1
|
Dang Y, Han J, Chmiel AF, Alektiar SN, Mikhael M, Guzei IA, Yeung CS, Wickens ZK. Alkene Carboxy-Alkylation via CO 2•. J Am Chem Soc 2024; 146:35035-35042. [PMID: 39665217 DOI: 10.1021/jacs.4c14421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Herein, we introduce a new platform for alkene carboxy-alkylation. This reaction is designed around CO2•- addition to alkenes followed by radical polar crossover, which enables alkylation through carbanion attack on carbonyl electrophiles. We discovered that CO2•- adds to alkenes faster than it reduces carbonyl electrophiles and that this reactivity can be exploited by accessing CO2•- via hydrogen atom transfer from formate. This photocatalytic system transforms vinylarenes and carbonyl compounds into a diverse array of substituted γ-lactone products. Furthermore, indoles can be engaged through dearomative carboxy-alkylation, delivering medicinally relevant C(sp3)-rich heterocyclic scaffolds. Mechanistic studies reveal that the active photocatalyst is generated in situ through a photochemically induced reaction between the precatalyst and DMSO. Overall, we have developed a three-component alkene carboxy-alkylation reaction enabled by the use of formate as the CO2•- precursor.
Collapse
Affiliation(s)
- Y Dang
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Jimin Han
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Alyah F Chmiel
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Sara N Alektiar
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Myriam Mikhael
- Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Ilia A Guzei
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Charles S Yeung
- Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Zachary K Wickens
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
2
|
Feng C, Liu Y, Xiang Z, Cheng X, Wei S, Liu X, Deng Q, Fu Q, Zhang Z. An Organic EnT Photocatalyst 4CzMeBN and the Application in the Synthesis of cis-Fused Azetidines. Chemistry 2024:e202403881. [PMID: 39628344 DOI: 10.1002/chem.202403881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Indexed: 12/12/2024]
Abstract
A powerful EnT photocatalyst 4CzMeBN has been developed and utilized in the synthesis of cis-fused azetidines via dearomative [2+2] cycloaddition under visible light. The photocatalyst 4CzMeBN is a donor-acceptor cyanoarene and features high triplet state energy and long lifetime of triplet state, which would be an alternative to widely used EnT photocatalyst Ir[dF(CF3)ppy]2(dtbbpy)PF6. The photochemical [2+2] cycloaddition provides a facile method to synthesize valuable dihydroisoquinolone-fused azetidines with high efficiency.
Collapse
Affiliation(s)
- Chuan Feng
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Yilei Liu
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Zhihui Xiang
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Xiong Cheng
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Siping Wei
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, China
| | - Xinran Liu
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Qinmin Deng
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Qiang Fu
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Zhijie Zhang
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Luzhou, 646000, China
| |
Collapse
|
3
|
Min H, Kwon Y, Shin S, Choi M, Mehra MK, Jeon W, Kwon MS, Lee CW. Tailoring the Degradation of Cyanoarene-Based Photocatalysts for Enhanced Visible-Light-Driven Halogen Atom Transfer. Angew Chem Int Ed Engl 2024; 63:e202406880. [PMID: 38842479 DOI: 10.1002/anie.202406880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/07/2024]
Abstract
We present the strategic design of donor-acceptor cyanoarene-based photocatalysts (PCs) aiming to augment beneficial PC degradation for halogen atom transfer (XAT)-induced dehalogenation reactions. Our investigation reveals a competitive nature between the catalytic cycle and the degradation pathway, with the degradation becoming dominant, particularly for less activated alkyl halides. The degradation behavior of PCs significantly impacts the efficiency of the XAT process, leading to exploration into manipulating the degradation behavior in a desirable direction. Recognizing the variation in the nature and rate of PC degradation, as well as its influence on the reaction across the range of PC structures, we carefully engineered the PCs to develop a pre-catalyst, named 3DP-DCDP-IPN. This pre-catalyst undergoes rapid degradation into an active form, 3DP-DCDP-Me-BN, exhibited an enhanced reducing ability in its radical anion form to induce better PC regeneration and consequently effectively catalyzes the XAT reaction, even with a challenging substrate.
Collapse
Affiliation(s)
- Hyunji Min
- Department of Chemistry, Gachon University, 1342 Seongnamdaero, Seongnam, Gyeonggi, 13120, Republic of Korea
| | - Yonghwan Kwon
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sukhyun Shin
- Department of Chemistry, Gachon University, 1342 Seongnamdaero, Seongnam, Gyeonggi, 13120, Republic of Korea
| | - Miseon Choi
- Department of Chemistry, Gachon University, 1342 Seongnamdaero, Seongnam, Gyeonggi, 13120, Republic of Korea
| | - Manish Kumar Mehra
- Department of Chemistry, Gachon University, 1342 Seongnamdaero, Seongnam, Gyeonggi, 13120, Republic of Korea
- Present address, The Wistar Institute, Philadelphia, 19104, PA, United States
| | - Woojin Jeon
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Min Sang Kwon
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chung Whan Lee
- Department of Chemistry, Gachon University, 1342 Seongnamdaero, Seongnam, Gyeonggi, 13120, Republic of Korea
| |
Collapse
|
4
|
Ning J, Du B, Cao S, Liu X, Kong D. Combining Umpolung and Carbon Isotope Exchange Strategies for Accessing Isotopically Labeled α-Keto Acids. Org Lett 2024; 26:5966-5971. [PMID: 38958587 DOI: 10.1021/acs.orglett.4c01979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The integration of umpolung and carbon isotope exchange for accessing isotopically labeled α-keto acids through photoredox catalysis is elucidated. This process involves the carbonyl umpolung of C(sp2)-α-keto acids to yield C(sp3)-α-thioketal acids, followed by the carbon isotope exchange of C(sp3)-α-thioketal acids, and ultimately, deprotection to generate carbon-labeled α-keto acids.
Collapse
Affiliation(s)
- Jingran Ning
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Baoyang Du
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shilong Cao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xia Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Duanyang Kong
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
5
|
Doyle MGJ, Bsharat O, Sib A, Derdau V, Lundgren RJ. Enantioselective Carbon Isotope Exchange. J Am Chem Soc 2024; 146:18804-18810. [PMID: 38968381 DOI: 10.1021/jacs.4c03685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
The synthesis of isotopically labeled organic molecules is vital for drug and agrochemical discovery and development. Carbon isotope exchange is emerging as a leading method to generate carbon-labeled targets, which are sought over hydrogen-based labels due to their enhanced stability in biological systems. While many bioactive small molecules bear carbon-containing stereocenters, direct enantioselective carbon isotope exchange reactions have not been established. We describe the first example of an enantioselective carbon isotope exchange reaction, where (radio)labeled α-amino acids can be generated from their unlabeled precursors using a stoichiometric chiral aldehyde receptor with isotopically labeled CO2 followed by imine hydrolysis. Many proteinogenic and non-natural derivatives undergo enantioselective labeling, including the late-stage radiolabeling of complex drug targets.
Collapse
Affiliation(s)
- Michael G J Doyle
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
- Integrated Drug Discovery, Isotope Chemistry, R&D, Sanofi Germany, Industriepark Höchst, 65926 Frankfurt, Germany
| | - Odey Bsharat
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Anna Sib
- Integrated Drug Discovery, Isotope Chemistry, R&D, Sanofi Germany, Industriepark Höchst, 65926 Frankfurt, Germany
| | - Volker Derdau
- Integrated Drug Discovery, Isotope Chemistry, R&D, Sanofi Germany, Industriepark Höchst, 65926 Frankfurt, Germany
| | - Rylan J Lundgren
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
6
|
Doyle MGJ, Mair BA, Sib A, Bsharat O, Munch M, Derdau V, Rotstein BH, Lundgren RJ. A practical guide for the preparation of C1-labeled α-amino acids using aldehyde catalysis with isotopically labeled CO 2. Nat Protoc 2024; 19:2147-2179. [PMID: 38548937 DOI: 10.1038/s41596-024-00974-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 01/09/2024] [Indexed: 07/10/2024]
Abstract
Isotopically carbon-labeled α-amino acids are valuable synthetic targets that are increasingly needed in pharmacology and medical imaging. Existing preparations rely on early stage introduction of the isotopic label, which leads to prohibitive synthetic costs and time-intensive preparations. Here we describe a protocol for the preparation of C1-labeled α-amino acids using simple aldehyde catalysts in conjunction with [*C]CO2 (* = 14, 13, 11). This late-stage labeling strategy is enabled by the one-pot carboxylate exchange of unprotected α-amino acids with [*C]CO2. The protocol consists of three separate procedures, describing the syntheses of (±)-[1-13C]phenylalanine, (±)-[1-11C]phenylalanine and (±)-[1-14C]phenylalanine from unlabeled phenylalanine. Although the delivery of [*C]CO2 is operationally distinct for each experiment, each procedure relies on the same fundamental chemistry and can be executed by heating the reaction components at 50-90 °C under basic conditions in dimethylsulfoxide. Performed on scales of up to 0.5 mmol, this methodology is amenable to C1-labeling of many proteinogenic α-amino acids and nonnatural derivatives, which is a breakthrough from existing methods. The synthesis of (±)-[1-13C]phenylalanine requires ~2 d, with product typically obtained in a 60-80% isolated yield (n = 3, μ = 71, σ = 8.3) with an isotopic incorporation of 70-88% (n = 18, μ = 72, σ = 9.0). Starting from the preformed imino acid (~3 h preparation time), rapid synthesis of (±)-[1-11C]phenylalanine can be completed in ~1 h with an isolated radiochemical yield of 13%. Finally, (±)-[1-14C]phenylalanine can be accessed in ~2 d with a 51% isolated yield and 11% radiochemical yield.
