1
|
Li Q, Zhu Y, Pan T, Zhang G, Pang H. Covalent organic framework nanomaterials: Syntheses, architectures, and applications. Adv Colloid Interface Sci 2025; 339:103427. [PMID: 39929054 DOI: 10.1016/j.cis.2025.103427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/29/2024] [Accepted: 02/01/2025] [Indexed: 02/12/2025]
Abstract
Covalent Organic Frameworks (COFs) are characterized by high thermochemical stability, low backbone density, well-controlled physical and chemical properties, large specific surface volume and porosity, permanently open pore structure, and various synthesis strategies. These remarkable attributes confer COFs with significant potential for a myriad of applications ranging from catalysis technology, gas separation and storage, optoelectronic materials, environmental and energy sciences, and biomedical development. There are many synthetic design methods for COF materials, and dynamic covalent chemistry is the scientific basis of COF materials-oriented design, which gives the error correction ability of the covalent assembly process, and is the key to obtaining crystallization and stability at the same time. However, "crystallinity" and "stability" in the synthesis and preparation of COF materials are often like "You can't have your cake and eat it, too": on the one hand, the reversible covalent bonds used in the synthesis of highly crystalline COF framework are easy to decompose under extreme conditions, which greatly limits its application scenarios; On the other hand, although highly stable COF materials can be prepared by using irreversible covalent bonds, it is usually poor crystalline and difficult to have high performance. In addition, the strict deoxygenation operation required for synthesizing COF materials also limits its macro preparation and large-scale application. Therefore, the synthesis strategy and efficient preparation of highly stable and crystalline COF materials are a major obstacle to the practical application of this field. This paper describes the four structures of COF materials, as well as their synthesis methods, electrical energy-storing electrocatalysis, and significant environmental protection applications. The future directions, prospects, and possible barriers to the development of these materials are envisioned in.
Collapse
Affiliation(s)
- Qing Li
- Guangling College, Yangzhou University, Yangzhou 225009, Jiangsu, PR China; School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, Jiangsu, PR China
| | - Yuanyuan Zhu
- Guangling College, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Tao Pan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, Jiangsu, PR China
| | - Guangxun Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, Jiangsu, PR China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, Jiangsu, PR China; State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
2
|
Zhong Z, Wang X, Tan B. Porous Organic Polymers for CO 2 Capture and Catalytic Conversion. Chemistry 2025; 31:e202404089. [PMID: 39715715 DOI: 10.1002/chem.202404089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/25/2024]
Abstract
Overuse of fossil fuels and anthropogenic activities have led to excessive emissions of carbon dioxide, leading to global warming, and measures to reduce atmospheric carbon dioxide concentrations are needed to overcome this global challenge. Therefore, exploring an environmentally friendly strategy for capturing airborne CO2 and converting it into high-value-added chemicals offers a promising pathway toward "carbon neutrality". In recent years, porous organic polymers have attracted much attention for carbon capture and the catalytic conversion of carbon dioxide because of their high specific surface area, high chemical stability, nanoscale porosity, and structural versatility, which make them easy to functionalize. In this review, we introduce the preparation methods for various POPs, the types of POPs adsorbed during carbon dioxide capture, and the progress in the use of POPs for the photocatalytic and chemicatalytic conversion of carbon dioxide, with a special discussion on the influence of adsorption type on the efficiency of catalytic conversion. Finally, we propose a prospective direction for the subsequent development of this field.
Collapse
Affiliation(s)
- Zicheng Zhong
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037#, Hongshan District, Wuhan, 430074, P. R. China
| | - Xiaoyan Wang
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037#, Hongshan District, Wuhan, 430074, P. R. China
| | - Bien Tan
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037#, Hongshan District, Wuhan, 430074, P. R. China
| |
Collapse
|
3
|
Wu X, Wang H, Huang N. Three-Dimensional Covalent Organic Frameworks with lil Topology. J Am Chem Soc 2025; 147:6016-6022. [PMID: 39921914 DOI: 10.1021/jacs.4c16422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2025]
Abstract
The diversity of covalent organic frameworks (COFs) is continuously expanding, providing various materials with tailor-made structures and properties. However, the development of crystalline three-dimensional (3D) COFs with new topologies is an essential but arduous challenge. In this study, we first developed one kind of 3D COFs with the lil topological structure, which were assembled by D4h- and C2h-symmetric building blocks. The 3D COFs were determined in a space group of Imma, in which each D4h-symmetric unit is connected with four C2h-symmetric units, forming a noninterpenetrated network. The densely packed copper phthalocyanine and stable polyimide linkage render these COFs as a polymeric material with high dielectric constant and low dielectric loss at high frequencies (>1 kHz). Significantly, the dielectric constant was determined as high as 63, which constitutes a new record value among phthalocyanine-based and polyimide polymers. Therefore, this study not only provides important guidance for the design of 3D lil-net COFs but also supplies promising materials for application in high-energy-density and pulsed capacitors.
