, India.,Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur741246, India
| | - Thalasseril G Ajithkumar
- Central NMR Facility and Physical/Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune411008, India
| | - Sayan Bhattacharyya
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur741246, India.,Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur741246, India
| | - Thomas Heine
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Bergstrasse 66c, 01069Dresden, Germany.,Helmholtz-Zentrum Dresden-Rossendorf, Abteilung Ressourcenökologie, Forschungsstelle Leipzig, 04318Leipzig, Germany.,Department of Chemistry, Yonsei University and IBS Center for Nanomedicine, 50 Yonsei-ro, Seodaemun-gu, Seoul03722, Republic of Korea
| | - Thomas Bein
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13 (E), 81377Munich, Germany
| | - Rahul Banerjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur741246, India.,Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur741246, India
| |
Collapse
|
33
|
Guan Q, Zhou LL, Dong YB. Construction of Covalent Organic Frameworks via Multicomponent Reactions. J Am Chem Soc 2023; 145:1475-1496. [PMID: 36646043 DOI: 10.1021/jacs.2c11071] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Multicomponent reactions (MCRs) combine at least three reactants to afford the desired product in a highly atom-economic way and are therefore viewed as efficient one-pot combinatorial synthesis tools allowing one to significantly boost molecular complexity and diversity. Nowadays, MCRs are no longer confined to organic synthesis and have found applications in materials chemistry. In particular, MCRs can be used to prepare covalent organic frameworks (COFs), which are crystalline porous materials assembled from organic monomers and exhibit a broad range of properties and applications. This synthetic approach retains the advantages of small-molecule MCRs, not only strengthening the skeletal robustness of COFs, but also providing additional driving forces for their crystallization, and has been used to prepare a series of robust COFs with diverse applications. The present perspective article provides the general background for MCRs, discusses the types of MCRs employed for COF synthesis to date, and addresses the related critical challenges and future perspectives to inspire the MCR-based design of new robust COFs and promote further progress in this emerging field.
Collapse
Affiliation(s)
- Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
34
|
Chen R, Zhao J, Yu Z, Cong M, Wang Y, Wang M, Li G, Li Z, Zhao Y. Post-synthetic Fully π-Conjugated Three-Dimensional Covalent Organic Frameworks for High-Performance Lithium Storage. ACS APPLIED MATERIALS & INTERFACES 2023; 15:830-837. [PMID: 36583732 DOI: 10.1021/acsami.2c14813] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A fully π-conjugated nitrogen-rich three-dimensional covalent organic framework (PYTRI-COF-2) containing both pyrazine and triazine units was prepared through a post-synthetic strategy. The imine linkages in the pre-prepared PYTRI-COF-1 were converted into heterocyclic quinoline by the Povarov reaction. The obtained PYTRI-COF-2 displayed high Li-ion storage capacity and excellent cycling stability when it was used as the lithium (Li)-ion battery electrode.
Collapse
Affiliation(s)
- Renzeng Chen
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jingteng Zhao
- Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Zefang Yu
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Minghao Cong
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yuancheng Wang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Mingsen Wang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Guoxing Li
- Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Zhibo Li
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yingjie Zhao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
35
|
Wang X, Liu H, Zhang J, Chen S. Covalent organic frameworks (COFs): a promising CO 2 capture candidate material. Polym Chem 2023. [DOI: 10.1039/d2py01350a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Covalent organic frameworks (COFs) are an emerging kind of porous crystal material.