Collapse
Affiliation(s)
- Michael G J Doyle
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Braeden A Mair
- Department of Biochemistry, Microbiology and Immunology and Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Anna Sib
- Sanofi Germany, R&D, Integrated Drug Discovery, Isotope Chemistry, Industriepark Höchst, Frankfurt, Germany
| | - Odey Bsharat
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Maxime Munch
- Department of Biochemistry, Microbiology and Immunology and Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Volker Derdau
- Sanofi Germany, R&D, Integrated Drug Discovery, Isotope Chemistry, Industriepark Höchst, Frankfurt, Germany
| | - Benjamin H Rotstein
- Department of Biochemistry, Microbiology and Immunology and Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada.
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada.
| | - Rylan J Lundgren
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
7
|
Sui X, Dang HT, Porey A, Trevino R, Das A, Fremin SO, Hughes WB, Thompson WT, Dhakal SK, Arman HD, Larionov OV. Acridine photocatalysis enables tricomponent direct decarboxylative amine construction. Chem Sci 2024; 15:9582-9590. [PMID: 38939159 PMCID: PMC11206229 DOI: 10.1039/d4sc02356k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/20/2024] [Indexed: 06/29/2024] Open
Abstract
Amines are centrally important motifs in medicinal chemistry and biochemistry, and indispensable intermediates and linchpins in organic synthesis. Despite their cross-disciplinary prominence, synthetic access to amine continues to rely on two-electron approaches based on reductions and additions of organometallic reagents, limiting their accessible chemical space and necessitating stepwise preassembly of synthetic precursors. We report herein a homogeneous photocatalytic tricomponent decarboxylative radical-mediated amine construction that enables modular access to α-branched secondary amines directly from the broad and structurally diverse chemical space of carboxylic acids in a tricomponent reaction with aldehydes and aromatic amines. Our studies reveal the key role of acridine photocatalysis acting in concert with copper and Brønsted acid catalytic processes in facilitating the previously inaccessible homogeneous photocatalytic reaction and provide a streamlined segue to a wide range of amines and nonproteinogenic α-amino acids.
Collapse
Affiliation(s)
- Xianwei Sui
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Hang T Dang
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Arka Porey
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Ramon Trevino
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Arko Das
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Seth O Fremin
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - William B Hughes
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - William T Thompson
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Shree Krishna Dhakal
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Hadi D Arman
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Oleg V Larionov
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| |
Collapse
|
8
|
Munch M, Mair BA, Adi M, Rotstein BH. Photocatalyzed radiosynthesis of 11C-phenylacetic acids. J Labelled Comp Radiopharm 2024; 67:211-216. [PMID: 37941130 DOI: 10.1002/jlcr.4073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/26/2023] [Accepted: 10/16/2023] [Indexed: 11/10/2023]
Abstract
Fast and straightforward incorporation of radionuclides into pharmaceutically relevant molecules is one of the main barriers to preclinical and clinical tracer research. Late-stage direct incorporation of cyclotron-produced [11C]CO2 to afford carbon-11-labeled radiopharmaceuticals has the potential to provide ready-to-inject positron emission tomography agents in less than an hour. The present work describes photocatalyzed carboxylation of alkylbenzene derivatives to afford 11C-phenylacetic acids. Reaction conditions and scope are investigated followed by application of this methodology to the preparative radiosynthesis of [11C]fenoprofen, a nonsteroidal anti-inflammatory drug.
Collapse
Affiliation(s)
- Maxime Munch
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Braeden A Mair
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Myriam Adi
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Benjamin H Rotstein
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
9
|
Porey A, Fremin SO, Nand S, Trevino R, Hughes WB, Dhakal SK, Nguyen VD, Greco SG, Arman HD, Larionov OV. Multimodal Acridine Photocatalysis Enables Direct Access to Thiols from Carboxylic Acids and Elemental Sulfur. ACS Catal 2024; 14:6973-6980. [PMID: 38737399 PMCID: PMC11081195 DOI: 10.1021/acscatal.4c01289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Development of photocatalytic systems that facilitate mechanistically divergent steps in complex catalytic manifolds by distinct activation modes can enable previously inaccessible synthetic transformations. However, multimodal photocatalytic systems remain understudied, impeding their implementation in catalytic methodology. We report herein a photocatalytic access to thiols that directly merges the structural diversity of carboxylic acids with the ready availability of elemental sulfur without substrate preactivation. The photocatalytic transformation provides a direct radical-mediated segue to one of the most biologically important and synthetically versatile organosulfur functionalities, whose synthetic accessibility remains largely dominated by two-electron-mediated processes based on toxic and uneconomical reagents and precursors. The two-phase radical process is facilitated by a multimodal catalytic reactivity of acridine photocatalysis that enables both the singlet excited state PCET-mediated decarboxylative carbon-sulfur bond formation and the previously unknown radical reductive disulfur bond cleavage by a photoinduced HAT process in the silane-triplet acridine system. The study points to a significant potential of multimodal photocatalytic systems in providing unexplored directions to previously inaccessible transformations.
Collapse
Affiliation(s)
- Arka Porey
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Seth O Fremin
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Sachchida Nand
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Ramon Trevino
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - William B Hughes
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Shree Krishna Dhakal
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Viet D Nguyen
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Samuel G Greco
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Hadi D Arman
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Oleg V Larionov
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
10
|
Grotjahn S, Graf C, Zelenka J, Pattanaik A, Müller L, Kutta RJ, Rehbein J, Roithová J, Gschwind RM, Nuernberger P, König B. Reactivity of Superbasic Carbanions Generated via Reductive Radical-Polar Crossover in the Context of Photoredox Catalysis. Angew Chem Int Ed Engl 2024; 63:e202400815. [PMID: 38408163 DOI: 10.1002/anie.202400815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/28/2024]
Abstract
Photocatalytic reactions involving a reductive radical-polar crossover (RRPCO) generate intermediates with carbanionic reactivity. Many of these proposed intermediates resemble highly reactive organometallic compounds. However, conditions of their formation are generally not tolerated by their isolated organometallic versions and often a different reactivity is observed. Our investigations on their nature and reactivity under commonly used photocatalytic conditions demonstrate that these intermediates are indeed best described as free, superbasic carbanions capable of deprotonating common polar solvents usually assumed to be inert such as acetonitrile, dimethylformamide, and dimethylsulfoxide. Their basicity not only towards solvents but also towards electrophiles, such as aldehydes, ketones, and esters, is comparable to the reactivity of isolated carbanions in the gas-phase. Previously unsuccessful transformations thought to result from a lack of reactivity are explained by their high reactivity towards the solvent and weakly acidic protons of reaction partners. An intuitive explanation for the mode of action of photocatalytically generated carbanions is provided, which enables methods to verify reaction mechanisms proposed to involve an RRPCO step and to identify the reasons for the limitations of current methods.
Collapse
Affiliation(s)
- Sascha Grotjahn
- Faculty of Chemistry and Pharmacy, Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Christina Graf
- Faculty of Chemistry and Pharmacy, Institute of Physical and Theoretical Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Jan Zelenka
- Department of Spectroscopy and Catalysis, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ, Nijmegen, the Netherlands
| | - Aryaman Pattanaik
- Faculty of Chemistry and Pharmacy, Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Lea Müller
- Faculty of Chemistry and Pharmacy, Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Roger Jan Kutta
- Faculty of Chemistry and Pharmacy, Institute of Physical and Theoretical Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Julia Rehbein
- Faculty of Chemistry and Pharmacy, Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Jana Roithová
- Department of Spectroscopy and Catalysis, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ, Nijmegen, the Netherlands
| | - Ruth M Gschwind
- Faculty of Chemistry and Pharmacy, Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Patrick Nuernberger
- Faculty of Chemistry and Pharmacy, Institute of Physical and Theoretical Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Burkhard König
- Faculty of Chemistry and Pharmacy, Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| |
Collapse
|
11
|
Lin D, Lechermann LM, Huestis MP, Marik J, Sap JBI. Light-Driven Radiochemistry with Fluorine-18, Carbon-11 and Zirconium-89. Angew Chem Int Ed Engl 2024; 63:e202317136. [PMID: 38135665 DOI: 10.1002/anie.202317136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 12/24/2023]
Abstract
This review discusses recent advances in light-driven radiochemistry for three key isotopes: fluorine-18, carbon-11, and zirconium-89, and their applications in positron emission tomography (PET). In the case of fluorine-18, the predominant approach involves the use of cyclotron-produced [18F]fluoride or reagents derived thereof. Light serves to activate either the substrate or the fluorine-18 labeled reagent. Advancements in carbon-11 photo-mediated radiochemistry have been leveraged for the radiolabeling of small molecules, achieving various transformations, including 11C-methylation, 11C-carboxylation, 11C-carbonylation, and 11C-cyanation. Contrastingly, zirconium-89 photo-mediated radiochemistry differs from fluorine-18 and carbon-11 approaches. In these cases, light facilitates a postlabeling click reaction, which has proven valuable for the labeling of large biomolecules such as monoclonal antibodies (mAbs). New technological developments, such as the incorporation of photoreactors in commercial radiosynthesizers, illustrate the commitment the field is making in embracing photochemistry. Taken together, these advances in photo-mediated radiochemistry enable radiochemists to apply new retrosynthetic strategies in accessing novel PET radiotracers.