Collapse
Affiliation(s)
- Xinyu Wu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Hanwen Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Ning Huang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Chen H, Wayment LJ, Jiang H, Lei Z, Huang S, Ley A, Yue Z, Yuan Z, Jin Y, Yu K, Zhang W. Closed-Loop Recyclable Lithium and Sodium Conducting Covalent Adaptable Networks. Angew Chem Int Ed Engl 2025:e202425497. [PMID: 39937743 DOI: 10.1002/anie.202425497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/08/2025] [Accepted: 02/08/2025] [Indexed: 02/14/2025]
Abstract
Within the past two decades, covalent adaptable networks (CANs) have emerged as a novel class of dynamically crosslinked polymers, combining the benefits of thermosets and thermoplastics. Although some CANs with charged side chains have been reported, CANs with negatively charged backbones remain very limited. The integration of permanent charge into the backbones upon their formation could open up important new applications. Here, we introduce a series of aliphatic spiroborate-linked ionic covalent adaptable networks (ICANs), representing a new category of dynamic ionomer thermosets. These ICANs were synthesized using a catalyst-free, scalable, and environment-friendly method. Incorporating lithium or sodium as counter cations in these networks yielded promising ion conductivity without the need of plasticizers. The dynamic nature of the spiroborate linkages in these materials allows for rapid reprocessing and recycling under moderate conditions. Furthermore, their potential as flexible solid-state electrolytes is demonstrated in a device that maintained robust conducting performance under extreme physical deformation, coupled with effective self-healing properties. This research opens new possibilities for future development of dynamic ionomer thermosets and their potential applications in flexible electronic devices.
Collapse
Affiliation(s)
- Hongxuan Chen
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Lacey J Wayment
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Huan Jiang
- Department of Mechanical Engineering, University of Colorado Denver, Denver, CO, 80217, USA
| | - Zepeng Lei
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Shaofeng Huang
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Ashley Ley
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Zihao Yue
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Zhehao Yuan
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| | | | - Kai Yu
- Department of Mechanical Engineering, University of Colorado Denver, Denver, CO, 80217, USA
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| |
Collapse
|
5
|
Watanabe K, Toya T, Toyota Y, Kobayashi Y, Usuba J, Hijikata Y, Matsuda R, Nishimura K, Sugiyama H, Segawa Y. Synthesis of fully fused tetrapyrazinoporphyrazine polymers bearing three-dimensional structures controlled by steric repulsion. Chem Commun (Camb) 2025; 61:2822-2825. [PMID: 39838903 DOI: 10.1039/d4cc06293k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
The synthesis and characterization of fused aromatic networks composed of zinc tetrapyrazinoporphyrazines are reported. The steric repulsion of bulky substituents induced the formation of three-dimensional structures. Thus-obtained insoluble polymers adsorbed CO2 and had near-infrared absorption indicating their porosity and extended π-conjugation.
Collapse
Affiliation(s)
- Kosuke Watanabe
- Institute for Molecular Science, Myodaiji, Okazaki, 444-8787, Japan.
- The Graduate University for Advanced Studies, SOKENDAI, Myodaiji, Okazaki, 444-8787, Japan
| | - Teruki Toya
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Yuto Toyota
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Yoichi Kobayashi
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Junichi Usuba
- Research Center for Net Zero Carbon Society, Institute of Innovation for Future Society, Nagoya university, Nagoya, 464-8601, Japan
| | - Yuh Hijikata
- Research Center for Net Zero Carbon Society, Institute of Innovation for Future Society, Nagoya university, Nagoya, 464-8601, Japan
| | - Ryotaro Matsuda
- Research Center for Net Zero Carbon Society, Institute of Innovation for Future Society, Nagoya university, Nagoya, 464-8601, Japan
- Department of Chemistry and Biotechnology, School of Engineering, and Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Katsuyuki Nishimura
- Institute for Molecular Science, Myodaiji, Okazaki, 444-8787, Japan.
- The Graduate University for Advanced Studies, SOKENDAI, Myodaiji, Okazaki, 444-8787, Japan
| | - Haruki Sugiyama
- Institute for Molecular Science, Myodaiji, Okazaki, 444-8787, Japan.
- The Graduate University for Advanced Studies, SOKENDAI, Myodaiji, Okazaki, 444-8787, Japan
- Neutron Industrial Application Promotion Center, Comprehensive Research Organization for Science and Society, Tokai, Ibaraki 319-1106, Japan
| | - Yasutomo Segawa
- Institute for Molecular Science, Myodaiji, Okazaki, 444-8787, Japan.
