1
|
Liu B, Jin Z, Liu X, Sun L, Yang C, Zhang L. π-extended pyrenes: from an antiaromatic buckybowl to doubly curved nanocarbons with gulf architectures. Chem Sci 2024:d4sc03460k. [PMID: 39328190 PMCID: PMC11421037 DOI: 10.1039/d4sc03460k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024] Open
Abstract
The synthesis of π-extended pyrenes keeps attracting considerable attention. In particular, frameworks containing nonbenzenoid rings might display intriguing properties. Here, we report a practical synthetic pathway to access a new buckybowl (1), which is composed of four five-membered rings externally fused to a pyrene core. The buckybowl 1 exhibits antiaromaticity involving 22 π-electrons, a rapid bowl-to-bowl interconversion, and a small band gap. Furthermore, this buckybowl could be subjected to Scholl cyclodehydrogenation to prepare the doubly curved nanocarbons (2rac and 2meso), which exist as two diastereomers, as demonstrated by X-ray crystal structure determination. Variable temperature 1H NMR measurements reveal that 2meso can isomerize into 2rac under thermal conditions, with an activation free energy of 27.1 kcal mol-1. Both the enantiomers of 2rac can be separated by chiral HPLC and their chiroptical properties are thoroughly examined. In addition, the nanocarbon 2meso with two gulf architectures facilitates host-guest chemistry with a variety of guests, including PDI, TDI, C60 and C70.
Collapse
Affiliation(s)
- Binbin Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Zhengxiong Jin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Xinyue Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Lanfei Sun
- Shandong North Modern Chemistry Industry Co., Ltd Jinan 252300 P. R. China
| | - Cao Yang
- School of Materials Science and Engineering, The Key Laboratory of Material Processing and Mold of Ministry of Education, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Lei Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology Beijing 100029 P. R. China
| |
Collapse
|
2
|
Deyerling J, Berionni Berna B, Biloborodov D, Haag F, Tömekce S, Cuxart MG, Li C, Auwärter W, Bonifazi D. Solution Versus On-Surface Synthesis of Peripherally Oxygen-Annulated Porphyrins through C-O Bond Formation. Angew Chem Int Ed Engl 2024:e202412978. [PMID: 39196673 DOI: 10.1002/anie.202412978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 08/30/2024]
Abstract
This study investigates the synthesis of tetra- and octa-O-fused porphyrinoids employing an oxidative O-annulation approach through C-H activation. Despite encountering challenges such as overoxidation and instability in conventional solution protocols, successful synthesis was achieved on Au(111) surfaces under ultra-high vacuum (UHV) conditions. X-ray photoelectron spectroscopy, scanning tunneling microscopy, and non-contact atomic force microscopy elucidated the preferential formation of pyran moieties via C-O bond formation and subsequent self-assembly driven by C-H⋅⋅⋅O interactions. Furthermore, the O-annulation process was found to reduce the HOMO-LUMO gap by lifting the HOMO energy level, with the effect rising upon increasing the number of embedded O-atoms.
Collapse
Affiliation(s)
- Joel Deyerling
- Physics Department E20, TUM School of Natural Sciences, Technical University of Munich, D 85748, Garching, Germany
| | - Beatrice Berionni Berna
- Institute of Organic Chemistry, Faculty of Chemistry, University of Vienna, 1090, Vienna, Austria
| | - Dmytro Biloborodov
- Department of Chemistry, University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium
| | - Felix Haag
- Physics Department E20, TUM School of Natural Sciences, Technical University of Munich, D 85748, Garching, Germany
| | - Sena Tömekce
- Physics Department E20, TUM School of Natural Sciences, Technical University of Munich, D 85748, Garching, Germany
| | - Marc G Cuxart
- Physics Department E20, TUM School of Natural Sciences, Technical University of Munich, D 85748, Garching, Germany
| | - Conghui Li
- Physics Department E20, TUM School of Natural Sciences, Technical University of Munich, D 85748, Garching, Germany
| | - Willi Auwärter
- Physics Department E20, TUM School of Natural Sciences, Technical University of Munich, D 85748, Garching, Germany
| | - Davide Bonifazi
- Institute of Organic Chemistry, Faculty of Chemistry, University of Vienna, 1090, Vienna, Austria
| |
Collapse
|
3
|
Zhao J, Xu J, Huang H, Wang K, Wu D, Jasti R, Xia J. Appending Coronene Diimide with Carbon Nanohoops Allows for Rapid Intersystem Crossing in Neat Film. Angew Chem Int Ed Engl 2024; 63:e202400941. [PMID: 38458974 DOI: 10.1002/anie.202400941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/22/2024] [Accepted: 03/08/2024] [Indexed: 03/10/2024]
Abstract
The development of innovative triplet materials plays a significant role in various applications. Although effective tuning of triplet formation by intersystem crossing (ISC) has been well established in solution, the modulation of ISC processes in the solid state remains a challenge due to the presence of other exciton decay channels through intermolecular interactions. The cyclic structure of cycloparaphenylenes (CPPs) offers a unique platform to tune the intermolecular packing, which leads to controllable exciton dynamics in the solid state. Herein, by integrating an electron deficient coronene diimide (CDI) unit into the CPP framework, a donor-acceptor type of conjugated macrocycle (CDI-CPP) featuring intramolecular charge-transfer (CT) interaction was designed and synthesized. Effective intermolecular CT interaction resulting from a slipped herringbone packing was confirmed by X-ray crystallography. Transient spectroscopy studies showed that CDI-CPP undergoes ISC in both solution and the film state, with triplet generation time constants of 4.5 ns and 238 ps, respectively. The rapid triplet formation through ISC in the film state can be ascribed to the cooperation between intra- and intermolecular charge-transfer interactions. Our results highlight that intermolecular CT interaction has a pronounced effect on the ISC process in the solid state, and shed light on the use of the characteristic structure of CPPs to manipulate intermolecular CT interactions.
Collapse
Affiliation(s)
- Jingjing Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, 430070, Wuhan, China
| | - Jingwen Xu
- International School of Materials Science and Engineering, Wuhan University of Technology, 430070, Wuhan, China
| | - Huaxi Huang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 430070, Wuhan, China
| | - Kangwei Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, 430070, Wuhan, China
| | - Di Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, 430070, Wuhan, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 430070, Wuhan, China
| | - Ramesh Jasti
- Department of Chemistry and Biochemistry, Materials Science Institute, University of Oregon, 97403, Eugene, Oregon, USA
| | - Jianlong Xia
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, 430070, Wuhan, China
- International School of Materials Science and Engineering, Wuhan University of Technology, 430070, Wuhan, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 430070, Wuhan, China
| |
Collapse
|
4
|
Marongiu M, Ha T, Gil-Guerrero S, Garg K, Mandado M, Melle-Franco M, Diez-Perez I, Mateo-Alonso A. Molecular Graphene Nanoribbon Junctions. J Am Chem Soc 2024; 146:3963-3973. [PMID: 38305745 PMCID: PMC10870704 DOI: 10.1021/jacs.3c11340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/20/2023] [Accepted: 01/12/2024] [Indexed: 02/03/2024]
Abstract
One of the challenges for the realization of molecular electronics is the design of nanoscale molecular wires displaying long-range charge transport. Graphene nanoribbons are an attractive platform for the development of molecular wires with long-range conductance owing to their unique electrical properties. Despite their potential, the charge transport properties of single nanoribbons remain underexplored. Herein, we report a synthetic approach to prepare N-doped pyrene-pyrazinoquinoxaline molecular graphene nanoribbons terminated with diamino anchoring groups at each end. These terminal groups allow for the formation of stable molecular graphene nanoribbon junctions between two metal electrodes that were investigated by scanning tunneling microscope-based break-junction measurements. The experimental and computational results provide evidence of long-range tunneling charge transport in these systems characterized by a shallow conductance length dependence and electron tunneling through >6 nm molecular backbone.