Collapse
Affiliation(s)
- Daniel Lin
- Department of Translational Imaging, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
- Current address: University of Southern California Department of Chemistry, Loker Hydrocarbon Research Institute, 837 Bloom Walk, Los Angeles, CA 90089, USA
| | - Laura M Lechermann
- Department of Translational Imaging, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Malcolm P Huestis
- Discovery Chemistry, Genentech, Inc., DNA Way, South San Francisco, CA 94080, USA
| | - Jan Marik
- Department of Translational Imaging, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
- Discovery Chemistry, Genentech, Inc., DNA Way, South San Francisco, CA 94080, USA
| | - Jeroen B I Sap
- Department of Translational Imaging, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| |
Collapse
|
12
|
Kinney RG, Zgheib J, Lagueux-Tremblay PL, Zhou C, Yang H, Li J, Gauthier DR, Arndtsen BA. A metal-catalysed functional group metathesis approach to the carbon isotope labelling of carboxylic acids. Nat Chem 2024; 16:556-563. [PMID: 38374455 DOI: 10.1038/s41557-024-01447-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 01/11/2024] [Indexed: 02/21/2024]
Abstract
The distribution, metabolism and ultimate fate of molecules within the body is central to the activity of pharmaceuticals. However, the introduction of radioisotopes into the metabolically stable carbon sites on drugs to probe these features typically requires toxic, radioactive gases such as [14C]CO and [14C]CO2. Here we describe an approach to directly carbon-label carboxylic-acid-containing pharmaceuticals via a metal-catalysed functional group exchange reaction, forming 14C-labelled carboxylic-acid-containing drugs without radioactive gases, in one pot, using an easily available and handled carboxylic acid 14C source. To enable this process, a functional group metathesis of carbon-carbon covalent bonds in acid chloride functionalities is developed, exploiting the ability of nickel catalysts to both reversibly activate carbon-chloride bonds and exchange functionalities between organic molecules. The drug development applicability is illustrated by the direct incorporation of the 14C label or 13C label into an array of complex aryl, alkyl, vinyl and heterocyclic carboxylic acid drugs or drug candidates without gases or a special apparatus, at ambient conditions and without loss of the radiolabel.
Collapse
Affiliation(s)
- R Garrison Kinney
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | - José Zgheib
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | | | - Cuihan Zhou
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | - Haifeng Yang
- Department of Process Research and Development, Merck & Co., Inc., Rahway, NJ, USA
| | - Jingwei Li
- Department of Process Research and Development, Merck & Co., Inc., Rahway, NJ, USA
| | - Donald R Gauthier
- Department of Process Research and Development, Merck & Co., Inc., Rahway, NJ, USA.
| | - Bruce A Arndtsen
- Department of Chemistry, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
13
|
Zhuang K, Haug GC, Wang Y, Yin S, Sun H, Huang S, Trevino R, Shen K, Sun Y, Huang C, Qin B, Liu Y, Cheng M, Larionov OV, Jin S. Cobalt-Catalyzed Carbon-Heteroatom Transfer Enables Regioselective Tricomponent 1,4-Carboamination. J Am Chem Soc 2024; 146:8508-8519. [PMID: 38382542 DOI: 10.1021/jacs.3c14828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Tricomponent cobalt(salen)-catalyzed carbofunctionalization of unsaturated substrates by radical-polar crossover has the potential to streamline access to broad classes of heteroatom-functionalized synthetic targets, yet the reaction platform has remained elusive, despite the well-developed analogous hydrofunctionalizations mediated by high-valent alkylcobalt intermediates. We report herein the development of a cobalt(salen) catalytic system that enables carbofunctionalization. The reaction entails a tricomponent decarboxylative 1,4-carboamination of dienes and provides a direct route to aromatic allylic amines by obviating preformed allylation reagents and protection of oxidation-sensitive aromatic amines. The catalytic system merges acridine photocatalysis with cobalt(salen)-catalyzed regioselective 1,4-carbofunctionalization that facilitates the crossover of the radical and polar phases of the tricomponent coupling process, revealing critical roles of the reactants, as well as ligand effects and the nature of the formal high-valent alkylcobalt species on the chemo- and regioselectivity.
Collapse
Affiliation(s)
- Kaitong Zhuang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Graham C Haug
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Yangyang Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Shuyu Yin
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Huiying Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Siwen Huang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Ramon Trevino
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Kunzhi Shen
- Shenyang Photosensitive Chemical Research Institute Company Limited, 8-12 No. 6 Road, Shenyang 110141, P. R. China
| | - Yao Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Chao Huang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Bin Qin
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Yongxiang Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Oleg V Larionov
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Shengfei Jin
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| |
Collapse
|
14
|
Nguyen HMH, Thomas DC, Hart MA, Steenback KR, Levy JN, McNally A. Synthesis of 15N-Pyridines and Higher Mass Isotopologs via Zincke Imine Intermediates. J Am Chem Soc 2024; 146:2944-2949. [PMID: 38227776 PMCID: PMC11446173 DOI: 10.1021/jacs.3c12445] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Methods to incorporate stable radioisotopes are integral to pharmaceutical and agrochemical development. However, despite the prevalence of pyridines in candidate compounds, methods to incorporate 15N atoms within their structures are limited. Here, we present a general approach to pyridine 15N-labeling that proceeds via ring-opening to NTf-Zincke imines and then ring-closure with commercially available 15NH4Cl salts. This process functions on a range of substituted pyridines, from simple building block-type compounds to late-stage labeling of complex pharmaceuticals, and 15N-incorporation is >95% in most cases. The reactivity of the Zincke imine intermediates also enables deuteration of the pyridine C3- and C5-positions, resulting in higher mass isotopologs required for LCMS analysis of biological fluids during drug development.
Collapse
Affiliation(s)
- Hillary M H Nguyen
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - David C Thomas
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Marie A Hart
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Kaila R Steenback
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Jeffrey N Levy
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Andrew McNally
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
15
|
Marchese AD, Dorsheimer JR, Rovis T. Photoredox-Catalyzed Generation of Tertiary Anions from Primary Amines via a Radical Polar Crossover. Angew Chem Int Ed Engl 2024; 63:e202317563. [PMID: 38189622 PMCID: PMC10873470 DOI: 10.1002/anie.202317563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Indexed: 01/09/2024]
Abstract
A method for the generation of tertiary carbanions via a deaminative radical-polar crossover is reported using redox active imines from α-tertiary primary amines. A variety of benzylic amines and amino esters can be used in this approach, with the latter engaging in a novel "aza-Reformatsky" reaction. Electronic trends correlate the stability of the resulting carbanion with reaction efficiency. The anions can be trapped with different electrophiles including aldehydes, ketones, imines, Michael acceptors, and H2 O/D2 O. Selective anion formation can be achieved in the presence of another equivalent or more acidic C-H bond in both an inter- and intramolecular fashion. Mechanistic studies suggest the intermediacy of a discrete carbanion intermediate.
Collapse
Affiliation(s)
- Austin D. Marchese
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Julia R. Dorsheimer
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
16
|
Li S, Qian C, Wu XN, Zhou S. Carbon-Atom Exchange between [MC 2] + (M = Os and Ir) and Methane: on the Thermodynamic and Dynamic Aspects. J Phys Chem A 2024; 128:792-798. [PMID: 38239066 DOI: 10.1021/acs.jpca.3c07961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Gas-phase reactions of [OsC2]+ and [IrC2]+ with methane at ambient temperature have been studied using quadrupole-ion trap mass spectrometry combined with quantum chemical calculations. Both [OsC2]+ and [IrC2]+ undergo carbon-atom exchange reactions with methane. The associated mechanisms for the two systems are found to be similar. The differences in the rates of carbon isotope exchange reactions of methane with [MC2]+ (M = Os and Ir) are explained by several factors like the energy barrier for the initial H3C-H bond breaking processes, the molecular dynamics, orbital interactions, and the H-binding energies of the pivotal steps. Besides, the number of participating valence orbitals might be one of the keys to regulate the rate in the key step. The present findings may provide useful ideas and inspiration for designing similar processes.
