1
|
Zhang J, Wang S, Song P, Li A, Jiang W, Di J. Copper porphyrin modified BiOBr/Bi 19S 27Br 3 for efficient CO 2 photoreduction. J Colloid Interface Sci 2025; 679:383-390. [PMID: 39461127 DOI: 10.1016/j.jcis.2024.10.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/17/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
The insufficient solar light response ability of the photocatalyst, rapid recombination of interface charges, and lack of active sites significantly inhibit the efficiency of photocatalytic CO2 reduction. Addressing these challenges simultaneously is a very challenging task. Herein, an interface engineering coupled surface polarization strategy is proposed to optimize the CO2 photoreduction performance. The copper tetracarboxyphenylporphyrin (CuTCPP) modified BiOBr/Bi19S27Br3 (BBS) heterostructure was developed. The built-in electric field formed between BiOBr and Bi19S27Br3 interfaces induces the effective interfacial charge separation, while the surface polarization of CuTCPP induces the transfer of electrons from the conduction band (CB) of BBS to the CB of CuTCPP. Benefiting from this unique configuration and abundant active sites in CuTCPP, greatly improved photocatalytic CO2 reduction performance can be realized. Without adding cocatalysts and sacrificial agents, the optimized CO generation performance of CuTCPP-BiOBr/Bi19S27Br3 (BBS-CT) is 3.5 times higher than that of BBS. This work provides valuable insights of interface engineering coupled surface polarization strategy for collaborative improve the photocatalytic CO2 reduction performance.
Collapse
Affiliation(s)
- Jiajing Zhang
- School of Chemistry and Chemical Engineering, National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Suwei Wang
- School of Chemistry and Chemical Engineering, National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Pin Song
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Engineering Research Center of Carbon Neutrality, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China.
| | - Ang Li
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Wei Jiang
- School of Chemistry and Chemical Engineering, National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Jun Di
- School of Chemistry and Chemical Engineering, National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing 210094, China; Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Engineering Research Center of Carbon Neutrality, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China.
| |
Collapse
|
2
|
Kshirsagar SD, Shelake SP, Biswas B, Ramesh K, Gaur R, Abraham BM, Sainath AVS, Pal U. Emerging ZnO Semiconductors for Photocatalytic CO 2 Reduction to Methanol. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407318. [PMID: 39367556 DOI: 10.1002/smll.202407318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/09/2024] [Indexed: 10/06/2024]
Abstract
Carbon recycling is poised to emerge as a prominent trend for mitigating severe climate change and meeting the rising demand for energy. Converting carbon dioxide (CO2) into green energy and valuable feedstocks through photocatalytic CO2 reduction (PCCR) offers a promising solution to global warming and energy needs. Among all semiconductors, zinc oxide (ZnO) has garnered considerable interest due to its ecofriendly nature, biocompatibility, abundance, exceptional semiconducting and optical properties, cost-effectiveness, easy synthesis, and durability. This review thoroughly discusses recent advances in mechanistic insights, fundamental principles, experimental parameters, and modulation of ZnO catalysts for direct PCCR to C1 products (methanol). Various ZnO modification techniques are explored, including atomic size regulation, synthesis strategies, morphology manipulation, doping with cocatalysts, defect engineering, incorporation of plasmonic metals, and single atom modulation to boost its photocatalytic performance. Additionally, the review highlights the importance of photoreactor design, reactor types, geometries, operating modes, and phases. Future research endeavors should prioritize the development of cost-effective catalyst immobilization methods for solid-liquid separation and catalyst recycling, while emphasizing the use of abundant and non-toxic materials to ensure environmental sustainability and economic viability. Finally, the review outlines key challenges and proposes novel directions for further enhancing ZnO-based photocatalytic CO2 conversion processes.
Collapse
Affiliation(s)
- Switi Dattatraya Kshirsagar
- Department of Energy & Environmental Engineering, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Sandip Prabhakar Shelake
- Polymers and Functional Materials and Fluoro-Agrochemicals Department, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Bapan Biswas
- Department of Energy & Environmental Engineering, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Kanaparthi Ramesh
- Catalysis Department, Hindustan Petroleum Green R&D Centre, Bangalore, 560067, India
| | - Rashmi Gaur
- Catalysis Department, Hindustan Petroleum Green R&D Centre, Bangalore, 560067, India
| | - B Moses Abraham
- A.J. Drexel Nanomaterials Institute, Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Annadanam V Sesha Sainath
- Polymers and Functional Materials and Fluoro-Agrochemicals Department, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ujjwal Pal
- Department of Energy & Environmental Engineering, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
3
|
Zha M, Ai L, Sheng R, Tan C, Li Y, Guo N, Xu M, Jia D, Wang L. Engineering Dual-Defective 0D/2D V N-CNQDs/V Bi-Bi 4O 5Br 2 S-Scheme Heterostructure for Boosting CO 2 Photoreduction in Air. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407839. [PMID: 39506434 DOI: 10.1002/smll.202407839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/27/2024] [Indexed: 11/08/2024]
Abstract
The direct photocatalytic reduction of CO2 in air is the future trend of photocatalyst application. Herein, the 0D carbon nitride quantum dots with nitrogen vacancies (VN-CNQDs) and 2D bismuth-deficient Bi4O5Br2 (VBi-Bi4O5Br2) are integrated by hydrothermal method. The S-scheme heterostructure of VN-CNQDs/VBi-Bi4O5Br2 composite promotes the separation rate of photogenerated carriers and enhances the redox capacity. The dual defects provide a large number of adsorption and catalytic sites that enhance the ability to capture and reduce CO2. The synergistic effect of S-scheme heterostructure and defect engineering enables the efficiency of CO2 photoreduction to CO with VN-CNQDs/VBi-Bi4O5Br2 to reach 16.89 µmol g-1 h-1 in air and 55.69 µmol g-1 h-1 in VCO2: VAir = 3:1 condition, which is 17 and 21 times higher than that of Bi4O5Br2, respectively. The dual-defective VN-CNQDs/VBi-Bi4O5Br2 exhibits more lower energy barrier for forming *CO2, *COOH, and *CO and is easier to release CO gas. And it exhibits excellent cycling stability for photocatalytic CO2 reduction to CO. The photocatalytic reduction mechanism of CO2 to CO in the VN-CNQDs/VBi-Bi4O5Br2 S-scheme heterostructure is further analyzed. This work provides new perspectives for the design of the photocatalysts with defect engineering for efficient photoconversion at low CO2 concentrations.
Collapse
Affiliation(s)
- Manning Zha
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
| | - Lili Ai
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
| | - Rui Sheng
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
| | - Chuan Tan
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
| | - Yuchun Li
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
| | - Nannan Guo
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
| | - Mengjiao Xu
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
| | - Dianzeng Jia
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
| | - Luxiang Wang
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
| |
Collapse
|
4
|
Deng S, Cao R, Wang X, Zhou Y, Liang J, Tang H, Feng X, Yang S, Shangguan Y, Li Y, Chen H. Upconversion Phosphor-Driven Photodegradation of Plastics. NANO LETTERS 2024; 24:14082-14090. [PMID: 39437159 DOI: 10.1021/acs.nanolett.4c04138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Plastic waste poses a profound threat to ecosystems and human health, necessitating novel strategies for effective degradation in nature. Here, we present a novel approach utilizing upconversion phosphors as additives to significantly accelerate plastic photodegradation in nature via enhancing ultraviolet (UV) radiation. Pr-doped Li2CaGeO4 (LCGO:Pr) upconversion phosphors readily converting blue light into deep-UV radiation, dramatically improve photodegradation rates for polyethylene (PE) and polyethylene terephthalate (PET) microplastics. In situ spectroscopic studies show that upconversion fluorescence initiates the photophysical cleavage of C-C and C-O bonds in the backbones of PE and PET, resulting in plastic degradation. Moreover, incorporating LCGO:Pr into polypropylene (PP) sheets realizes markedly enhanced photodamage, with the cracking area increasing by nearly 38-fold under simulated sunlight for 10 days. This underscores the potential of employing this approach for the construction of light-driven destructible polymers. Further optimization and exploration of material compatibility hold promise for developing sustainable photodegradable plastics.
Collapse
Affiliation(s)
- Shimao Deng
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo 315200, China
| | - Runzi Cao
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xinjie Wang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yuanhao Zhou
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh 15213, United States
| | - Jiaxin Liang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huan Tang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xuezhen Feng
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Songhe Yang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yangzi Shangguan
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yang Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Hong Chen
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
5
|
Ren S, Han J, Yang Z, Liang J, Feng S, Zhang X, Xu J, Zhu J. Near-Unity Photothermal CO 2 Hydrogenation to Methanol Based on a Molecule/Nanocarbon Hybrid Catalyst. Angew Chem Int Ed Engl 2024:e202416376. [PMID: 39498772 DOI: 10.1002/anie.202416376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/27/2024] [Accepted: 11/04/2024] [Indexed: 11/07/2024]
Abstract
Solar-driven CO2-to-methanol conversion provides an intriguing route for both solar energy storage and CO2 mitigation. For scalable applications, near-unity methanol selectivity is highly desirable to reduce the energy and cost endowed by low-value byproducts and complex separation processes, but so far has not been achieved. Here we demonstrate a molecule/nanocarbon hybrid catalyst composed of carbon nanotube-supported molecularly dispersed cobalt phthalocyanine (CoPc/CNT), which synergistically integrates high photothermal conversion capability for affording an optimal reaction temperature with homogeneous and intrinsically-efficient active sites, to achieve a catalytic activity of 2.4 mmol gcat -1 h-1 and selectivity of ~99 % in direct photothermal CO2 hydrogenation to methanol reaction. Both theoretical calculations and operando characterizations consistently confirm that the unique electronic structure of CoPc and appropriate reaction temperature cooperatively enable a thermodynamic favorable reaction pathway for highly selective methanol production. This work represents an important milestone towards the development of advanced photothermal catalysts for scalable and cost-effective CO2 hydrogenation.
Collapse
Affiliation(s)
- Siyun Ren
- National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Junnan Han
- National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Zhengwei Yang
- National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Jie Liang
- National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Shijia Feng
- National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Xing Zhang
- National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Jun Xu
- National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
- School of Microelectronics and School of Integrated Circuits, Nantong University, Nantong, 226019, P. R. China
| | - Jia Zhu
- National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
- School of Sustainable Energy and Resources, Nanjing University, Suzhou, 215163, P. R. China
| |
Collapse
|
6
|
Li J, Li Y, Selishchev D, Zhang G. Near-infrared responsive photocatalysts for environmental remediation and energy conversion: A review. CHEMOSPHERE 2024; 367:143599. [PMID: 39442573 DOI: 10.1016/j.chemosphere.2024.143599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/12/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
Photocatalytic technology provides a vital pathway for the sustainable and efficient removal of environmental pollutants and energy conversion. However, enhancing the near-infrared (NIR) light absorption and utilization capabilities of photocatalysts has remained a significant challenge in this field. This paper presents a comprehensive review of recent developments in NIR-responsive photocatalysts. It systematically outlines strategies for improving the NIR light absorption capacity of photocatalysts, including doping engineering, upconversion, and plasmonic resonance effects. The discussion then progresses to cover advancements in NIR-responsive photocatalytic materials, highlighting the relationship between their unique physicochemical properties and corresponding modification strategies. Furthermore, the review explores the applications and mechanisms of various NIR-responsive photocatalysts in pollutant degradation, CO2 reduction, volatile organic compounds removal, and the green synthesis of H2 and H2O2. Finally, the paper addresses the challenges faced in developing NIR-responsive photocatalysts and their broader applications, proposing future research directions to mitigate these existing barriers.