- The Graduate University for Advanced Studies, SOKENDAI, Myodaiji, Okazaki, 444-8787, Japan
| |
Collapse
|
6
|
Stamos NA, Kerrigan S, Stiven A, Nichol GS, Bezzu CG, Burt L, Moggach SA, Turner GF, McKeown NB. Porous Molecular Crystals Derived from Cofacial Porphyrin/Phthalocyanine Heterodimers. Angew Chem Int Ed Engl 2025; 64:e202418443. [PMID: 39530334 DOI: 10.1002/anie.202418443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/29/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024]
Abstract
Porphyrin-based porous materials are of growing interest as heterogeneous catalysts especially for reactions that are of importance to sustainability. Here we demonstrate that porous molecular crystals can be prepared by the simple co-crystallisation of tetraphenylporphyrin (TPP) with octa(2',6'-di-iso-propylphenoxy)phthalocyanine or some of its metal complexes [(dipPhO)8PcM; M=H2, Al-OH, Ti=O, Mn-Cl, Fe-Cl, Co, Ni, Cu, Zn, Ga-Cl, Ag, In-Cl or Au-Cl]. This process is facilitated by the efficient formation of the supramolecular heterodimer between TPP and (dipPhO)8PcM, which is driven by the complementary shape and symmetry of the two macrocycles. The (dipPhO)8PcM component directs the crystal structure of the heterodimers to form Phthalocyanine Nanoporous Crystals (PNCs) of similar structure to those formed by (dipPhO)8PcM alone. The incorporation of TPP appears to partially stabilise the PNCs towards the removal of included solvent and for cocrystals containing (dipPhO)8PcCo stability can be enhanced further by the insitu addition of 4,4-bipyridyl to act as a "molecular wall tie". These stabilised PNC/TPP cocrystals have a Brunauer-Emmett-Teller surface area (SABET) of 454 m2 g-1 and a micropore volume (Vmp) of 0.22 mL g-1. The reactivity of both macrocycles within the PNC/TPP co-crystals is demonstrated by insitu metal insertion.
Collapse
Affiliation(s)
- Nikolaos-Angelos Stamos
- EaStChem, School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Shannah Kerrigan
- EaStChem, School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Alexander Stiven
- EaStChem, School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Gary S Nichol
- EaStChem, School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - C Grazia Bezzu
- EaStChem, School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Luke Burt
- EaStChem, School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Stephen A Moggach
- School of Molecular Sciences, The University of Western Australia, Perth, 6009, Western Australia, Australia
| | - Gemma F Turner
- School of Molecular Sciences, The University of Western Australia, Perth, 6009, Western Australia, Australia
| | - Neil B McKeown
- EaStChem, School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK
| |
Collapse
|
7
|
Chen F, Zheng H, Yusran Y, Li H, Qiu S, Fang Q. Exploring high-connectivity three-dimensional covalent organic frameworks: topologies, structures, and emerging applications. Chem Soc Rev 2025; 54:484-514. [PMID: 39585733 DOI: 10.1039/d4cs00703d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Covalent organic frameworks (COFs) represent a highly versatile class of crystalline porous materials, formed by the deliberate assembly of organic building units into ordered two-dimensional (2D) and three-dimensional (3D) structures. Their unique combination of topological precision and tunable micro- or mesoporous architectures offers unmatched flexibility in material design. By selecting specific building units, reactive sites, and functional groups, COFs can be engineered to achieve customized skeletal, porous, and interfacial properties, opening the door to materials with optimized performance for diverse applications. Among recent advances, high-connectivity 3D COFs have emerged as a particularly exciting development, with their intricate network structures enabling unprecedented levels of structural complexity, stability, and functionality. This review provides a comprehensive overview of the synthesis strategies, topological design principles, structural characterization techniques, and emerging applications of high-connectivity 3D COFs. We explore their potential across a broad range of cutting-edge applications, including gas adsorption and separation, macromolecule adsorption, dye removal, photocatalysis, electrocatalysis, lithium-sulfur batteries, and charge transport. By examining these key areas, we aim to deepen the understanding of the intricate relationship between structure and function, guiding the rational design of next-generation COF materials. The continued advancements in this field hold immense promise for revolutionizing sectors such as energy storage, catalysis, and molecular separation, making high-connectivity 3D COFs a cornerstone for future technological innovations.