Collapse
Affiliation(s)
- Xiaoqiong Wang
- PCFM Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Haorui Liu
- PCFM Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Jinrui Zhang
- PCFM Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Shuixia Chen
- PCFM Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
- Materials Science Institute, Sun Yat-Sen University, Guangzhou 510275, PR China
| |
Collapse
|
36
|
Thaggard GC, Haimerl J, Park KC, Lim J, Fischer RA, Maldeni Kankanamalage BKP, Yarbrough BJ, Wilson GR, Shustova NB. Metal-Photoswitch Friendship: From Photochromic Complexes to Functional Materials. J Am Chem Soc 2022; 144:23249-23263. [PMID: 36512744 DOI: 10.1021/jacs.2c09879] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cooperative metal-photoswitch interfaces comprise an application-driven field which is based on strategic coupling of metal cations and organic photochromic molecules to advance the behavior of both components, resulting in dynamic molecular and material properties controlled through external stimuli. In this Perspective, we highlight the ways in which metal-photoswitch interplay can be utilized as a tool to modulate a system's physicochemical properties and performance in a variety of structural motifs, including discrete molecular complexes or cages, as well as periodic structures such as metal-organic frameworks. This Perspective starts with photochromic molecular complexes as the smallest subunit in which metal-photoswitch interactions can occur, and progresses toward functional materials. In particular, we explore the role of the metal-photoswitch relationship for gaining fundamental knowledge of switchable electronic and magnetic properties, as well as in the design of stimuli-responsive sensors, optically gated memory devices, catalysts, and photodynamic therapeutic agents. The abundance of stimuli-responsive systems in the natural world only foreshadows the creative directions that will uncover the full potential of metal-photoswitch interactions in the coming years.
Collapse
Affiliation(s)
- Grace C Thaggard
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Johanna Haimerl
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States.,Inorganic and Metal-Organic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, Garching 85748, Germany
| | - Kyoung Chul Park
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Jaewoong Lim
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Roland A Fischer
- Inorganic and Metal-Organic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, Garching 85748, Germany
| | - Buddhima K P Maldeni Kankanamalage
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Brandon J Yarbrough
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Gina R Wilson
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| |
Collapse
|
37
|
Zanganeh AR. COF-42 as sensory material for voltammetric determination of Cu(II) ion: optimizing experimental condition via central composite design. J APPL ELECTROCHEM 2022. [DOI: 10.1007/s10800-022-01798-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
38
|
Zhao H, Shi K, Zhang C, Ren J, Cui M, Li N, Ji X, Wang R. Spherical COFs decorated with gold nanoparticles and multiwalled carbon nanotubes as signal amplifier for sensitive electrochemical detection of doxorubicin. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
39
|
Das S, Sekine T, Mabuchi H, Irie T, Sakai J, Zhao Y, Fang Q, Negishi Y. Three-Dimensional Covalent Organic Framework with scu-c Topology for Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48045-48051. [PMID: 36252155 PMCID: PMC9614725 DOI: 10.1021/acsami.2c15152] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Three-dimensional (3D) covalent organic frameworks (COFs) exemplify a new generation of crystalline extended solids with intriguing structures and unprecedented porosity. Notwithstanding substantial scope, the reticular synthesis of 3D COFs from pre-designed building units leading to new network topologies yet remains a demanding task owing to the shortage of 3D building units and inadequate reversibility of the linkages between the building units. In this work, by linking a tetragonal prism (8-connected) node with a square planar (4-connected) node, we report the first 3D COF with scu-c topology. The new COF, namely, TUS-84, features a two-fold interpenetrated structure with well-defined porosity and a Brunauer-Emmett-Teller surface area of 679 m2 g-1. In drug delivery applications, TUS-84 shows efficient drug loading and sustained release profile.
Collapse
Affiliation(s)
- Saikat Das
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Taishu Sekine
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Haruna Mabuchi
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Tsukasa Irie
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Jin Sakai
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yu Zhao
- Zhejiang
Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing
Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua 321004, P. R. China
| | - Qianrong Fang
- State
Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yuichi Negishi
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
40
|
Xu X, Cai P, Chen H, Zhou HC, Huang N. Three-Dimensional Covalent Organic Frameworks with she Topology. J Am Chem Soc 2022; 144:18511-18517. [PMID: 36170014 DOI: 10.1021/jacs.2c07733] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Reticular chemistry allows the control of crystalline frameworks at atomic precision according to the predesigned topological structures. However, only a limited number of topological structures of three-dimensional (3D) covalent organic frameworks (COFs) have been established. In this work, we developed a series of 3D COFs with an unprecedented she topology, which were constructed with D3d- and D4h-symmetric building blocks. The resulting COFs crystallize in a space group of Im3̅m, in which each D3d unit connects with six D4h units to form a noninterpenetrated network with a uniform pore size of 2.0 nm. In addition, these COFs exhibited high crystallinity, excellent porosity, and good chemical and thermal stability. The crystalline structures, composition, and physicochemical properties of these networks were unambiguously characterized. Notably, the inbuilt porphyrin units render these COFs as efficient catalysts for photoredox C-C bond forming and photocatalytic carbon dioxide reduction reactions. Thus, this work constitutes a new approach for the construction of 3D she-net COFs and also enhances the structural diversity and complexity of COFs.