Collapse
Affiliation(s)
- Jiaming Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430000, China
| | - Yuan Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430000, China
| | - Dmitry Selishchev
- Department of Unconventional Catalytic Processes, Boreskov Institute of Catalysis, Novosibirsk, 630090, Russia
| | - Gaoke Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430000, China.
| |
Collapse
|
7
|
Tian J, Zhang Y, Shi Z, Liu Z, Zhao Z, Li J, Li N, Huang H. Enabling Interfacial Lattice Matching by Selective Epitaxial Growth of CuS Crystals on Bi 2WO 6 Nanosheets for Efficient CO 2 Photoreduction into Solar Fuels. Angew Chem Int Ed Engl 2024:e202418496. [PMID: 39462192 DOI: 10.1002/anie.202418496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 10/29/2024]
Abstract
Photocatalytic CO2 reduction serves as an important technology for value-added solar fuel production, however, it is generally limited by interfacial charge transport. To address this limitation, a two-dimensional/two-dimensional (2D/2D) p-n heterojunction CuS-Bi2WO6 (CS-BWO) with highly connected and matched interfacial lattices was designed in this work via a two-step hydrothermal tandem synthesis strategy. The integration of CuS with BWO created a robust interface electric field and provided fast charge transfer channels due to the work function difference, as well as highly connected and matched interfacial lattices. The p-n heterojunction combination promoted the electron transfer from the Cu to Bi sites, leading to the coordination of Bi sites with high electronic density and low oxidation state. The Bi sites in the BWO nanosheets facilitated the adsorption and activation of CO2, and the generation of high-coverage key intermediate b-CO3 2-, while CuS (CS) acted as a broad light-harvesting material to provide abundant photoinduced electrons that were injected into the conduction band of BWO for CO2 photoreduction reaction. Remarkably, the p-n heterojunction CS-BWO exhibited average CO and CH4 yields of 33.9 and 16.4 μmol g-1 h-1, respectively, which were significantly higher than those of CS, BWO, and physical mixture CS-BWO samples. This work provided an innovative design strategy for developing high-activity heterojunction photocatalyst for converting CO2 into value-added solar fuels.
Collapse
Affiliation(s)
- Jiaqi Tian
- Henan Institute of Advanced Technology, College of Chemistry, Zhengzhou University, Zhengzhou, 450052, P.R. China
| | - Yangyang Zhang
- Henan Institute of Advanced Technology, College of Chemistry, Zhengzhou University, Zhengzhou, 450052, P.R. China
| | - Zuhao Shi
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P.R. China
| | - Zhongyi Liu
- Henan Institute of Advanced Technology, College of Chemistry, Zhengzhou University, Zhengzhou, 450052, P.R. China
| | - Zaiwang Zhao
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010070, P. R. China
| | - Jun Li
- Henan Institute of Advanced Technology, College of Chemistry, Zhengzhou University, Zhengzhou, 450052, P.R. China
| | - Neng Li
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P.R. China
| | - Hongwei Huang
- School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P.R. China
| |
Collapse
|
8
|
Cui Y, Labidi A, Liang X, Huang X, Wang J, Li X, Dong Q, Zhang X, Othman SI, Allam AA, Bahnemann DW, Wang C. Pivotal Impact Factors in Photocatalytic Reduction of CO 2 to Value-Added C 1 and C 2 Products. CHEMSUSCHEM 2024; 17:e202400551. [PMID: 38618906 DOI: 10.1002/cssc.202400551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
Over the past decades, CO2 greenhouse emission has been considerably increased, causing global warming and climate change. Indeed, converting CO2 into valuable chemicals and fuels is a desired option to resolve issues caused by its continuous emission into the atmosphere. Nevertheless, CO2 conversion has been hampered by the ultrahigh dissociation energy of C=O bonds, which makes it thermodynamically and kinetically challenging. From this prospect, photocatalytic approaches appear promising for CO2 reduction in terms of their efficiency compared to other traditional technologies. Thus, many efforts have been made in the designing of photocatalysts with asymmetric sites and oxygen vacancies, which can break the charge distribution balance of CO2 molecule, reduce hydrogenation energy barrier and accelerate CO2 conversion into chemicals and fuels. Here, we review the recent advances in CO2 hydrogenation to C1 and C2 products utilizing photocatalysis processes. We also pin down the key factors or parameters influencing the generation of C2 products during CO2 hydrogenation. In addition, the current status of CO2 reduction is summarized, projecting the future direction for CO2 conversion by photocatalysis processes.
Collapse
Affiliation(s)
- Yongqian Cui
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, P. R. China
| | - Abdelkader Labidi
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, P. R. China
| | - Xinxin Liang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, P. R. China
| | - Xin Huang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, P. R. China
| | - Jingyi Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, P. R. China
| | - Ximing Li
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, P. R. China
| | - Qibing Dong
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, P. R. China
| | - Xiaolong Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, P. R. China
| | - Sarah I Othman
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Ahmed A Allam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, 11623, Saudi Arabia
| | - Detlef W Bahnemann
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, P. R. China
- Institute for Technical Chemistry, Leibniz University Hannover, 30167, Hannover, Germany
- Laboratory of Photoactive Nanocomposite Materials, Saint Petersburg State University, Saint-Petersburg, 198504, Russia
| | - Chuanyi Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, P. R. China
| |
Collapse
|
9
|
Li J, Liu X, Wu X, Liu Z, Zhao Z, Liu Y, Dou S, Xiao Y. Selective CO 2 Photoreduction into CH 4 Triggered by the Synergy between Oxygen Vacancy and Ru Substitution under Near-Infrared Light Irradiation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405668. [PMID: 38981049 PMCID: PMC11425646 DOI: 10.1002/advs.202405668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/20/2024] [Indexed: 07/11/2024]
Abstract
Near-infrared (NIR) light powdered CO2 photoreduction reaction is generally restricted to the separation efficiency of photogenerated carriers and the supply of active hydrogen (*H). Herein, the study reports a retrofitting hydrogenated MoO3-x (H-MoO3-x) nanosheet photocatalysts with Ru single atom substitution (Ru@H-MoO3-x) fabricated by one-step solvothermal method. Experiments together with theoretical calculations demonstrate that the synergistic effect of Ru substitution and oxygen vacancy can not only inhibit the recombination of photogenerated carriers, but also facilitate the CO2 adsorption/activation as well as the supply of *H. Compared with H-MoO3-x, the Ru@H-MoO3-x exhibit more favorable formation of *CHO in the process of *CO conversion due to the fast *H generation on electron-rich Ru sites and transfer to *CO intermediates, leading to the preferential photoreduction of CO2 to CH4 with high selectivity. The optimized Ru@H-MoO3-x exhibits a superior CO2 photoreduction activity with CH4 evolution rate of 111.6 and 39.0 µmol gcatalyst -1 under full spectrum and NIR light irradiation, respectively, which is 8.8 and 15.0 times much higher than that of H-MoO3-x. This work provides an in-depth understanding at the atomic level on the design of NIR responsive photocatalyst for achieving the goal of carbon neutrality.
Collapse
Affiliation(s)
- Jun Li
- Henan Institute of Advanced TechnologyCollege of ChemistryZhengzhou UniversityZhengzhou450052P. R. China
| | - Xinglong Liu
- Henan Institute of Advanced TechnologyCollege of ChemistryZhengzhou UniversityZhengzhou450052P. R. China
| | - Xi Wu
- Henan Institute of Advanced TechnologyCollege of ChemistryZhengzhou UniversityZhengzhou450052P. R. China
| | - Zhongyi Liu
- Henan Institute of Advanced TechnologyCollege of ChemistryZhengzhou UniversityZhengzhou450052P. R. China
| | - Zaiwang Zhao
- College of Energy Materials and ChemistryCollege of Chemistry and Chemical EngineeringInner Mongolia UniversityHohhot010070P. R. China
| | - Yifeng Liu
- College of Chemistry and Materials EngineeringWenzhou UniversityWenzhou325035P. R. China
| | - Shixue Dou
- Institute of Energy Materials Science (IEMS)University of Shanghai for Science and TechnologyShanghai200093P. R. China
| | - Yao Xiao
- College of Chemistry and Materials EngineeringWenzhou UniversityWenzhou325035P. R. China
| |
Collapse
|
10
|
Xu J, Zhao H, Yu X, Zou H, Hu J, Chen Z. Floating Photothermal Hydrogen Production. CHEMSUSCHEM 2024:e202401307. [PMID: 39176998 DOI: 10.1002/cssc.202401307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 08/24/2024]
Abstract
Solar-to-hydrogen (STH) is emerging as a promising approach for energy storage and conversion to contribute to carbon neutrality. The lack of efficient catalysts and sustainable reaction systems is stimulating the fast development of photothermal hydrogen production based on floating carriers to achieve unprecedented STH efficiency. This technology involves three major components: floating carriers with hierarchically porous structures, photothermal materials for solar-to-heat conversion and photocatalysts for hydrogen production. Under solar irradiation, the floating photothermal system realizes steam generation which quickly diffuses to the active site for sustainable hydrogen generation with the assistance of a hierarchically porous structure. Additionally, this technology is endowed with advantages in the high utilization of solar energy and catalyst retention, making it suitable for various scenarios, including domestic water supply, wastewater treatment, and desalination. A comprehensive overview of the photothermal hydrogen production system is present due to the economic feasibility for industrial application. The in-depth mechanism of a floating photothermal system, including the solar-to-heat effect, steam diffusion, and triple-phase interaction are highlighted by elucidating the logical relationship among buoyant carriers, photothermal materials, and catalysts for hydrogen production. Finally, the challenges and new opportunities facing current photothermal catalytic hydrogen production systems are analyzed.