Collapse
Affiliation(s)
- Fengqian Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Haorui Zheng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Yusran Yusran
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Hui Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Shilun Qiu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China.
| |
Collapse
|
8
|
Jin Y, Zhi Q, Wang H, Zhan X, Qi D, Yu B, Ding X, Wang T, Liu H, Tang M, Liu J, Jiang J. Robust dioxin-linked metallophthalocyanine tbo topology covalent organic frameworks and their photocatalytic properties. Natl Sci Rev 2025; 12:nwae396. [PMID: 39831002 PMCID: PMC11740510 DOI: 10.1093/nsr/nwae396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/19/2024] [Accepted: 10/11/2024] [Indexed: 01/22/2025] Open
Abstract
Constructing 3D functional covalent organic frameworks (COFs) with both robust linkage and planar macrocycle building blocks still remains a challenge due to the difficulty in adjusting both the crystallinity and the dominant 2D structures. In addition, it is also challenging to selectively convert inert C(sp3)-H bonds into value-added chemicals. Herein, robust 3D COFs, USTB-28-M (M=Co, Ni, Cu), have been polymerized from the nucleophilic aromatic substitution reaction of D 3h-symmetric 2,3,6,7,14,15-hexahydroxyltriptycene with D 4h-symmetric hexadecafluorophthalocyanine (MPcF16) under solvothermal conditions. These chemically stable dioxin-linked COFs show isostructural tbo topology made up of three kinds of polyhedron subunits, exhibiting high Brunauer-Emmett-Teller surface areas of ≤1477 m2 g-1. In particular, the multiple polyhedron subunits in USTB-28-M could trap N-hydroxyphthalimide at their corners for easily forming stable phthalimide-N-oxyl radicals under visible-light irradiation. The generated radicals efficiently promote the aerobic oxidation of alkyl benzenes with an inert C(sp3)-H bond into various ketones. Among the three investigated COFs, the USTB-28-Co radical initiator exhibits the best photocatalytic oxidation activity, converting ethylbenzene into acetophenone with a turnover frequency of 63 h-1, which is much higher than those of the monomer CoPcF16 (8 h-1) and 2D dioxin-linked counterparts (13 h-1). This is due to the much prolonged lifetime of the excited state for USTB-28-Co based on the femtosecond transient absorption result. The present work not only presents 3D functional COFs with robust connection and permanent porosity, but also illustrates the uniqueness of porous structures of 3D COFs for high-performance photocatalysis.
Collapse
Affiliation(s)
- Yucheng Jin
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Qianjun Zhi
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hailong Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaoning Zhan
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Dongdong Qi
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Baoqiu Yu
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xu Ding
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Tianying Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Heyuan Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Mingxue Tang
- Center for High Pressure Science and Technology Advanced Research, Beijing 100193, China
| | - Jie Liu
- Center for High Pressure Science and Technology Advanced Research, Beijing 100193, China
| | - Jianzhuang Jiang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
9
|
Doremus JG, Lotsi B, Sharma A, McGrier PL. Photocatalytic applications of covalent organic frameworks: synthesis, characterization, and utility. NANOSCALE 2024; 16:21619-21672. [PMID: 39495099 DOI: 10.1039/d4nr03204g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Photocatalysis has emerged as an energy efficient and safe method to perform organic transformations, and many semiconductors have been studied for use as photocatalysts. Covalent organic frameworks (COFs) are an established class of crystalline, porous materials constructed from organic units that are easily tunable. COFs importantly display semiconductor properties and respectable photoelectric behaviour, making them a strong prospect as photocatalysts. In this review, we summarize the design, synthetic methods, and characterization techniques for COFs. Strategies to boost photocatalytic performance are also discussed. Then the applications of COFs as photocatalysts in a variety of reactions are detailed. Finally, a summary, challenges, and future opportunities for the development of COFs as efficient photocatalysts are entailed.
Collapse
Affiliation(s)
- Jared G Doremus
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Bertha Lotsi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Aadarsh Sharma
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Psaras L McGrier
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| |
Collapse
|
10
|
Blätte D, Ortmann F, Bein T. Photons, Excitons, and Electrons in Covalent Organic Frameworks. J Am Chem Soc 2024; 146:32161-32205. [PMID: 39556616 PMCID: PMC11613328 DOI: 10.1021/jacs.3c14833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 11/20/2024]
Abstract
Covalent organic frameworks (COFs) are created by the condensation of molecular building blocks and nodes to form two-dimensional (2D) or three-dimensional (3D) crystalline frameworks. The diversity of molecular building blocks with different properties and functionalities and the large number of possible framework topologies open a vast space of possible well-defined porous architectures. Besides more classical applications of porous materials such as molecular absorption, separation, and catalytic conversions, interest in the optoelectronic properties of COFs has recently increased considerably. The electronic properties of both the molecular building blocks and their linkage chemistry can be controlled to tune photon absorption and emission, to create excitons and charge carriers, and to use these charge carriers in different applications such as photocatalysis, luminescence, chemical sensing, and photovoltaics. In this Perspective, we will discuss the relationship between the structural features of COFs and their optoelectronic properties, starting with the building blocks and their chemical connectivity, layer stacking in 2D COFs, control over defects and morphology including thin film synthesis, exploring the theoretical modeling of structural, electronic, and dynamic features of COFs, and discussing recent intriguing applications with a focus on photocatalysis and photoelectrochemistry. We conclude with some remarks about present challenges and future prospects of this powerful architectural paradigm.
