1
|
Li YQ, Zhao H, Han E, Jiang Z, Bai Q, Guan YM, Zhang Z, Wu T, Wang P. Dynamic selection in metallo-organic cube Cd II 8L 4 conformations induced by perfluorooctanoate encapsulation. Chem Sci 2024; 16:364-370. [PMID: 39620083 PMCID: PMC11604167 DOI: 10.1039/d4sc07105k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
Metallo-organic cages possess flexibility comparable to that of biological receptors and can alter their conformations to better accommodate guest species due to the dynamic reversibility of the coordination bond. Induced fit is widely accepted involving conformation change of the host, while few definitive examples are related to conformation selection. Herein, we report the generation of metallo-organic cube CdII 8L4 with two coexisting conformations, which have been fully confirmed by NMR, ESI-MS and single-crystal X-ray diffraction analysis. The specific guest perfluorooctanoate PFOA selectively binds to the active conformer C 2h-1 to form the PFOA⊂C 2h-1 complex. Furthermore, conformer D 2-2 isomerizes to conformer C 2h-1 in the presence of PFOA, for maximizing the guest binding affinity. This study provides an effective working paradigm for conformation selection, facilitating the understanding of the fundamental mechanism of molecular recognition.
Collapse
Affiliation(s)
- Yu-Qing Li
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - He Zhao
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Ermeng Han
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Zhiyuan Jiang
- Department of Chemistry, The University of Hong Kong Hong Kong SAR 999077
| | - Qixia Bai
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University Guangzhou 510006 China
| | - Yu-Ming Guan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University Guangzhou 510006 China
| | - Zhe Zhang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University Guangzhou 510006 China
| | - Tun Wu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University Guangzhou 510006 China
| | - Pingshan Wang
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University Guangzhou 510006 China
| |
Collapse
|
2
|
Tashiro S, Yamada Y, Kringe LA, Okajima Y, Shionoya M. Intricate Low-Symmetry Ag 6L4 Capsules Formed by Anion-Templated Self-Assembly of the Stereoisomers of an Unsymmetric Ligand. J Am Chem Soc 2024; 146:34501-34509. [PMID: 39616534 DOI: 10.1021/jacs.4c11583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Metal-organic cages and capsules exhibit space-specific functions based on their discrete hollow structures. To acquire enzyme-like asymmetric or intricate structures, they have been modified by desymmetrization with two or more different ligands. There is a need to establish new strategies that can desymmetrize structures in a simple way using only one type of ligand, which is different from the mixed-ligand approach. In this study, a strategy was developed to form interconvertible stereoisomers using the unsymmetric macrocyclic ligand benzimidazole[3]arene. Single-crystal X-ray diffraction analysis revealed that the isomers assembled with silver tetrafluoroborate afforded a conformationally heteroleptic Ag6L4 capsule with an intricate structure. The six Ag ions in the capsule were desymmetrized, resulting in significantly different coordination geometries. Remarkably, the capsule encapsulates a single tetrafluoroborate anion via multipoint C-H···F-B hydrogen bonds in both the solid and solution states, suggesting that anions of appropriate size and shape can act as a template for the capsule formation. These results demonstrate that the use of isomerizable and unsymmetric ligands is the effectiveness of constructing highly dissymmetric supramolecular structures from a single ligand.
Collapse
Affiliation(s)
- Shohei Tashiro
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoshihiko Yamada
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Lea Antonia Kringe
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoshiki Okajima
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
3
|
Li Q, Yan C, Zhang P, Wang P, Wang K, Yang W, Cheng L, Dang D, Cao L. Tetraphenylethene-Based Molecular Cage with Coenzyme FAD: Conformationally Isomeric Complexation toward Photocatalysis-Assisted Photodynamic Therapy. J Am Chem Soc 2024; 146:30933-30946. [PMID: 39433428 DOI: 10.1021/jacs.4c09508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Flavin adenine dinucleotide (FAD), serving as a light-absorbing coenzyme factor, can undergo conformationally isomeric complexation within different enzymes to form various enzyme-coenzyme complexes, which exhibit photocatalytic functions that play a crucial role in physiological processes. Constructing an artificial photofunctional system using FAD or its derivatives can not only develop biocompatible photocatalytic systems with excellent activities but also further enhance our understanding of the role of FAD in biological systems. Here, we demonstrate a supramolecular approach for constructing an artificial enzyme-coenzyme-type host-guest complex with photoinduced catalytic function in water. First, we have designed and synthesized a water-soluble tetraphenylethene (TPE)-based octacationic molecular cage (1) with a large and flexible cavity, which can adaptively encapsulate with two FAD molecules with "U-shaped" conformation (uFAD) to form a 1:2 host-guest complex (1⊃uFAD2) in water. Second, based on the conformationally isomeric complexation of FAD within 1, the 1⊃uFAD2 complex facilitates electron and energy transfers to molecular oxygen upon the white-light illumination, efficiently producing reactive oxygen species (ROS) such as superoxide radical (O2•-) and singlet oxygen (1O2). To our knowledge, the 1⊃uFAD2 complex acts as a photocatalyst to achieve the highest turnover frequency (TOF) of 35.6 min-1 for the photocatalytic oxidation reaction of NADH via a photoinduced superoxide radical catalysis mechanism in an aqueous medium. At last, combining the cytotoxic effects of ROS and the disruption of the intracellular redox balance involving NADH, 1⊃uFAD2 as a supramolecular photosensitizer displays an excellent oxygen-independent photocatalysis-assisted photodynamic therapy in hypoxic tumors.
Collapse
Affiliation(s)
- Qingfang Li
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Chaochao Yan
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Peijuan Zhang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Pingxia Wang
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Kaige Wang
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Wanni Yang
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Lin Cheng
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Dongfeng Dang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Liping Cao
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
| |
Collapse
|
4
|
Wang LJ, Zhang ZE, Zhang YZ, Han YF. Cavity-Partitioned Self-Assembled Cage for Sequential Separation in Aqueous Solutions. Angew Chem Int Ed Engl 2024; 63:e202407278. [PMID: 38924343 DOI: 10.1002/anie.202407278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
The concept of pore space partition has emerged as an effective strategy for developing improved coordination-based supramolecular porous materials with exceptional performance. Herein, we report that a water-soluble self-assembled tetrahedral cage 1 with a partitioned cavity shown excellent performance as a multifunctional extractant. The results show that this unique partitioned cavity can efficiently separate halogenated adamantanes, adamantane isomers, and polycyclic aromatic hydrocarbons. Furthermore, the influence of cavity-partitioned cage 1 on the electrochemical properties of redox-active molecules and electrochemically driven reversible host-guest process has also been demonstrated. The findings offer valuable insights into the design and development of new type of materials with controlled phase separation and tailored electrochemical properties.
Collapse
Affiliation(s)
- Li-Juan Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P.R. China
| | - Zi-En Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P.R. China
| | - Yan-Zhen Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P.R. China
| | - Ying-Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P.R. China
| |
Collapse
|
5
|
Huang B, Zhou M, Hong QY, Wu MX, Zhao XL, Xu L, Gao EQ, Yang HB, Shi X. A Redox-Active Phenothiazine-based Pd 2L 4-Type Coordination Cage and Its Isolable Crystalline Polyradical Cations. Angew Chem Int Ed Engl 2024; 63:e202407279. [PMID: 38872356 DOI: 10.1002/anie.202407279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/15/2024]
Abstract
Polyradical cages are of great interest because they show very fascinating physical and chemical properties, but many challenges remain, especially for their synthesis and characterization. Herein, we present the synthesis of a polyradical cation cage 14⋅+ through post-synthetic oxidation of a redox-active phenothiazine-based Pd2L4-type coordination cage 1. It's worth noting that 1 exhibits excellent reversible electrochemical and chemical redox activity due to the introduction of a bulky 3,5-di-tert-butyl-4-methoxyphenyl substituent. The generation of 14⋅+ through reversible electrochemical oxidation is investigated by in situ UV/Vis-NIR and EPR spectroelectrochemistry. Meanwhile, chemical oxidation of 1 can also produce 14⋅+ which can be reversibly reduced back to the original cage 1, and the process is monitored by EPR and NMR spectroscopies. Eventually, we succeed in the isolation and single crystal X-ray diffraction analysis of 14⋅+, whose electronic structure and conformation are distinct to original 1. The magnetic susceptibility measurements indicate the predominantly antiferromagnetic interactions between the four phenothiazine radical cations in 14⋅+. We believe that our study including the facile synthesis methodology and in situ spectroelectrochemistry will shed some light on the synthesis and characterization of novel polyradical systems, opening more perspectives for developing functional supramolecular cages.