Collapse
Affiliation(s)
- Jian Xu
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang, 315200, China
| | - Heng Zhao
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang, 315200, China
| | - Xinti Yu
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang, 315200, China
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2 N 1N4, Canada
| | - Haiyan Zou
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang, 315200, China
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2 N 1N4, Canada
| | - Zhangxing Chen
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang, 315200, China
| |
Collapse
|
11
|
Gao W, Li H, Hu J, Yang Y, Xiong Y, Ye J, Zou Z, Zhou Y. Recent advances of metal active sites in photocatalytic CO 2 reduction. Chem Sci 2024:d4sc01978d. [PMID: 39156936 PMCID: PMC11326468 DOI: 10.1039/d4sc01978d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024] Open
Abstract
Photocatalytic CO2 reduction captures solar energy to convert CO2 into hydrocarbon fuels, thus shifting the dependence on rapidly depleting fossil fuels. Among the various proposed photocatalysts, systems containing metal active sites (MASs) possess obvious advantages, such as effective photogenerated carrier separation, suitable adsorption and activation of intermediates, and achievable C-C coupling to generate multi-carbon (C2+) products. The present review aims to summarize the typical photocatalytic materials with MAS, highlighting the critical role of different formulations of MAS in CO2 photoreduction, especially for C2+ product generation. State-of-the-art progress in the characterization and theoretical calculations for MAS-containing photocatalysts is also emphasized. Finally, the challenges and prospects of catalytic systems involving MAS for solar-driven CO2 conversion are outlined, providing inspiration for the future design of materials for efficient photocatalytic energy conversion.
Collapse
Affiliation(s)
- Wa Gao
- School of Physical Science and Technology, Tiangong University Tianjin 300387 P. R. China
| | - Haonan Li
- School of Physical Science and Technology, Tiangong University Tianjin 300387 P. R. China
| | - Jianqiang Hu
- Jiangxi Normal Univ., Inst. Adv. Mat. IAM, Coll. Chem. & Chem. Engn. Nanchang 330022 P. R. China
| | - Yong Yang
- Key Laboratory of Soft Chemistry and Functional Materials (MOE), Nanjing University of Science and Technology Nanjing 210094 P. R. China
| | - Yujie Xiong
- School of Chemistry and Materials Science, University of Science and Technology of China Hefei 230036 Anhui P. R. China
| | - Jinhua Ye
- National Institute for Materials Science (NIMS), International Center Materials Nanoarchitecture MANA 1-1 Namiki, Tsukuba Ibaraki 305-0044 Japan
| | - Zhigang Zou
- School of Physics, Jiangsu Key Laboratory of Nanotechnology, Eco-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210093 P. R. China
- School of Science and Engineering, The Chinese University of Hongkong (Shenzhen) Shenzhen Guangdong 518172 P. R. China
| | - Yong Zhou
- School of Chemical and Environmental Engineering, Anhui Polytechnic University Wuhu 241000 P. R. China
- School of Physics, Jiangsu Key Laboratory of Nanotechnology, Eco-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210093 P. R. China
- School of Science and Engineering, The Chinese University of Hongkong (Shenzhen) Shenzhen Guangdong 518172 P. R. China
| |
Collapse
|
12
|
Wang P, Wei S, Han Y, Lin S, Zhang L, Li Q, Xu Y, Lian L, Zhou Y, Song M, Zhuang W, Liu Y. Metal-Free C 60-Doped Mesoporous Carbon Nitride Drives Red-Light Photocatalysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14045-14056. [PMID: 38914517 DOI: 10.1021/acs.langmuir.4c01452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The pursuit of novel strategies for synthesizing high-performance nanostructures of graphitic carbon nitride (g-C3N4) has garnered increasing scholarly attention in the field of photocatalysis. Herein, we have successfully designed a metal-free photocatalyst by integrating mesoporous carbon nitride (mpg-C3N4) and C60 through a straightforward and innovative method, marking the first instance of such an achievement. Under red light, the C60/mpg-C3N4 composite exhibited a significantly accelerated rhodamine B (RhB) photodecomposition rate, surpassing bulk g-C3N4 by more than 25.8 times and outperforming pure mpg-C3N4 by 7.8 times. The synergistic effect of C60 and the mesoporous structure significantly enhanced the photocatalytic performance of g-C3N4 by adjusting its electronic structure, broadening the light absorption range, increasing the active sites, and reducing the recombination of photogenerated carriers. This work presents a promising avenue for harnessing a metal-free, stable, efficient photocatalyst driven by red light, with potential for enhancing solar energy utilization in environmental remediation.
Collapse
Affiliation(s)
- Peng Wang
- School of Material and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Shuai Wei
- School of Material and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Yanling Han
- School of Material and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Suning Lin
- School of Material and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Lijuan Zhang
- School of Material and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Qian Li
- School of Food and Bioengineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Yan Xu
- School of Material and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Lulu Lian
- School of Material and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Yingmei Zhou
- School of Material and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Ming Song
- School of Material and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Wenchang Zhuang
- School of Material and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | | |
Collapse
|
13
|
Li T, Li Y, Guo C, Hu Y. Dual-defect semiconductor photocatalysts for solar-to-chemical conversion: advances and challenges. Chem Commun (Camb) 2024; 60:2320-2348. [PMID: 38314591 DOI: 10.1039/d3cc06102g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Among the renewable energy technologies to deal with increasing energy crisis and environmental concerns, solar-to-chemical conversion via photocatalysis holds great promise for sustainable energy supply. To date, a variety of modification strategies with different types of semiconducting materials have been proposed to boost photocatalytic efficiency. Recently, dual-defect semiconductor photocatalysts have emerged as an advantageous candidate with superior performance in improving photocatalytic activity compared to their defect-free or single-defect counterparts. In this review, focus is laid on the advances of dual-defect semiconductor photocatalysts for energy photocatalysis. Possible schemes for two different defects within a single semiconductor are firstly sorted based on the types of defects, and synthesis strategies to achieve various defect schemes as well as techniques to characterize different defects are then introduced. In particular, the effect of different defects on photocatalytic performance is emphasized, and the advances in dual-defect semiconductors for solar-to-chemical conversions are summarized based on different defect schemes. Finally, the future challenges and opportunities of dual-defect semiconductors for photocatalysis are discussed. This article is expected to provide an overall insight into existing dual-defect semiconductor photocatalysts and inspire the development of new defect-rich materials for photocatalytic energy production.
Collapse
Affiliation(s)
- Tianqi Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, 321004, China.
| | - Yufeng Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, 321004, China.
| | - Changfa Guo
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, 321004, China.
| | - Yong Hu
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
14
|
Wang S, Song D, Liao L, Li M, Li Z, Zhou W. Surface and interface engineering of BiOCl nanomaterials and their photocatalytic applications. Adv Colloid Interface Sci 2024; 324:103088. [PMID: 38244532 DOI: 10.1016/j.cis.2024.103088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/29/2023] [Accepted: 01/07/2024] [Indexed: 01/22/2024]
Abstract
BiOCl materials have received much attention because of their unique optical and electrical properties. Still, their unsatisfactory catalytic performance has been troubling researchers, limiting the application of BiOCl-based photocatalysts. Therefore, many researchers have studied the adjustment of BiOCl-based materials to enhance photocatalytic efficiency. This review focuses on surface and interface engineering strategies for boosting the photocatalytic performance of BiOCl-based nanomaterials, including forming oxygen vacancy defects, constructing metal/BiOCl, and the fabrication of semiconductor/BiOCl nanocomposites. The photocatalytic applications of the above composites are also concluded in photodegradation of aqueous pollutants, photocatalytic NO removal, photo-induced H2 production, and CO2 reduction. Special emphasis has been given to the modification methods of BiOCl and photocatalytic mechanisms to provide a more detailed understanding for researchers in the fields of energy conversion and materials sciences.
Collapse
Affiliation(s)
- Shijie Wang
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, PR China
| | - Dongxue Song
- School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, PR China
| | - Lijun Liao
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, PR China.
| | - Mingxia Li
- School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, PR China.
| | - Zhenzi Li
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, PR China.
| | - Wei Zhou
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, PR China.
| |
Collapse
|
15
|
Han C, Kundu BK, Liang Y, Sun Y. Near-Infrared Light-Driven Photocatalysis with an Emphasis on Two-Photon Excitation: Concepts, Materials, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307759. [PMID: 37703435 DOI: 10.1002/adma.202307759] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/01/2023] [Indexed: 09/15/2023]
Abstract
Efficient utilization of sunlight in photocatalysis is widely recognized as a promising solution for addressing the growing energy demand and environmental issues resulting from fossil fuel consumption. Recently, there have been significant developments in various near-infrared (NIR) light-harvesting systems for artificial photosynthesis and photocatalytic environmental remediation. This review provides an overview of the most recent advancements in the utilization of NIR light through the creation of novel nanostructured materials and molecular photosensitizers, as well as modulating strategies to enhance the photocatalytic processes. A special focus is given to the emerging two-photon excitation NIR photocatalysis. The unique features and limitations of different systems are critically evaluated. In particular, it highlights the advantages of utilizing NIR light and two-photon excitation compared to UV-visible irradiation and one-photon excitation. Ongoing challenges and potential solutions for the future exploration of NIR light-responsive materials are also discussed.
Collapse
Affiliation(s)
- Chuang Han
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, Hubei, 430074, China
| | - Bidyut Kumar Kundu
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Yujun Liang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, Hubei, 430074, China
| | - Yujie Sun
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221, USA
| |
Collapse
|
16
|
Vennapoosa CS, Varangane S, Abraham BM, Bhasin V, Bhattacharyya S, Wang X, Pal U, Chatterjee D. Single-Atom Ru Catalyst-Decorated CNF(ZnO) Nanocages for Efficient H 2 Evolution and CH 3OH Production. J Phys Chem Lett 2023; 14:11400-11411. [PMID: 38079360 DOI: 10.1021/acs.jpclett.3c02347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The presence of transition-metal single-atom catalysts effectively enhances the interaction between the substrate and reactant molecules, thus exhibiting extraordinary catalytic performance. In this work, we for the first time report a facile synthetic procedure for placing highly dispersed Ru single atoms on stable CNF(ZnO) nanocages. We unravel the atomistic nature of the Ru single atoms in CNF(ZnO)/Ru systems using advanced HAADF-STEM, HRTEM, and XANES analytical methods. Density functional theory calculations further support the presence of ruthenium single-atom sites in the CNF(ZnO)/Ru system. Our work further demonstrates the excellent photocatalytic ability of the CNF(ZnO)/Ru system with respect to H2 production (5.8 mmol g-1 h-1) and reduction of CO2 to CH3OH [249 μmol (g of catalyst)-1] with apparent quantum efficiencies of 3.8% and 1.4% for H2 and CH3OH generation, respectively. Our studies unambiguously demonstrate the presence of atomically dispersed ruthenium sites in CNF(ZnO)/Ru catalysts, which greatly enhance charge transfer, thus facilitating the aforementioned photocatalytic redox reactions.