Collapse
Affiliation(s)
- Dominic Blätte
- Department
of Chemistry and Center for NanoScience, University of Munich (LMU), Butenandtstr. 5-13, 81377 Munich, Germany
| | - Frank Ortmann
- Department
of Chemistry, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Thomas Bein
- Department
of Chemistry and Center for NanoScience, University of Munich (LMU), Butenandtstr. 5-13, 81377 Munich, Germany
| |
Collapse
|
11
|
Ge S, Wei K, Peng W, Huang R, Akinlabi E, Xia H, Shahzad MW, Zhang X, Xu BB, Jiang J. A comprehensive review of covalent organic frameworks (COFs) and their derivatives in environmental pollution control. Chem Soc Rev 2024; 53:11259-11302. [PMID: 39479879 DOI: 10.1039/d4cs00521j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Covalent organic frameworks (COFs) have gained considerable attention due to their design possibilities as the molecular organic building blocks that can stack in an atomically precise spatial arrangement. Since the inception of COFs in 2005, there has been a continuous expansion in the product range of COFs and their derivatives. This expansion has led to the evolution of three-dimensional structures and various synthetic routes, propelling the field towards large-scale preparation of COFs and their derivatives. This review will offer a holistic analysis and comparison of the spatial structure and synthesis techniques of COFs and their derivatives. The conventional methods of COF synthesis (i.e., ultrasonic chemical, microwave, and solvothermal) are discussed alongside the synthesis strategies of new COFs and their derivatives. Furthermore, the applications of COFs and their derived materials are demonstrated in air, water, and soil pollution management such as gas capture, catalytic conversion, adsorption, and pollutant removal. Finally, this review highlights the current challenges and prospects for large-scale preparation and application of new COFs and the derived materials. In line with the United Nations Sustainable Development Goals (SDGs) and the needs of digital-enabled technologies (AI and machine learning), this review will encompass the future technical trends for COFs in environmental pollution control.
Collapse
Affiliation(s)
- Shengbo Ge
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Kexin Wei
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Wanxi Peng
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China.
| | - Runzhou Huang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Esther Akinlabi
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| | - Hongyan Xia
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Muhammad Wakil Shahzad
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| | - Xuehua Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Ben Bin Xu
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| | - Jianchun Jiang
- Key Lab of Biomass Energy and Material of Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China.
| |
Collapse
|
12
|
Wayment LJ, Huang S, Chen H, Lei Z, Ley A, Lee SH, Zhang W. Ionic Covalent Organic Frameworks Consisting of Tetraborate Nodes and Flexible Linkers. Angew Chem Int Ed Engl 2024; 63:e202410816. [PMID: 38990712 DOI: 10.1002/anie.202410816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/13/2024]
Abstract
Covalent organic frameworks (COFs) have emerged as versatile materials with many applications, such as carbon capture, molecular separation, catalysis, and energy storage. Traditionally, flexible building blocks have been avoided due to their potential to disrupt ordered structures. Recent studies have demonstrated the intriguing properties and enhanced structural diversity achievable with flexible components by judicious selection of building blocks. This study presents a novel series of ionic COFs (ICOFs) consisting of tetraborate nodes and flexible linkers. These ICOFs use borohydrides to irreversibly deprotonate the alcohol monomers to achieve a high degree of polymerization. Structural analysis confirms the dia topologies. Reticulation is explored using various monomers and metal counterions. Also, these frameworks exhibit excellent stability in alcohols and coordinating solvents. The materials have been tested as single-ion conductive solid-state electrolytes. ICOF-203-Li displays one of the lowest activation energies reported for ion conduction. This tetraborate chemistry is anticipated to facilitate further structural diversity and functionality in crystalline polymers.
Collapse
Affiliation(s)
- Lacey J Wayment
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Shaofeng Huang
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Hongxuan Chen
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Zepeng Lei
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Ashley Ley
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Se-Hee Lee
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| |
Collapse
|
13
|
Asgari D, Grüneberg J, Luo Y, Küçükkeçeci H, Ghosh S, Chevelkov V, Fischer-Lang S, Roeser J, Lange A, Dunn B, Gradzielski M, Thomas A. An anionic two dimensional covalent organic framework from tetratopic borate centres pillared by lithium ions. Nat Commun 2024; 15:7031. [PMID: 39147736 PMCID: PMC11327249 DOI: 10.1038/s41467-024-50953-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/24/2024] [Indexed: 08/17/2024] Open
Abstract
Non-covalent interactions play an important role for the framework formation of two-dimensional covalent organic frameworks. Until now, π-π interactions and hydrogen bonding are the main reported forces facilitating the stacking of framework layers. Here, we present a two-dimensional anionic covalent organic framework based on tetratopic borate linkages, where layers are connected by ionic interactions between the linkage site and counter cations. The crystalline covalent organic framework is accessed through the formation of an amorphous borate-based polymer and subsequent solvothermal treatment. The progress of crystallization is investigated, revealing the crystallite growth and morphological change from agglomerated dense particles to hollow crystallite spheres. Due to the pillared nature, the crystallites can be exfoliated into nanosheets by sonication of the material in the presence of methanol. The crystallization and ordered arrangement of the lithium ions in the interlayer space is shown to benefit the conductivity tenfold compared to the amorphous material.