Collapse
Affiliation(s)
- Shihan Li
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou 310027, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Institute of Zhejiang University - Quzhou, Quzhou 324000, P.R. China
| | - Chao Qian
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou 310027, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Institute of Zhejiang University - Quzhou, Quzhou 324000, P.R. China
| | - Xiao-Nan Wu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Shaodong Zhou
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou 310027, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Institute of Zhejiang University - Quzhou, Quzhou 324000, P.R. China
| |
Collapse
|
17
|
Zambri MA, Kluger R. Proton Transfer via π-Interactions from Pyridine Provides a Facilitated Route for Transfer of CO 2 in Its Complex with a Carbanion. J Am Chem Soc 2024; 146:1403-1409. [PMID: 38176895 DOI: 10.1021/jacs.3c10403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Aromatic π-interactions have been recognized as enhancing enzymatic catalytic processes, providing an efficient route to overcome entropic barriers. A nonenzymic analogue, a complex of protonated pyridine and a phenyl substituent in a thiamin conjugate, facilitates the departure of CO2 by protonation of a vicinal carbanion in a reactive complex. To evaluate the efficiency of the catalytic pathway from the π-associated proton donor, a system was assessed that produced measurable competition through the rates of formation of alternative products resulting from the same thiamin-derived carbanion. The barriers to competing pathways from the decarboxylation of p-(bromomethyl)-mandelylthiamin in the presence and absence of protonated pyridine were determined, establishing the efficiency of the vicinal proton transfer between π-associated species. The formation of the complex of CO2 and the co-formed carbanion also addresses the mechanism of the uncatalyzed exchange of 13CO2 into carboxyl groups discovered by Lundgren. Finally, microscopic reversibility implicates pyridine as a vicinal Brønsted base in thiamin-aldehyde adducts, producing carbanions that could incorporate dissolved CO2 into carboxyl groups.
Collapse
Affiliation(s)
- Marc Alexander Zambri
- Davenport Chemistry Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Ronald Kluger
- Davenport Chemistry Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
18
|
Derdau V, Elmore CS, Hartung T, McKillican B, Mejuch T, Rosenbaum C, Wiebe C. The Future of (Radio)-Labeled Compounds in Research and Development within the Life Science Industry. Angew Chem Int Ed Engl 2023; 62:e202306019. [PMID: 37610759 DOI: 10.1002/anie.202306019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 08/24/2023]
Abstract
In this review the applications of isotopically labeled compounds are discussed and put into the context of their future impact in the life sciences. Especially discussing their use in the pharma and crop science industries to follow their fate in the environment, in vivo or in complex matrices to understand the potential harm of new chemical structures and to increase the safety of human society.
Collapse
Affiliation(s)
- Volker Derdau
- Sanofi-Aventis Deutschland GmbH, Research & Development, Integrated Drug Discovery, Isotope Chemistry, Industriepark Höchst, G876, 65926, Frankfurt am Main, Germany
| | - Charles S Elmore
- Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca, Mölndal, Sweden
| | - Thomas Hartung
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Bruce McKillican
- Syngenta Crop Protection, LLC, North America Product Safety (retired), USA
| | - Tom Mejuch
- BASF SE, Agricultural Solutions, Ludwigshafen, Germany
| | | | | |
Collapse
|
19
|
Dang HT, Porey A, Nand S, Trevino R, Manning-Lorino P, Hughes WB, Fremin SO, Thompson WT, Dhakal SK, Arman HD, Larionov OV. Kinetically-driven reactivity of sulfinylamines enables direct conversion of carboxylic acids to sulfinamides. Chem Sci 2023; 14:13384-13391. [PMID: 38033883 PMCID: PMC10685282 DOI: 10.1039/d3sc04727j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/08/2023] [Indexed: 12/02/2023] Open
Abstract
Sulfinamides are some of the most centrally important four-valent sulfur compounds that serve as critical entry points to an array of emergent medicinal functional groups, molecular tools for bioconjugation, and synthetic intermediates including sulfoximines, sulfonimidamides, and sulfonimidoyl halides, as well as a wide range of other S(iv) and S(vi) functionalities. Yet, the accessible chemical space of sulfinamides remains limited, and the approaches to sulfinamides are largely confined to two-electron nucleophilic substitution reactions. We report herein a direct radical-mediated decarboxylative sulfinamidation that for the first time enables access to sulfinamides from the broad and structurally diverse chemical space of carboxylic acids. Our studies show that the formation of sulfinamides prevails despite the inherent thermodynamic preference for the radical addition to the nitrogen atom, while a machine learning-derived model facilitates prediction of the reaction efficiency based on computationally generated descriptors of the underlying radical reactivity.
Collapse
Affiliation(s)
- Hang T Dang
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Arka Porey
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Sachchida Nand
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Ramon Trevino
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Patrick Manning-Lorino
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - William B Hughes
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Seth O Fremin
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - William T Thompson
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Shree Krishna Dhakal
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Hadi D Arman
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Oleg V Larionov
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| |
Collapse
|
20
|
Bloux H, Khouya AA, Sopkova-de Oliveira Santos J, Fabis F, Dubost E, Cailly T. Gold(I)-Mediated Radioiododecarboxylation of Arenes. Org Lett 2023; 25:8100-8104. [PMID: 37933839 DOI: 10.1021/acs.orglett.3c03191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
A novel radioiodination method is developed using carboxylic acids as radiolabeling precursors. This method involves decarboxylation and organogold(I) intermediate formation, enabling efficient radioiodination of (hetero)arenes and cinnamic and phenylpropiolic acids. Additionally, we demonstrated the prolonged stability of crude gold(I) organometallic compounds, showcasing their enduring radiolabeling capabilities.
Collapse
Affiliation(s)
- Hugo Bloux
- Centre d'Etudes et de Recherche sur le Medicament de Normandie, Normandie Université, Caen 14000, France
| | - Ahmed Ait Khouya
- Centre d'Etudes et de Recherche sur le Medicament de Normandie, Normandie Université, Caen 14000, France
| | | | - Frédéric Fabis
- Centre d'Etudes et de Recherche sur le Medicament de Normandie, Normandie Université, Caen 14000, France
| | - Emmanuelle Dubost
- Centre d'Etudes et de Recherche sur le Medicament de Normandie, Normandie Université, Caen 14000, France
- Institut Blood and Brain @ Caen Normandie (BB@C), Caen 14000, France
- Normandie Univ, UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Caen 14000, France
| | - Thomas Cailly
- Centre d'Etudes et de Recherche sur le Medicament de Normandie, Normandie Université, Caen 14000, France
- Institut Blood and Brain @ Caen Normandie (BB@C), Caen 14000, France
- IMOGERE, Normandie Université, Caen 14000, France
- Department of Nuclear Medicine, CHU Cote de Nacre, Caen 14000, France
| |
Collapse
|
21
|
Abstract
Stable isotopes such as 2H, 13C, and 15N have important applications in chemistry and drug discovery. Late-stage incorporation of uncommon isotopes via isotopic exchange allows for the direct conversion of complex molecules into their valuable isotopologues without requiring a de novo synthesis. While synthetic methods exist for the conversion of hydrogen and carbon atoms into their less abundant isotopes, a corresponding method for accessing 15N-primary amines from their naturally occurring 14N-analogues has not yet been disclosed. We report an approach to access 15N-labeled primary amines via late-stage isotopic exchange using a simple benzophenone imine as the 15N source. By activating α-1 and α-2° amines to Katritzky pyridinium salts and α-3° amines to redox-active imines, we can engage primary alkyl amines in a deaminative amination. The redox-active imines proceed via a radical-polar crossover mechanism, whereas the Katritzky salts are engaged in copper catalysis via an electron donor-acceptor complex. The method is general for a variety of amines, including multiple drug compounds, and results in complete and selective isotopic labeling.
Collapse
Affiliation(s)
- Julia R Dorsheimer
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
22
|
Wang A, Yin YY, Rukhsana, Wang LQ, Jin JH, Shen YM. Visible-Light-Mediated Three-Component Decarboxylative Coupling Reactions to Synthesize 1,4-Diol Monoethers. J Org Chem 2023; 88:13871-13882. [PMID: 37683099 DOI: 10.1021/acs.joc.3c01483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
An efficient approach for 1,2-difunctionalization of aromatic olefins and the synthesis of functionalized 1,4-diols monoethers has been established via a photoinduced three-component reaction of an α-alkoxycarboxylic acid, an aromatic olefin, and an aldehyde. The reaction proceeds by photoinduced oxidative decarboxylation of the carboxylic acid followed by the addition of the α-alkoxyalkyl radical to the olefin, one-electron reduction of the addition radical, and the nucleophilic attack of the resulting carbanion to the aldehyde. Besides the convenient one-pot protocol of the three-component reaction, this method offers several other advantages, including good functional group tolerance for the three substrates, gentle reaction conditions, and ease of scaling up. The reaction mechanism has been investigated through free radical trapping experiment and isotope labeling experiments.