Collapse
Affiliation(s)
- Bin Huang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Manfei Zhou
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Qiong-Yan Hong
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Meng-Xiang Wu
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Xiao-Li Zhao
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Lin Xu
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - En-Qing Gao
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Hai-Bo Yang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Xueliang Shi
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
6
|
Benchimol E, Ebbert KE, Walther A, Holstein JJ, Clever GH. Ligand Conformation Controls Assembly of a Helicate/Mesocate, Heteroleptic [Pd 2L 2L' 2] Cages and a Six-Jagged [Pd 6L 12] Ring. Chemistry 2024; 30:e202401850. [PMID: 38853595 DOI: 10.1002/chem.202401850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/11/2024]
Abstract
Molecular building blocks, capable of adopting several strongly deviating conformations, are of particular interest in the development of stimuli-responsive self-assemblies. The pronounced structural flexibility of a short acridone-based bridging ligand, equipped with two monodentate isoquinoline donors, is herein exploited to assemble a surprisingly diverse series of coordination-driven Pd(II) architectures. First, it can form a highly twisted Pd2L4 helicate, transformable into the corresponding mesocate, controlled by temperature, counter anion and choice of solvent. Second, it also allows the formation of heteroleptic cages, either from a mix of ligands with Pd(II) cations or by cage-to-cage transformation from homoleptic assemblies. Here, the acridone-based ligand tolerates counter ligands that carry their donors either in a diverging or converging arrangement, as it can rotate its own coordination sites by 90° and structurally adapt to both situations via shape complementarity. Third, by a near 180° rotation of only one of its arms, the ligand can adopt an S-shape conformation and form an unprecedented C6h-symmetric Pd6L12 saw-toothed six-membered ring.
Collapse
Affiliation(s)
- Elie Benchimol
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Kristina E Ebbert
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Alexandre Walther
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Julian J Holstein
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Guido H Clever
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| |
Collapse
|
7
|
Liu H, Guo C, Huang Y, Zhou Z, Jian S, Zhang Z, Hou Y, Mu C, Zhang M. Fusion of two homoleptic truncated tetrahedra into a heteroleptic truncated octahedron. Chem Sci 2024:d4sc02736a. [PMID: 39165732 PMCID: PMC11331344 DOI: 10.1039/d4sc02736a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/01/2024] [Indexed: 08/22/2024] Open
Abstract
The exploration of novel structures and structural transformation of supramolecular assemblies is of vital importance for their functions and applications. Herein, based on coordination-driven self-assembly, we prepare a neutral truncated tetrahedron and a heteroleptic truncated octahedron, whose structures are unambiguously confirmed by X-ray diffraction analysis. More importantly, the truncated tetrahedron is quantitatively transformed into the truncated octahedron through its fusion with another cationic truncated tetrahedron, as evidenced by fluorescence, mass and NMR spectroscopy. This study not only deepens our understanding of the process of supramolecular fusion but also opens up possibilities for the subsequent preparation of advanced supramolecular assemblies with complex structures and integrated functions.
Collapse
Affiliation(s)
- Haifei Liu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Chenxing Guo
- College of Chemistry and Environmental Engineering, Shenzhen University Shenzhen 518055 P. R. China
| | - Yujuan Huang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Zilin Zhou
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Shijin Jian
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Zeyuan Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Yali Hou
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Chaoqun Mu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology Xi'an 710055 Shaanxi P. R. China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University Xi'an 710049 P. R. China
| |
Collapse
|
8
|
Zhai H, Wei Z, Jing X, Duan C. A Porphyrin-Faced Zn 8L 6 Cage for Selective Oxidation of C(sp 3)-H Bonds and Sulfides. Inorg Chem 2024; 63:14375-14382. [PMID: 39038208 DOI: 10.1021/acs.inorgchem.4c01009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Catalytic oxidation of benzyl C-H bonds and sulfides from fuel oils stands as an attractive proposition in the quest for clean energy, yet their simultaneous oxidation with a singular, economically friendly catalyst is not well established. In this work, the combination of a cobalt(II) porphyrin ligand with 2-pyridinecarboxaldehyde and ZnII yielded a Zn8L6 cage (Co cube). The three-dimensional conjugated structure effectively enhances energy transfer efficiency, enabling the Co cube to show a good ability to activate oxygen under light conditions for photooxidation. Moreover, this catalytic system demonstrates high selectivity for the photocatalytic oxidation of C(sp3)-H bonds and sulfides, employing the Co cube as a single component catalyst, molecular oxygen as the oxidant, and activating oxygen into 1O2 under mild reaction conditions. This provides significant insights for organic synthesis and future design of photocatalysts with complex molecular components.
Collapse
Affiliation(s)
- Haoyu Zhai
- School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China
| | - Zhong Wei
- School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China
| | - Xu Jing
- School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China
| | - Chunying Duan
- School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China
| |
Collapse
|
9
|
Zuo Y, Chen Z, Li Z, Fu E, Xin Y, Chen C, Li C, Zhang S. Unraveling the Dynamic Molecular Motions of a Twin-Cavity Cage with Slow Configurational but Rapid Conformational Interconversions. Angew Chem Int Ed Engl 2024; 63:e202405858. [PMID: 38604976 DOI: 10.1002/anie.202405858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/13/2024]
Abstract
Featuring diverse structural motions/changes, dynamic molecular systems hold promise for executing complex tasks. However, their structural complexity presents formidable challenge in elucidating their kinetics, especially when multiple structural motions are intercorrelated. We herein introduce a twin-cavity cage that features interconvertible C3- and C1-configurations, with each configuration exhibiting interchangeable P- and M-conformations. This molecule is therefore composed of four interconnected chiral species (P)-C3, (M)-C3, (P)-C1, (M)-C1. We showcase an effective approach to decouple these sophisticated structural changes into two kinetically distinct pathways. Utilizing time-dependent 1H NMR spectroscopy at various temperatures, which disregards the transition between mirror-image conformations, we first determine the rate constant (kc) for the C3- to C1-configuration interconversion, while time-dependent circular dichroism spectroscopy at different temperatures quantifies the observed rate constant (kobs) of the ensemble of all the structural changes. As kobs ≫ ${{\rm { \gg }}}$ kc, it allows us to decouple the overall molecular motions into a slow configurational transformation and rapid conformational interconversions, with the latter further dissected into two independent conformational interchanges, namely (P)-C3← → ${ \mathbin{{\stackrel{\textstyle\rightarrow} { {\smash{\leftarrow}\vphantom{_{\vbox to.5ex{\vss}}}} } }} }$ (M)-C3 and (P)-C1← → ${ \mathbin{{\stackrel{\textstyle\rightarrow} { {\smash{\leftarrow}\vphantom{_{\vbox to.5ex{\vss}}}} } }} }$ (M)-C1. This work, therefore, sheds light on the comprehensive kinetic study of complex molecular dynamics, offering valuable insights for the rational design of smart dynamic materials for applications of sensing, separation, catalysis, molecular machinery, etc.
Collapse
Affiliation(s)
- Yong Zuo
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China
| | - Zhenghong Chen
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China
| | - Ziying Li
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China
| | - Enguang Fu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China
| | - Yonghang Xin
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China
| | - Chenhao Chen
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China
| | - Chenfei Li
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China
| | - Shaodong Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China
| |
Collapse
|
10
|
Wang JX, Li SC, Cai LX, Hu SJ, Zhou LP, Yang J, Sun QF. Stepwise Synthesis of Low-Symmetry Hexacationic Pyridinium Organic Cages. Org Lett 2024; 26:4152-4157. [PMID: 38722029 DOI: 10.1021/acs.orglett.4c01438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
An efficient approach was developed for the synthesis of the well-known BlueCage by pre-bridging two 2,4,6-tris(4-pyridyl)-1,3,5-triazine (TPT) panels with one linker followed by cage formation in a much improved yield and shortened reaction time. Such a stepwise methodology was further applied to synthesize three new pyridinium organic cages, C2, C3, and C4, where the low-symmetry cages C3 and C4 with angled panels demonstrated better recognition properties toward 1,1'-bi-2-naphthol (BINOL) than the high-symmetry analogue C2 featuring parallel platforms.