Collapse
Affiliation(s)
- Darosch Asgari
- Institute of Chemistry, Technische Universität Berlin, Berlin, 10623, Germany
| | - Julia Grüneberg
- Institute of Chemistry, Technische Universität Berlin, Berlin, 10623, Germany
| | - Yunkai Luo
- Department of Materials Science and Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Hüseyin Küçükkeçeci
- Institute of Chemistry, Technische Universität Berlin, Berlin, 10623, Germany
| | - Samrat Ghosh
- Institute of Chemistry, Technische Universität Berlin, Berlin, 10623, Germany
- Inorganic and Physical Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR), Central Leather Research Institute (CLRI), Chennai, 600020, India
| | - Veniamin Chevelkov
- Research Unit Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, 13125, Germany
| | | | - Jérôme Roeser
- Institute of Chemistry, Technische Universität Berlin, Berlin, 10623, Germany
| | - Adam Lange
- Research Unit Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, 13125, Germany
| | - Bruce Dunn
- Department of Materials Science and Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Michael Gradzielski
- Institute of Chemistry, Technische Universität Berlin, Berlin, 10623, Germany
| | - Arne Thomas
- Institute of Chemistry, Technische Universität Berlin, Berlin, 10623, Germany.
| |
Collapse
|
14
|
Hu Y, Sengupta B, Long H, Wayment LJ, Ciora R, Jin Y, Wu J, Lei Z, Friedman K, Chen H, Yu M, Zhang W. Molecular recognition with resolution below 0.2 angstroms through thermoregulatory oscillations in covalent organic frameworks. Science 2024; 384:1441-1447. [PMID: 38935724 DOI: 10.1126/science.adj8791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 05/13/2024] [Indexed: 06/29/2024]
Abstract
Crystalline materials with uniform molecular-sized pores are desirable for a broad range of applications, such as sensors, catalysis, and separations. However, it is challenging to tune the pore size of a single material continuously and to reversibly distinguish small molecules (below 4 angstroms). We synthesized a series of ionic covalent organic frameworks using a tetraphenoxyborate linkage that maintains meticulous synergy between structural rigidity and local flexibility to achieve continuous and reversible (100 thermal cycles) tunability of "dynamic pores" between 2.9 and 4.0 angstroms, with resolution below 0.2 angstroms. This results from temperature-regulated, gradual amplitude change of high-frequency linker oscillations. These thermoelastic apertures selectively block larger molecules over marginally smaller ones, demonstrating size-based molecular recognition and the potential for separating challenging gas mixtures such as oxygen/nitrogen and nitrogen/methane.
Collapse
Affiliation(s)
- Yiming Hu
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Bratin Sengupta
- Department of Chemical and Biological Engineering and RENEW Institute, University at Buffalo, Buffalo, NY 14260, USA
| | - Hai Long
- Computational Science Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Lacey J Wayment
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Richard Ciora
- Department of Chemical and Biological Engineering and RENEW Institute, University at Buffalo, Buffalo, NY 14260, USA
| | - Yinghua Jin
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Jingyi Wu
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Zepeng Lei
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Kaleb Friedman
- Department of Chemical and Biological Engineering and RENEW Institute, University at Buffalo, Buffalo, NY 14260, USA
| | - Hongxuan Chen
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Miao Yu
- Department of Chemical and Biological Engineering and RENEW Institute, University at Buffalo, Buffalo, NY 14260, USA
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
15
|
Lei Z, Chen H, Huang S, Wayment LJ, Xu Q, Zhang W. New Advances in Covalent Network Polymers via Dynamic Covalent Chemistry. Chem Rev 2024; 124:7829-7906. [PMID: 38829268 DOI: 10.1021/acs.chemrev.3c00926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Covalent network polymers, as materials composed of atoms interconnected by covalent bonds in a continuous network, are known for their thermal and chemical stability. Over the past two decades, these materials have undergone significant transformations, gaining properties such as malleability, environmental responsiveness, recyclability, crystallinity, and customizable porosity, enabled by the development and integration of dynamic covalent chemistry (DCvC). In this review, we explore the innovative realm of covalent network polymers by focusing on the recent advances achieved through the application of DCvC. We start by examining the history and fundamental principles of DCvC, detailing its inception and core concepts and noting its key role in reversible covalent bond formation. Then the reprocessability of covalent network polymers enabled by DCvC is thoroughly discussed, starting from the significant milestones that marked the evolution of these polymers and progressing to their current trends and applications. The influence of DCvC on the crystallinity of covalent network polymers is then reviewed, covering their bond diversity, synthesis techniques, and functionalities. In the concluding section, we address the current challenges faced in the field of covalent network polymers and speculates on potential future directions.