Collapse
Affiliation(s)
- Xiaoyi Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Peiyu Cai
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Hongzheng Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Ning Huang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
41
|
Liu W, Gong L, Liu Z, Jin Y, Pan H, Yang X, Yu B, Li N, Qi D, Wang K, Wang H, Jiang J. Conjugated Three-Dimensional High-Connected Covalent Organic Frameworks for Lithium-Sulfur Batteries. J Am Chem Soc 2022; 144:17209-17218. [PMID: 36084308 DOI: 10.1021/jacs.2c07596] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Developing conjugated three-dimensional (3D) covalent organic frameworks (COFs) still remains an extremely difficult task due to the lack of enough conjugated 3D building blocks. Herein, condensation between an 8-connected pentiptycene-based D2h building block (DMOPTP) and 4-connected square-planar linkers affords two 3D COFs (named 3D-scu-COF-1 and 3D-scu-COF-2). A combination of the 3D homoaromatic conjugated structure of the former building block with the 2D conjugated structure of the latter linking units enables the π-electron delocalization over the whole frameworks of both COFs, endowing them with excellent conductivities of 3.2-3.5 × 10-5 S cm-1. In particular, the 3D rigid quadrangular prism shape of DMOPTP guides the formation of a twofold interpenetrated scu 3D topology and high-connected permanent porosity with a large Brunauer-Emmett-Teller (BET) surface area of 2340 and 1602 m2 g-1 for 3D-scu-COF-1 and 3D-scu-COF-2, respectively, ensuring effective small molecule storage and mass transport characteristics. This, in combination with their good charge transport properties, renders them promising sulfur host materials for lithium-sulfur batteries (LSBs) with high capacities (1035-1155 mA h g-1 at 0.2 C, 1 C = 1675 mA g-1), excellent rate capabilities (713-757 mA h g-1 at 5.0 C), and superior cycling stability (71-83% capacity retention at 2.0 C after 500 cycles), surpassing the most of organic LSB cathodes reported thus far.
Collapse
Affiliation(s)
- Wenbo Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lei Gong
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhixin Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yucheng Jin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Houhe Pan
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiya Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Baoqiu Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ning Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Dongdong Qi
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kang Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hailong Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
42
|
Zhao Y, Yu X, Wen X, Luo Y, Xiang Z, Chen J. HiGee
strategy towards large‐scale synthesis of soluble covalent organic frameworks. AIChE J 2022. [DOI: 10.1002/aic.17864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yun Zhao
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing P. R. China
| | - Xiaogang Yu
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing P. R. China
| | - Xin Wen
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing P. R. China
| | - Yong Luo
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing P. R. China
| | - Zhonghua Xiang
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing P. R. China
| | - Jian‐feng Chen
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing P. R. China
| |
Collapse
|
43
|
Gong C, Wang H, Sheng G, Wang X, Xu X, Wang J, Miao X, Liu Y, Zhang Y, Dai F, Chen L, Li N, Xu G, Jia J, Zhu Y, Peng Y. Synthesis and Visualization of Entangled 3D Covalent Organic Frameworks with High-Valency Stereoscopic Molecular Nodes for Gas Separation. Angew Chem Int Ed Engl 2022; 61:e202204899. [PMID: 35639417 DOI: 10.1002/anie.202204899] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Indexed: 12/30/2022]
Abstract
The structural diversity of three-dimensional (3D) covalent organic frameworks (COFs) are limited as there are only a few choices of building units with multiple symmetrically distributed connection sites. To date, 4 and 6-connected stereoscopic nodes with Td , D3h , D3d and C3 symmetries have been mostly reported, delivering limited 3D topologies. We propose an efficient approach to expand the 3D COF repertoire by introducing a high-valency quadrangular prism (D4h ) stereoscopic node with a connectivity of eight, based on which two isoreticular 3D imine-linked COFs can be created. Low-dose electron microscopy allows the direct visualization of their 2-fold interpenetrated bcu networks. These 3D COFs are endowed with unique pore architectures and strong molecular binding sites, and exhibit excellent performance in separating C2 H2 /CO2 and C2 H2 /CH4 gas pairs. The introduction of high-valency stereoscopic nodes would lead to an outburst of new topologies for 3D COFs.