Collapse
Affiliation(s)
- Jin-Xin Wang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
| | - Shao-Chuan Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
| | - Li-Xuan Cai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
| | - Shao-Jun Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
| | - Li-Peng Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
| | - Jian Yang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
| | - Qing-Fu Sun
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
| |
Collapse
|
11
|
Hao Y, Lu YL, Jiao Z, Su CY. Photocatalysis Meets Confinement: An Emerging Opportunity for Photoinduced Organic Transformations. Angew Chem Int Ed Engl 2024; 63:e202317808. [PMID: 38238997 DOI: 10.1002/anie.202317808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Indexed: 02/04/2024]
Abstract
The self-assembled metal-organic cages (MOCs) have been evolved as a paradigm of enzyme-mimic catalysts since they are able to synergize multifunctionalities inherent in metal and organic components and constitute microenvironments characteristic of enzymatic spatial confinement and versatile host-guest interactions, thus facilitating unconventional organic transformations via unique driving-forces such as weak noncovalent binding and electron/energy transfer. Recently, MOC-based photoreactors emerged as a burgeoning platform of supramolecular photocatalysis, displaying anomalous reactivities and selectivities distinct from bulk solution. This perspective recaps two decades journey of the photoinduced radical reactions by using photoactive metal-organic cages (PMOCs) as artificial reactors, outlining how the cage-confined photocatalysis was evolved from stoichiometric photoreactions to photocatalytic turnover, from high-energy UV-irradiation to sustainable visible-light photoactivation, and from simple radical reactions to multi-level chemo- and stereoselectivities. We will focus on PMOCs that merge structural and functional biomimicry into a single-cage to behave as multi-role photoreactors, emphasizing their potentials in tackling current challenges in organic transformations through single-electron transfer (SET) or energy transfer (EnT) pathways in a simple, green while feasible manner.
Collapse
Affiliation(s)
- Yanke Hao
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yu-Lin Lu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhiwei Jiao
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Cheng-Yong Su
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
12
|
Gao K, Cheng Y, Zhang Z, Huo X, Guo C, Fu W, Xu J, Hou GL, Shang X, Zhang M. Guest-Regulated Generation of Reactive Oxygen Species from Porphyrin-Based Multicomponent Metallacages for Selective Photocatalysis. Angew Chem Int Ed Engl 2024; 63:e202319488. [PMID: 38305830 DOI: 10.1002/anie.202319488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/03/2024]
Abstract
The development of novel materials for highly efficient and selective photocatalysis is crucial for their practical applications. Herein, we employ the host-guest chemistry of porphyrin-based metallacages to regulate the generation of reactive oxygen species and further use them for the selective photocatalytic oxidation of benzyl alcohols. Upon irradiation, the sole metallacage (6) can generate singlet oxygen (1O2) effectively via excited energy transfer, while its complex with C70 (6⊃C70) opens a pathway for electron transfer to promote the formation of superoxide anion (O2⋅-), producing both 1O2 and O2⋅-. The addition of 4,4'-bipyridine (BPY) to complex 6⊃C70 forms a more stable complex (6⊃BPY) via the coordination of the Zn-porphyrin faces of 6 and BPY, which drives fullerenes out of the cavities and restores the ability of 1O2 generation. Therefore, benzyl alcohols are oxidized into benzyl aldehydes upon irradiation in the presence of 6 or 6⊃BPY, while they are oxidized into benzoic acids when 6⊃C70 is employed as the photosensitizing agent. This study demonstrates a highly efficient strategy that utilizes the host-guest chemistry of metallacages to regulate the generation of reactive oxygen species for selective photooxidation reactions, which could promote the utilization of metallacages and their related host-guest complexes for photocatalytic applications.
Collapse
Affiliation(s)
- Ke Gao
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, 710049, Xi'an, P. R. China
| | - Ying Cheng
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, 710049, Xi'an, P. R. China
| | - Zeyuan Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, 710049, Xi'an, P. R. China
| | - Xingda Huo
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, 710049, Xi'an, P. R. China
| | - Chenxing Guo
- College of Chemistry and Environmental Engineering, Shenzhen University, 518055, Shenzhen, P. R. China
| | - Wenlong Fu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, 710049, Xi'an, P. R. China
| | - Jianzhi Xu
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of, Physics, Xi'an Jiaotong University, 710049, Xi'an, P. R. China
| | - Gao-Lei Hou
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of, Physics, Xi'an Jiaotong University, 710049, Xi'an, P. R. China
| | - Xiaobo Shang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, 710049, Xi'an, P. R. China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, 710049, Xi'an, P. R. China
| |
Collapse
|
13
|
Baby Sainaba A, Venkateswarulu M, Bhandari P, Clegg JK, Sarathi Mukherjee P. Self-Assembly of an [M 8 L2 4 ] 16+ Intertwined Cube and a Giant [M 12 L1 6 ] 24+ Orthobicupola. Angew Chem Int Ed Engl 2024; 63:e202315572. [PMID: 37985377 DOI: 10.1002/anie.202315572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
Through coordination-driven self-assembly, aesthetically captivating structures can be formed by tuning the length or flexibility of various components. The self-assembly of an elongated rigid terphenyl-based tetra-pyridyl ligand (L1) with a cis-Pd(II) acceptor produces an [M12 L16 ]24+ triangular orthobicupola structure (1). When flexibility is introduced into the ligand by the incorporation of a -CH2 - group between the dipyridylamine and terphenyl rings in the ligand (L2), anunique [M8 L24 ]16+ water-soluble 'intertwined cubic structure' (2) results. The inherent flexibility of ligand L2 might be the key factor behind the formation of the thermodynamically stable and 'intertwined cubic structure' in this scenario. This research showcases the ability to design and fabricate novel, topologically distinctive molecular structures by a straightforward and efficient approach.
Collapse
Affiliation(s)
- Arppitha Baby Sainaba
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Mangili Venkateswarulu
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Pallab Bhandari
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Jack K Clegg
- School of Chemistry and Molecular Biosciences, The University of Queensland-St. Lucia, St. Lucia, Queensland 4072, Australia
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
14
|
Hema K, Grommet AB, Białek MJ, Wang J, Schneider L, Drechsler C, Yanshyna O, Diskin-Posner Y, Clever GH, Klajn R. Guest Encapsulation Alters the Thermodynamic Landscape of a Coordination Host. J Am Chem Soc 2023; 145. [PMID: 37917939 PMCID: PMC10655118 DOI: 10.1021/jacs.3c08666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023]
Abstract
The architecture of self-assembled host molecules can profoundly affect the properties of the encapsulated guests. For example, a rigid cage with small windows can efficiently protect its contents from the environment; in contrast, tube-shaped, flexible hosts with large openings and an easily accessible cavity are ideally suited for catalysis. Here, we report a "Janus" nature of a Pd6L4 coordination host previously reported to exist exclusively as a tube isomer (T). We show that upon encapsulating various tetrahedrally shaped guests, T can reconfigure into a cage-shaped host (C) in quantitative yield. Extracting the guest affords empty C, which is metastable and spontaneously relaxes to T, and the T⇄C interconversion can be repeated for multiple cycles. Reversible toggling between two vastly different isomers paves the way toward controlling functional properties of coordination hosts "on demand".