Collapse
Affiliation(s)
- Zepeng Lei
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Hongxuan Chen
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Shaofeng Huang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Lacey J Wayment
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Qiucheng Xu
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
16
|
Gao Y, Li S, Gong L, Li J, Qi D, Liu N, Bian Y, Jiang J. Unprecedented POSS-Linked 3D Covalent Organic Frameworks with 2-Fold Interpenetrated scu or sqc Topology Regulated by Porphyrin Center for Photocatalytic CO 2 Reduction. Angew Chem Int Ed Engl 2024; 63:e202404156. [PMID: 38619506 DOI: 10.1002/anie.202404156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/16/2024]
Abstract
The synthesis and characterization of porphyrin center regulated three-dimensional covalent organic frameworks (COFs) with 2-fold interpenetrated scu or sqc topology have been investigated. These COFs exhibit unique structural features and properties, making them promising candidates for photocatalytic applications in CO2 reduction and artemisinin synthesis. The porphyrin center serves as an anchor for metal ions, allowing precise control over structures and functions of the frameworks. Furthermore, the metal coordination within the framework imparts desirable catalytic properties, enabling their potential use in photocatalytic reactions. Overall, these porphyrin center regulated metal-controlled COFs offer exciting opportunities for the development of advanced materials with tailored functionalities.
Collapse
Affiliation(s)
- Ying Gao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Senzhi Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Lei Gong
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, China
| | - Jing Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Dongdong Qi
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Naifang Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yongzhong Bian
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Daxing Research Institute, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Daxing Research Institute, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
17
|
O'Shaughnessy M, Glover J, Hafizi R, Barhi M, Clowes R, Chong SY, Argent SP, Day GM, Cooper AI. Porous isoreticular non-metal organic frameworks. Nature 2024; 630:102-108. [PMID: 38778105 PMCID: PMC11153147 DOI: 10.1038/s41586-024-07353-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/26/2024] [Indexed: 05/25/2024]
Abstract
Metal-organic frameworks (MOFs) are useful synthetic materials that are built by the programmed assembly of metal nodes and organic linkers1. The success of MOFs results from the isoreticular principle2, which allows families of structurally analogous frameworks to be built in a predictable way. This relies on directional coordinate covalent bonding to define the framework geometry. However, isoreticular strategies do not translate to other common crystalline solids, such as organic salts3-5, in which the intermolecular ionic bonding is less directional. Here we show that chemical knowledge can be combined with computational crystal-structure prediction6 (CSP) to design porous organic ammonium halide salts that contain no metals. The nodes in these salt frameworks are tightly packed ionic clusters that direct the materials to crystallize in specific ways, as demonstrated by the presence of well-defined spikes of low-energy, low-density isoreticular structures on the predicted lattice energy landscapes7,8. These energy landscapes allow us to select combinations of cations and anions that will form thermodynamically stable, porous salt frameworks with channel sizes, functionalities and geometries that can be predicted a priori. Some of these porous salts adsorb molecular guests such as iodine in quantities that exceed those of most MOFs, and this could be useful for applications such as radio-iodine capture9-12. More generally, the synthesis of these salts is scalable, involving simple acid-base neutralization, and the strategy makes it possible to create a family of non-metal organic frameworks that combine high ionic charge density with permanent porosity.
Collapse
Affiliation(s)
- Megan O'Shaughnessy
- Materials Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool, UK
| | - Joseph Glover
- Computational System Chemistry, School of Chemistry, University of Southampton, Southampton, UK
| | - Roohollah Hafizi
- Computational System Chemistry, School of Chemistry, University of Southampton, Southampton, UK
| | - Mounib Barhi
- Albert Crewe Centre for Electron Microscopy, University of Liverpool, Liverpool, UK
| | - Rob Clowes
- Materials Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool, UK
| | - Samantha Y Chong
- Materials Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool, UK
- Leverhulme Research Centre for Functional Materials Design, University of Liverpool, Liverpool, UK
| | | | - Graeme M Day
- Computational System Chemistry, School of Chemistry, University of Southampton, Southampton, UK.
| | - Andrew I Cooper
- Materials Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool, UK.