Collapse
Affiliation(s)
- Chengtao Gong
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Hao Wang
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Guan Sheng
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Xiaokang Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Xiaoqiu Xu
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Jian Wang
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Xiaohe Miao
- The Instrumentation and Service Center for Physical Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China
| | - Yikuan Liu
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Yinling Zhang
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Fangna Dai
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Liangjun Chen
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Nanjun Li
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Guodong Xu
- Jiangsu Province Engineering Research Center of Agricultural Breeding Pollution Control and Resource, Yancheng Teachers University, Yancheng, 224007, China
| | - Jianhong Jia
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Yihan Zhu
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Yongwu Peng
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| |
Collapse
|
44
|
Zhai L, Yang S, Lu C, Cui CX, Xu Q, Liu J, Yang X, Meng X, Lu S, Zhuang X, Zeng G, Jiang Z. CoN 5 Sites Constructed by Anchoring Co Porphyrins on Vinylene-Linked Covalent Organic Frameworks for Electroreduction of Carbon Dioxide. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200736. [PMID: 35810455 DOI: 10.1002/smll.202200736] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Developing effective electrocatalysts for CO2 reduction (CO2 RR) is of critical importance for producing carbon-neutral fuels. Covalent organic frameworks (COFs) are an ideal platform for constructing catalysts toward CO2 RR, because of their controllable skeletons and ordered pores. However, most of these COFs are synthesized from Co-porphyrins or phthalocyanines-based monomers, and the available building units and resulting catalytic centers in COFs are still limited. Herein, Co-N5 sites are first developed through anchoring Co porphyrins on an olefin-linked COF, where the Co active sites are uniformly distributed in the hexagonal networks. The strong electronic coupling between Co porphyrins and COF is disclosed by various characterizations such as X-ray absorption spectroscopy (XAS) and density functional theory calculation (DFT). Thanks to the CoN5 sites, the catalytic COF shows remarkable catalytic activity with Faraday efficiencies (FECO ) of 84.2-94.3% at applied potentials between -0.50 and -0.80 V (vs RHE), and achieves a turnover frequency of 4578 h-1 at -1.0 V. Moreover, the theoretical calculation further reveals that the CoN5 sites enable a decrease in the overpotential for the formation COOH*. This work provides a design strategy to employ COFs as scaffold for fabricating efficient CO2 electrocatalysts.
Collapse
Affiliation(s)
- Lipeng Zhai
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Shuai Yang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai, 201210, P. R. China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201210, P. R. China
| | - Chenbao Lu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Cheng-Xing Cui
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, P. R. China
| | - Qing Xu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai, 201210, P. R. China
| | - Jing Liu
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Xiubei Yang
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Xutong Meng
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Siyu Lu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450000, P. R. China
| | - Xiaodong Zhuang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Gaofeng Zeng
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai, 201210, P. R. China
| | - Zheng Jiang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai, 201210, P. R. China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201210, P. R. China
| |
Collapse
|
45
|
Guan Q, Zhou LL, Dong YB. Metalated covalent organic frameworks: from synthetic strategies to diverse applications. Chem Soc Rev 2022; 51:6307-6416. [PMID: 35766373 DOI: 10.1039/d1cs00983d] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covalent organic frameworks (COFs) are a class of organic crystalline porous materials discovered in the early 21st century that have become an attractive class of emerging materials due to their high crystallinity, intrinsic porosity, structural regularity, diverse functionality, design flexibility, and outstanding stability. However, many chemical and physical properties strongly depend on the presence of metal ions in materials for advanced applications, but metal-free COFs do not have these properties and are therefore excluded from such applications. Metalated COFs formed by combining COFs with metal ions, while retaining the advantages of COFs, have additional intriguing properties and applications, and have attracted considerable attention over the past decade. This review presents all aspects of metalated COFs, from synthetic strategies to various applications, in the hope of promoting the continued development of this young field.