Collapse
Affiliation(s)
- Kuntrapakam Hema
- Department
of Organic Chemistry, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Angela B. Grommet
- Department
of Organic Chemistry, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Michał J. Białek
- Department
of Chemistry, University of Wrocław, 14 F. Joliot-Curie St., 50383 Wrocław, Poland
| | - Jinhua Wang
- Department
of Organic Chemistry, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Laura Schneider
- Department
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn Straße 6, 44227 Dortmund, Germany
| | - Christoph Drechsler
- Department
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn Straße 6, 44227 Dortmund, Germany
| | - Oksana Yanshyna
- Department
of Organic Chemistry, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Yael Diskin-Posner
- Chemical
Research Support, Weizmann Institute of
Science, Rehovot 76100, Israel
| | - Guido H. Clever
- Department
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn Straße 6, 44227 Dortmund, Germany
| | - Rafal Klajn
- Department
of Organic Chemistry, Weizmann Institute
of Science, Rehovot 76100, Israel
- Institute
of Science and Technology Austria, Am Campus 1, A-3400 Klosterneuburg, Austria
| |
Collapse
|
15
|
Peng Y, Su Z, Jin M, Zhu L, Guan ZJ, Fang Y. Recent advances in porous molecular cages for photocatalytic organic conversions. Dalton Trans 2023; 52:15216-15232. [PMID: 37492891 DOI: 10.1039/d3dt01679j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Photocatalytic organic conversion is considered an efficient, environmentally friendly, and energy-saving strategy for organic synthesis. In recent decades, the molecular cage has emerged as a creative functional material with broad applications in host-guest recognition, drug delivery, catalysis, intelligent materials and other fields. Based on the unique properties of porous molecular cage materials, they provide an ideal platform for leveraging pre-structuring in catalytic reactions and show great potential in various photocatalytic organic reactions. As a result, they have emerged as promising alternatives to conventional molecules or inorganic photocatalysts in redox processes. In this Review, the synthesis strategies based on coordination cages and organic cages, as well as their recent progress in photocatalytic organic conversion, are comprehensively summarized. Finally, we deliver the persistent challenges associated with porous molecular cage compounds that need to be overcome for further development in this field.
Collapse
Affiliation(s)
- Yaoyao Peng
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Zhifang Su
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Meng Jin
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Lei Zhu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Zong-Jie Guan
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Yu Fang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| |
Collapse
|
16
|
Huang YH, Lu YL, Ruan J, Zheng SP, Zhang XD, Liu CH, Qin YH, Cao ZM, Jiao Z, Xu HS, Su CY. Dynamic Metallosupramolecular Cages Containing 12 Adaptable Pockets for High-Order Guest Binding Beyond Biomimicry. J Am Chem Soc 2023; 145:23361-23371. [PMID: 37844297 DOI: 10.1021/jacs.3c09491] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Molecular recognition lies at the heart of biological functions, which inspires lasting research in artificial host syntheses to mimic biomolecules that can recognize, process, and transport molecules with the highest level of complexity; nonetheless, the design principle and quantifying methodology of artificial hosts for multiple guests (≥4) remain a formidable task. Herein, we report two rhombic dodecahedral cages [(Zn/Fe)8Pd6-MOC-16], which embrace 12 adaptive pockets for multiguest binding with distinct conformational dynamics inherent in metal-center lability and are able to capture 4-24 guests to manifest a surprising complexity of binding scenarios. The exceptional high-order and hierarchical encapsulation phenomena suggest a wide host-guest dynamic-fit, enabling conformational adjustment and adaptation beyond the duality of induced-fit and conformational selection in protein interactions. A critical inspection of the host-guest binding events in solution has been performed by NMR and ESI-MS spectra, highlighting the importance of acquiring a reliable binding repertoire from different techniques and the uncertainty of quantifying the binding affinities of multiplying guests by an oversimplified method.
Collapse
Affiliation(s)
- Yin-Hui Huang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yu-Lin Lu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jia Ruan
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Shao-Ping Zheng
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiao-Dong Zhang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Chen-Hui Liu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yu-Han Qin
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhong-Min Cao
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhiwei Jiao
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hai-Sen Xu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Cheng-Yong Su
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
17
|
Yang J, Hu SJ, Cai LX, Zhou LP, Sun QF. Counteranion-mediated efficient iodine capture in a hexacationic imidazolium organic cage enabled by multiple non-covalent interactions. Nat Commun 2023; 14:6082. [PMID: 37770481 PMCID: PMC10539326 DOI: 10.1038/s41467-023-41866-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/22/2023] [Indexed: 09/30/2023] Open
Abstract
Developing efficient adsorbents to capture radioactive iodine produced from nuclear wastes is highly desired. Here we report the facial synthesis of a hexacationic imidazolium organic cage and its iodine adsorption properties. Crucial role of counteranions has been disclosed for iodine capture with this cage, where distinct iodine capture behaviors were observed when different counteranions were used. Mechanistic investigations, especially with the X-ray crystallographic analysis of the iodine-loaded sample, allowed the direct visualization of the iodine binding modes at the molecular level. A network of multiple non-covalent interactions including hydrogen bonds, halogen bonds, anion···π interactions, electrostatic interaction between polyiodides and the hexacationic skeleton of the cage are found responsible for the observed high iodine capture performance. Our results may provide an alternative strategy to design efficient iodine adsorbents.
Collapse
Affiliation(s)
- Jian Yang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou, 350002, PR China
| | - Shao-Jun Hu
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou, 350002, PR China
| | - Li-Xuan Cai
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou, 350002, PR China
| | - Li-Peng Zhou
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou, 350002, PR China
| | - Qing-Fu Sun
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou, 350002, PR China.
- University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
18
|
Hu X, Tian W, Jiao Y, Kelley SP, Wang P, Dalgarno SJ, Atwood DA, Feng S, Atwood JL. Redox-Controlled Self-Assembly of Vanadium-Seamed Hexameric Pyrogallol[4]Arene Nanocapsules. J Am Chem Soc 2023; 145:20375-20380. [PMID: 37672654 DOI: 10.1021/jacs.3c05448] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Here we report the controlled self-assembly of vanadium-seamed metal-organic nanocapsules with specific metal oxidation state distributions. Three supramolecular assemblies composed of the same numbers of components including 24 metal centers and six pyrogallol[4]arene ligands were constructed: a VIII24L6 capsule, a mixed-valence VIII18VIV6L6 capsule, and a VIV24L6 capsule. Crystallographic studies of the new capsules reveal their remarkable structural complexity and geometries, while marked differences in metal oxidation state distribution greatly affect the photoelectric conversion properties of these assemblies. This work therefore represents a significant step forward in the construction of intricate metal-organic architectures with tailored structure and functionality.
Collapse
Affiliation(s)
- Xiangquan Hu
- Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211, United States
| | - Wenjuan Tian
- Key Laboratory of Chemical Biology, Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Yuan Jiao
- Key Laboratory of Chemical Biology, Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Steven P Kelley
- Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211, United States
| | - Ping Wang
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Scott J Dalgarno
- Institute of Chemical Sciences, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, United Kingdom
| | - David A Atwood
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Sisi Feng
- Key Laboratory of Chemical Biology, Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
- Institute of Carbon-Based Thin Film Electronics, Peking University, Shanxi, Taiyuan 030012, China
| | - Jerry L Atwood
- Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211, United States
| |
Collapse
|
19
|
Wang YP, Duan XH, Huang YH, Hou YJ, Wu K, Zhang F, Pan M, Shen J, Su CY. Radio- and Photosensitizing Os(II)-Based Nanocage for Combined Radio-/Chemo-/X-ray-Induced Photodynamic Therapies, NIR Imaging, and Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43479-43491. [PMID: 37694454 DOI: 10.1021/acsami.3c08503] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Integration of clinical imaging and collaborative multimodal therapies into a single nanomaterial for multipurpose diagnosis and treatment is of great interest to theranostic nanomedicine. Here, we report a rational design of a discrete Os-based metal-organic nanocage Pd6(OsL3)828+ (MOC-43) as a versatile theranostic nanoplatform to meet the following demands simultaneously: (1) synergistic treatments of radio-, chemo-, and X-ray-induced photodynamic therapies (X-PDT) for breast cancer, (2) NIR imaging for cancer cell tracking and tumor-targeting, and (3) anticancer drug transport through a host-guest strategy. The nanoscale MOC-43 incorporates high-Z Os-element to interact with X-ray irradiation for dual radiosensitization and photosensitization, showing efficient energy transfer to endogenous oxygen in cancer cells to enhance X-PDT efficacy. It also features intrinsic NIR emission originating from metal-to-ligand charge transfer (MLCT) as an excellent imaging probe. Meanwhile, its 12 pockets can capture and concentrate low-water-soluble molecules for anticancer drug delivery. These multifunctions are implemented and demonstrated by micellization of coumarin-loaded cages with DSPE-PEG2000 into coumarin ⊂ MOC-43 nanoparticles (CMNPs) for efficient subcellular endocytosis and uptake. The cancer treatments in vitro/in vivo show promising antitumor performance, providing a conceptual protocol to combine cage-cargo drug transport with diagnosis and treatment for collaborative cancer theranostics by virtue of multifunction synergism on a single-nanomaterial platform.