Collapse
Affiliation(s)
- Ai Wang
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Yu-Yun Yin
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
- Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312400, P.R. China
| | - Rukhsana
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Le-Quan Wang
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Jia-Hui Jin
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Yong-Miao Shen
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
- Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312400, P.R. China
| |
Collapse
|
23
|
Zhou X, Huang Q, Guo J, Dai L, Lu Y. Molecular Editing of Pyrroles via a Skeletal Recasting Strategy. ACS CENTRAL SCIENCE 2023; 9:1758-1767. [PMID: 37780359 PMCID: PMC10540293 DOI: 10.1021/acscentsci.3c00812] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Indexed: 10/03/2023]
Abstract
Heterocyclic scaffolds are commonly found in numerous biologically active molecules, therapeutic agents, and agrochemicals. To probe chemical space around heterocycles, many powerful molecular editing strategies have been devised. Versatile C-H functionalization strategies allow for peripheral modifications of heterocyclic motifs, often being specific and taking place at multiple sites. The past few years have seen the quick emergence of exciting "single-atom skeletal editing" strategies, through one-atom deletion or addition, enabling ring contraction/expansion and structural diversification, as well as scaffold hopping. The construction of heterocycles via deconstruction of simple heterocycles is unknown. Herein, we disclose a new molecular editing method which we name the skeletal recasting strategy. Specifically, by tapping on the 1,3-dipolar property of azoalkenes, we recast simple pyrroles to fully substituted pyrroles, through a simple phosphoric acid-promoted one-pot reaction consisting of dearomative deconstruction and rearomative reconstruction steps. The reaction allows for easy access to synthetically challenging tetra-substituted pyrroles which are otherwise difficult to synthesize. Furthermore, we construct N-N axial chirality on our pyrrole products, as well as accomplish a facile synthesis of the anticancer drug, Sutent. The potential application of this method to other heterocycles has also been demonstrated.
Collapse
Affiliation(s)
- Xueting Zhou
- Joint
School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, Fujian 350207, China
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Qingqin Huang
- Joint
School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, Fujian 350207, China
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Jiami Guo
- Joint
School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, Fujian 350207, China
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Lei Dai
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Yixin Lu
- Joint
School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, Fujian 350207, China
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
24
|
Labiche A, Malandain A, Molins M, Taran F, Audisio D. Modern Strategies for Carbon Isotope Exchange. Angew Chem Int Ed Engl 2023; 62:e202303535. [PMID: 37074841 DOI: 10.1002/anie.202303535] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/20/2023]
Abstract
In contrast to stable and natural abundant carbon-12, the synthesis of organic molecules with carbon (radio)isotopes must be conceived and optimized in order to navigate through the hurdles of radiochemical requirements, such as high costs of the starting materials, harsh conditions and radioactive waste generation. In addition, it must initiate from the small cohort of available C-labeled building blocks. For long time, multi-step approaches have represented the sole available patterns. On the other side, the development of chemical reactions based on the reversible cleavage of C-C bonds might offer new opportunities and reshape retrosynthetic analysis in radiosynthesis. This review aims to provide a short survey on the recently emerged carbon isotope exchange technologies that provide effective opportunity for late-stage labeling. At present, such strategies have relied on the use of primary and easily accessible radiolabeled C1-building blocks, such as carbon dioxide, carbon monoxide and cyanides, while the activation principles have been based on thermal, photocatalytic, metal-catalyzed and biocatalytic processes.
Collapse
Affiliation(s)
- Alexandre Labiche
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SCBM, 91191, Gif-sur-Yvette, France
| | - Augustin Malandain
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SCBM, 91191, Gif-sur-Yvette, France
| | - Maxime Molins
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SCBM, 91191, Gif-sur-Yvette, France
| | - Frédéric Taran
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SCBM, 91191, Gif-sur-Yvette, France
| | - Davide Audisio
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SCBM, 91191, Gif-sur-Yvette, France
| |
Collapse
|
25
|
Day CS, Ton SJ, Kaussler C, Vrønning Hoffmann D, Skrydstrup T. Low Pressure Carbonylation of Benzyl Carbonates and Carbamates for Applications in 13 C Isotope Labeling and Catalytic CO 2 Reduction. Angew Chem Int Ed Engl 2023; 62:e202308238. [PMID: 37439487 DOI: 10.1002/anie.202308238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/14/2023]
Abstract
Herein, we report a methodology to access isotopically labeled esters and amides from carbonates and carbamates employing an oxygen deletion strategy. This methodology utilizes a decarboxylative carbonylation approach for isotope labeling with near stoichiometric, ex situ generated 12 C, or 13 C carbon monoxide. This reaction is characterized by its broad scope, functional group tolerance, and high yields, which is showcased with the synthesis of structurally complex molecules. A complementary method that operates by the catalytic in situ generation of CO via the reduction of CO2 liberated during decarboxylation has also been developed as a proof-of-concept approach that CO2 -derived compounds can be converted to CO-containing frameworks. Mechanistic studies provide insight into the catalytic steps which highlight the impact of ligand choice to overcome challenges associated with low-pressure carbonylation methodologies, along with rational for the development of future methodologies.
Collapse
Affiliation(s)
- Craig S Day
- Carbon Dioxide Activation Center (CADIAC), The Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Stephanie J Ton
- Carbon Dioxide Activation Center (CADIAC), The Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Clemens Kaussler
- Carbon Dioxide Activation Center (CADIAC), The Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Daniel Vrønning Hoffmann
- Carbon Dioxide Activation Center (CADIAC), The Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Troels Skrydstrup
- Carbon Dioxide Activation Center (CADIAC), The Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| |
Collapse
|
26
|
Monticelli S, Talbot A, Gotico P, Caillé F, Loreau O, Del Vecchio A, Malandain A, Sallustrau A, Leibl W, Aukauloo A, Taran F, Halime Z, Audisio D. Unlocking full and fast conversion in photocatalytic carbon dioxide reduction for applications in radio-carbonylation. Nat Commun 2023; 14:4451. [PMID: 37488106 PMCID: PMC10366225 DOI: 10.1038/s41467-023-40136-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 07/11/2023] [Indexed: 07/26/2023] Open
Abstract
Harvesting sunlight to drive carbon dioxide (CO2) valorisation represents an ideal concept to support a sustainable and carbon-neutral economy. While the photochemical reduction of CO2 to carbon monoxide (CO) has emerged as a hot research topic, the full CO2-to-CO conversion remains an often-overlooked criterion that prevents a productive and direct valorisation of CO into high-value-added chemicals. Herein, we report a photocatalytic process that unlocks full and fast CO2-to-CO conversion (<10 min) and its straightforward valorisation into human health related field of radiochemistry with carbon isotopes. Guided by reaction-model-based kinetic simulations to rationalize reaction optimisations, this manifold opens new opportunities for the direct access to 11C- and 14C-labeled pharmaceuticals from their primary isotopic sources [11C]CO2 and [14C]CO2.
Collapse
Affiliation(s)
- Serena Monticelli
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191, Gif-sur-Yvette, France
| | - Alex Talbot
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191, Gif-sur-Yvette, France
| | - Philipp Gotico
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, F-91191, Gif-sur-Yvette, France
| | - Fabien Caillé
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay (BioMaps), F-91401, Orsay, France
| | - Olivier Loreau
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191, Gif-sur-Yvette, France
| | - Antonio Del Vecchio
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191, Gif-sur-Yvette, France
| | - Augustin Malandain
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191, Gif-sur-Yvette, France
| | - Antoine Sallustrau
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191, Gif-sur-Yvette, France
| | - Winfried Leibl
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, F-91191, Gif-sur-Yvette, France
| | - Ally Aukauloo
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, F-91191, Gif-sur-Yvette, France
- Université Paris-Saclay, CNRS, Institut de chimie moléculaire et des matériaux d'Orsay, F-91400,, Orsay, France
| | - Frédéric Taran
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191, Gif-sur-Yvette, France
| | - Zakaria Halime
- Université Paris-Saclay, CNRS, Institut de chimie moléculaire et des matériaux d'Orsay, F-91400,, Orsay, France.
| | - Davide Audisio
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191, Gif-sur-Yvette, France.
| |
Collapse
|
27
|
Rong J, Haider A, Jeppesen TE, Josephson L, Liang SH. Radiochemistry for positron emission tomography. Nat Commun 2023; 14:3257. [PMID: 37277339 PMCID: PMC10241151 DOI: 10.1038/s41467-023-36377-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 01/30/2023] [Indexed: 06/07/2023] Open
Abstract
Positron emission tomography (PET) constitutes a functional imaging technique that is harnessed to probe biological processes in vivo. PET imaging has been used to diagnose and monitor the progression of diseases, as well as to facilitate drug development efforts at both preclinical and clinical stages. The wide applications and rapid development of PET have ultimately led to an increasing demand for new methods in radiochemistry, with the aim to expand the scope of synthons amenable for radiolabeling. In this work, we provide an overview of commonly used chemical transformations for the syntheses of PET tracers in all aspects of radiochemistry, thereby highlighting recent breakthrough discoveries and contemporary challenges in the field. We discuss the use of biologicals for PET imaging and highlight general examples of successful probe discoveries for molecular imaging with PET - with a particular focus on translational and scalable radiochemistry concepts that have been entered to clinical use.
Collapse
Affiliation(s)
- Jian Rong
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Ahmed Haider
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Troels E Jeppesen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Steven H Liang
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA.
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
28
|
Alektiar SN, Han J, Dang Y, Rubel CZ, Wickens ZK. Radical Hydrocarboxylation of Unactivated Alkenes via Photocatalytic Formate Activation. J Am Chem Soc 2023; 145:10991-10997. [PMID: 37186951 PMCID: PMC10636750 DOI: 10.1021/jacs.3c03671] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Herein we disclose a strategy to promote the hydrocarboxylation of unactivated alkenes using photochemical activation of formate salts. We illustrate that an alternative initiation mechanism circumvents the limitations of prior approaches and enables hydrocarboxylation of this challenging substrate class. Specifically, we found that accessing the requisite thiyl radical initiator without an exogenous chromophore eliminates major byproducts that have plagued attempts to exploit similar reactivity for unactivated alkene substrates. This redox-neutral method is technically simple to execute and effective across a broad range of alkene substrates. Feedstock alkenes, such as ethylene, are hydrocarboxylated at ambient temperature and pressure. A series of radical cyclization experiments indicate how the reactivity described in this report can be diverted by more complex radical processes.