Collapse
Affiliation(s)
- Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
46
|
Guan X, Fang Q, Yan Y, Qiu S. Functional Regulation and Stability Engineering of Three-Dimensional Covalent Organic Frameworks. Acc Chem Res 2022; 55:1912-1927. [DOI: 10.1021/acs.accounts.2c00200] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Xinyu Guan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| | - Yushan Yan
- Department of Chemical and Biomolecular Engineering, Center for Catalytic Science and Technology, University of Delaware, Newark, Delaware 19716, United States
| | - Shilun Qiu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
47
|
Gong C, Wang H, Sheng G, Wang X, Xu X, Wang J, Miao X, Liu Y, Zhang Y, Dai F, Chen L, Li N, Xu G, Jia J, Zhu Y, Peng Y. Synthesis and Visualization of Entangled 3D Covalent Organic Frameworks with High‐Valency Stereoscopic Molecular Nodes for Gas Separation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Chengtao Gong
- Center for Electron Microscopy Institute for Frontier and Interdisciplinary Sciences State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology College of Materials Science and Engineering and College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014, Zhejiang China
| | - Hao Wang
- Center for Electron Microscopy Institute for Frontier and Interdisciplinary Sciences State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology College of Materials Science and Engineering and College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014, Zhejiang China
| | - Guan Sheng
- Center for Electron Microscopy Institute for Frontier and Interdisciplinary Sciences State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology College of Materials Science and Engineering and College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014, Zhejiang China
| | - Xiaokang Wang
- School of Materials Science and Engineering China University of Petroleum (East China) Qingdao 266580 China
| | - Xiaoqiu Xu
- Center for Electron Microscopy Institute for Frontier and Interdisciplinary Sciences State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology College of Materials Science and Engineering and College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014, Zhejiang China
| | - Jian Wang
- Center for Electron Microscopy Institute for Frontier and Interdisciplinary Sciences State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology College of Materials Science and Engineering and College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014, Zhejiang China
| | - Xiaohe Miao
- The Instrumentation and Service Center for Physical Sciences Westlake University Hangzhou 310024, Zhejiang China
| | - Yikuan Liu
- Center for Electron Microscopy Institute for Frontier and Interdisciplinary Sciences State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology College of Materials Science and Engineering and College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014, Zhejiang China
| | - Yinling Zhang
- Center for Electron Microscopy Institute for Frontier and Interdisciplinary Sciences State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology College of Materials Science and Engineering and College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014, Zhejiang China
| | - Fangna Dai
- School of Materials Science and Engineering China University of Petroleum (East China) Qingdao 266580 China
| | - Liangjun Chen
- Center for Electron Microscopy Institute for Frontier and Interdisciplinary Sciences State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology College of Materials Science and Engineering and College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014, Zhejiang China
| | - Nanjun Li
- Center for Electron Microscopy Institute for Frontier and Interdisciplinary Sciences State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology College of Materials Science and Engineering and College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014, Zhejiang China
| | - Guodong Xu
- Jiangsu Province Engineering Research Center of Agricultural Breeding Pollution Control and Resource Yancheng Teachers University Yancheng 224007 China
| | - Jianhong Jia
- Center for Electron Microscopy Institute for Frontier and Interdisciplinary Sciences State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology College of Materials Science and Engineering and College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014, Zhejiang China
| | - Yihan Zhu
- Center for Electron Microscopy Institute for Frontier and Interdisciplinary Sciences State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology College of Materials Science and Engineering and College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014, Zhejiang China