Collapse
Affiliation(s)
- Ya-Ping Wang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiao-Hui Duan
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510030, China
| | - Yin-Hui Huang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Ya-Jun Hou
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Kai Wu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Fang Zhang
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510030, China
| | - Mei Pan
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jun Shen
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510030, China
| | - Cheng-Yong Su
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
20
|
Bose I, Zhao Y. Supramolecular Regulation of Catalytic Activity in Molecularly Responsive Catalysts. J Org Chem 2023; 88:12792-12796. [PMID: 37584689 PMCID: PMC11095615 DOI: 10.1021/acs.joc.3c00710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Some enzymes switch between an open form and a closed form. We report a molecularly tuned catalyst that accommodates a substrate and a signal molecule simultaneously. Binding of the signal molecule helps direct the reactive group of the substrate to the catalytic group and enhances the catalytic activity. Subtle structural changes in either the substrate or the signal molecule are readily detected. The switching mechanism also allows the catalytic reaction to be turned on and off reversibly by specific molecular signals.
Collapse
Affiliation(s)
- Ishani Bose
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, U.S.A
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, U.S.A
| |
Collapse
|
21
|
Banerjee R, Bhattacharyya S, Mukherjee PS. Synthesis of an Adaptable Molecular Barrel and Guest Mediated Stabilization of Its Metastable Higher Homologue. JACS AU 2023; 3:1998-2006. [PMID: 37502154 PMCID: PMC10369414 DOI: 10.1021/jacsau.3c00224] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 07/29/2023]
Abstract
Structural and functional modulation of three-dimensional artificial macromolecular systems is of immense importance. Designing supramolecular cages that can show stimuli mediated reversible switching between higher-order structures is quite challenging. We report here construction of a Pd6 trifacial barrel (1) by coordination self-assembly. Surprisingly, barrel 1 was found to exhibit guest-responsive behavior. In presence of fullerenes C60 and C70, 1 unprecedentedly transformed to its metastable higher homologue Pd8 tetrafacial barrel (2), forming stable host-guest complexes (C60)3⊂2 and (C70)2⊂2, respectively. Again, encapsulated fullerenes could be extracted from the cavity of 2 using 1,2-dichlorobenzene, leading to its facile conversion to the parent trifacial barrel 1. Such reversible structural interconversion between an adaptable molecular barrel and its guest stabilized higher homologue is an uncommon observation.
Collapse
|
22
|
Liu HK, Ronson TK, Wu K, Luo D, Nitschke JR. Anionic Templates Drive Conversion between a Zn II9L 6 Tricapped Trigonal Prism and Zn II6L 4 Pseudo-Octahedra. J Am Chem Soc 2023. [PMID: 37440669 PMCID: PMC10375523 DOI: 10.1021/jacs.3c03981] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
This work introduces the use of 8-aminoquinoline subcomponents to generate complex three-dimensional structures. Together with a tris(formylpyridine), 8-aminoquinoline condensed around ZnII templates to produce a tris(tridentate) ligand. This ligand is incorporated into either a tricapped trigonal prismatic ZnII9L6 structure or a pair of pseudo-octahedral ZnII6L4 diastereomers, with S4 and D2 symmetries. Introduction of a methyl group onto the aminoquinoline modulated the coordination sphere of ZnII, which favored the ZnII9L6 structure and disfavored the ZnII6L4 assembly. The tricapped trigonal prismatic ZnII9L6 architecture converted into a single ZnII6L4 cage diastereomer following the addition of a dianionic 4,4'-dinitrostilbene-2,2'-disulfonate guest. Four of these guests clustered tightly at the four windows of the ZnII6L4 cage, held in place through electrostatic interactions and hydrogen bonding, stabilize a single diastereomeric configuration with S4 symmetry.
Collapse
Affiliation(s)
- Hua-Kui Liu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Tanya K Ronson
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Kai Wu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Dong Luo
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Jonathan R Nitschke
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| |
Collapse
|
23
|
Hong D, Shi L, Liu X, Ya H, Han X. Photocatalysis in Water-Soluble Supramolecular Metal Organic Complex. Molecules 2023; 28:molecules28104068. [PMID: 37241809 DOI: 10.3390/molecules28104068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
As an emerging subset of organic complexes, metal complexes have garnered considerable attention owing to their outstanding structures, properties, and applications. In this content, metal-organic cages (MOCs) with defined shapes and sizes provide internal spaces to isolate water for guest molecules, which can be selectively captured, isolated, and released to achieve control over chemical reactions. Complex supramolecules are constructed by simulating the self-assembly behavior of the molecules or structures in nature. For this purpose, massive amounts of cavity-containing supramolecules, such as metal-organic cages (MOCs), have been extensively explored for a large variety of reactions with a high degree of reactivity and selectivity. Because sunlight and water are necessary for the process of photosynthesis, water-soluble metal-organic cages (WSMOCs) are ideal platforms for photo-responsive stimulation and photo-mediated transformation by simulating photosynthesis due to their defined sizes, shapes, and high modularization of metal centers and ligands. Therefore, the design and synthesis of WSMOCs with uncommon geometries embedded with functional building units is of immense importance for artificial photo-responsive stimulation and photo-mediated transformation. In this review, we introduce the general synthetic strategies of WSMOCs and their applications in this sparking field.
Collapse
Affiliation(s)
- Dongfeng Hong
- College of Food and Drug, Henan Functional Cosmetics Engineering & Technology Research Center, Luoyang Normal University, Luoyang 471934, China
| | - Linlin Shi
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xianghui Liu
- College of Food and Drug, Henan Functional Cosmetics Engineering & Technology Research Center, Luoyang Normal University, Luoyang 471934, China
| | - Huiyuan Ya
- College of Food and Drug, Henan Functional Cosmetics Engineering & Technology Research Center, Luoyang Normal University, Luoyang 471934, China
| | - Xin Han
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
24
|
Hu X, Han M, Wang L, Shao L, Peeyush Y, Du J, Kelley SP, Dalgarno SJ, Atwood DA, Feng S, Atwood JL. A copper-seamed coordination nanocapsule as a semiconductor photocatalyst for molecular oxygen activation. Chem Sci 2023; 14:4532-4537. [PMID: 37152257 PMCID: PMC10155914 DOI: 10.1039/d3sc00318c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/07/2023] [Indexed: 05/09/2023] Open
Abstract
Here we report that a Cu2+-seamed coordination nanocapsule can serve as an efficient semiconductor photocatalyst for molecular oxygen activation. This capsule was constructed through a redox reaction facilitated self-assembly of cuprous bromide and C-pentyl-pyrogallol[4]arene. Photophysical and electrochemical studies revealed its strong visible-light absorption and photocurrent polarity switching effect. This novel molecular solid material is capable of activating molecular oxygen into reactive oxygen species under simulated sunlight irradiation. The oxygen activation process has been exploited for catalyzing aerobic oxidation reactions. The present work provides new insights into designing nonporous discrete metal-organic supramolecular assemblies for solar-driven molecular oxygen activation.