Collapse
Affiliation(s)
- Chandra Shobha Vennapoosa
- Department of Energy & Environmental Engineering, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana 500007, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Sagar Varangane
- Department of Energy & Environmental Engineering, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana 500007, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - B Moses Abraham
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Vidha Bhasin
- Atomic and Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | | | - Xuefeng Wang
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Ujjwal Pal
- Department of Energy & Environmental Engineering, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana 500007, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Debabrata Chatterjee
- Vice-Chancellor's Research Group, Zoology Department, University of Burdwan, Burdwan 713104, India
| |
Collapse
|
17
|
Su B, Kong Y, Wang S, Zuo S, Lin W, Fang Y, Hou Y, Zhang G, Zhang H, Wang X. Hydroxyl-Bonded Ru on Metallic TiN Surface Catalyzing CO 2 Reduction with H 2O by Infrared Light. J Am Chem Soc 2023; 145:27415-27423. [PMID: 38078702 DOI: 10.1021/jacs.3c08311] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Synchronized conversion of CO2 and H2O into hydrocarbons and oxygen via infrared-ignited photocatalysis remains a challenge. Herein, the hydroxyl-coordinated single-site Ru is anchored precisely on the metallic TiN surface by a NaBH4/NaOH reforming method to construct an infrared-responsive HO-Ru/TiN photocatalyst. Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (ac-HAADF-STEM) and X-ray absorption spectroscopy (XAS) confirm the atomic distribution of the Ru species. XAS and density functional theory (DFT) calculations unveil the formation of surface HO-RuN5-Ti Lewis pair sites, which achieves efficient CO2 polarization/activation via dual coordination with the C and O atoms of CO2 on HO-Ru/TiN. Also, implanting the Ru species on the TiN surface powerfully boosts the separation and transfer of photoinduced charges. Under infrared irradiation, the HO-Ru/TiN catalyst shows a superior CO2-to-CO transformation activity coupled with H2O oxidation to release O2, and the CO2 reduction rate can further be promoted by about 3-fold under simulated sunlight. With the key reaction intermediates determined by in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and predicted by DFT simulations, a possible photoredox mechanism of the CO2 reduction system is proposed.
Collapse
Affiliation(s)
- Bo Su
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Yuehua Kong
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Sibo Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Shouwei Zuo
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Wei Lin
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Yuanxing Fang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Yidong Hou
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Guigang Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Huabin Zhang
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| |
Collapse
|
18
|
Dong JP, Xu Y, Zhang XG, Zhang H, Yao L, Wang R, Zang SQ. Copper-Sulfur-Nitrogen Cluster Providing a Local Proton for Efficient Carbon Dioxide Photoreduction. Angew Chem Int Ed Engl 2023; 62:e202313648. [PMID: 37801352 DOI: 10.1002/anie.202313648] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/07/2023]
Abstract
Atomically precise Cu clusters are highly desirable as catalysts for CO2 reduction reaction (CO2 RR), and they provide an appropriate model platform for elaborating their structure-activity relationship. However, an efficient overall photocatalytic CO2 RR with H2 O using assembled Cu-cluster aggregates as single component photocatalyst has not been reported. Herein, we report a stable crystalline Cu-S-N cluster photocatalyst with local protonated N-H groups (denoted as Cu6 -NH). The catalyst exhibits suitable photocatalytic redox potentials, high structural stability, active catalytic species, and a narrow band gap, which account for its outstanding photocatalytic CO2 RR performance under visible light, with ≈100 % selectivity for CO evolution. Remarkably, systematic isostructural Cu-cluster control experiments, in situ infrared spectroscopy, and density functional theory calculations revealed that the protonated pyrimidine N atoms in the Cu6 -NH cluster act as a proton relay station, providing a local proton during the photocatalytic CO2 RR. This efficiently lowers the energy barrier for the formation of the *COOH intermediate, which is the rate-limiting step, efficiently enhancing the photocatalytic performance. This work lays the foundation for the development of atomically precise metal-cluster-based photocatalysts.
Collapse
Affiliation(s)
- Jian-Peng Dong
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Yue Xu
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Xun-Guang Zhang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Huan Zhang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Ling Yao
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Rui Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
19
|
Wang R, Zhang M, Zhang S, Zheng J, Zeng Y, Yang Y, Ding J, Wu X, Zhong Q. Self-Supporting Triphase Photocatalytic CO 2 Reduction to CH 3OH on Controllable Core-Shell Structure with Tunable Interfacial Wettability. ACS NANO 2023. [PMID: 37991830 DOI: 10.1021/acsnano.3c10352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Enhancing the CO2 mass transfer and proton supply in the photocatalytic reduction of CO2 with H2O into CH3OH (PRC-M), while avoiding the hydrogen evolution reaction (HER), remains a challenge. Herein, we propose an approach to control the surface coverage of CO2 and H2O by modifying interfacial wettability, which is achieved by modulating the core-shell structure to expose either hydrophobic melamine-resorcinol-formaldehyde (MRF) or hydrophilic NiAl-layered double hydroxides (NAL). Characterizations reveal that an insufficient proton supply leads to the production of competing CO, while excessive coverage of H2O results in undesired HER. The NAL-MRF integrates hydrophobic and hydrophilic interfaces, contributing to the CO2 mass transfer and H2O adsorption, respectively. This combination forms a microreactor that facilitates the triphase photocatalysis of CO2, H2O, and catalyst, allowing for high local concentrations of both *CO and *H without competing binding sites. Importantly, the formation of covalent bonds and a Z-type heterojunction between hydrophilic NAL and hydrophobic MRF layers accelerates the charge separation. Furthermore, the density functional theory results indicate that the NAL linking promotes the continuous hydrogenation of *CO. As a result, an enhanced CH3OH yield of 31.41 μmol g-1 h-1, with selectivity of 93.62%, is achieved without hole scavengers or precious metals.
Collapse
Affiliation(s)
- Ruonan Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, PR China
| | - Mingjia Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, PR China
| | - Shule Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, PR China
| | - Jianzhong Zheng
- School of Environmental Science and Engineering, Nanjing Technology University, Nanjing, Jiangsu 211816, PR China
| | - Yiqing Zeng
- School of Environmental Science and Engineering, Nanjing Technology University, Nanjing, Jiangsu 211816, PR China
| | - Yan Yang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, PR China
| | - Jie Ding
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, PR China
| | - Xu Wu
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, PR China
| | - Qin Zhong
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, PR China
| |
Collapse
|
20
|
Mohata S, Das R, Koner K, Riyaz M, Das K, Chakraborty S, Ogaeri Y, Nishiyama Y, C Peter S, Banerjee R. Selective Metal-Free CO 2 Photoreduction in Water Using Porous Nanostructures with Internal Molecular Free Volume. J Am Chem Soc 2023; 145:23802-23813. [PMID: 37870913 DOI: 10.1021/jacs.3c08688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
The conversion of CO2 to a sole carbonaceous product using photocatalysis is a sustainable solution for alleviating the increasing levels of CO2 emissions and reducing our dependence on nonrenewable resources such as fossil fuels. However, developing a photoactive, metal-free catalyst that is highly selective and efficient in the CO2 reduction reaction (CO2RR) without the need for sacrificial agents, cocatalysts, and photosensitizers is challenging. Furthermore, due to the poor solubility of CO2 in water and the kinetically and thermodynamically favored hydrogen evolution reaction (HER), designing a highly selective photocatalyst is challenging. Here, we propose a molecular engineering approach to design a photoactive polymer with high CO2 permeability and low water diffusivity, promoting the mass transfer of CO2 while suppressing HER. We have incorporated a contorted triptycene scaffold with "internal molecular free volume (IMFV)" to enhance gas permeability to the active site by creating molecular channels through the inefficient packing of polymer chains. Additionally, we introduced a pyrene moiety to promote visible-light harvesting capability and charge separation. By leveraging these qualities, the polymer exhibited a high CO generation rate of 77.8 μmol g-1 h-1, with a high selectivity of ∼98% and good recyclability. The importance of IMFV was highlighted by replacing the contorted triptycene unit with a planar scaffold, which led to a selectivity reversal favoring HER over CO2RR in water. In situ electron paramagnetic resonance (EPR), time-resolved photoluminescence spectroscopy (TRPL), and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) techniques, further supported by theoretical calculations, were employed to enlighten the mechanistic insight for metal-free CO2 reduction to exclusively CO in water.
Collapse
Affiliation(s)
- Shibani Mohata
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | | | - Kalipada Koner
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | | | | | | | - Yutaro Ogaeri
- JEOL Ltd., Musashino, Akishima, Tokyo 196-8558, Japan
| | | | | | - Rahul Banerjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| |
Collapse
|
21
|
Shu K, Chuaicham C, Noguchi Y, Xu L, Sasaki K. Charge transfer mechanism through S-scheme heterojunction in in-situ synthesized TiO 2/Fe-doped hydroxyapatite for improved photodegradation of xanthate. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132337. [PMID: 37647669 DOI: 10.1016/j.jhazmat.2023.132337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/08/2023] [Accepted: 08/15/2023] [Indexed: 09/01/2023]
Abstract
The heterojunction structure of the photocatalyst composite, which necessitates a robust interface and sufficient contact areas, holds the key to obtaining high charge carrier migration efficiency. Here, a novel composite, TiO2 nanoparticles/Fe-doped hydroxyapatite (TONPs/FH_CS), is fabricated using a two-step synthetic technique, in which FH_CS is synthesized from artificial converter slag enriched with Fe and Ca. The unique nanorod@plate structure of FH_CS enables the uniform immobilization of TONPs onto FH_CS. Thereby, an n-n type heterojunction exhibits a highly intimate Ti-O-Fe heterointerface. Kelvin probe testing demonstrates the formation of an interfacial electric field oriented from FH_CS to TONPs, which serves as the driving force for interfacial electron transfer through the Ti-O-Fe channels. The photoacoustic signals provide information on electron trap levels and densities, indicating the formation of the electron transfer channels. •O2- and •OH species are responsible for being the active species in this system. A photoexcited carrier transfer pathway exhibiting an S-scheme mechanism with high separation efficiency significantly enhances the utilization of charge carriers in each phase. Thus, improved xanthate degradation has been achieved using a heterojunction containing a photocatalyst derived from industrial solid waste. This work demonstrates the significant potential of steel-making byproduct utilization in industrial wastewater treatment.