Collapse
Affiliation(s)
- Mauro Marongiu
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastian, Spain
| | - Tracy Ha
- Department
of Chemistry, Faculty of Natural & Mathematical Sciences, King’s College London, Britannia House, 7 Trinity Street, SE1 1DB London, United Kingdom
| | - Sara Gil-Guerrero
- CICECO—Aveiro
Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Kavita Garg
- Department
of Chemistry, Faculty of Natural & Mathematical Sciences, King’s College London, Britannia House, 7 Trinity Street, SE1 1DB London, United Kingdom
| | - Marcos Mandado
- Department
of Physical Chemistry, University of Vigo, Lagoas-Marcosende s/n, 36310 Vigo, Spain
| | - Manuel Melle-Franco
- CICECO—Aveiro
Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ismael Diez-Perez
- Department
of Chemistry, Faculty of Natural & Mathematical Sciences, King’s College London, Britannia House, 7 Trinity Street, SE1 1DB London, United Kingdom
| | - Aurelio Mateo-Alonso
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastian, Spain
- Ikerbasque, Basque
Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
5
|
El-Assaad TH, McGrath DV. Nonsymmetric Pyrene-Fused Pyrazaacenes via Green Oxidation of 2,7-Di- tert-butylpyrene. J Org Chem 2024; 89:1989-1992. [PMID: 38232773 DOI: 10.1021/acs.joc.3c01796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
We disclose a four-step oxidize-condense-oxidize-condense synthesis pathway to prepare nonsymmetric pyrene-fused pyrazaacenes (PPAs) using our recently discovered oxidation conditions for 2,7-di-tert-butylpyrene. The new pathway results in marked improvements in yields and simplifies purification as compared with the sequential condensation strategy previously employed to make these compounds.
Collapse
Affiliation(s)
- Tarek H El-Assaad
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Dominic V McGrath
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
6
|
Liu K, Zheng W, Osella S, Qiu ZL, Böckmann S, Niu W, Meingast L, Komber H, Obermann S, Gillen R, Bonn M, Hansen MR, Maultzsch J, Wang HI, Ma J, Feng X. Cove-Edged Chiral Graphene Nanoribbons with Chirality-Dependent Bandgap and Carrier Mobility. J Am Chem Soc 2024; 146:1026-1034. [PMID: 38117539 DOI: 10.1021/jacs.3c11975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Graphene nanoribbons (GNRs) have garnered significant interest due to their highly customizable physicochemical properties and potential utility in nanoelectronics. Besides controlling widths and edge structures, the inclusion of chirality in GNRs brings another dimension for fine-tuning their optoelectronic properties, but related studies remain elusive owing to the absence of feasible synthetic strategies. Here, we demonstrate a novel class of cove-edged chiral GNRs (CcGNRs) with a tunable chiral vector (n,m). Notably, the bandgap and effective mass of (n,2)-CcGNR show a distinct positive correlation with the increasing value of n, as indicated by theory. Within this GNR family, two representative members, namely, (4,2)-CcGNR and (6,2)-CcGNR, are successfully synthesized. Both CcGNRs exhibit prominently curved geometries arising from the incorporated [4]helicene motifs along their peripheries, as also evidenced by the single-crystal structures of the two respective model compounds (1 and 2). The chemical identities and optoelectronic properties of (4,2)- and (6,2)-CcGNRs are comprehensively investigated via a combination of IR, Raman, solid-state NMR, UV-vis, and THz spectroscopies as well as theoretical calculations. In line with theoretical expectation, the obtained (6,2)-CcGNR possesses a low optical bandgap of 1.37 eV along with charge carrier mobility of ∼8 cm2 V-1 s-1, whereas (4,2)-CcGNR exhibits a narrower bandgap of 1.26 eV with increased mobility of ∼14 cm2 V-1 s-1. This work opens up a new avenue to precisely engineer the bandgap and carrier mobility of GNRs by manipulating their chiral vector.
Collapse
Affiliation(s)
- Kun Liu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Wenhao Zheng
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Silvio Osella
- Chemical and Biological Systems Simulation Lab, Center of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| | - Zhen-Lin Qiu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Steffen Böckmann
- Institute of Physical Chemistry, Universität Münster, Corrensstraße 28/30, 48149 Münster, Germany
| | - Wenhui Niu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle 06120 Germany
| | - Laura Meingast
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Staudtstr. 7, 91058 Erlangen, Germany
| | - Hartmut Komber
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Straße 6, 01069 Dresden, Germany
| | - Sebastian Obermann
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Roland Gillen
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Staudtstr. 7, 91058 Erlangen, Germany
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Michael Ryan Hansen
- Institute of Physical Chemistry, Universität Münster, Corrensstraße 28/30, 48149 Münster, Germany
| | - Janina Maultzsch
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Staudtstr. 7, 91058 Erlangen, Germany
| | - Hai I Wang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Nanophotonics, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Ji Ma
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle 06120 Germany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle 06120 Germany
| |
Collapse
|
7
|
Zhang JJ, Liu K, Xiao Y, Yu X, Huang L, Gao HJ, Ma J, Feng X. Precision Graphene Nanoribbon Heterojunctions by Chain-Growth Polymerization. Angew Chem Int Ed Engl 2023; 62:e202310880. [PMID: 37594477 DOI: 10.1002/anie.202310880] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/19/2023]
Abstract
Graphene nanoribbons (GNRs) are considered promising candidates for next-generation nanoelectronics. In particular, GNR heterojunctions have received considerable attention due to their exotic topological electronic phases at the heterointerface. However, strategies for their precision synthesis remain at a nascent stage. Here, we report a novel chain-growth polymerization strategy that allows for constructing GNR heterojunction with N=9 armchair and chevron GNRs segments (9-AGNR/cGNR). The synthesis involves a controlled Suzuki-Miyaura catalyst-transfer polymerization (SCTP) between 2-(6'-bromo-4,4''-ditetradecyl-[1,1':2',1''-terphenyl]-3'-yl) boronic ester (M1) and 2-(7-bromo-9,12-diphenyl-10,11-bis(4-tetradecylphenyl)-triphenylene-2-yl) boronic ester (M2), followed by the Scholl reaction of the obtained block copolymer (poly-M1/M2) with controlled Mn (18 kDa) and narrow Đ (1.45). NMR and SEC analysis of poly-M1/M2 confirm the successful block copolymerization. The solution-mediated cyclodehydrogenation of poly-M1/M2 toward 9-AGNR/cGNR is unambiguously validated by FT-IR, Raman, and UV/Vis spectroscopies. Moreover, we also demonstrate the on-surface formation of pristine 9-AGNR/cGNR from the unsubstituted copolymer precursor, which is unambiguously characterized by scanning tunneling microscopy (STM).
Collapse
Affiliation(s)
- Jin-Jiang Zhang
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
| | - Kun Liu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Yao Xiao
- Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Xiuling Yu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Li Huang
- Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Hong-Jun Gao
- Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Ji Ma
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Xinliang Feng
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| |
Collapse
|
8
|
Xiong Y, Gong Q, Miao Q. Synthesis, Molecular Packing and Semiconductor Properties of V-Shaped N-Heteroacene Dimers. Chem Asian J 2023; 18:e202300623. [PMID: 37584325 DOI: 10.1002/asia.202300623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/17/2023]
Abstract
This article presents two groups of V-shaped π-scaffolds that consist of two N-heteroacene units fused with either a rigid or flexible eight-membered ring. These rigid and flexible N-heteroacene dimers were synthesized through the condensation of tetraphenylenetetraone with the corresponding diamine and the Pd-catalyzed cross-coupling of tetrabromodibenzo[a,e]cyclooctatetraene with the corresponding diamine, respectively. A comparison of electronic structures and properties of the two groups of V-shaped N-heteroacene dimers shows subtle difference between the rigid and flexible eight-membered ring linkers in forming extended π-systems. X-ray crystallography of these V-shaped molecules has revealed interesting π-π interaction modes, which are dependent on the central connecting units and substituting groups. These π-π interactions between the V-shaped π-scaffolds have enabled the molecules to function as organic semiconductors in solution-processed field effect transistors.