Collapse
Affiliation(s)
- Sara N. Alektiar
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jimin Han
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Y Dang
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Camille Z. Rubel
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Zachary K. Wickens
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
29
|
Ton S, Ravn AK, Hoffmann DV, Day CS, Kingston L, Elmore CS, Skrydstrup T. Rapid Access to Carbon-Isotope-Labeled Alkyl and Aryl Carboxylates Applying Palladacarboxylates. JACS AU 2023; 3:756-761. [PMID: 37006775 PMCID: PMC10052257 DOI: 10.1021/jacsau.2c00708] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 06/19/2023]
Abstract
Herein, we report a strategy for the formation of isotopically labeled carboxylic esters from boronic esters/acids using a readily accessible palladium carboxylate complex as an organometallic source of isotopically labeled functional groups. The reaction allows access to either unlabeled or full 13C- or 14C-isotopically labeled carboxylic esters, and the method is characterized by its operational simplicity, mild conditions, and general substrate scope. Our protocol is further extended to a carbon isotope replacement strategy, involving an initial decarbonylative borylation procedure. Such an approach allows access to isotopically labeled compounds directly from the unlabeled pharmaceutical, which can have implications for drug discovery programs.
Collapse
Affiliation(s)
- Stephanie
J. Ton
- Carbon
Dioxide Activation Center (CADIAC), The Interdisciplinary Nanoscience
Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, Aarhus 8000, Denmark
| | - Anne K. Ravn
- Carbon
Dioxide Activation Center (CADIAC), The Interdisciplinary Nanoscience
Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, Aarhus 8000, Denmark
| | - Daniel Vrønning Hoffmann
- Carbon
Dioxide Activation Center (CADIAC), The Interdisciplinary Nanoscience
Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, Aarhus 8000, Denmark
| | - Craig S. Day
- Carbon
Dioxide Activation Center (CADIAC), The Interdisciplinary Nanoscience
Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, Aarhus 8000, Denmark
| | - Lee Kingston
- Isotope
Chemistry, Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca Pharmaceuticals, Gothenburg 43183, Sweden
| | - Charles S. Elmore
- Isotope
Chemistry, Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca Pharmaceuticals, Gothenburg 43183, Sweden
| | - Troels Skrydstrup
- Carbon
Dioxide Activation Center (CADIAC), The Interdisciplinary Nanoscience
Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, Aarhus 8000, Denmark
| |
Collapse
|
30
|
Dang HT, Nguyen VD, Haug GC, Arman HD, Larionov OV. Decarboxylative Triazolation Enables Direct Construction of Triazoles from Carboxylic Acids. JACS AU 2023; 3:813-822. [PMID: 37006773 PMCID: PMC10052276 DOI: 10.1021/jacsau.2c00606] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 06/19/2023]
Abstract
Triazoles have major roles in chemistry, medicine, and materials science, as centrally important heterocyclic motifs and bioisosteric replacements for amides, carboxylic acids, and other carbonyl groups, as well as some of the most widely used linkers in click chemistry. Yet, the chemical space and molecular diversity of triazoles remains limited by the accessibility of synthetically challenging organoazides, thereby requiring preinstallation of the azide precursors and restricting triazole applications. We report herein a photocatalytic, tricomponent decarboxylative triazolation reaction that for the first time enables direct conversion of carboxylic acids to triazoles in a single-step, triple catalytic coupling with alkynes and a simple azide reagent. Data-guided inquiry of the accessible chemical space of decarboxylative triazolation indicates that the transformation can improve access to the structural diversity and molecular complexity of triazoles. Experimental studies demonstrate a broad scope of the synthetic method that includes a variety of carboxylic acid, polymer, and peptide substrates. When performed in the absence of alkynes, the reaction can also be used to access organoazides, thereby obviating preactivation and specialized azide reagents and providing a two-pronged approach to C-N bond-forming decarboxylative functional group interconversions.
Collapse
Affiliation(s)
- Hang T. Dang
- Department of Chemistry, The
University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, United States
| | | | | | - Hadi D. Arman
- Department of Chemistry, The
University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, United States
| | - Oleg V. Larionov
- Department of Chemistry, The
University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, United States
| |
Collapse
|
31
|
Pees A, Chassé M, Lindberg A, Vasdev N. Recent Developments in Carbon-11 Chemistry and Applications for First-In-Human PET Studies. Molecules 2023; 28:931. [PMID: 36770596 PMCID: PMC9920299 DOI: 10.3390/molecules28030931] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Positron emission tomography (PET) is a molecular imaging technique that makes use of radiolabelled molecules for in vivo evaluation. Carbon-11 is a frequently used radionuclide for the labelling of small molecule PET tracers and can be incorporated into organic molecules without changing their physicochemical properties. While the short half-life of carbon-11 (11C; t½ = 20.4 min) offers other advantages for imaging including multiple PET scans in the same subject on the same day, its use is limited to facilities that have an on-site cyclotron, and the radiochemical transformations are consequently more restrictive. Many researchers have embraced this challenge by discovering novel carbon-11 radiolabelling methodologies to broaden the synthetic versatility of this radionuclide. This review presents new carbon-11 building blocks and radiochemical transformations as well as PET tracers that have advanced to first-in-human studies over the past five years.
Collapse
Affiliation(s)
- Anna Pees
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
| | - Melissa Chassé
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Anton Lindberg
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
| | - Neil Vasdev
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| |
Collapse
|
32
|
Kwon Y, Lee J, Noh Y, Kim D, Lee Y, Yu C, Roldao JC, Feng S, Gierschner J, Wannemacher R, Kwon MS. Formation and degradation of strongly reducing cyanoarene-based radical anions towards efficient radical anion-mediated photoredox catalysis. Nat Commun 2023; 14:92. [PMID: 36609499 PMCID: PMC9822901 DOI: 10.1038/s41467-022-35774-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/22/2022] [Indexed: 01/07/2023] Open
Abstract
Cyanoarene-based photocatalysts (PCs) have attracted significant interest owing to their superior catalytic performance for radical anion mediated photoredox catalysis. However, the factors affecting the formation and degradation of cyanoarene-based PC radical anion (PC•‒) are still insufficiently understood. Herein, we therefore investigate the formation and degradation of cyanoarene-based PC•‒ under widely-used photoredox-mediated reaction conditions. By screening various cyanoarene-based PCs, we elucidate strategies to efficiently generate PC•‒ with adequate excited-state reduction potentials (Ered*) via supra-efficient generation of long-lived triplet excited states (T1). To thoroughly investigate the behavior of PC•‒ in actual photoredox-mediated reactions, a reductive dehalogenation is carried out as a model reaction and identified the dominant photodegradation pathways of the PC•‒. Dehalogenation and photodegradation of PC•‒ are coexistent depending on the rate of electron transfer (ET) to the substrate and the photodegradation strongly depends on the electronic and steric properties of the PCs. Based on the understanding of both the formation and photodegradation of PC•‒, we demonstrate that the efficient generation of highly reducing PC•‒ allows for the highly efficient photoredox catalyzed dehalogenation of aryl/alkyl halides at a PC loading as low as 0.001 mol% with a high oxygen tolerance. The present work provides new insights into the reactions of cyanoarene-based PC•‒ in photoredox-mediated reactions.