Collapse
Affiliation(s)
- Kaiqian Shu
- Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishiku, Fukuoka 819-0395, Japan
| | - Chitiphon Chuaicham
- Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishiku, Fukuoka 819-0395, Japan
| | - Yuto Noguchi
- Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishiku, Fukuoka 819-0395, Japan
| | - Longhua Xu
- Key Laboratory of Solid Waste Treatment and Resource Recycle Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, Sichuan, PR China
| | - Keiko Sasaki
- Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishiku, Fukuoka 819-0395, Japan.
| |
Collapse
|
22
|
Chai Y, Kong Y, Lin M, Lin W, Shen J, Long J, Yuan R, Dai W, Wang X, Zhang Z. Metal to non-metal sites of metallic sulfides switching products from CO to CH 4 for photocatalytic CO 2 reduction. Nat Commun 2023; 14:6168. [PMID: 37794001 PMCID: PMC10550947 DOI: 10.1038/s41467-023-41943-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/22/2023] [Indexed: 10/06/2023] Open
Abstract
The active center for the adsorption and activation of carbon dioxide plays a vital role in the conversion and product selectivity of photocatalytic CO2 reduction. Here, we find multiple metal sulfides CuInSnS4 octahedral nanocrystal with exposed (1 1 1) plane for the selectively photocatalytic CO2 reduction to methane. Still, the product is switched to carbon monoxide on the corresponding individual metal sulfides In2S3, SnS2, and Cu2S. Unlike the common metal or defects as active sites, the non-metal sulfur atom in CuInSnS4 is revealed to be the adsorption center for responding to the selectivity of CH4 products. The carbon atom of CO2 adsorbed on the electron-poor sulfur atom of CuInSnS4 is favorable for stabilizing the intermediates and thus promotes the conversion of CO2 to CH4. Both the activity and selectivity of CH4 products over the pristine CuInSnS4 nanocrystal can be further improved by the modification of with various co-catalysts to enhance the separation of the photogenerated charge carrier. This work provides a non-metal active site to determine the conversion and selectivity of photocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Yao Chai
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, P. R. China
| | - Yuehua Kong
- College of Chemistry, Fuzhou University, Fuzhou, P. R. China
| | - Min Lin
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, P. R. China
| | - Wei Lin
- College of Chemistry, Fuzhou University, Fuzhou, P. R. China
| | - Jinni Shen
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, P. R. China
| | - Jinlin Long
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, P. R. China
| | - Rusheng Yuan
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, P. R. China
| | - Wenxin Dai
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou, P. R. China
| | - Xuxu Wang
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, P. R. China
| | - Zizhong Zhang
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, P. R. China.
- Qingyuan Innovation Laboratory, Quanzhou, P. R. China.
| |
Collapse
|
23
|
Deng S, Wang R, Feng X, Zheng R, Gong S, Chen X, Shangguan Y, Deng L, Tang H, Dai H, Duan L, Liu C, Pan Y, Chen H. Dual Lewis Acid-Base Sites Regulate Silver-Copper Bimetallic Oxide Nanowires for Highly Selective Photoreduction of Carbon Dioxide to Methane. Angew Chem Int Ed Engl 2023; 62:e202309625. [PMID: 37563855 DOI: 10.1002/anie.202309625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/12/2023]
Abstract
Highly selective photoreduction of CO2 to valuable hydrocarbons is of great importance to achieving a carbon-neutral society. Precisely manipulating the formation of the Metal1 ⋅⋅⋅C=O⋅⋅⋅Metal2 (M1 ⋅⋅⋅C=O⋅⋅⋅M2 ) intermediate on the photocatalyst interface is the most critical step for regulating selectivity, while still a significant challenge. Herein, inspired by the polar electronic structure feature of CO2 molecule, we propose a strategy whereby the Lewis acid-base dual sites confined in a bimetallic catalyst surface are conducive to forming a M1 ⋅⋅⋅C=O⋅⋅⋅M2 intermediate precisely, which can promote selectivity to hydrocarbon formation. Employing the Ag2 Cu2 O3 nanowires with abundant Cu⋅⋅⋅Ag Lewis acid-base dual sites on the preferred exposed {110} surface as a model catalyst, 100 % selectivity toward photoreduction of CO2 into CH4 has been achieved. Subsequent surface-quenching experiments and density functional theory (DFT) calculations verify that the Cu⋅⋅⋅Ag Lewis acid-base dual sites do play a vital role in regulating the M1 ⋅⋅⋅C=O⋅⋅⋅M2 intermediate formation that is considered to be prone to convert CO2 into hydrocarbons. This study reports a highly selective CO2 photocatalyst, which was designed on the basis of a newly proposed theory for precise regulation of reaction intermediates. Our findings will stimulate further research on dual-site catalyst design for CO2 reduction to hydrocarbons.
Collapse
Affiliation(s)
- Shimao Deng
- State Environmental Protection Key Laboratory of Integrated Surface Water Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Key Laboratory of Municipal Solid Waste Recycling Technology and Management of Shenzhen City, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials (SKLISEM), School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ranhao Wang
- State Environmental Protection Key Laboratory of Integrated Surface Water Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Key Laboratory of Municipal Solid Waste Recycling Technology and Management of Shenzhen City, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials (SKLISEM), School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xuezhen Feng
- State Environmental Protection Key Laboratory of Integrated Surface Water Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Key Laboratory of Municipal Solid Waste Recycling Technology and Management of Shenzhen City, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials (SKLISEM), School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Renji Zheng
- State Environmental Protection Key Laboratory of Integrated Surface Water Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Key Laboratory of Municipal Solid Waste Recycling Technology and Management of Shenzhen City, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials (SKLISEM), School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shaokuan Gong
- SUSTech Energy Institute for Carbon Neutrality, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xihan Chen
- SUSTech Energy Institute for Carbon Neutrality, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yangzi Shangguan
- State Environmental Protection Key Laboratory of Integrated Surface Water Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Key Laboratory of Municipal Solid Waste Recycling Technology and Management of Shenzhen City, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials (SKLISEM), School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lili Deng
- State Environmental Protection Key Laboratory of Integrated Surface Water Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Key Laboratory of Municipal Solid Waste Recycling Technology and Management of Shenzhen City, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials (SKLISEM), School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Huan Tang
- State Environmental Protection Key Laboratory of Integrated Surface Water Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Key Laboratory of Municipal Solid Waste Recycling Technology and Management of Shenzhen City, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials (SKLISEM), School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hao Dai
- Department of Chemistry, Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lele Duan
- Department of Chemistry, Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chengyuan Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Yang Pan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Hong Chen
- State Environmental Protection Key Laboratory of Integrated Surface Water Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Key Laboratory of Municipal Solid Waste Recycling Technology and Management of Shenzhen City, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials (SKLISEM), School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
24
|
Ismail PM, Ali S, Ali S, Li J, Liu M, Yan D, Raziq F, Wahid F, Li G, Yuan S, Wu X, Yi J, Chen JS, Wang Q, Zhong L, Yang Y, Xia P, Qiao L. Photoelectron "Bridge" in Van Der Waals Heterojunction for Enhanced Photocatalytic CO 2 Conversion Under Visible Light. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303047. [PMID: 37363951 DOI: 10.1002/adma.202303047] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/11/2023] [Indexed: 06/28/2023]
Abstract
Constructing Van der Waals heterojunction is a crucial strategy to achieve excellent photocatalytic activity. However, in most Van der Waals heterojunctions synthesized by ex situ assembly, electron transfer encounters huge hindrances at the interface between the two components due to the large spacing and potential barrier. Herein, a phosphate-bridged Van der Waals heterojunction of cobalt phthalocyanine (CoPc)/tungsten disulfide (WS2 ) bridged by phosphate (xCoPc-nPO4 - -WS2 ) is designed and prepared by the traditional wet chemistry method. By introducing a small phosphate molecule into the interface of CoPc and WS2 , creates an electron "bridge", resulting in a compact combination and eliminating the space barrier. Therefore, the phosphate (PO4 - ) bridge can serve as an efficient electron transfer channel in heterojunction and can efficiently transmit photoelectrons from WS2 to CoPc under excited states. These excited photoelectrons are captured by the catalytic central Co2+ in CoPc and subsequently convert CO2 molecules into CO and CH4 products, achieving 17-fold enhancement on the 3CoPc-0.6PO4 - -WS2 sample compared to that of pure WS2 . Introducing a small molecule "bridge" to create an electron transfer channel provides a new perspective in designing efficient photocatalysts for photocatalytic CO2 reduction into valuable products.
Collapse
Affiliation(s)
- Pir Muhammad Ismail
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology, Huzhou, 313001, P. R. China
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Sajjad Ali
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology, Huzhou, 313001, P. R. China
| | - Sharafat Ali
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Jiahao Li
- State Key Laboratory of Physical Chemistry of Solid, Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Min Liu
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, 210096, P. R. China
| | - Dong Yan
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Fazal Raziq
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology, Huzhou, 313001, P. R. China
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Fazli Wahid
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology, Huzhou, 313001, P. R. China
| | - Guojing Li
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology, Huzhou, 313001, P. R. China
| | - Shuhua Yuan
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology, Huzhou, 313001, P. R. China
| | - Xiaoqiang Wu
- School of Mechanical Engineering, Chengdu University, Chengdu, 610106, P. R. China
| | - Jiabao Yi
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Jun Song Chen
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Qingyuan Wang
- School of Mechanical Engineering, Chengdu University, Chengdu, 610106, P. R. China
| | - Li Zhong
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, 210096, P. R. China
| | - Ye Yang
- State Key Laboratory of Physical Chemistry of Solid, Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Pengfei Xia
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology, Huzhou, 313001, P. R. China
| | - Liang Qiao
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology, Huzhou, 313001, P. R. China
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| |
Collapse
|
25
|
Wang S, Song D, Liao L, Wang B, Li Z, Li M, Zhou W. Bi/Mn-Doped BiOCl Nanosheets Self-Assembled Microspheres toward Optimized Photocatalytic Performance. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2408. [PMID: 37686916 PMCID: PMC10490148 DOI: 10.3390/nano13172408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Doping engineering of metallic elements is of significant importance in photocatalysis, especially in the transition element range where metals possess empty 'd' orbitals that readily absorb electrons and increase carrier concentration. The doping of Mn ions produces dipole interactions that change the local structure of BiOCl, thus increasing the specific surface area of BiOCl and the number of mesoporous distributions, and providing a broader platform and richer surface active sites for catalytic reactions. The combination of Mn doping and metal Bi reduces the forbidden bandwidth of BiOCl, thereby increasing the absorption in the light region and strengthening the photocatalytic ability of BiOCl. The degradation of norfloxacin by Bi/Mn-doped BiOCl can reach 86.5% within 10 min. The synergistic effect of Mn doping and Bi metal can change the internal energy level and increase light absorption simultaneously. The photocatalytic system created by such a dual-technology combination has promising applications in environmental remediation.