Collapse
Affiliation(s)
- Yongming Xiong
- Department of Chemistry, The Chinese University of Hong Kong Shatin, New Territories, Hong Kong, China
| | - Qi Gong
- Department of Chemistry, The Chinese University of Hong Kong Shatin, New Territories, Hong Kong, China
| | - Qian Miao
- Department of Chemistry, The Chinese University of Hong Kong Shatin, New Territories, Hong Kong, China
- State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong Shatin, New Territories, Hong Kong, China
| |
Collapse
|
9
|
Bao ST, Jiang H, Jin Z, Nuckolls C. Fusing perylene diimide with helicenes. Chirality 2023; 35:656-672. [PMID: 36941527 DOI: 10.1002/chir.23561] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 03/23/2023]
Abstract
Incorporating perylene diimide (PDI) units into helicene structures has become a useful strategy for giving access to non-planar electron acceptors as well as a method of creating molecules with unique and intriguing chiroptical properties. This minireview describes this fusion of PDIs with helicenes.
Collapse
Affiliation(s)
- Si Tong Bao
- Department of Chemistry, Columbia University, New York, New York, USA
| | - Haoyu Jiang
- Department of Chemistry, Columbia University, New York, New York, USA
| | - Zexin Jin
- Department of Chemistry, Columbia University, New York, New York, USA
| | - Colin Nuckolls
- Department of Chemistry, Columbia University, New York, New York, USA
| |
Collapse
|
10
|
Chen H, Zhang S, Liu J, Li J, Chen W, Zhou G. Design and Synthesis of a Polyketone Building Block with Vinyl Groups-9,10-Diethyl-9,10-ethenoanthracene-2,3,6,7(9 H,10 H)-tetraone-and a Preliminary Photoelectrical Property Study of Its Azaacene Derivatives. ACS OMEGA 2023; 8:32931-32939. [PMID: 37720736 PMCID: PMC10500587 DOI: 10.1021/acsomega.3c04452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/15/2023] [Indexed: 09/19/2023]
Abstract
Polyketone compounds are powerful building blocks to synthesize various organic functional materials. Despite that a great many number of planar and non-planar polyketone building blocks have been developed, one issue is that generally there are only ketone functional groups on the molecular skeleton, which will constrain their transformation and further limit the development of functional materials. In this work, we report the design and synthesis of a building block 9,10-diethyl-9,10-ethenoanthracene-2,3,6,7(9H,10H)-tetraone with additional vinyl functional groups. In addition, its azaacene derivatives were also synthesized, and their preliminary physicochemical properties were studied.
Collapse
Affiliation(s)
- Hong Chen
- Guangdong Provincial Key Laboratory
of Optical Information Materials and Technology & Institute of
Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510631, China
| | - Shilong Zhang
- Guangdong Provincial Key Laboratory
of Optical Information Materials and Technology & Institute of
Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510631, China
| | - Jinlei Liu
- Guangdong Provincial Key Laboratory
of Optical Information Materials and Technology & Institute of
Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510631, China
| | - Jiaxin Li
- Guangdong Provincial Key Laboratory
of Optical Information Materials and Technology & Institute of
Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510631, China
| | - Wangqiao Chen
- Guangdong Provincial Key Laboratory
of Optical Information Materials and Technology & Institute of
Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510631, China
| | - Guofu Zhou
- Guangdong Provincial Key Laboratory
of Optical Information Materials and Technology & Institute of
Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
11
|
Garci A, Abid S, David AHG, Jones LO, Azad CS, Ovalle M, Brown PJ, Stern CL, Zhao X, Malaisrie L, Schatz GC, Young RM, Wasielewski MR, Stoddart JF. Exciplex Emission and Förster Resonance Energy Transfer in Polycyclic Aromatic Hydrocarbon-Based Bischromophoric Cyclophanes and Homo[2]catenanes. J Am Chem Soc 2023; 145:18391-18401. [PMID: 37565777 DOI: 10.1021/jacs.3c04213] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Energy transfer and exciplex emission are not only crucial photophysical processes in many living organisms but also important for the development of smart photonic materials. We report, herein, the rationally designed synthesis and characterization of two highly charged bischromophoric homo[2]catenanes and one cyclophane incorporating a combination of polycyclic aromatic hydrocarbons, i.e., anthracene, pyrene, and perylene, which are intrinsically capable of supporting energy transfer and exciplex formation. The possible coconformations of the homo[2]catenanes, on account of their dynamic behavior, have been probed by Density Functional Theory calculations. The unique photophysical properties of these exotic molecules have been explored by steady-state and time-resolved absorption and fluorescence spectroscopies. The tetracationic pyrene-perylene cyclophane system exhibits emission emanating from a highly efficient Förster resonance energy transfer (FRET) mechanism which occurs in 48 ps, while the octacationic homo[2]catenane displays a weak exciplex photoluminescence following extremely fast (<0.3 ps) exciplex formation. The in-depth fundamental understanding of these photophysical processes involved in the fluorescence of bischromophoric cyclophanes and homo[2]catenanes paves the way for their use in future bioapplications and photonic devices.
Collapse
Affiliation(s)
- Amine Garci
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Seifallah Abid
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Arthur H G David
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Leighton O Jones
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Chandra S Azad
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Marco Ovalle
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Paige J Brown
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Charlotte L Stern
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xingang Zhao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Luke Malaisrie
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - George C Schatz
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Ryan M Young
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| |
Collapse
|
12
|
Luo H, Liu FZ, Liu Y, Chu Z, Yan K. Biasing Divergent Polycyclic Aromatic Hydrocarbon Oxidation Pathway by Solvent-Free Mechanochemistry. J Am Chem Soc 2023. [PMID: 37428958 DOI: 10.1021/jacs.3c00614] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Precise control in reaction selectivity is the goal in modern organic synthesis, and it has been widely studied throughout the synthetic community. In comparison, control of divergent reactivity of a given reagent under different reaction conditions is relatively less explored aspect of chemical selectivity. We herein report an unusual reaction between polycyclic aromatic hydrocarbons and periodic acid H5IO6 (1), where the product outcome is dictated by the choice of reaction conditions. That is, reactions under solution-based condition give preferentially C-H iodination products, while reactions under solvent-free mechanochemical condition provide C-H oxidation quinone products. Control experiments further indicated that the iodination product is not a reaction intermediate toward the oxidation product and vice versa. Mechanistic studies unveiled an in situ crystalline-to-crystalline phase change in 2 during ball-milling treatment, where we assigned it as a polymeric hydrogen-bond network of 1. We believe that this polymeric crystalline phase shields the more embedded electrophilic I═O group of 1 from C-H iodination and bias a divergent C-H oxidation pathway (with I═O) in the solid state. Collectively, this work demonstrates that mechanochemistry can be employed to completely switch a reaction pathway and unmask hidden reactivity of chemical reagents.
Collapse
Affiliation(s)
- Hao Luo
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Fang-Zi Liu
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Yan Liu
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Zhaoyang Chu
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - KaKing Yan
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| |
Collapse
|
13
|
Huang YY, Wu B, Shi D, Liu D, Meng W, Ma J, Qin L, Li C, Zhang G, Zhang XS, Zhang D. A Heptacene Analogue Entailing a Quinoidal Benzodi[7]annulene (7/6/7 Ring) Core with a Tunable Configuration and Multiple Redox Properties. Angew Chem Int Ed Engl 2023; 62:e202300990. [PMID: 36861376 DOI: 10.1002/anie.202300990] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/03/2023]
Abstract
Non-benzenoid acenes containing heptagons have received increasing attention. We herein report a heptacene analogue containing a quinoidal benzodi[7]annulene core. Derivatives of this new non-benzenoid acene were obtained through an efficient synthetic strategy involving an Aldol condensation and a Diels-Alder reaction as key steps. The configuration of this heptacene analogue can be modulated from a wavy to a curved one by just varying the substituents from a (triisopropylsilyl)ethynyl group to a 2,4,6-triisopropylphenyl (Trip) group. When mesityl (Mes) groups are linked to the heptagons, the resulting non-benzenoid acene displays polymorphism with a tunable configuration from a curved to a wavy one upon varying the crystallization conditions. In addition, this new non-benzenoid acene can be oxidized or reduced by NOSbF6 or KC8 to the respective radical cation or radical anion. Compared with the neutral acene, the radical anion shows a wavy configuration and the central hexagon becomes aromatic.