Collapse
Affiliation(s)
- Xiangquan Hu
- Department of Chemistry, University of Missouri-Columbia 601 S College Ave Columbia MO 65211 USA
| | - Meirong Han
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University Taiyuan 030006 P. R. China
| | - Leicheng Wang
- Institute for Advanced Interdisciplinary Research, University of Jinan Jinan 250022 P. R. China
| | - Li Shao
- Department of Chemistry, University of Missouri-Columbia 601 S College Ave Columbia MO 65211 USA
| | - Yadav Peeyush
- Department of Chemistry, University of Missouri-Columbia 601 S College Ave Columbia MO 65211 USA
| | - Jialei Du
- Institute for Advanced Interdisciplinary Research, University of Jinan Jinan 250022 P. R. China
| | - Steven P Kelley
- Department of Chemistry, University of Missouri-Columbia 601 S College Ave Columbia MO 65211 USA
| | - Scott J Dalgarno
- Institute of Chemical Sciences, Heriot-Watt University Riccarton Edinburgh EH14 4AS UK
| | - David A Atwood
- Department of Chemistry, University of Kentucky Lexington KY 40506 USA
| | - Sisi Feng
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University Taiyuan 030006 P. R. China
| | - Jerry L Atwood
- Department of Chemistry, University of Missouri-Columbia 601 S College Ave Columbia MO 65211 USA
| |
Collapse
|
25
|
Luo D, Yuan ZJ, Ping LJ, Zhu XW, Zheng J, Zhou CW, Zhou XC, Zhou XP, Li D. Tailor-Made Pd n L 2n Metal-Organic Cages through Covalent Post-Synthetic Modification. Angew Chem Int Ed Engl 2023; 62:e202216977. [PMID: 36753392 DOI: 10.1002/anie.202216977] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/09/2023]
Abstract
Post-synthetic modification (PSM) is an effective approach for the tailored functionalization of metal-organic architectures, but its generalizability remains challenging. Herein we report a general covalent PSM strategy to functionalize Pdn L2n metal-organic cages (MOCs, n=2, 12) through an efficient Diels-Alder cycloaddition between peripheral anthracene substituents and various functional motifs bearing a maleimide group. As expected, the solubility of functionalized Pd12 L24 in common solvents can be greatly improved. Interestingly, concentration-dependent circular dichroism and aggregation-induced emission are achieved with chiral binaphthol (BINOL)- and tetraphenylethylene-modified Pd12 L24 , respectively. Furthermore, Pd12 L24 can be introduced with two different functional groups (e.g., chiral BINOL and achiral pyrene) through a step-by-step PSM route to obtain chirality-induced circularly polarized luminescence. Moreover, similar results are readily observed with a smaller Pd2 L4 system.
Collapse
Affiliation(s)
- Dong Luo
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Zi-Jun Yuan
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Lin-Jie Ping
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Xiao-Wei Zhu
- School of Chemistry and Environment, Guangdong Engineering Technology Developing Center of High-Performance CCL, Jiaying University, Meizhou, Guangdong, 514015, P. R. China
| | - Ji Zheng
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Chuang-Wei Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Xian-Chao Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Xiao-Ping Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Dan Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| |
Collapse
|
26
|
Zhang H, Li Y, Zhang YF, Qiao XJ, Sun LY, Li J, Wang YY, Han YF. Solvato-Controlled Assembly and Structural Transformation of Emissive Poly-NHC-Based Organometallic Cages and Their Applications in Amino Acid Sensing and Fluorescence Imaging. Chemistry 2023; 29:e202300209. [PMID: 36762405 DOI: 10.1002/chem.202300209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/11/2023]
Abstract
Stimuli-induced structural transformation of supramolecular cages has drawn increasing attention because of their sensitive feature to external variations as model systems to simulate biological processes. However, combining structural transformation and useful functions has remained a difficult task. This study reports the solvato-controlled self-assembly of two unique topologies with different emission characteristics, a water-soluble Ag8 L4 cage (A) and an Ag4 L2 cage (B), produced from the same sulfonate-pendant tetraphenylethene (TPE) bridged tetrakis-(1,2,4-triazolium) ligand. Both cages show interesting solvent-responsive reversible structural transformation, and the change of fluorescence signals can efficiently track the process. Additionally, water-soluble cage A exhibits unique properties in thermochromism, thiol amino acid sensing, and subcellular imaging in aqueous media.
Collapse
Affiliation(s)
- Heng Zhang
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Yang Li
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Yi-Fan Zhang
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Xiu-Juan Qiao
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Li-Ying Sun
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Jianli Li
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Ying-Feng Han
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| |
Collapse
|
27
|
Liu H, Guo C, Zhang Z, Mu C, Feng Q, Zhang M. Hexaphenyltriphenylene-Based Multicomponent Metallacages: Host-Guest Complexation for White-Light Emission. Chemistry 2023; 29:e202203926. [PMID: 36727501 DOI: 10.1002/chem.202203926] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/03/2023]
Abstract
A hexaphenyltriphenylene-based hexatopic pyridyl ligand is designed and used to prepare three hexagonal prismatic metallacages via metal-coordination-driven self-assembly. Owing to the planar conjugated structures of the hexaphenyltriphenylene skeleton, such metallacages show good host-guest complexation with a series of emissive dyes, which have been further used to tune their emission in solution. Interestingly, based on their complementary emission colors, white light emission is achieved in a mixture of the host metallacages and the guests.
Collapse
Affiliation(s)
- Haifei Liu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi An Shi, Xi'an, 710049, P. R. China
| | - Chenxing Guo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Zeyuan Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi An Shi, Xi'an, 710049, P. R. China
| | - Chaoqun Mu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi An Shi, Xi'an, 710049, P. R. China
| | - Qian Feng
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi An Shi, Xi'an, 710049, P. R. China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi An Shi, Xi'an, 710049, P. R. China
| |
Collapse
|
28
|
Tang X, Meng C, Rampal N, Li A, Chen X, Gong W, Jiang H, Fairen-Jimenez D, Cui Y, Liu Y. Homochiral Porous Metal-Organic Polyhedra with Multiple Kinds of Vertices. J Am Chem Soc 2023; 145:2561-2571. [PMID: 36649535 DOI: 10.1021/jacs.2c12424] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Metal-organic polyhedra featuring non-Archimedean/Platonic architectures with multiple kinds of vertices have aroused great attention for their fascinating structures and properties but are yet challenging to achieve. Here, we report a combinatorial strategy to make such nonclassic polyhedral cages by combining kinetically labile metal ions with non-planar organic linkers instead of the usual only inert metal centers and planar ligands. This facilitates the synthesis of an enantiopure twisted tetra(3-pyridyl)-based TADDOL (TADDOL = tetraaryl-1,3-dioxolane-4,5-dimethanol) ligand (L) capable of binding Ni(II) ions to produce a regular convex cage, Ni6L8, with two mixed metal/organic vertices and three rarely reported concave cages Ni14L8, Ni18L12, and Ni24L16 with three or four mixed vertices. Each of the cages has an amphiphilic cavity decorated with chiral dihydroxyl functionalities and packs into a three-dimensional structure. The enantioselective adsorption and separation performances of the cages are strongly dependent on their pore structure features. Particularly, Ni14L8 and Ni18L12 with wide openings can be solid adsorbents for the adsorptive and solid-phase extractive separation of a variety of racemic spirodiols with up to 98% ee, whereas Ni6L8 and Ni24L16 with smaller pore apertures cannot adsorb the racemates. The combination of single-crystal X-ray diffraction analysis of the host-guest adduct and GCMC simulation indicates that the enantiospecific recognition capabilities originate from the well-organized chiral inner sphere as well as multiple interactions within the chiral microenvironment. This work therefore provides an attractive strategy for the rational design of polyhedral cages, showing geometrically fascinating structures with properties different from those of classic assemblies.