Collapse
Affiliation(s)
- Shijie Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (S.W.); (L.L.); (Z.L.)
| | - Dongxue Song
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People’s Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China;
| | - Lijun Liao
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (S.W.); (L.L.); (Z.L.)
| | - Bo Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (S.W.); (L.L.); (Z.L.)
| | - Zhenzi Li
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (S.W.); (L.L.); (Z.L.)
| | - Mingxia Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People’s Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China;
| | - Wei Zhou
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (S.W.); (L.L.); (Z.L.)
| |
Collapse
|
26
|
Hu C, Jiang Z, Wu Q, Cao S, Li Q, Chen C, Yuan L, Wang Y, Yang W, Yang J, Peng J, Shi W, Zhai M, Mostafavi M, Ma J. Selective CO 2 reduction to CH 3OH over atomic dual-metal sites embedded in a metal-organic framework with high-energy radiation. Nat Commun 2023; 14:4767. [PMID: 37553370 PMCID: PMC10409780 DOI: 10.1038/s41467-023-40418-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 07/26/2023] [Indexed: 08/10/2023] Open
Abstract
The efficient use of renewable X/γ-rays or accelerated electrons for chemical transformation of CO2 and water to fuels holds promise for a carbon-neutral economy; however, such processes are challenging to implement and require the assistance of catalysts capable of sensitizing secondary electron scattering and providing active metal sites to bind intermediates. Here we show atomic Cu-Ni dual-metal sites embedded in a metal-organic framework enable efficient and selective CH3OH production (~98%) over multiple irradiated cycles. The usage of practical electron-beam irradiation (200 keV; 40 kGy min-1) with a cost-effective hydroxyl radical scavenger promotes CH3OH production rate to 0.27 mmol g-1 min-1. Moreover, time-resolved experiments with calculations reveal the direct generation of CO2•‒ radical anions via aqueous electrons attachment occurred on nanosecond timescale, and cascade hydrogenation steps. Our study highlights a radiolytic route to produce CH3OH with CO2 feedstock and introduces a desirable atomic structure to improve performance.
Collapse
Affiliation(s)
- Changjiang Hu
- Department of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, P. R. China
| | - Zhiwen Jiang
- Department of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, P. R. China
| | - Qunyan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shuiyan Cao
- College of Physics, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, P. R. China
| | - Qiuhao Li
- Department of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, P. R. China
| | - Chong Chen
- Department of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, P. R. China
| | - Liyong Yuan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yunlong Wang
- Department of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, P. R. China
| | - Wenyun Yang
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, P. R. China
| | - Jinbo Yang
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, P. R. China
| | - Jing Peng
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Weiqun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Maolin Zhai
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China.
| | - Mehran Mostafavi
- Institut de Chimie Physique, UMR8000 CNRS/Université Paris-Saclay, 91405, Orsay, France.
| | - Jun Ma
- Department of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, P. R. China.
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
| |
Collapse
|
27
|
Ma W, Liu Q, Lin Y, Li Y. Dark-Light Tandem Catalytic Oxidation of Formaldehyde over SrBi 2Ta 2O 9 Nanosheets. Molecules 2023; 28:5691. [PMID: 37570662 PMCID: PMC10420077 DOI: 10.3390/molecules28155691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Formaldehyde (HCHO), as one of the main indoor toxic pollutions, presents a great threat to human health. Hence, it is imperative to efficiently remove HCHO and create a good indoor living environment for people. Herein, a layered perovskite material SrBi2Ta2O9 (SBT), was studied for the first time and exhibited superior photocatalytic efficiency and stability compared to commercial TiO2 (P25). Furthermore, a unique dark-light tandem catalytic mechanism was constructed. In the dark reaction stage, HCHO (Lewis base) site was adsorbed on the terminal (Bi2O2)2+ layer (Lewis acid) site of SBT in the form of Lewis acid-base complexation and was gradually oxidized to CO32- intermediate (HCHO → DOM (dioxymethylene) → HCOO- → CO32-). Then, in the light reaction stage, CO32- was completely converted into CO2 and H2O (CO32- → CO2). Our study contributes to a thorough comprehension of the photocatalytic oxidation of HCHO and points out its potential for day-night continuous work applications in a natural environment.
Collapse
Affiliation(s)
- Weimin Ma
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi’an 710021, China;
| | - Qing Liu
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (Q.L.); (Y.L.)
| | - Yuhan Lin
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (Q.L.); (Y.L.)
| | - Yingxuan Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
28
|
Li X, Li L, Chen G, Chu X, Liu X, Naisa C, Pohl D, Löffler M, Feng X. Accessing parity-forbidden d-d transitions for photocatalytic CO 2 reduction driven by infrared light. Nat Commun 2023; 14:4034. [PMID: 37419885 PMCID: PMC10328996 DOI: 10.1038/s41467-023-39666-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 06/21/2023] [Indexed: 07/09/2023] Open
Abstract
A general approach to promote IR light-driven CO2 reduction within ultrathin Cu-based hydrotalcite-like hydroxy salts is presented. Associated band structures and optical properties of the Cu-based materials are first predicted by theory. Subsequently, Cu4(SO4)(OH)6 nanosheets were synthesized and are found to undergo cascaded electron transfer processes based on d-d orbital transitions under infrared light irradiation. The obtained samples exhibit excellent activity for IR light-driven CO2 reduction, with a production rate of 21.95 and 4.11 μmol g-1 h-1 for CO and CH4, respectively, surpassing most reported catalysts under the same reaction conditions. X-ray absorption spectroscopy and in situ Fourier-transform infrared spectroscopy are used to track the evolution of the catalytic sites and intermediates to understand the photocatalytic mechanism. Similar ultrathin catalysts are also investigated to explore the generality of the proposed electron transfer approach. Our findings illustrate that abundant transition metal complexes hold great promise for IR light-responsive photocatalysis.
Collapse
Affiliation(s)
- Xiaodong Li
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany
| | - Li Li
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, P. R. China
| | - Guangbo Chen
- Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden (cfaed), Dresden University of Technology, Dresden, 01062, Germany
| | - Xingyuan Chu
- Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden (cfaed), Dresden University of Technology, Dresden, 01062, Germany
| | - Xiaohui Liu
- Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden (cfaed), Dresden University of Technology, Dresden, 01062, Germany
| | - Chandrasekhar Naisa
- Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden (cfaed), Dresden University of Technology, Dresden, 01062, Germany
| | - Darius Pohl
- Dresden Center for Nanoanalysis (DCN), Dresden University of Technology, Helmholtzstreet, Dresden, 01069, Germany
| | - Markus Löffler
- Dresden Center for Nanoanalysis (DCN), Dresden University of Technology, Helmholtzstreet, Dresden, 01069, Germany
| | - Xinliang Feng
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany.
- Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden (cfaed), Dresden University of Technology, Dresden, 01062, Germany.
| |
Collapse
|
29
|
Jiang LL, Chen MM, Tang XD, Tang Y, Li SJ, Li Y, Li HH, Liu HR. Reduced electron relaxation time of perovskite films via g-C 3N 4 quantum dot doping for high-performance perovskite solar cells. RSC Adv 2023; 13:16935-16942. [PMID: 37288376 PMCID: PMC10242296 DOI: 10.1039/d3ra02391e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/25/2023] [Indexed: 06/09/2023] Open
Abstract
Perovskite film-quality is a crucial factor to improve the photovoltaic properties of perovskite solar cells, which is closely related to the morphology of crystallization grain size of the perovskite layer. However, defects and trap sites are inevitably generated on the surface and at the grain boundaries of the perovskite layer. Here, we report a convenient method for preparing dense and uniform perovskite films, employing g-C3N4 quantum dots doped into the perovskite layer by regulating proper proportions. This process produces perovskite films with dense microstructures and flat surfaces. As a result, the higher fill factor (0.78) and a power conversion efficiency of 20.02% are obtained by the defect passivation of g-C3N4QDs.
Collapse
Affiliation(s)
- Lu-Lu Jiang
- College of Material Science and Engineering, Henan Normal University Xinxiang 453000 China
| | - Meng-Meng Chen
- College of Material Science and Engineering, Henan Normal University Xinxiang 453000 China
| | - Xiao-Dan Tang
- College of Material Science and Engineering, Henan Normal University Xinxiang 453000 China
| | - Ying Tang
- College of Material Science and Engineering, Henan Normal University Xinxiang 453000 China
| | - Shao-Jie Li
- College of Material Science and Engineering, Henan Normal University Xinxiang 453000 China
| | - Ying Li
- College of Material Science and Engineering, Henan Normal University Xinxiang 453000 China
| | - Hang-Hui Li
- College of Material Science and Engineering, Henan Normal University Xinxiang 453000 China
| | - Hai-Rui Liu
- College of Material Science and Engineering, Henan Normal University Xinxiang 453000 China
| |
Collapse
|
30
|
Xu Y, Wang P, Tian D, Zhang M, Dai W, Zou J, Luo S, Luo X. Co engineered CoP catalyst for photochemical CO 2 reduction with accelerated electron transfer endowed by the space-charge region. J Colloid Interface Sci 2023; 648:389-396. [PMID: 37302222 DOI: 10.1016/j.jcis.2023.05.178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/19/2023] [Accepted: 05/28/2023] [Indexed: 06/13/2023]
Abstract
Photocatalytic CO2 reduction has been regarded as an ideal method to simulate photosynthesis for achieving carbon neutralization. However, poor charge transfer efficiency limits its development. Herein, an efficient Co/CoP@C catalyst was prepared with compact contact of Co and CoP layer by using MOF as precursor. At the interface of Co/CoP, the difference in functionality between the two phases may result in uneven distribution of electrons, thus forming a self-driven space-chare region. In this region, spontaneous electron transfer is guaranteed, thus facilitating the effective separation of photogenerated carriers as well as boosting the utilization of solar energy. Furthermore, the electron density of active site Co in CoP is increased and more active sites are exposed, which promotes the adsorption and activation of CO2 molecules. Together with suitable redox potential, low energy barrier for *COOH formation and easy desorption of CO, the reduction rate of CO2 catalyzed by Co/CoP@C is 4 times higher than that of CoP@C.