Collapse
Affiliation(s)
- Yonghwan Kwon
- grid.31501.360000 0004 0470 5905Department of Materials Science and Engineering, Seoul National University, Seoul, 08826 Republic of Korea ,grid.42687.3f0000 0004 0381 814XDepartment of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Republic of Korea
| | - Jungwook Lee
- grid.31501.360000 0004 0470 5905Department of Materials Science and Engineering, Seoul National University, Seoul, 08826 Republic of Korea
| | - Yeonjin Noh
- grid.31501.360000 0004 0470 5905Department of Materials Science and Engineering, Seoul National University, Seoul, 08826 Republic of Korea ,grid.42687.3f0000 0004 0381 814XDepartment of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Republic of Korea
| | - Doyon Kim
- grid.42687.3f0000 0004 0381 814XDepartment of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Republic of Korea
| | - Yungyeong Lee
- grid.31501.360000 0004 0470 5905Department of Materials Science and Engineering, Seoul National University, Seoul, 08826 Republic of Korea
| | - Changhoon Yu
- grid.31501.360000 0004 0470 5905Department of Materials Science and Engineering, Seoul National University, Seoul, 08826 Republic of Korea
| | - Juan Carlos Roldao
- grid.482876.70000 0004 1762 408XMadrid Institute for Advanced Studies, IMDEA Nanoscience, Calle Faraday 9, Campus Cantoblanco, Madrid, 28049 Spain ,grid.452382.a0000 0004 1768 3100Donostia International Physics Center (DIPC), Manuel Lardizabal Ibilbidea 4, San Sebastián, 20018 Spain
| | - Siyang Feng
- grid.482876.70000 0004 1762 408XMadrid Institute for Advanced Studies, IMDEA Nanoscience, Calle Faraday 9, Campus Cantoblanco, Madrid, 28049 Spain
| | - Johannes Gierschner
- grid.482876.70000 0004 1762 408XMadrid Institute for Advanced Studies, IMDEA Nanoscience, Calle Faraday 9, Campus Cantoblanco, Madrid, 28049 Spain
| | - Reinhold Wannemacher
- grid.482876.70000 0004 1762 408XMadrid Institute for Advanced Studies, IMDEA Nanoscience, Calle Faraday 9, Campus Cantoblanco, Madrid, 28049 Spain
| | - Min Sang Kwon
- grid.31501.360000 0004 0470 5905Department of Materials Science and Engineering, Seoul National University, Seoul, 08826 Republic of Korea
| |
Collapse
|
33
|
Whyte A, Yoon TP. Selective Cross-Ketonization of Carboxylic Acids Enabled by Metallaphotoredox Catalysis. Angew Chem Int Ed Engl 2022; 61:e202213739. [PMID: 36318472 PMCID: PMC9771944 DOI: 10.1002/anie.202213739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Indexed: 11/30/2022]
Abstract
Carboxylic acids are attractive building blocks for synthetic chemistry because they are chemically stable, abundant, and commercially available with substantial structural diversity. The process of combining two carboxylic acids to furnish a ketone is termed ketonization. This is a potentially valuable transformation that has been underutilized in organic synthesis due to the harsh reaction conditions generally required and the lack of selectivity obtained when coupling two distinct carboxylic acids. We report herein a metallaphotoredox strategy that selectively generates unsymmetrical ketones via cross-ketonization of two structurally dissimilar carboxylic acids. Cross-selectivity is achieved by exploiting divergent reactivity of differentially substituted acids towards critical one- and two-electron processes in the proposed coupling mechanism. This method is broadly applicable to a variety of functionalized carboxylic acids. It can also be applied to acids of similar steric profile by exploiting differences in their relative rates of decarboxylation.
Collapse
Affiliation(s)
- Andrew Whyte
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison WI 53706 (USA)
| | - Tehshik P. Yoon
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison WI 53706 (USA)
| |
Collapse
|
34
|
Bsharat O, Doyle MGJ, Munch M, Mair BA, Cooze CJC, Derdau V, Bauer A, Kong D, Rotstein BH, Lundgren RJ. Aldehyde-catalysed carboxylate exchange in α-amino acids with isotopically labelled CO 2. Nat Chem 2022; 14:1367-1374. [PMID: 36344821 DOI: 10.1038/s41557-022-01074-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 09/23/2022] [Indexed: 11/09/2022]
Abstract
The isotopic labelling of small molecules is integral to drug development and for understanding biochemical processes. The preparation of carbon-labelled α-amino acids remains difficult and time consuming, with established methods involving label incorporation at an early stage of synthesis. This explains the high cost and scarcity of C-labelled products and presents a major challenge in 11C applications (11C t1/2 = 20 min). Here we report that aldehydes catalyse the isotopic carboxylate exchange of native α-amino acids with *CO2 (* = 14, 13, 11). Proteinogenic α-amino acids and many non-natural variants containing diverse functional groups undergo labelling. The reaction probably proceeds via the trapping of *CO2 by imine-carboxylate intermediates to generate iminomalonates that are prone to monodecarboxylation. Tempering catalyst electrophilicity was key to preventing irreversible aldehyde consumption. The pre-generation of the imine carboxylate intermediate allows for the rapid and late-stage 11C-radiolabelling of α-amino acids in the presence of [11C]CO2.
Collapse
Affiliation(s)
- Odey Bsharat
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Michael G J Doyle
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Maxime Munch
- Department of Biochemistry, Microbiology and Immunology and Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Braeden A Mair
- Department of Biochemistry, Microbiology and Immunology and Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | | | - Volker Derdau
- Sanofi-Aventis Deutschland GmbH, R&D, Integrated Drug Discovery, Isotope Chemistry, Industriepark Höchst, Frankfurt, Germany
| | - Armin Bauer
- Sanofi-Aventis Deutschland GmbH, R&D, Integrated Drug Discovery, Isotope Chemistry, Industriepark Höchst, Frankfurt, Germany
| | - Duanyang Kong
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Benjamin H Rotstein
- Department of Biochemistry, Microbiology and Immunology and Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada.
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada.
| | - Rylan J Lundgren
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
35
|
Neumann KT, Skrydstrup T. Enriched amino acids. Nat Chem 2022; 14:1339-1340. [PMID: 36344819 DOI: 10.1038/s41557-022-01089-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Karoline T Neumann
- Department of Chemistry and Interdisciplinary Nanoscience Center at Aarhus University, Aarhus C, Denmark.
| | - Troels Skrydstrup
- Department of Chemistry and Interdisciplinary Nanoscience Center at Aarhus University, Aarhus C, Denmark
| |
Collapse
|
36
|
Whyte A, Yoon TP. Selective Cross‐Ketonization of Carboxylic Acids Enabled by Metallaphotoredox Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202213739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Andrew Whyte
- Department of Chemistry University of Wisconsin-Madison 1101 University Avenue Madison WI 53706 USA
| | - Tehshik P. Yoon
- Department of Chemistry University of Wisconsin-Madison 1101 University Avenue Madison WI 53706 USA
| |
Collapse
|
37
|
Liu G, Gao Y, Su W. Photocatalytic Decarboxylative Coupling of Arylacetic Acids with Aromatic Aldehydes. J Org Chem 2022; 88:6322-6332. [PMID: 36173738 DOI: 10.1021/acs.joc.2c01751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An efficient protocol was proposed for the preparation of secondary alcohols in good to excellent yields via photoredox-catalyzed decarboxylative couplings between readily available arylacetic acids and a variety of less reactive (hetero)aromatic aldehydes. The formation of carbanion is the key intermediate in this reaction. Various substituted arylacetic acids and aldehydes were all compatible with this transformation under mild reaction conditions. Furthermore, the current protocol was successfully applied to the direct alcoholization of several drug acids.
Collapse
Affiliation(s)
- Ge Liu
- College of Chemistry, Fuzhou University, Fuzhou 350116, China.,State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
| | - Yuzhen Gao
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
| | - Weiping Su
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
| |
Collapse
|
38
|
Babin V, Taran F, Audisio D. Late-Stage Carbon-14 Labeling and Isotope Exchange: Emerging Opportunities and Future Challenges. JACS AU 2022; 2:1234-1251. [PMID: 35783167 PMCID: PMC9241029 DOI: 10.1021/jacsau.2c00030] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 05/04/2023]
Abstract
Carbon-14 (14C) is a gold standard technology routinely utilized in pharmaceutical and agrochemical industries for tracking synthetic organic molecules and providing their metabolic and safety profiles. While the state of the art has been dominated for decades by traditional multistep synthetic approaches, the recent emergence of late-stage carbon isotope labeling has provided new avenues to rapidly access carbon-14-labeled biologically relevant compounds. In particular, the development of carbon isotope exchange has represented a fundamental paradigm change, opening the way to unexplored synthetic transformations. In this Perspective, we discuss the recent developments in the field with a critical assessment of the literature. We subsequently discuss research directions and future challenges within this rapidly evolving field.
Collapse
|
39
|
Mao B, Wei JS, Shi M. Recent advancements in visible-light-driven carboxylation with carbon dioxide. Chem Commun (Camb) 2022; 58:9312-9327. [DOI: 10.1039/d2cc03380a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbon dioxide as a classic C1 source has long been investigated in organic synthetic chemistry. Diverse catalytic methods for CO2 activation were reported in the past several decades. In this...
Collapse
|
40
|
Polgar AM, Huang SH, Hudson ZM. Donor modification of thermally activated delayed fluorescence photosensitizers for organocatalyzed atom transfer radical polymerization. Polym Chem 2022. [DOI: 10.1039/d2py00470d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
TADF donor-acceptor conjugates were applied as photosensitizers for organocatalyzed organic atom transfer radical polymerization. A donor-modification strategy was found to dramatically improve the control over the polymerization.
Collapse
Affiliation(s)
- Alexander M. Polgar
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Shine H. Huang
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Zachary M. Hudson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada
| |
Collapse
|
41
|
Davies J, Lyonnet JR, Zimin DP, Martin R. The road to industrialization of fine chemical carboxylation reactions. Chem 2021. [DOI: 10.1016/j.chempr.2021.10.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
42
|
Ton SJ, Neumann KT, Nørby P, Skrydstrup T. Nickel-Mediated Alkoxycarbonylation for Complete Carbon Isotope Replacement. J Am Chem Soc 2021; 143:17816-17824. [PMID: 34643376 DOI: 10.1021/jacs.1c09170] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Many commercial drugs, as well as upcoming pharmaceutically active compounds in the pipeline, display aliphatic carboxylic acids or derivatives thereof as key structural entities. Synthetic methods for rapidly accessing isotopologues of such compounds are highly relevant for undertaking critical pharmacological studies. In this paper, we disclose a direct synthetic route allowing for full carbon isotope replacement via a nickel-mediated alkoxycarbonylation. Employing a nickelII pincer complex ([(N2N)Ni-Cl]) in combination with carbon-13 labeled CO, alkyl iodide, sodium methoxide, photocatalyst, and blue LED light, it was possible to generate the corresponding isotopically labeled aliphatic carboxylates in good yields. Furthermore, the developed methodology was applied to the carbon isotope substitution of several pharmaceutically active compounds, whereby complete carbon-13 labeling was successfully accomplished. It was initially proposed that the carboxylation step would proceed via the in situ formation of a nickellacarboxylate, generated by CO insertion into the Ni-alkoxide bond. However, preliminary mechanistic investigations suggest an alternative pathway involving attack of an open shell species generated from the alkyl halide to a metal ligated CO to generate an acyl NiIII species. Subsequent reductive elimination involving the alkoxide eventually leads to carboxylate formation. An excess of the alkoxide was essential for obtaining a high yield of the product. In general, the presented methodology provides a simple and convenient setup for the synthesis and carbon isotope labeling of aliphatic carboxylates, while providing new insights about the reactivity of the N2N nickel pincer complex applied.