Collapse
Affiliation(s)
- Xianhui Tang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunlong Meng
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nakul Rampal
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Aurelia Li
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Xu Chen
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Wei Gong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hong Jiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - David Fairen-Jimenez
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
29
|
Ham R, Nielsen CJ, Pullen S, Reek JNH. Supramolecular Coordination Cages for Artificial Photosynthesis and Synthetic Photocatalysis. Chem Rev 2023; 123:5225-5261. [PMID: 36662702 PMCID: PMC10176487 DOI: 10.1021/acs.chemrev.2c00759] [Citation(s) in RCA: 80] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Because sunlight is the most abundant energy source on earth, it has huge potential for practical applications ranging from sustainable energy supply to light driven chemistry. From a chemical perspective, excited states generated by light make thermodynamically uphill reactions possible, which forms the basis for energy storage into fuels. In addition, with light, open-shell species can be generated which open up new reaction pathways in organic synthesis. Crucial are photosensitizers, which absorb light and transfer energy to substrates by various mechanisms, processes that highly depend on the distance between the molecules involved. Supramolecular coordination cages are well studied and synthetically accessible reaction vessels with single cavities for guest binding, ensuring close proximity of different components. Due to high modularity of their size, shape, and the nature of metal centers and ligands, cages are ideal platforms to exploit preorganization in photocatalysis. Herein we focus on the application of supramolecular cages for photocatalysis in artificial photosynthesis and in organic photo(redox) catalysis. Finally, a brief overview of immobilization strategies for supramolecular cages provides tools for implementing cages into devices. This review provides inspiration for future design of photocatalytic supramolecular host-guest systems and their application in producing solar fuels and complex organic molecules.
Collapse
Affiliation(s)
- Rens Ham
- Homogeneous and Supramolecular Catalysis, Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XHAmsterdam, The Netherlands
| | - C Jasslie Nielsen
- Homogeneous and Supramolecular Catalysis, Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XHAmsterdam, The Netherlands
| | - Sonja Pullen
- Homogeneous and Supramolecular Catalysis, Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XHAmsterdam, The Netherlands
| | - Joost N H Reek
- Homogeneous and Supramolecular Catalysis, Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XHAmsterdam, The Netherlands
| |
Collapse
|
30
|
Liu H, Zhang Z, Mu C, Ma L, Yuan H, Ling S, Wang H, Li X, Zhang M. Hexaphenylbenzene-Based Deep Blue-Emissive Metallacages as Donors for Light-Harvesting Systems. Angew Chem Int Ed Engl 2022; 61:e202207289. [PMID: 35686675 DOI: 10.1002/anie.202207289] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Indexed: 12/14/2022]
Abstract
We herein report the preparation of a series of hexaphenylbenzene (HPB)-based deep blue-emissive metallacages via multicomponent coordination-driven self-assembly. These metallacages feature prismatic structures with HPB derivatives as the faces and tetracarboxylic ligands as the pillars, as evidenced by NMR, mass spectrometry and X-ray diffraction analysis. Light-harvesting systems were further constructed by employing the metallacages as the donor and a naphthalimide derivative (NAP) as the acceptor, owing to their good spectral overlap. The judiciously chosen metallacage serves as the antenna, providing the suitable energy to excite the non-emissive NAP, and thus resulting in bright emission for NAP in the solid state. This study provides a type of HPB-based multicomponent emissive metallacage and explores their applications as energy donors to light up non-emissive fluorophores in the solid state, which will advance the development of emissive metallacages as useful luminescent materials.
Collapse
Affiliation(s)
- Haifei Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zeyuan Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Chaoqun Mu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Lingzhi Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Hongye Yuan
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Sanliang Ling
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
31
|
Benchimol E, Nguyen BNT, Ronson TK, Nitschke JR. Transformation networks of metal-organic cages controlled by chemical stimuli. Chem Soc Rev 2022; 51:5101-5135. [PMID: 35661155 PMCID: PMC9207707 DOI: 10.1039/d0cs00801j] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Indexed: 12/29/2022]
Abstract
The flexibility of biomolecules enables them to adapt and transform as a result of signals received from the external environment, expressing different functions in different contexts. In similar fashion, coordination cages can undergo stimuli-triggered transformations owing to the dynamic nature of the metal-ligand bonds that hold them together. Different types of stimuli can trigger dynamic reconfiguration of these metal-organic assemblies, to switch on or off desired functionalities. Such adaptable systems are of interest for applications in switchable catalysis, selective molecular recognition or as transformable materials. This review highlights recent advances in the transformation of cages using chemical stimuli, providing a catalogue of reported strategies to transform cages and thus allow the creation of new architectures. Firstly we focus on strategies for transformation through the introduction of new cage components, which trigger reconstitution of the initial set of components. Secondly we summarize conversions triggered by external stimuli such as guests, concentration, solvent or pH, highlighting the adaptation processes that coordination cages can undergo. Finally, systems capable of responding to multiple stimuli are described. Such systems constitute composite chemical networks with the potential for more complex behaviour. We aim to offer new perspectives on how to design transformation networks, in order to shed light on signal-driven transformation processes that lead to the preparation of new functional metal-organic architectures.
Collapse
Affiliation(s)
- Elie Benchimol
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Bao-Nguyen T Nguyen
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Tanya K Ronson
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Jonathan R Nitschke
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| |
Collapse
|
32
|
Sudan S, Fadaei‐Tirani F, Scopelliti R, Ebbert KE, Clever GH, Severin K. LiBF 4 -Induced Rearrangement and Desymmetrization of a Palladium-Ligand Assembly. Angew Chem Int Ed Engl 2022; 61:e202201823. [PMID: 35348279 PMCID: PMC9320841 DOI: 10.1002/anie.202201823] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Indexed: 02/02/2023]
Abstract
Thirteen palladium-ligand assemblies with different structures and topologies were investigated for the ability to bind lithium ions. In one case, the addition of LiBF4 resulted in a profound structural rearrangement, converting a dincluclear [Pd2 L4 ]4+ complex into a low-symmetry [Pd4 L8 ]8+ assembly with two binding pockets for solvated LiBF4 ion pairs. The rearrangement could only be induced by Li+ , indicating highly specific host-guest interactions. A structural analysis of the [Pd4 L8 ]8+ receptor revealed a compact structure with multiple intramolecular interactions, reminiscent of what is seen for natural and synthetic foldamers.
Collapse
Affiliation(s)
- Sylvain Sudan
- Institut des Sciences et Ingénierie ChimiquesEcole Polytechnique Fédérale de Lausanne (EPFL)1015LausanneSwitzerland
| | - Farzaneh Fadaei‐Tirani
- Institut des Sciences et Ingénierie ChimiquesEcole Polytechnique Fédérale de Lausanne (EPFL)1015LausanneSwitzerland
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie ChimiquesEcole Polytechnique Fédérale de Lausanne (EPFL)1015LausanneSwitzerland
| | - Kristina E. Ebbert
- Fakultät für Chemie und Chemische BiologieTechnische Universität Dortmund44227DortmundGermany
| | - Guido H. Clever
- Fakultät für Chemie und Chemische BiologieTechnische Universität Dortmund44227DortmundGermany
| | - Kay Severin
- Institut des Sciences et Ingénierie ChimiquesEcole Polytechnique Fédérale de Lausanne (EPFL)1015LausanneSwitzerland
| |
Collapse
|
33
|
Liu H, Zhang Z, Mu C, Ma L, Yuan H, Ling S, Wang H, Li X, Zhang M. Hexaphenylbenzene‐Based Deep Blue‐Emissive Metallacages as Donors for Light‐Harvesting Systems. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Haifei Liu
- Xian Jiaotong University: Xi'an Jiaotong University State Key Laboratory for Mechanical Behavior of Materials CHINA
| | - Zeyuan Zhang
- Xian Jiaotong University: Xi'an Jiaotong University State Key Laboratory for Mechanical Behavior of Materials CHINA
| | - Chaoqun Mu
- Xian Jiaotong University: Xi'an Jiaotong University State Key Laboratory for Mechanical Behavior of Materials CHINA
| | - Lingzhi Ma
- Xian Jiaotong University: Xi'an Jiaotong University State Key Laboratory for Mechanical Behavior of Materials CHINA
| | - Hongye Yuan
- Xian Jiaotong University: Xi'an Jiaotong University State Key Laboratory for Mechanical Behavior of Materials CHINA
| | - Sanliang Ling
- University of Nottingham University Park Campus: University of Nottingham Advanced Materials Research Group, Faculty of Engineering UNITED KINGDOM
| | - Heng Wang
- Shenzhen University College of Chemistry and Environmental Engineering CHINA
| | - Xiaopeng Li
- Shenzhen University College of Chemistry and Environmental Engineering CHINA
| | - Mingming Zhang
- Xi'an Jiaotong Univeristy School of Material and Science No. 28 Xianning West Road 710049 Xi'an CHINA
| |
Collapse
|
34
|
Lu YL, Song JQ, Qin YH, Guo J, Huang YH, Zhang XD, Pan M, Su CY. A Redox-Active Supramolecular Fe 4L 6 Cage Based on Organic Vertices with Acid-Base-Dependent Charge Tunability for Dehydrogenation Catalysis. J Am Chem Soc 2022; 144:8778-8788. [PMID: 35507479 DOI: 10.1021/jacs.2c02692] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Supramolecular cage chemistry is of lasting interest because, as artificial blueprints of natural enzymes, the self-assembled cage structures not only provide substrate-hosting biomimetic environments but also can integrate active sites in the confined nanospaces for function synergism. Herein, we demonstrate a vertex-directed organic-clip chelation assembly strategy to construct a metal-organic cage Fe4L68+ (MOC-63) incorporating 12 imidazole proton donor-acceptor motifs and four redox-active Fe centers in an octahedral coordination nanospace. Different from regular supramolecular cages assembled with coordination metal vertices, MOC-63 comprises six ditopic organic-clip ligands as vertices and four tris-chelating Fe(N∩N)3 moieties as faces, thus improving its acid, base, and redox robustness by virtue of cage-stabilized dynamics in solution. Improved dehydrogenation catalysis of 1,2,3,4-tetrahydroquinoline derivatives is accomplished by MOC-63 owing to a supramolecular cage effect that synergizes multiple Fe centers and radical species to expedite intermediate conversion of the multistep reactions in a cage-confined nanospace. The acid-base buffering imidazole motifs play a vital role in modulating the total charge state to resist pH variation and tune the solubility among varied solvents, thereby enhancing reaction acceleration in acidic conditions and rendering a facile recycling catalytic process.