Collapse
Affiliation(s)
- Yan-Ying Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Botao Wu
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Dandan Shi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Dan Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wei Meng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junlong Ma
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liyuan Qin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Guanxin Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xi-Sha Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Deqing Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
14
|
Guo J, Zhang T, Li Z, Ye K, Wang Y, Dou C. Distorted B/O-containing nanographenes with tunable optical properties. Chem Commun (Camb) 2023; 59:2644-2647. [PMID: 36779481 DOI: 10.1039/d2cc06376j] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We report the synthesis of two B/O-containing nanographenes, which feature the fusion of three or six planar B/O-heterocycles onto one hexa-peri-hexabenzocoronene π-framework. Incorporation of the B/O-heterocycles not only leads to distorted geometries, but also modulates the electronic structures and results in gradually red-shifted absorptions and fluorescence.
Collapse
Affiliation(s)
- Jiaxiang Guo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Tianyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Zeyi Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Kaiqi Ye
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Chuandong Dou
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China. .,Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
15
|
Labella J, Durán-Sampedro G, Krishna S, Martínez-Díaz MV, Guldi DM, Torres T. Anthracene-Fused Oligo-BODIPYs: A New Class of π-Extended NIR-Absorbing Materials. Angew Chem Int Ed Engl 2023; 62:e202214543. [PMID: 36350769 PMCID: PMC10107270 DOI: 10.1002/anie.202214543] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/11/2022]
Abstract
Large π-conjugated systems are key in the area of molecular materials. Herein, we prepare via AuI -catalyzed cyclization a series of fully π-conjugated anthracene-fused oligo-BODIPYs. Their structural and optoelectronic properties were studied by several techniques, ranging from X-ray, UV/Vis, and cyclic voltammetry to transient absorption spectroscopy. As a complement, their electronic structures were explored by means of Density Functional Theory (DFT) calculations. Depending on the size and shape of the π-conjugated skeleton, unique features-such as face-to-face supramolecular organization, NIR absorption and fluorescence as well as strong electron accepting character-were noted. All in all, the aforementioned features render them valuable for technological applications.
Collapse
Affiliation(s)
- Jorge Labella
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus de Cantoblanco, C/Francisco Tomás y Valiente 7, 28049, Madrid, Spain
| | - Gonzalo Durán-Sampedro
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus de Cantoblanco, C/Francisco Tomás y Valiente 7, 28049, Madrid, Spain.,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Swathi Krishna
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058, Erlangen, Germany
| | - M Victoria Martínez-Díaz
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus de Cantoblanco, C/Francisco Tomás y Valiente 7, 28049, Madrid, Spain.,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058, Erlangen, Germany
| | - Tomás Torres
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus de Cantoblanco, C/Francisco Tomás y Valiente 7, 28049, Madrid, Spain.,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain.,IMDEA-Nanociencia, C/Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
16
|
Maier S, Hippchen N, Jester F, Dodds M, Weber M, Skarjan L, Rominger F, Freudenberg J, Bunz UHF. Azaarenes: 13 Rings in a Row by Cyclopentannulation. Angew Chem Int Ed Engl 2023; 62:e202214031. [PMID: 36383088 PMCID: PMC10107455 DOI: 10.1002/anie.202214031] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022]
Abstract
Cyclopentannulation was explored as a strategy to access large, stable azaarenes. Buchwald-Hartwig coupling of previously reported di- and tetrabrominated cyclopentannulated N,N'-dihydrotetraazapentacenes furnished stable azaarenes with up to 13 six-membered rings in a row and a length of 3.1 nm. Their optoelectronic and semi-conducting properties as well as their aromaticity were investigated.
Collapse
Affiliation(s)
- Steffen Maier
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Nikolai Hippchen
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Fabian Jester
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Marcus Dodds
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Michel Weber
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Leon Skarjan
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Jan Freudenberg
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Uwe H F Bunz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany.,Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| |
Collapse
|
17
|
Liu G, Liu Y, Zhao C, Li Y, Wang Z, Tian H. Stereoselective Chiral Molecular Carbon Imides Featuring 12-Fold [5]helicenes Around Four Cores. Angew Chem Int Ed Engl 2023; 62:e202214769. [PMID: 36357324 DOI: 10.1002/anie.202214769] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Indexed: 11/12/2022]
Abstract
Despite the great progress in research on molecular carbons containing multiple helicenes around one core, realizing the stereoselectivity of carbons containing multiple helicenes around more cores is still a great challenge. Herein, molecular carbon C204 featuring 12-fold [5]helicenes around four cores was successfully constructed by using nine perylene diimide (PDI) units, and exhibits good solubility and stability. Despite 256 possible stereoisomers caused by the 12-fold [5]helicenes, we only obtained one pair of enantiomers with D3 symmetry. There are four possible pairs of enantiomers with D3 symmetry, namely 7A, 7B, 7C and 7D. Theoretical and experimental results verify that the obtained structure belongs to 7C, which has the lowest energy. The enantiomers can also be separated by chiral HPLC. These results suggest that choosing PDIs as building blocks can not only improve the solubility and stability but also realize the stereoselectivity and chirality of molecular carbons.
Collapse
Affiliation(s)
- Guogang Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yujian Liu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Chengxi Zhao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yan Li
- School of Chemistry, Beihang University, Beijing, 100191, China
| | - Zhaohui Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
18
|
Enhanced Ultrafast Broadband Reverse Saturable Absorption in Twistacenes with Enlarged π-Conjugated Central Bridge. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27249059. [PMID: 36558191 PMCID: PMC9782705 DOI: 10.3390/molecules27249059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Optical nonlinearities of two all-carbon twistacenes, DPyA and DPyN, with the different π-conjugated central bridges were investigated. The nonlinear absorption properties of these compounds were measured using the femtosecond Z-scan with wavelengths between 650 and 900 nm. It has been found that the nonlinear absorption originated from two-photon absorption (TPA) and TPA-induced excited state absorption (ESA), wherein DPyA demonstrates higher performance than DPyN. The TPA cross section of DPyA (4300 GM) is nearly 4.3 times larger than that of DPyN at 650 nm. Moreover, the different central structures modulate the intensity of ESA at 532 nm, and DPyA exhibits an excellent ESA at 532 nm with multi-pulse excitation. Meanwhile, the result of data fitting and quantum chemistry calculation shows that the enhancement of nonlinear absorption in DPyA is due to the extended π- conjugated bridge and improved delocalization of π-electrons. These all-carbon twistacenes could yield potential applications in optical power limiting (OPL) technology.
Collapse
|
19
|
Xiao X, Cheng Q, Bao ST, Jin Z, Sun S, Jiang H, Steigerwald ML, Nuckolls C. Single-Handed Helicene Nanoribbons via Transfer of Chiral Information. J Am Chem Soc 2022; 144:20214-20220. [DOI: 10.1021/jacs.2c09288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Xiao Xiao
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Qian Cheng
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Si Tong Bao
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Zexin Jin
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Shantao Sun
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Haoyu Jiang
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | | | - Colin Nuckolls
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
20
|
Shao G, Wu M, Wang X, Zhao J, You X, Wu D, Xia J. Regiochemically Pure 1,6-Ditriflato-Perylene Diimide: Preparation and Transformation. J Org Chem 2022; 87:14825-14832. [PMID: 36261214 DOI: 10.1021/acs.joc.2c01246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Preparation of regioisomerically pure 1,6-disubstituted perylene diimide (PDI) is not a trivial task owing to the lack of facile synthetic and separation methodologies for the precursors. Herein, we present a simple synthesis for 1,6-ditriflato-PDI (1,6-diOTf-PDI) using 1,6,9,10-tetrabromo-perylene monoimide 1 as the starting material. The selective methoxylation of 1 at the 1,6-position is the key step. Based on a four-step sequence of selective methoxylation, domino carbonylative amidation, demethylation, and triflation, 1,6-diOTf-PDI can be obtained in a satisfactory yield. Moreover, as a building block, 1,6-diOTf-PDIa can readily undergo Suzuki and Sonogashira cross-coupling reactions.