Collapse
Affiliation(s)
- Yong Xu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Ping Wang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Di Tian
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Man Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Weili Dai
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China.
| | - Jianping Zou
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Shenglian Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Xubiao Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China; School of Life Science, Jinggangshan University, Ji'an 343009, PR China
| |
Collapse
|
31
|
Di J, Hao G, Liu G, Zhou J, Jiang W, Liu Z. Defective materials for CO2 photoreduction: From C1 to C2+ products. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
32
|
Wang J, Zhu W, Meng F, Bai G, Zhang Q, Lan X. Integrating Dual-Metal Sites into Covalent Organic Frameworks for Enhanced Photocatalytic CO 2 Reduction. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Juan Wang
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Wanbo Zhu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China
| | - Fanyu Meng
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Guoyi Bai
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Qianfan Zhang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China
| | - Xingwang Lan
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, Hebei 071002, P. R. China
| |
Collapse
|
33
|
Zhang P, Sui X, Wang Y, Wang Z, Zhao J, Wen N, Chen H, Huang H, Zhang Z, Yuan R, Ding Z, Dai W, Fu X, Weng YX, Long J. Surface Ru-H Bipyridine Complexes-Grafted TiO 2 Nanohybrids for Efficient Photocatalytic CO 2 Methanation. J Am Chem Soc 2023; 145:5769-5777. [PMID: 36863033 DOI: 10.1021/jacs.2c12632] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
A series of novel surface Ru-H bipyridine complexes-grafted TiO2 nanohybrids were for the first time prepared by a combined procedure of surface organometallic chemistry with post-synthetic ligand exchange for photocatalytic conversion of CO2 to CH4 with H2 as electron and proton donors under visible light irradiation. The selectivity toward CH4 increased to 93.4% by the ligand exchange of 4,4'-dimethyl-2,2'-bipyridine (4,4'-bpy) with the surface cyclopentadienyl (Cp)-RuH complex and the CO2 methanation activity was enhanced by 4.4-fold. An impressive rate of 241.2 μL·g-1·h-1 for CH4 production was achieved over the optimal photocatalyst. The femtosecond transient IR absorption results demonstrated that the hot electrons were fast injected in 0.9 ps from the photoexcited surface 4,4'-bpy-RuH complex into the conduction band of TiO2 nanoparticles to form a charge-separated state with an average lifetime of ca. 50.0 ns responsible for the CO2 methanation. The spectral characterizations indicated clearly that the formation of CO2•- radicals by single electron reduction of CO2 molecules adsorbed on surface oxygen vacancies of TiO2 nanoparticles was the most critical step for the methanation. Such radical intermediates were inserted into the explored Ru-H bond to generate Ru-OOCH species and finally CH4 and H2O in the presence of H2.
Collapse
Affiliation(s)
- Pu Zhang
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Xiaoyu Sui
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Ying Wang
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Zhuan Wang
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Science, No. 8, 3rd South Street, Zhongguancun, Haidian District, Beijing 100190, P. R. China
| | - Jiwu Zhao
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Na Wen
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China.,College of Materials Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Hailong Chen
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Science, No. 8, 3rd South Street, Zhongguancun, Haidian District, Beijing 100190, P. R. China
| | - Haowei Huang
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, Heverlee B-3001, Belgium
| | - Zizhong Zhang
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Rusheng Yuan
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Zhengxin Ding
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Wenxin Dai
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Xianzhi Fu
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Yu-Xiang Weng
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Science, No. 8, 3rd South Street, Zhongguancun, Haidian District, Beijing 100190, P. R. China
| | - Jinlin Long
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| |
Collapse
|
34
|
Gong S, Niu Y, Liu X, Xu C, Chen C, Meyer TJ, Chen Z. Selective CO 2 Photoreduction to Acetate at Asymmetric Ternary Bridging Sites. ACS NANO 2023; 17:4922-4932. [PMID: 36800562 DOI: 10.1021/acsnano.2c11977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Photoreduction of CO2 is a promising strategy to synthesize value-added fuels or chemicals and realize carbon neutralization. Noncopper catalysts are seldom reported to generate C2 products, and the selectivity over these catalysts is low. Here, we design rich-interface, heterostructured In2O3/InP (r-In2O3/InP) for highly competitive photocatalytic CO2-to-CH3COOH conversion with a productivity of 96.7 μmol g-1 and selectivity > 96% along with water oxidation to O2 in pure water (no sacrificial agent) under visible light irradiation. The hard X-ray absorption near-edge structure (XANES) shows that the formation of r-In2O3/InP with the isogenesis cation adjusts the coordination environment via interface engineering and forms O-In-P polarized sites at the interface. In situ FT-IR and Raman spectra identify the key intermediates of OCCO* for acetate production with high selectivity. Density functional theory (DFT) calculations reveal that r-In2O3/InP with rich O-In-P polarized sites promotes C-C coupling to form C2 products because of the imbalanced adsorption energies of two carbon atoms. This work reports an interesting indium-based photocatalyst for selective CO2 photoreduction to acetate under strict solution and irradiation conditions and provides significant insights into fabricating interfacial polarization sites to promote the process.
Collapse
Affiliation(s)
- Shuaiqi Gong
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yanli Niu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xuan Liu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Chen Xu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Chuncheng Chen
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Thomas J Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Zuofeng Chen
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
35
|
Wang R, Luo S, Zheng R, Shangguan Y, Feng X, Zeng Q, Liang J, Chen Z, Li J, Yang D, Chen H. Interfacial Coordination Bonding-Assisted Redox Mechanism-Driven Highly Selective Precious Metal Recovery on Covalent-Functionalized Ultrathin 1T-MoS 2. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9331-9340. [PMID: 36780328 DOI: 10.1021/acsami.2c20802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Rational design of functional material interfaces with well-defined physico-chemical-driven forces is crucial for achieving highly efficient interfacial chemical reaction dynamics for resource recovery. Herein, via an interfacial structure engineering strategy, precious metal (PM) coordination-active pyridine groups have been successfully covalently integrated into ultrathin 1T-MoS2 (Py-MoS2). The constructed Py-MoS2 shows highly selective interfacial coordination bonding-assisted redox (ICBAR) functionality toward PM recycling. Py-MoS2 shows state-of-the-art high recovery selectivity toward Au3+ and Pd4+ within 13 metal cation mixture solutions. The related recycling capacity reaches up to 3343.00 and 2330.74 mg/g for Au3+ and Pd4+, respectively. More importantly, above 90% recovery efficiencies have been achieved in representative PMs containing electronic solid waste leachate, such as computer processing units (CPU) and spent catalysts. The ICBAR mechanism developed here paves the way for interface engineering of the well-documented functional materials toward highly efficient PM recovery.
Collapse
Affiliation(s)
- Ranhao Wang
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Siyuan Luo
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Renji Zheng
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yangzi Shangguan
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xuezhen Feng
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qiang Zeng
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiaxin Liang
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhijie Chen
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jing Li
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dazhong Yang
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hong Chen
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
36
|
Wang X, Wang F, Xu B, Yang B. Effect of Bi3+ incoporation on up/downconversion luminescence and photocatalytic activity of Gd2O3. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Wu X, Zhang W, Li J, Xiang Q, Liu Z, Liu B. Identification of the Active Sites on Metallic MoO 2-x Nano-Sea-Urchin for Atmospheric CO 2 Photoreduction Under UV, Visible, and Near-Infrared Light Illumination. Angew Chem Int Ed Engl 2023; 62:e202213124. [PMID: 36321396 DOI: 10.1002/anie.202213124] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/07/2022]
Abstract
We report an oxygen vacancy (Vo )-rich metallic MoO2-x nano-sea-urchin with partially occupied band, which exhibits super CO2 (even directly from the air) photoreduction performance under UV, visible and near-infrared (NIR) light illumination. The Vo -rich MoO2-x nano-sea-urchin displays a CH4 evolution rate of 12.2 and 5.8 μmol gcatalyst -1 h-1 under full spectrum and NIR light illumination in concentrated CO2 , which is ca. 7- and 10-fold higher than the Vo -poor MoO2-x , respectively. More interestingly, the as-developed Vo -rich MoO2-x nano-sea-urchin can even reduce CO2 directly from the air with a CO evolution rate of 6.5 μmol gcatalyst -1 h-1 under NIR light illumination. Experiments together with theoretical calculations demonstrate that the oxygen vacancy in MoO2-x can facilitate CO2 adsorption/activation to generate *COOH as well as the subsequent protonation of *CO towards the formation of CH4 because of the formation of a highly stable Mo-C-O-Mo intermediate.
Collapse
Affiliation(s)
- Xi Wu
- Henan Institute of Advanced Technology, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052, P.R. China
| | - Wenlei Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P.R. China
| | - Jun Li
- Henan Institute of Advanced Technology, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052, P.R. China.,College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P.R. China.,School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Quanjun Xiang
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P.R. China
| | - Zhongyi Liu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P.R. China
| | - Bin Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.,Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, 999077, China
| |
Collapse
|
38
|
Dong Z, Su S, Zhang Z, Jiang Y, Xu J. NiFe-Layered Double Hydroxides/Lead-free Cs 2AgBiBr 6 Perovskite 2D/2D Heterojunction for Photocatalytic CO 2 Conversion. Inorg Chem 2023; 62:1752-1761. [PMID: 36644842 DOI: 10.1021/acs.inorgchem.2c04374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Designing of heterojunction photocatalysts with appropriate interfacial contact plays crucial roles in enhancing the interfacial charge transfer/separation. A two-dimensional (2D)/2D face-to-face heterojunction is an ideal option since this architecture with a large contact area can provide abundant reactive centers and promote the interfacial charge transfer/separation between layers. Herein, a novel 2D/2D heterojunction of NiFe-layered double hydroxides (NiFe-LDH)/Cs2AgBiBr6 (CABB) was fabricated by electrostatic self-assembly of NiFe-LDH and CABB nanosheets. This unique 2D/2D architecture endowed NiFe-LDH/CABB with a large contact area and a short charge transport distance, assuring remarkable interfacial charge transfer/separation rates. As a result, the 2D/2D NiFe-LDH/CABB heterojunction exhibited significant improvement in photocatalytic CO2 reduction under visible light than the pristine counterparts. Based on density functional theory calculations and various characterizations, a step scheme charge-transfer mechanism was proposed. This investigation sheds light on the designing and manufacturing of highly efficient 2D/2D heterostructure photocatalysts for artificial photosynthesis.
Collapse
Affiliation(s)
- Zhongliang Dong
- School of Materials Science and Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| | - Shiwei Su
- School of Materials Science and Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| | - Zhijie Zhang
- School of Materials Science and Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| | - Ying Jiang
- School of Materials Science and Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| | - Jiayue Xu
- School of Materials Science and Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| |
Collapse
|
39
|
Das R, Paul R, Parui A, Shrotri A, Atzori C, Lomachenko KA, Singh AK, Mondal J, Peter SC. Engineering the Charge Density on an In 2.77S 4/Porous Organic Polymer Hybrid Photocatalyst for CO 2-to-Ethylene Conversion Reaction. J Am Chem Soc 2023; 145:422-435. [PMID: 36537351 DOI: 10.1021/jacs.2c10351] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The development of an efficient photocatalyst for C2 product formation from CO2 is of urgent importance toward the deployment of solar-fuel production. Here, we report a template-free, cost-effective synthetic strategy to develop a carbazole-derived porous organic polymer (POP)-based composite catalyst. The composite catalyst is comprised of In2.77S4 and porous organic polymer (POP) and is held together by induced-polarity-driven electrostatic interaction. Utilizing the synergy of the catalytically active In centers and light-harvesting POPs, the catalyst showed 98.9% selectivity toward the generation of C2H4, with a formation rate of 67.65 μmol g-1 h-1. Two different oxidation states of the In2.77S4 spinel were exploited for the C-C coupling process, and this was investigated by X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), and density functional theory (DFT) calculations. The role of POP was elucidated via several photophysical and photoelectrochemical studies. The electron transfer was mapped by several correlated approaches, which assisted in establishing the Z-scheme mechanism. Furthermore, the mechanism of C2H4 formation was extensively investigated using density functional theory (DFT) calculations from multiple possible pathways.