Collapse
Affiliation(s)
- Yu-Lin Lu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jia-Qi Song
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yu-Han Qin
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jing Guo
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yin-Hui Huang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiao-Dong Zhang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Mei Pan
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Cheng-Yong Su
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
35
|
Jiang C, Hu SJ, Zhou LP, Yang J, Sun QF. Lanthanide-organic pincer hosts with allosteric-controlled metal ion binding specificity. Chem Commun (Camb) 2022; 58:5494-5497. [PMID: 35416812 DOI: 10.1039/d2cc01379g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of lanthanide-organic pincer hosts were synthesized, which showed allosteric-controlled metal ion binding selectivities due to the lanthanide-induced subtle changes of the central vacant binding site.
Collapse
Affiliation(s)
- Chen Jiang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shao-Jun Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Li-Peng Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.
| | - Jian Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.
| | - Qing-Fu Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
36
|
Percástegui EG. Metal-organic cages against toxic chemicals and pollutants. Chem Commun (Camb) 2022; 58:5055-5071. [PMID: 35383805 DOI: 10.1039/d2cc00604a] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The continuous release of toxic chemicals and pollutants into the atmosphere and natural waters threatens, directly and indirectly, human health, the sustainability of the planet, and the future of society. Materials capable of capturing or chemically inactivating hazardous substances, which are harmful to humans and the environment, are critical in the modern age. Metal-organic cages (MOCs) show great promise as materials against harmful agents both in solution and in solid state. This Highlight features examples of MOCs that selectively encapsulate, adsorb, or remove from a medium noxious gases, toxic organophosphorus compounds, water pollutant oxoanions, and some emerging organic contaminants. Remarkably, the toxicity of interacting contaminants may be lowered by MOCs as well. Specific cases pertaining to the use of these cages for the chemical degradation of some harmful substances are presented. This Highlight thus aims to provide an overview of the possibilities of MOCs in this area and new methodological insights into their operation for enhancing their activity and the engineering of further remediation applications.
Collapse
Affiliation(s)
- Edmundo G Percástegui
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, Ciudad de México 04510, Mexico. .,Centro Conjunto de Investigación en Química Sustentable, UAEM-UNAM, Carretera Toluca-Atlacomulco km 14.5, 50200 Toluca, Estado de México, Mexico
| |
Collapse
|
37
|
Sainaba AB, Venkateswarulu M, Bhandari P, Arachchige KSA, Clegg JK, Mukherjee PS. An Adaptable Water-Soluble Molecular Boat for Selective Separation of Phenanthrene from Isomeric Anthracene. J Am Chem Soc 2022; 144:7504-7513. [PMID: 35436087 DOI: 10.1021/jacs.2c02540] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Anthracene crude oil is a common source of phenanthrene for its industrial use. The isolation of phenanthrene from this source is a challenging task due to very similar physical properties to its isomer anthracene. We report here a water-soluble Pd(II) molecular boat (MB1) with unusual structural topology that was obtained by assembling a flexible tetrapyridyl donor (L) with a cis-Pd(II) acceptor. The flexible backbone of the boat enabled it to breathe in the presence of a guest optimizing the fit within the cavity. The boat binds phenanthrene more strongly than anthracene, which enabled separation of phenanthrene with an >98% purity from an equimolar mixture of the two isomers using MB1 as an extracting agent. MB1 represents a unique example of a coordination receptor suitable for selective aqueous extraction of phenanthrene from anthracene with reusability of several cycles.
Collapse
Affiliation(s)
- Arppitha Baby Sainaba
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Mangili Venkateswarulu
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Pallab Bhandari
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | | | - Jack K Clegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
38
|
Sudan S, Fadaei‐Tirani F, Scopelliti R, Ebbert KE, Clever GH, Severin K. LiBF
4
‐Induced Rearrangement and Desymmetrization of a Palladium‐Ligand Assembly. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Sylvain Sudan
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Farzaneh Fadaei‐Tirani
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Kristina E. Ebbert
- Fakultät für Chemie und Chemische Biologie Technische Universität Dortmund 44227 Dortmund Germany
| | - Guido H. Clever
- Fakultät für Chemie und Chemische Biologie Technische Universität Dortmund 44227 Dortmund Germany
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
39
|
Liu D, Lin YJ, Jin GX. Guest Encapsulation and Self-Assembly of a Box-like Metalla-Rectangle Featuring Cp*Rh Fragments. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
40
|
Abstract
Different from polymers or peptides (lacking metals), metal–organic cycles (MOCs) have properties which arise from the combination of metals and common nonmetal elements and topologies. The development of MOC supramolecular materials is in its infancy, and how the coordination bonds work to make the corresponding suprastructures is unknown. This has limited the potential application of these MOC-based materials. Considering the applications of individual MOCs, the study and discovery of the unique factors in MOC-involved multilevel self-assembly are critical to further our knowledge of the underlying molecular mechanisms of metal-containing compounds. Here, a systematic study of MOC assembly in various solvent systems has confirmed the critical role of coordination linkers in tuning the shape and size of the MOC-derived suprastructures. It is well known that chemical compositions and structural arrangements of materials have a great influence on their resultant properties. Diverse functional materials have been constructed by using either biomolecules (peptides, DNA, and RNA) in nature or artificially synthesized molecules (polymers and pillararenes). The relationships between traditional building blocks (such as peptides) have been widely investigated, for example how hydrogen bonds work in the peptide multistage assembly process. However, in contrast to traditional covalent bond-based building blocks-based assembly, suprastructures formed by noncovalent bonds are more influenced by specific bond features, but to date only a few results have been reported based on noncovalent bond-based building block multistage assembly. Here, three metal–organic cycles (MOCs) were used to show how coordination bonds influence the bimetallacycle conformation then lead to the topology differences of MOC multilevel ordered materials. It was found that the coordination linker (isophthalate-Pt-pyridine) is an important factor to tune the shape and size of the MOC-derived suprastructures.
Collapse
|
41
|
Yuan J, Wei Z, Shen K, Yang Y, Liu M, Jing X, Duan C. Encapsulating electron-deficient dyes into Metal-Organic Capsules To Achieve High Reduction Potentials. Dalton Trans 2022; 51:10860-10865. [DOI: 10.1039/d2dt01166b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The design of artificial supramolecular systems that mimic the structure and functionality of natural enzymes to achieve efficient chemical conversions is a promising subject. In this work, we assembled a...
Collapse
|