Collapse
Affiliation(s)
- Guangwei Shao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Mingliang Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Xin Wang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Jingjing Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Xiaoxiao You
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Di Wu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Jianlong Xia
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China.,School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China.,International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
21
|
Sun W, Guo J, Fan Z, Yuan L, Ye K, Dou C, Wang Y. Ribbon‐Type Boron‐Doped Polycyclic Aromatic Hydrocarbons: Conformations, Dynamic Complexation and Electronic Properties. Angew Chem Int Ed Engl 2022; 61:e202209271. [DOI: 10.1002/anie.202209271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Wenting Sun
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Jiaxiang Guo
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Zengming Fan
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Liuzhong Yuan
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Kaiqi Ye
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Chuandong Dou
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| |
Collapse
|
22
|
Wang W, Yuan Z, Wang S, Li X, Ji B, Xiao J. Effect of Annulation Mode of Twistarene on the Physical Property and Self‐Assembly Behavior of Functionalized Curved Aromatic Molecules. Chemistry 2022; 28:e202201233. [DOI: 10.1002/chem.202201233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Wei Wang
- College of Chemistry and Environmental Science Key Laboratory of Chemical Biology of Hebei Province Hebei University Baoding 071002 P. R. China
| | - Ziwei Yuan
- College of Chemistry and Environmental Science Key Laboratory of Chemical Biology of Hebei Province Hebei University Baoding 071002 P. R. China
| | - Sujuan Wang
- College of Chemistry and Environmental Science Key Laboratory of Chemical Biology of Hebei Province Hebei University Baoding 071002 P. R. China
| | - Xueqing Li
- College of Chemistry and Environmental Science Key Laboratory of Chemical Biology of Hebei Province Hebei University Baoding 071002 P. R. China
| | - Bingliang Ji
- College of Chemistry and Environmental Science Key Laboratory of Chemical Biology of Hebei Province Hebei University Baoding 071002 P. R. China
| | - Jinchong Xiao
- College of Chemistry and Environmental Science Key Laboratory of Chemical Biology of Hebei Province Hebei University Baoding 071002 P. R. China
| |
Collapse
|
23
|
Sun W, Guo J, Fan Z, Yuan L, Ye K, Dou C, Wang Y. Ribbon‐Type Boron‐Doped Polycyclic Aromatic Hydrocarbons: Conformations, Dynamic Complexation and Electronic Properties. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | | | | | - Kaiqi Ye
- Jilin University College of Chemistry CHINA
| | - Chuandong Dou
- Jilin University State Key Laboratory of Supramolecular Structure and Materials No.2699 Qianjin Street 130012 Changchun CHINA
| | - Yue Wang
- Jilin University College of Chemistry CHINA
| |
Collapse
|
24
|
Ruiz‐Zambrana C, Dubey RK, Poyatos M, Mateo‐Alonso A, Peris E. Redox-Switchable Complexes Based on Nanographene-NHCs. Chemistry 2022; 28:e202201384. [PMID: 35638131 PMCID: PMC9400984 DOI: 10.1002/chem.202201384] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Indexed: 12/22/2022]
Abstract
A series of rhodium and iridium complexes with a N-heterocyclic carbene (NHC) ligand decorated with a perylene-diimide-pyrene moiety are described. Electrochemical studies reveal that the complexes can undergo two successive one-electron reduction events, associated to the reduction of the PDI moiety attached to the NHC ligand. The reduction of the ligand produces a significant increase on its electron-donating character, as observed from the infrared spectroelectrochemical studies. The rhodium complex was tested in the [3+2] cycloaddition of diphenylcyclopropenone and methylphenylacetylene, where it displayed a redox-switchable behavior. The neutral complex showed moderate activity, which was suppressed when the catalyst was reduced.
Collapse
Affiliation(s)
- César Ruiz‐Zambrana
- Institute of Advanced Materials (INAM). Centro de Innovación en Química Avanzada (ORFEO-CINQA).Universitat Jaume I.Av. Vicente Sos Baynat s/n.Castellón.12071Spain
| | - Rajeev K. Dubey
- POLYMATUniversity of the Basque Country UPV/EHUAvenida de Tolosa 7220018Donostia-San SebastianSpain
| | - Macarena Poyatos
- Institute of Advanced Materials (INAM). Centro de Innovación en Química Avanzada (ORFEO-CINQA).Universitat Jaume I.Av. Vicente Sos Baynat s/n.Castellón.12071Spain
| | - Aurelio Mateo‐Alonso
- POLYMATUniversity of the Basque Country UPV/EHUAvenida de Tolosa 7220018Donostia-San SebastianSpain
- Ikerbasque, Basque Foundation for Science48009BilbaoSpain
| | - Eduardo Peris
- Institute of Advanced Materials (INAM). Centro de Innovación en Química Avanzada (ORFEO-CINQA).Universitat Jaume I.Av. Vicente Sos Baynat s/n.Castellón.12071Spain
| |
Collapse
|
25
|
Abstract
The creation and development of new forms of nanocarbons have fundamentally transformed the scientific landscape in the past three decades. As new members of the nanocarbon family with accurate size, shape, and edge structure, molecular carbon imides (MCIs) have shown unexpected and unique properties. Particularly, the imide functionalization strategy has endowed these rylene-based molecular carbons with fascinating characteristics involving flexible syntheses, tailor-made structures, diverse properties, excellent processability, and good stability. This Perspective elaborates molecular design evolution to functional landscapes, and illustrative examples are given, including a promising library of multi-size and multi-dimensional MCIs with rigidly conjugated π-architectures, ranging from 1D nanoribbon imides and 2D nanographene imides to cross-dimensional MCIs. Although researchers have achieved substantial progress in using MCIs as functional components for exploration of charge transport, photoelectric conversion, and chiral luminescence performances, they are far from unleashing their full potential. Developing highly efficient and regioselective coupling/ring-closure reactions involving the formation of multiple C-C bonds and the annulation of electron-deficient aromatic units is crucial. Prediction by theory with the help of machine learning and artificial intelligence research along with reliable nanotechnology characterization will give an impetus to the blossom of related fields. Future investigations will also have to advance toward─or even focus on─the emerging potential functions, especially in the fields of chiral electronics and spin electronics, which are expected to open new avenues.
Collapse
Affiliation(s)
- Wei Jiang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhaohui Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
26
|
Hernández‐Culebras F, Melle‐Franco M, Mateo‐Alonso A. Doubling the Length of the Longest Pyrene-Pyrazinoquinoxaline Molecular Nanoribbons. Angew Chem Int Ed Engl 2022; 61:e202205018. [PMID: 35467070 PMCID: PMC9321727 DOI: 10.1002/anie.202205018] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Indexed: 12/16/2022]
Abstract
Molecular nanoribbons are a class of atomically-precise nanomaterials for a broad range of applications. An iterative approach that allows doubling the length of the longest pyrene-pyrazinoquinoxaline molecular nanoribbons is described. The largest nanoribbon obtained through this approach-with a 60 linearly-fused ring backbone (14.9 nm) and a 324-atoms core (C276 N48 )-shows an extremely high molar absorptivity (values up to 1 198 074 M-1 cm-1 ) that also endows it with a high molar fluorescence brightness (8700 M-1 cm-1 ).