| | - Yongwu Peng
- Center for Electron Microscopy Institute for Frontier and Interdisciplinary Sciences State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology College of Materials Science and Engineering and College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014, Zhejiang China
| |
Collapse
|
48
|
Liu Y, Chen P, Wang Y, Suo J, Ding J, Zhu L, Valtchev V, Yan Y, Qiu S, Sun J, Fang Q. Design and Synthesis of a Zeolitic Organic Framework**. Angew Chem Int Ed Engl 2022; 61:e202203584. [DOI: 10.1002/anie.202203584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Yaozu Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Pohua Chen
- College of Chemistry and Molecular Engineering Beijing National Laboratory for Molecular Sciences Peking University Beijing 100871 China
| | - Yujie Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Jinquan Suo
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Jiehua Ding
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Liangkui Zhu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Valentin Valtchev
- Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences 189 Song Ling Rd Qingdao Shandong 266101 China
- Normandie Univ, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie 6 Marechal Juin 14050 Caen France
| | - Yushan Yan
- Department of Chemical and Biomolecular Engineering Center for Catalytic Science and Technology University of Delaware Newark DE 19716 USA
| | - Shilun Qiu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Junliang Sun
- College of Chemistry and Molecular Engineering Beijing National Laboratory for Molecular Sciences Peking University Beijing 100871 China
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| |
Collapse
|
49
|
Liu Y, Chen P, Wang Y, Suo J, Ding J, Zhu L, Valtchev V, Yan Y, Qiu S, Sun J, Fang Q. Design and Synthesis of a Zeolitic Organic Framework**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yaozu Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Pohua Chen
- College of Chemistry and Molecular Engineering Beijing National Laboratory for Molecular Sciences Peking University Beijing 100871 China
| | - Yujie Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Jinquan Suo
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Jiehua Ding
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Liangkui Zhu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Valentin Valtchev
- Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences 189 Song Ling Rd Qingdao Shandong 266101 China
- Normandie Univ, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie 6 Marechal Juin 14050 Caen France
| | - Yushan Yan
- Department of Chemical and Biomolecular Engineering Center for Catalytic Science and Technology University of Delaware Newark DE 19716 USA
| | - Shilun Qiu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Junliang Sun
- College of Chemistry and Molecular Engineering Beijing National Laboratory for Molecular Sciences Peking University Beijing 100871 China
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| |
Collapse
|
50
|
Sun R, Wang X, Wang X, Tan B. Three-Dimensional Crystalline Covalent Triazine Frameworks via a Polycondensation Approach. Angew Chem Int Ed Engl 2022; 61:e202117668. [PMID: 35038216 DOI: 10.1002/anie.202117668] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Indexed: 11/09/2022]
Abstract
The growth of crystalline covalent triazine frameworks (CTFs) is still considered as a great challenge due to the less reversible covalent bonds of triazine linkages. The research studies of crystalline CTFs to date have been limited to two-dimensional (2D) structures, and the three-dimensional (3D) crystalline CTFs have never been reported before. Herein we report the design and synthesis of two 3D crystalline CTFs, termed 3D CTF-TPM and 3D CTF-TPA through a reversible/irreversible polycondensation approach. The targeted 3D CTFs adopt ctn topology, and show moderate crystallinity, relatively large surface area (ca. 2000 m2 g-1 ), and high CO2 uptake capacity (23.61 wt.%). Moreover, these 3D CTFs exhibit ultrastability in the presence of boiling water, strong acid (1 M HCl) and strong base (1 M NaOH). This contribution represents the first report of 3D crystalline CTFs, which not only extends their structural diversity but also offers a synthetic strategy and structural basis for expanding practical applications of CTF materials.
Collapse
Affiliation(s)
- Ruixue Sun
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, P. R. China
| | - Xiaoyan Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, P. R. China
| | - Xuepeng Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, P. R. China
| | - Bien Tan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, P. R. China
| |
Collapse
|