Collapse
Affiliation(s)
- Stephanie J Ton
- Carbon Dioxide Activation Center (CADIAC), The Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Karoline T Neumann
- Carbon Dioxide Activation Center (CADIAC), The Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Peter Nørby
- Center for Materials Crystallography, Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus, Denmark
| | - Troels Skrydstrup
- Carbon Dioxide Activation Center (CADIAC), The Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| |
Collapse
|
43
|
Chernowsky CP, Chmiel AF, Wickens ZK. Electrochemical Activation of Diverse Conventional Photoredox Catalysts Induces Potent Photoreductant Activity*. Angew Chem Int Ed Engl 2021; 60:21418-21425. [PMID: 34288312 PMCID: PMC8440429 DOI: 10.1002/anie.202107169] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/07/2021] [Indexed: 12/15/2022]
Abstract
Herein, we disclose that electrochemical stimulation induces new photocatalytic activity from a range of structurally diverse conventional photocatalysts. These studies uncover a new electron-primed photoredox catalyst capable of promoting the reductive cleavage of strong C(sp2 )-N and C(sp2 )-O bonds. We illustrate several examples of the synthetic utility of these deeply reducing but otherwise safe and mild catalytic conditions. Finally, we employ electrochemical current measurements to perform a reaction progress kinetic analysis. This technique reveals that the improved activity of this new system is a consequence of an enhanced catalyst stability profile.
Collapse
Affiliation(s)
- Colleen P. Chernowsky
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Ave, Madison, WI 53706
| | - Alyah F. Chmiel
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Ave, Madison, WI 53706
| | - Zachary K. Wickens
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Ave, Madison, WI 53706
| |
Collapse
|
44
|
Chernowsky CP, Chmiel AF, Wickens ZK. Electrochemical Activation of Diverse Conventional Photoredox Catalysts Induces Potent Photoreductant Activity**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Colleen P. Chernowsky
- Department of Chemistry University of Wisconsin-Madison 1101 University Ave Madison WI 53706 USA
| | - Alyah F. Chmiel
- Department of Chemistry University of Wisconsin-Madison 1101 University Ave Madison WI 53706 USA
| | - Zachary K. Wickens
- Department of Chemistry University of Wisconsin-Madison 1101 University Ave Madison WI 53706 USA
| |
Collapse
|
45
|
Deng XZ, Chen ZY, Song Y, Xue F, Yamane M, Yue YN. Direct Access to α,β-Unsaturated Ketones via Rh/MgCl 2-Mediated Acylation of Vinylsilanes. J Org Chem 2021; 86:12693-12704. [PMID: 34491765 DOI: 10.1021/acs.joc.1c01205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report herein the facile and practical construction of α,β-unsaturated ketones via rhodium-catalyzed direct acylation of vinylsilanes with readily available and abundant carboxylic acids. This protocol features access to a diverse array of synthetically useful functionalities with moderate to excellent yields. More importantly, the late-stage functionalization of pharmaceuticals was also realized with synthetically useful yield.
Collapse
Affiliation(s)
- Xue-Zu Deng
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing211816, China
| | - Zi-Yan Chen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing211816, China
| | - Yang Song
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing211816, China
| | - Fei Xue
- Institute of Material Physics & Chemistry, College of Science, Nanjing Forestry University, Nanjing210037, China
| | - Motoki Yamane
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore637371, Singapore
| | - Yan-Ni Yue
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing211816, China
| |
Collapse
|
46
|
Wang L, Shi F, Qi C, Xu W, Xiong W, Kang B, Jiang H. Stereodivergent synthesis of β-iodoenol carbamates with CO 2 via photocatalysis. Chem Sci 2021; 12:11821-11830. [PMID: 34659721 PMCID: PMC8442729 DOI: 10.1039/d1sc03366b] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/02/2021] [Indexed: 01/24/2023] Open
Abstract
Photocatalytic conversion of carbon dioxide (CO2) into value-added chemicals is of great significance from the viewpoint of green chemistry and sustainable development. Here, we report a stereodivergent synthesis of β-iodoenol carbamates through a photocatalytic three-component coupling of ethynylbenziodoxolones, CO2 and amines. By choosing appropriate photocatalysts, both Z- and E-isomers of β-iodoenol carbamates, which are difficult to prepare using existing methods, can be obtained stereoselectively. This transformation featured mild conditions, excellent functional group compatibility and broad substrate scope. The potential synthetic utility of this protocol was demonstrated by late-stage modification of bioactive molecules and pharmaceuticals as well as by elaborating the products to access a wide range of valuable compounds. More importantly, this strategy could provide a general and practical method for stereodivergent construction of trisubstituted alkenes such as triarylalkenes, which represents a fascinating challenge in the field of organic chemistry research. A series of mechanism investigations revealed that the transformation might proceed through a charge-transfer complex which might be formed through a halogen bond.
Collapse
Affiliation(s)
- Lu Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| | - Fuxing Shi
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Chaorong Qi
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| | - Wenjie Xu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| | - Wenfang Xiong
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| | - Bangxiong Kang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| |
Collapse
|
47
|
Tlili A, Lakhdar S. Acridinium Salts and Cyanoarenes as Powerful Photocatalysts: Opportunities in Organic Synthesis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Anis Tlili
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246) Univ Lyon, Université Lyon 1 CNRS CPE-Lyon INSA 43 Bd du 11 Novembre 1918 69622 Villeurbanne France
| | - Sami Lakhdar
- CNRS/Université Toulouse III—Paul Sabatier Laboratoire Hétérochimie Fondamentale et Appliquée LHFA UMR 5069 118 Route de Narbonne 31062 Toulouse Cedex 09 France
| |
Collapse
|
48
|
Tlili A, Lakhdar S. Acridinium Salts and Cyanoarenes as Powerful Photocatalysts: Opportunities in Organic Synthesis. Angew Chem Int Ed Engl 2021; 60:19526-19549. [PMID: 33881207 DOI: 10.1002/anie.202102262] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/16/2021] [Indexed: 01/18/2023]
Abstract
The use of organic photocatalysts has revolutionized the field of photoredox catalysis, as it allows access to reactivities that were traditionally restricted to transition-metal photocatalysts. This Minireview reports recent developments in the use of acridinium ions and cyanoarene derivatives in organic synthesis. The activation of inert chemical bonds as well as the late-stage functionalization of biorelevant molecules are discussed, with a special focus on their mechanistic aspects.
Collapse
Affiliation(s)
- Anis Tlili
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246), Univ Lyon, Université Lyon 1, CNRS, CPE-Lyon, INSA, 43 Bd du 11 Novembre 1918, 69622, Villeurbanne, France
| | - Sami Lakhdar
- CNRS/Université Toulouse III-Paul Sabatier, Laboratoire Hétérochimie Fondamentale et Appliquée, LHFA UMR 5069, 118 Route de Narbonne, 31062, Toulouse Cedex 09, France
| |
Collapse
|
49
|
Affiliation(s)
- Youwen Xu
- Independent Consultant/Contractor 3900 Ford Road, Unit 18O Philadelphia PA USA
| | - Wenchao Qu
- Departments of Psychiatry and Chemistry Stony Brook University New York NY USA
| |
Collapse
|
50
|
Alektiar SN, Wickens ZK. Photoinduced Hydrocarboxylation via Thiol-Catalyzed Delivery of Formate Across Activated Alkenes. J Am Chem Soc 2021; 143:13022-13028. [PMID: 34380308 DOI: 10.1021/jacs.1c07562] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Herein we disclose a new photochemical process to prepare carboxylic acids from formate salts and alkenes. This redox-neutral hydrocarboxylation proceeds in high yields across diverse functionalized alkene substrates with excellent regioselectivity. This operationally simple procedure can be readily scaled in batch at low photocatalyst loading (0.01% photocatalyst). Furthermore, this new reaction can leverage commercially available formate carbon isotologues to enable the direct synthesis of isotopically labeled carboxylic acids. Mechanistic studies support the working model involving a thiol-catalyzed radical chain process wherein the atoms from formate are delivered across the alkene substrate via CO2•- as a key reactive intermediate.
Collapse
Affiliation(s)
- Sara N Alektiar
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Zachary K Wickens
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|