Collapse
Affiliation(s)
- Félix Hernández‐Culebras
- POLYMATUniversity of the Basque Country UPV/EHUAvenida de Tolosa 7220018Donostia-San SebastiánSpain
| | - Manuel Melle‐Franco
- CICECO—Aveiro Institute of MaterialsDepartment of ChemistryUniversity of Aveiro3810–193AveiroPortugal
| | - Aurelio Mateo‐Alonso
- POLYMATUniversity of the Basque Country UPV/EHUAvenida de Tolosa 7220018Donostia-San SebastiánSpain
- IkerbasqueBasque Foundation for Science48009BilbaoSpain
| |
Collapse
|
27
|
Mahlmeister B, Mahl M, Reichelt H, Shoyama K, Stolte M, Würthner F. Helically Twisted Nanoribbons Based on Emissive Near-Infrared Responsive Quaterrylene Bisimides. J Am Chem Soc 2022; 144:10507-10514. [PMID: 35649272 DOI: 10.1021/jacs.2c02947] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Graphene nanoribbons (GNRs) have the potential for next-generation functional devices. So far, GNRs with defined stereochemistry are rarely reported in literature and their optical response is usually bound to the ultraviolet or visible spectral region, while covering the near-infrared (NIR) regime is still challenging. Herein, we report two novel quaterrylene bisimides with either one- or twofold-twisted π-backbones enabled by the steric congestion of a fourfold bay arylation leading to an end-to-end twist of up to 76°. The strong interlocking effect of the π-stacked aryl substituents introduces a rigidification of the chromophore unambiguously proven by single-crystal X-ray analysis. This leads to unexpectedly strong NIR emissions at 862 and 903 nm with quantum yields of 1.5 and 0.9%, respectively, further ensuring high solubility as well as resolvable and highly stable atropo-enantiomers. Circular dichroism spectroscopy of these enantiopure chiral compounds reveals a strong Cotton effect Δε of up to 67 M-1 cm-1 centered far in the NIR region at 849 nm.
Collapse
Affiliation(s)
- Bernhard Mahlmeister
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Würzburg 97074, Germany
| | - Magnus Mahl
- Institut für Organische Chemie, Universität Würzburg, Würzburg 97074, Germany
| | | | - Kazutaka Shoyama
- Institut für Organische Chemie, Universität Würzburg, Würzburg 97074, Germany
| | - Matthias Stolte
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Würzburg 97074, Germany.,Institut für Organische Chemie, Universität Würzburg, Würzburg 97074, Germany
| | - Frank Würthner
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Würzburg 97074, Germany.,Institut für Organische Chemie, Universität Würzburg, Würzburg 97074, Germany
| |
Collapse
|
28
|
Valentini C, Gowland D, Bezzu CG, Romito D, Demitri N, Bonini N, Bonifazi D. Customising excitation properties of polycyclic aromatic hydrocarbons by rational positional heteroatom doping: the peri-xanthenoxanthene (PXX) case. Chem Sci 2022; 13:6335-6347. [PMID: 35733908 PMCID: PMC9159094 DOI: 10.1039/d2sc01038k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/27/2022] [Indexed: 11/21/2022] Open
Abstract
In this paper we tackle the challenge of gaining control of the photophysical properties of PAHs through a site-specific N-doping within the structural aromatic framework. By developing a simple predictive tool that identifies C(sp2)-positions that if substituted with a heteroatom would tailor the changes in the absorption and emission spectral envelopes, we predict optimal substitutional patterns for the model peri-xanthenoxanthene (PXX) PAH. Specifically, TDDFT calculations of the electron density difference between the S1 excited state and S0 ground state of PXX allowed us to identify the subtleties in the role of sites i.e., electron donating or withdrawing character on excitation. The replacement of two C(sp2)-atoms with two N-atoms, in either electron donating or withdrawing positions, shifts the electronic transitions either to low or high energy, respectively. This consequently shifts the PXX absorption spectral envelop bathochromically or hypsochromically, as demonstrated by steady-state absorption spectroscopic measurements. Within the series of synthesised N-doped PXX, we tune the optical band gap within an interval of ∼0.4 eV, in full agreement with the theoretical predictions. Relatedly, measurements show the more blueshifted the absorption/emission energies, the greater the fluorescence quantum yield value (from ∼45% to ∼75%). On the other hand, electrochemical investigations suggested that the N-pattern has a limited influence on the redox properties. Lastly, depending on the N-pattern, different supramolecular organisations could be obtained at the solid-state, with the 1,7-pattern PXX molecule forming multi-layered, graphene-like, supramolecular sheets through a combination of weak H-bonding and π-π stacking interactions. Supramolecular striped patterned sheets could also be formed with the 3,9- and 4,10-congeners when co-crystallized with a halogen-bond donor molecule.
Collapse
Affiliation(s)
- Cataldo Valentini
- School of Chemistry, Cardiff University Main Building, Park Place Cardiff CF10 3AT UK
| | - Duncan Gowland
- Department of Physics, King's College London Strand London WC2R 2LS UK
| | - C Grazia Bezzu
- School of Chemistry, Cardiff University Main Building, Park Place Cardiff CF10 3AT UK
| | - Deborah Romito
- Institute of Organic Chemistry, Faculty of Chemistry, University of Vienna Währinger Str. 38 1090 Vienna Austria
| | - Nicola Demitri
- Elettra - Sincrotrone Trieste S.S. 14 Km 163.5 in Area Science Park, 34149 Basovizza Trieste Italy
| | - Nicola Bonini
- Department of Physics, King's College London Strand London WC2R 2LS UK
| | - Davide Bonifazi
- School of Chemistry, Cardiff University Main Building, Park Place Cardiff CF10 3AT UK.,Institute of Organic Chemistry, Faculty of Chemistry, University of Vienna Währinger Str. 38 1090 Vienna Austria
| |
Collapse
|
29
|
Yang X, Elbert SM, Rominger F, Mastalerz M. A Series of Soluble Thieno-Fused Coronene Nanoribbons of Precise Lengths. J Am Chem Soc 2022; 144:9883-9892. [DOI: 10.1021/jacs.2c02645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Xuan Yang
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Sven M. Elbert
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Michael Mastalerz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| |
Collapse
|
30
|
Chen F, Melle-Franco M, Mateo-Alonso A. Planar and Helical Dinaphthophenazines. J Org Chem 2022; 87:7635-7642. [PMID: 35616330 PMCID: PMC9207929 DOI: 10.1021/acs.joc.2c00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, we report the synthesis of a series of planar and helical dinaphthophenazines by cyclocondensation reactions between the newly developed 9,10-bis((triisopropylsilyl)ethynyl)anthracene-1,2-dione and different diamines. Their optoelectronic and electrochemical properties are studied by ultraviolet-visible (UV-vis) spectroscopy, fluorescence spectroscopy, cyclic voltammetry, and density functional theory calculations.
Collapse
Affiliation(s)
- Fengkun Chen
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastian, Spain
| | - Manuel Melle-Franco
- Department of Chemistry, CICECO─Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Aurelio Mateo-Alonso
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastian, Spain.,Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
31
|
Wang Y, Huang Y, Huang T, Zhang J, Luo T, Ni Y, Li B, Xie S, Zeng Z. Perylene‐Based Linear Nonalternant Nanoribbons with Bright Emission and Ambipolar Redox Behavior. Angew Chem Int Ed Engl 2022; 61:e202200855. [DOI: 10.1002/anie.202200855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Yanpei Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
- Shenzhen Research Institute of Hunan University Shenzhen 518000 P. R. China
| | - Yulin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
- Shenzhen Research Institute of Hunan University Shenzhen 518000 P. R. China
| | - Tingting Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
- Shenzhen Research Institute of Hunan University Shenzhen 518000 P. R. China
| | - Jun Zhang
- School of Materials and Chemical Engineering Anhui Jianzhu University Hefei 230039 P. R. China
| | - Teng Luo
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
- Shenzhen Research Institute of Hunan University Shenzhen 518000 P. R. China
| | - Yong Ni
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Bo Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
- Shenzhen Research Institute of Hunan University Shenzhen 518000 P. R. China
- School of Materials Science and Engineering Nanchang Hangkong University Nanchang 330063 P. R. China
| | - Sheng Xie
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
- Shenzhen Research Institute of Hunan University Shenzhen 518000 P. R. China
| | - Zebing Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
- Shenzhen Research Institute of Hunan University Shenzhen 518000 P. R. China
| |
Collapse
|
32
|
Hernández‐Culebras F, Melle‐Franco M, Mateo‐Alonso A. Doubling the Length of the Longest Pyrene‐Pyrazinoquinoxaline Molecular Nanoribbons. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Félix Hernández‐Culebras
- POLYMAT University of the Basque Country UPV/EHU Avenida de Tolosa 72 20018 Donostia-San Sebastián Spain
| | - Manuel Melle‐Franco
- CICECO—Aveiro Institute of Materials Department of Chemistry University of Aveiro 3810–193 Aveiro Portugal
| | - Aurelio Mateo‐Alonso
- POLYMAT University of the Basque Country UPV/EHU Avenida de Tolosa 72 20018 Donostia-San Sebastián Spain
- Ikerbasque Basque Foundation for Science 48009 Bilbao Spain
| |
Collapse
|
33
|
Zhou P, Deng L, Han Z, Zhao X, Zhang Z, Huo S. Benzo[de]isoquinoline-1,3-dione condensed asymmetric azaacenes as strong acceptors. RSC Adv 2022; 12:13480-13486. [PMID: 35520146 PMCID: PMC9067369 DOI: 10.1039/d2ra01074g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/19/2022] [Indexed: 11/21/2022] Open
Abstract
We have designed and synthesized three novel benzo[de]isoquinoline-1,3-dione (BQD) condensed asymmetric azaacenes, BQD-TZ, BQD-AP and BQD-PA, with different end groups of 1,2,5-thiadiazole, acenaphthylene and phenanthrene. The triisopropylsilylethynyl groups were grafted to increase the solubility and crystallinity of the three molecules. These molecules have high electron affinity values of 3.87, 3.69 and 3.74 eV for BQD-TZ, BQD-AP and BQD-PA, respectively as confirmed by cyclic voltammetry measurements. Single-crystal X-ray diffraction revealed that these molecules have strong π-π stacking with distances of 3.31-3.41 Å and different stacking arrangements.