Collapse
Affiliation(s)
- Risov Das
- New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore560064, India.,School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore560064, India
| | - Ratul Paul
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Arko Parui
- Materials Research Centre, Indian Institute of Science, Bangalore560012, India
| | - Abhijit Shrotri
- Institute for Catalysis, Hokkaido University, Kita 21 Nishi 10, Kita-Ku, Sapporo001-0021, Japan
| | - Cesare Atzori
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 40220, 38043Grenoble Cedex 9, France
| | - Kirill A Lomachenko
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 40220, 38043Grenoble Cedex 9, France
| | | | - John Mondal
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Sebastian C Peter
- New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore560064, India.,School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore560064, India
| |
Collapse
|
40
|
Single transition metal atoms anchored on a two-dimensional polyimide covalent-organic framework as single-atom catalysts for photocatalytic CO2 reduction: A first-principles study. CATAL COMMUN 2023. [DOI: 10.1016/j.catcom.2023.106604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
41
|
Fatima B, Siddiqui SI, Rajor HK, Malik MA, Narasimharao K, Ahmad R, Vikrant K, Kim T, Kim KH. Photocatalytic removal of organic dye using green synthesized zinc oxide coupled cadmium tungstate nanocomposite under natural solar light irradiation. ENVIRONMENTAL RESEARCH 2023; 216:114534. [PMID: 36252831 DOI: 10.1016/j.envres.2022.114534] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
In this work, zinc oxide coupled cadmium tungstate (ZnO-CT) was prepared as a nano-photocatalyst through a green synthesis route using lemon leaf extract and characterized based on diverse microscopic and spectroscopic techniques. To explore the applicabilties of the prepared nanocomposite (NC), its photocatalytic activity has been investigated against Congo red (CR) dye under natural solar light irradiation conditions. ZnO- CT nano-photocatalyst showcases 97% photocatalytic degradation of the CR after 90 min of natural solar light irradiation with quantum yield of 1.16 × 10-8 molecules photon-1. The ZnO-CT NC has shown the enhanced photocatalytic degradation performance against CR when compared to its pristine forms (e.g., ZnO (70%) or CT (44%)). According to the free radical trapping and quenching experiments, the photocatalytic activity of ZnO-CT NC appears to be driven efficiently by superoxide and hydroxyl radicals. The photocatalytic degradation kinetics for CR dye was also studied using the pseudo-first-order, diffusional, and Singh models. The high photocatalytic activity of ZnO-CT NC can be accounted for by the presence of electron-withdrawing functional groups like acids (-COOH) and aldehydes (-CHO) on its surface which helped maintain the prolonged recombination of charge carriers and enhanced stability of ZnO-CT (with moderately low leaching rate of cadmium ions (∼2-5%)).
Collapse
Affiliation(s)
- Bushra Fatima
- Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India
| | - Sharf Ilahi Siddiqui
- Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India; Department of Chemistry, Ramjas College, University of Delhi, New Delhi, 110007, India
| | - Hament Kumar Rajor
- Department of Chemistry, Ramjas College, University of Delhi, New Delhi, 110007, India
| | - Maqsood Ahmad Malik
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Katabathini Narasimharao
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Rabia Ahmad
- Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India
| | - Kumar Vikrant
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea
| | - Taejin Kim
- Materials Science and Chemical Engineering Department, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea.
| |
Collapse
|
42
|
Wu X, Zhang W, Li J, Xiang Q, Liu Z, Liu B. Identification of the Active Sites on Metallic MoO
2−
x
Nano‐Sea‐Urchin for Atmospheric CO
2
Photoreduction Under UV, Visible, and Near‐Infrared Light Illumination. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202213124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Xi Wu
- Henan Institute of Advanced Technology School of Materials Science and Engineering Zhengzhou University Zhengzhou 450052 P.R. China
| | - Wenlei Zhang
- College of Chemistry Zhengzhou University Zhengzhou 450001 P.R. China
| | - Jun Li
- Henan Institute of Advanced Technology School of Materials Science and Engineering Zhengzhou University Zhengzhou 450052 P.R. China
- College of Chemistry Zhengzhou University Zhengzhou 450001 P.R. China
- School of Chemistry, Chemical Engineering and Biotechnology Nanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| | - Quanjun Xiang
- State Key Laboratory of Electronic Thin Film and Integrated Devices University of Electronic Science and Technology of China Chengdu 610054 P.R. China
| | - Zhongyi Liu
- College of Chemistry Zhengzhou University Zhengzhou 450001 P.R. China
| | - Bin Liu
- School of Chemistry, Chemical Engineering and Biotechnology Nanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
- Department of Materials Science and Engineering City University of Hong Kong Hong Kong 999077 China
| |
Collapse
|
43
|
Chen Z, Yun S, Wu L, Zhang J, Shi X, Wei W, Liu Y, Zheng R, Han N, Ni BJ. Waste-Derived Catalysts for Water Electrolysis: Circular Economy-Driven Sustainable Green Hydrogen Energy. NANO-MICRO LETTERS 2022; 15:4. [PMID: 36454315 PMCID: PMC9715911 DOI: 10.1007/s40820-022-00974-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/14/2022] [Indexed: 05/14/2023]
Abstract
The sustainable production of green hydrogen via water electrolysis necessitates cost-effective electrocatalysts. By following the circular economy principle, the utilization of waste-derived catalysts significantly promotes the sustainable development of green hydrogen energy. Currently, diverse waste-derived catalysts have exhibited excellent catalytic performance toward hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and overall water electrolysis (OWE). Herein, we systematically examine recent achievements in waste-derived electrocatalysts for water electrolysis. The general principles of water electrolysis and design principles of efficient electrocatalysts are discussed, followed by the illustration of current strategies for transforming wastes into electrocatalysts. Then, applications of waste-derived catalysts (i.e., carbon-based catalysts, transitional metal-based catalysts, and carbon-based heterostructure catalysts) in HER, OER, and OWE are reviewed successively. An emphasis is put on correlating the catalysts' structure-performance relationship. Also, challenges and research directions in this booming field are finally highlighted. This review would provide useful insights into the design, synthesis, and applications of waste-derived electrocatalysts, and thus accelerate the development of the circular economy-driven green hydrogen energy scheme.
Collapse
Affiliation(s)
- Zhijie Chen
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Sining Yun
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China.
| | - Lan Wu
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Jiaqi Zhang
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Xingdong Shi
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Wei Wei
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Yiwen Liu
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Renji Zheng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, People's Republic of China
| | - Ning Han
- Department of Materials Engineering, KU Leuven, 3001, Louvain, Belgium
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
44
|
Progress and challenges in full spectrum photocatalysts: Mechanism and photocatalytic applications. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
45
|
Synchronous activation of Ag nanoparticles and BiOBr for boosting solar-driven CO2 reduction. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Hou H, Xu S, Ding S, Lin W, Yu Q, Zhang J, Qian G. Electroplating sludge-derived metal and sulfur co-doping catalyst and its application in methanol production by CO 2 catalytic hydrogenation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156032. [PMID: 35597356 DOI: 10.1016/j.scitotenv.2022.156032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Electroplating sludge is a hazardous waste and its recycling is a hot topic. Electroplating sludge usually contains plenty of transition metals and multi-hetero atoms, which are potential resources. For the first time, this work synthesized spinel catalyst from Zn- and Cr-containing electroplating sludges by a simple calcination method, and applied the obtained catalysts in CH3OH production by CO2 catalytic hydrogenation. The spinel was doped by various heteroatoms, including Fe, Mn, Cu, and even S. According to detailed characterizations, the metal doping increased the low-temperature conversion efficiency of CO2 but decreased the CH3OH selectivity at the same time. After a further doping of S, although CO2 conversion efficiency was slightly decreased, the selectivity of CH3OH was significantly increased. After all, the optimized catalyst attained a conversion efficiency of 8.6% (CO2) as well as a selectivity of 73.3% (CH3OH) at 250 °C and 3 MPa. As a result, above results realized high-value-added utilization of hazardous waste and producing valuable product at the same time, which was in favor of circular development.
Collapse
Affiliation(s)
- Hao Hou
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai 200444, PR China; Shanghai Petrochemical Research Institute, No. 1658 Pudong North Road, Shanghai 201208, PR China
| | - Shichu Xu
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai 200444, PR China
| | - Suyan Ding
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai 200444, PR China
| | - Weijie Lin
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai 200444, PR China
| | - Qiang Yu
- Shanghai Petrochemical Research Institute, No. 1658 Pudong North Road, Shanghai 201208, PR China.
| | - Jia Zhang
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai 200444, PR China.
| | - Guangren Qian
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai 200444, PR China
| |
Collapse
|
47
|
Di J, Jiang W, Liu Z. Symmetry breaking for semiconductor photocatalysis. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Recent advances in 1D nanostructured catalysts for photothermal and photocatalytic reduction of CO2. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
49
|
Shangguan W, Liu Q, Wang Y, Sun N, Liu Y, Zhao R, Li Y, Wang C, Zhao J. Molecular-level insight into photocatalytic CO 2 reduction with H 2O over Au nanoparticles by interband transitions. Nat Commun 2022; 13:3894. [PMID: 35794088 PMCID: PMC9259601 DOI: 10.1038/s41467-022-31474-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/17/2022] [Indexed: 11/09/2022] Open
Abstract
Achieving CO2 reduction with H2O on metal photocatalysts and understanding the corresponding mechanisms at the molecular level are challenging. Herein, we report that quantum-sized Au nanoparticles can photocatalytically reduce CO2 to CO with the help of H2O by electron-hole pairs mainly originating from interband transitions. Notably, the Au photocatalyst shows a CO production rate of 4.73 mmol g-1 h-1 (~100% selectivity), ~2.5 times the rate during CO2 reduction with H2 under the same experimental conditions, under low-intensity irradiation at 420 nm. Theoretical and experimental studies reveal that the increased activity is induced by surface Au-O species formed from H2O decomposition, which synchronously optimizes the rate-determining steps in the CO2 reduction and H2O oxidation reactions, lowers the energy barriers for the *CO desorption and *OOH formation, and facilitates CO and O2 production. Our findings provide an in-depth mechanistic understanding for designing active metal photocatalysts for efficient CO2 reduction with H2O.
Collapse
Affiliation(s)
- Wenchao Shangguan
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Qing Liu
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Ying Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Ning Sun
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Yu Liu
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Rui Zhao
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Yingxuan Li
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Chuanyi Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Jincai Zhao
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
50
|
Hao XL, Chu XS, Luo KL, Li W. Host (CdS)-guest (single-atomic Au) electron transfer mechanism for blue-LED-induced atom transfer radical addition of alkenes. J Catal 2022. [DOI: 10.1016/j.jcat.2022.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|