Collapse
Affiliation(s)
- Pengxin Zhou
- College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou 730070 China
| | - Lanlan Deng
- College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou 730070 China
| | - Zengtao Han
- College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou 730070 China
| | - Xiaolong Zhao
- College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou 730070 China
| | - Zhe Zhang
- College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou 730070 China
| | - Shuhui Huo
- College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou 730070 China
| |
Collapse
|
34
|
Ran W, Walz A, Stoiber K, Knecht P, Xu H, Papageorgiou AC, Huettig A, Cortizo‐Lacalle D, Mora‐Fuentes JP, Mateo‐Alonso A, Schlichting H, Reichert J, Barth JV. Depositing Molecular Graphene Nanoribbons on Ag(111) by Electrospray Controlled Ion Beam Deposition: Self-Assembly and On-Surface Transformations. Angew Chem Int Ed Engl 2022; 61:e202111816. [PMID: 35077609 PMCID: PMC9305426 DOI: 10.1002/anie.202111816] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Indexed: 12/31/2022]
Abstract
The chemical processing of low-dimensional carbon nanostructures is crucial for their integration in future devices. Here we apply a new methodology in atomically precise engineering by combining multistep solution synthesis of N-doped molecular graphene nanoribbons (GNRs) with mass-selected ultra-high vacuum electrospray controlled ion beam deposition on surfaces and real-space visualisation by scanning tunnelling microscopy. We demonstrate how this method yields solely a controllable amount of single, otherwise unsublimable, GNRs of 2.9 nm length on a planar Ag(111) surface. This methodology allows for further processing by employing on-surface synthesis protocols and exploiting the reactivity of the substrate. Following multiple chemical transformations, the GNRs provide reactive building blocks to form extended, metal-organic coordination polymers.
Collapse
Affiliation(s)
- Wei Ran
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Andreas Walz
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Karolina Stoiber
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Peter Knecht
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Hongxiang Xu
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | | | - Annette Huettig
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Diego Cortizo‐Lacalle
- POLYMATUniversity of the Basque Country UPV/EHUAvenida de Tolosa 7220018Donostia-San SebastianSpain
| | - Juan P. Mora‐Fuentes
- POLYMATUniversity of the Basque Country UPV/EHUAvenida de Tolosa 7220018Donostia-San SebastianSpain
| | - Aurelio Mateo‐Alonso
- POLYMATUniversity of the Basque Country UPV/EHUAvenida de Tolosa 7220018Donostia-San SebastianSpain
- Ikerbasque, Basque Foundation for ScienceBilbaoSpain
| | - Hartmut Schlichting
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Joachim Reichert
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Johannes V. Barth
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| |
Collapse
|
35
|
Wang Y, Huang Y, Huang T, Zhang J, Luo T, Ni Y, Li B, Xie S, Zeng Z. Perylene‐Based Linear Nonalternant Nanoribbons with Bright Emission and Ambipolar Redox Behavior. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yanpei Wang
- Hunan University College of Chemistry and Chemical Engineering CHINA
| | - Yulin Huang
- Hunan University College of Chemistry and Chemical Engineering CHINA
| | - Tingting Huang
- Hunan University College of Chemistry and Chemical Engineering CHINA
| | - Jun Zhang
- Anhui Jianzhu University School of Materials and Chemical Engineering CHINA
| | - Teng Luo
- Hunan University College of Chemistry and Chemical Engineering CHINA
| | - Yong Ni
- National University of Singapore Department of Chemistry SINGAPORE
| | - Bo Li
- Hunan University College of Chemistry and Chemical Engineering CHINA
| | - Sheng Xie
- Hunan University College of Chemistry and Chemical Engineering CHINA
| | - Zebing Zeng
- Hunan University College of Chemistry and Chemical Engineering State Key Laboratory of Chemo/Biosensing and Chemometrics,College of Chemistry and Chemical EngineeringHunan University, Changsha 410082, P. R. China 410082 Changsha CHINA
| |
Collapse
|
36
|
Ran W, Walz A, Stoiber K, Knecht P, Xu H, Papageorgiou AC, Huettig A, Cortizo‐Lacalle D, Mora‐Fuentes JP, Mateo‐Alonso A, Schlichting H, Reichert J, Barth JV. Depositing Molecular Graphene Nanoribbons on Ag(111) by Electrospray Controlled Ion Beam Deposition: Self‐Assembly and On‐Surface Transformations. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Wei Ran
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Andreas Walz
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Karolina Stoiber
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Peter Knecht
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Hongxiang Xu
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Anthoula C. Papageorgiou
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Annette Huettig
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Diego Cortizo‐Lacalle
- POLYMAT University of the Basque Country UPV/EHU Avenida de Tolosa 72 20018 Donostia-San Sebastian Spain
| | - Juan P. Mora‐Fuentes
- POLYMAT University of the Basque Country UPV/EHU Avenida de Tolosa 72 20018 Donostia-San Sebastian Spain
| | - Aurelio Mateo‐Alonso
- POLYMAT University of the Basque Country UPV/EHU Avenida de Tolosa 72 20018 Donostia-San Sebastian Spain
- Ikerbasque, Basque Foundation for Science Bilbao Spain
| | - Hartmut Schlichting
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Joachim Reichert
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Johannes V. Barth
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| |
Collapse
|
37
|
Dubey RK, Melle-Franco M, Mateo-Alonso A. Inducing Single-Handed Helicity in a Twisted Molecular Nanoribbon. J Am Chem Soc 2022; 144:2765-2774. [PMID: 35099195 PMCID: PMC8855342 DOI: 10.1021/jacs.1c12385] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Molecular conformation has an important role in chemistry and materials science. Molecular nanoribbons can adopt chiral twisted helical conformations. However, the synthesis of single-handed helically twisted molecular nanoribbons still represents a considerable challenge. Herein, we describe an asymmetric approach to induce single-handed helicity with an excellent degree of conformational discrimination. The chiral induction is the result of the chiral strain generated by fusing two oversized chiral rings and of the propagation of that strain along the nanoribbon's backbone.
Collapse
Affiliation(s)
- Rajeev K Dubey
- POLYMAT, University of the Basque Country UPV/EHU, Avenida Tolosa 72, 20018 Donostia-San Sebastian, Spain
| | - Manuel Melle-Franco
- CICECO, Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Aurelio Mateo-Alonso
- POLYMAT, University of the Basque Country UPV/EHU, Avenida Tolosa 72, 20018 Donostia-San Sebastian, Spain.,Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
38
|
Martínez-Abadía M, Dubey RK, Fernández M, Martín-Arroyo M, Aguirresarobe R, Saeki A, Mateo-Alonso A. Molecular nanoribbon gels. Chem Sci 2022; 13:10773-10778. [PMID: 36320686 PMCID: PMC9491176 DOI: 10.1039/d2sc02637f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/05/2022] [Indexed: 11/21/2022] Open
Abstract
Herein, we show that twisted molecular nanoribbons with as many as 322 atoms in the aromatic core are efficient gelators capable of self-assembling into ordered π-gels with morphologies and sol–gel transitions that vary with the length of the nanoribbon. In addition, the nanoribbon gels show a red fluorescence and also pseudoconductivity values in the same range as current state-of-the-art π-gels. Herein, we show that twisted molecular nanoribbons with as many as 322 atoms in the aromatic core are efficient gelators capable of self-assembling into ordered π-gels with morphologies and sol–gel transitions that vary with the length of the nanoribbon.![]()
Collapse
Affiliation(s)
- Marta Martínez-Abadía
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, E-20018 Donostia-San Sebastián, Spain
| | - Rajeev K. Dubey
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, E-20018 Donostia-San Sebastián, Spain
| | - Mercedes Fernández
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, E-20018 Donostia-San Sebastián, Spain
| | - Miguel Martín-Arroyo
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, E-20018 Donostia-San Sebastián, Spain
| | - Robert Aguirresarobe
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, E-20018 Donostia-San Sebastián, Spain
| | - Akinori Saeki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Aurelio Mateo-Alonso
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, E-20018 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
39
|
Li QQ, Hamamoto Y, Tan CCH, Sato H, Ito S. 1,3-Dipolar cycloaddition of azomethine ylides and imidoyl halides for synthesis of π-extended imidazolium salts. Org Chem Front 2022. [DOI: 10.1039/d2qo00941b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new synthetic approach to π-extended imidazolium salts is developed based on 1,3-dipolar cycloaddition of polycyclic aromatic azomethine ylides with imidoyl chlorides in the presence of cesium fluoride as a key additive.
Collapse
Affiliation(s)
- Qiang-Qiang Li
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Yosuke Hamamoto
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Cheryl Cai Hui Tan
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Hiroyasu Sato
- Rigaku Corporation, 3-9-12 Matsubara-Cho, Akishima, Tokyo 196-8666, Japan
| | - Shingo Ito
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
40
|
Krompiec S, Kurpanik-Wójcik A, Matussek M, Gołek B, Mieszczanin A, Fijołek A. Diels-Alder Cycloaddition with CO, CO 2, SO 2, or N 2 Extrusion: A Powerful Tool for Material Chemistry. MATERIALS (BASEL, SWITZERLAND) 2021; 15:172. [PMID: 35009318 PMCID: PMC8745824 DOI: 10.3390/ma15010172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/16/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Phenyl, naphthyl, polyarylphenyl, coronene, and other aromatic and polyaromatic moieties primarily influence the final materials' properties. One of the synthetic tools used to implement (hetero)aromatic moieties into final structures is Diels-Alder cycloaddition (DAC), typically combined with Scholl dehydrocondensation. Substituted 2-pyranones, 1,1-dioxothiophenes, and, especially, 1,3-cyclopentadienones are valuable substrates for [4 + 2] cycloaddition, leading to multisubstituted derivatives of benzene, naphthalene, and other aromatics. Cycloadditions of dienes can be carried out with extrusion of carbon dioxide, carbon oxide, or sulphur dioxide. When pyranones, dioxothiophenes, or cyclopentadienones and DA cycloaddition are aided with acetylenes including masked ones, conjugated or isolated diynes, or polyynes and arynes, aromatic systems are obtained. This review covers the development and the current state of knowledge regarding thermal DA cycloaddition of dienes mentioned above and dienophiles leading to (hetero)aromatics via CO, CO2, or SO2 extrusion. Particular attention was paid to the role that introduced aromatic moieties play in designing molecular structures with expected properties. Undoubtedly, the DAC variants described in this review, combined with other modern synthetic tools, constitute a convenient and efficient way of obtaining functionalized nanomaterials, continually showing the potential to impact materials sciences and new technologies in the nearest future.
Collapse
Affiliation(s)
| | - Aneta Kurpanik-Wójcik
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Bankowa 14, 40-007 Katowice, Poland; (S.K.); (B.G.); (A.M.); (A.F.)
| | - Marek Matussek
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Bankowa 14, 40-007 Katowice, Poland; (S.K.); (B.G.); (A.M.); (A.F.)
| | | | | | | |
Collapse
|
41
|
Dumele O, Grabicki N. Confining the Inner Space of Strained Carbon Nanorings. Synlett 2021. [DOI: 10.1055/s-0040-1719853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractStrained aromatic macrocycles based on cycloparaphenylenes (CPPs) are the shortest repeating units of armchair single-walled carbon nanotubes. Since the development of several new synthetic methodologies for accessing these structures, their properties have been extensively studied. Besides the fundamental interest in these novel molecular scaffolds, their application in the field of materials science is an ongoing topic of research. Most of the reported CPP-type macrocycles display strong binding toward fullerenes, due to the perfect match between the convex and concave π-surfaces of fullerenes and CPPs, respectively. Highly functionalized CPP derivatives capable of supramolecular binding with other molecules are rarely reported. The synthesis of highly functionalized [n]cyclo-2,7-pyrenylenes leads to CPP-type macrocycles with a defined cavity capable of binding non-fullerene guests with high association constants.
Collapse
|
42
|
Biagiotti G, Perini I, Richichi B, Cicchi S. Novel Synthetic Approach to Heteroatom Doped Polycyclic Aromatic Hydrocarbons: Optimizing the Bottom-Up Approach to Atomically Precise Doped Nanographenes. Molecules 2021; 26:6306. [PMID: 34684887 PMCID: PMC8537472 DOI: 10.3390/molecules26206306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022] Open
Abstract
The success of the rational bottom-up approach to nanostructured carbon materials and the discovery of the importance of their doping with heteroatoms puts under the spotlight all synthetic organic approaches to polycyclic aromatic hydrocarbons. The construction of atomically precise heteroatom doped nanographenes has evidenced the importance of controlling its geometry and the position of the doping heteroatoms, since these parameters influence their chemical-physical properties and their applications. The growing interest towards this research topic is testified by the large number of works published in this area, which have transformed a once "fundamental research" into applied research at the cutting edge of technology. This review analyzes the most recent synthetic approaches to this class of compounds.
Collapse
Affiliation(s)
- Giacomo Biagiotti
- Department of Chemistry “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy; (G.B.); (I.P.)
| | - Ilaria Perini
- Department of Chemistry “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy; (G.B.); (I.P.)
| | - Barbara Richichi
- Department of Chemistry “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy; (G.B.); (I.P.)
- National Interuniversity Consortium for Materials Science and Technology (INSTM), Via G. Giusti, 9, 50121 Firenze, Italy
| | - Stefano Cicchi
- Department of Chemistry “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy; (G.B.); (I.P.)
- National Interuniversity Consortium for Materials Science and Technology (INSTM), Via G. Giusti, 9, 50121 Firenze, Italy
- Institute of Chemistry of Organometallic Compounds, ICCOM-CNR, Via Madonna del Piano, 10, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
43
|
Ding W, Zhang G. Access to fused π-extended acridone derivatives through a regioselective oxidative demethylation. Org Biomol Chem 2021; 19:6985-6989. [PMID: 34346476 DOI: 10.1039/d1ob01249e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The oxidative demethylation of ortho-dimethoxyacridone with ceric ammonium nitrate (CAN) regioselectively furnished an ortho-quinone leaving a methoxyl group unreacted, which further condensed with aromatic ortho-diamines to afford angularly fused π-extended acridone derivatives. Crystallographic analysis reveals the distinct manner of molecular packing in the crystals according to the dimension of π-extension. The benzene at the turning point possesses a shorter outer bond and a longer inner bond, which affects molecular conjugation and results in weakened aromaticity.
Collapse
Affiliation(s)
- Weiwei Ding
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China.
| | | |
Collapse
|
44
|
Do the twist. Nat Rev Chem 2021; 5:369. [PMID: 37118024 DOI: 10.1038/s41570-021-00296-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|