- Leverhulme Research Centre for Functional Materials Design, University of Liverpool, Liverpool, UK.
| |
Collapse
|
18
|
Wang X, Fellowes T, Bahri M, Qu H, Li B, Niu H, Browning ND, Zhang W, Ward JW, Cooper AI. 2D to 3D Reconstruction of Boron-Linked Covalent-Organic Frameworks. J Am Chem Soc 2024; 146:14128-14135. [PMID: 38723144 PMCID: PMC11117181 DOI: 10.1021/jacs.4c02673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/23/2024]
Abstract
The transformation of two-dimensional (2D) covalent-organic frameworks (COFs) into three-dimensions (3D) is synthetically challenging, and it is typically addressed through interlayer cross-linking of alkene or alkyne bonds. Here, we report the first example of the chemical reconstruction of a 2D COF to a 3D COF with a complete lattice rearrangement facilitated by base-triggered boron hybridization. This chemical reconstruction involves the conversion of trigonal boronate ester linkages to tetrahedral anionic spiroborate linkages. This transformation reticulates the coplanar, closely stacked square cobalt(II) phthalocyanine (PcCo) units into a 3D perpendicular arrangement. As a result, the pore size of COFs expands from 2.45 nm for the initial 2D square lattice (sql) to 3.02 nm in the 3D noninterpenetrated network (nbo). Mechanistic studies reveal a base-catalyzed boronate ester protodeboronation pathway for the formation of the spiroborate structure.
Collapse
Affiliation(s)
- Xue Wang
- Leverhulme
Research Centre for Functional Materials Design, University of Liverpool, Liverpool L7 3NY, U.K.
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Thomas Fellowes
- Leverhulme
Research Centre for Functional Materials Design, University of Liverpool, Liverpool L7 3NY, U.K.
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Mounib Bahri
- Albert
Crewe Centre for Electron Microscopy, University
of Liverpool, Liverpool L69 3GL, U.K.
| | - Hang Qu
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Boyu Li
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Hongjun Niu
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Nigel D. Browning
- Albert
Crewe Centre for Electron Microscopy, University
of Liverpool, Liverpool L69 3GL, U.K.
| | - Weiwei Zhang
- School
of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - John W. Ward
- Leverhulme
Research Centre for Functional Materials Design, University of Liverpool, Liverpool L7 3NY, U.K.
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Andrew I. Cooper
- Leverhulme
Research Centre for Functional Materials Design, University of Liverpool, Liverpool L7 3NY, U.K.
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, U.K.
| |
Collapse
|
19
|
Wayment LJ, Teat SJ, Huang S, Chen H, Zhang W. Dynamic Entwined Topology in Helical Covalent Polymers Dictated by Competing Supramolecular Interactions. Angew Chem Int Ed Engl 2024; 63:e202403599. [PMID: 38444217 DOI: 10.1002/anie.202403599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/07/2024]
Abstract
Naturally occurring polymeric structures often consist of 1D polymer chains intricately folded and entwined through non-covalent bonds, adopting precise topologies crucial for their functionality. The exploration of crystalline 1D polymers through dynamic covalent chemistry (DCvC) and supramolecular interactions represents a novel approach for developing crystalline polymers. This study shows that sub-angstrom differences in the counter-ion size can lead to various helical covalent polymer (HCP) topologies, including a novel metal-coordination HCP (m-HCP) motif. Single-crystal X-ray diffraction (SCXRD) analysis of HCP-Na revealed that double helical pairs are formed by sodium ions coordinating to spiroborate linkages to form rectangular pores. The double helices are interpenetrated by the unreacted diols coordinating sodium ions. The reticulation of the m-HCP structure was demonstrated by the successful synthesis of HCP-K. Finally, ion-exchange studies were conducted to show the interconversion between HCP structures. This research illustrates how seemingly simple modifications, such as changes in counter-ion size, can significantly influence the polymer topology and determine which supramolecular interactions dominate the crystal lattice.
Collapse
Affiliation(s)
- Lacey J Wayment
- Department of Chemistry, University of Colorado Boulder, Boulder, CO-80309, USA
| | - Simon J Teat
- Advanced Light Source, Lawrence Berkeley National Laboratory, Department of Chemistry, University of California, Berkeley, Berkeley, CA-94720, USA
| | - Shaofeng Huang
- Department of Chemistry, University of Colorado Boulder, Boulder, CO-80309, USA
| | - Hongxuan Chen
- Department of Chemistry, University of Colorado Boulder, Boulder, CO-80309, USA
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder, Boulder, CO-80309, USA
| |
Collapse
|
20
|
Huang W, Zhang W, Yang S, Wang L, Yu G. 3D Covalent Organic Frameworks from Design, Synthesis to Applications in Optoelectronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308019. [PMID: 38057125 DOI: 10.1002/smll.202308019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/13/2023] [Indexed: 12/08/2023]
Abstract
Covalent organic frameworks (COFs), a new class of crystalline materials connected by covalent bonds, have been developed rapidly in the past decades. However, the research on COFs is mainly focused on two-dimensional (2D) COFs, and the research on three-dimensional (3D) COFs is still in the initial stage. In 2D COFs, the covalent bonds exist only in the 2D flakes and can form 1D channels, which hinder the charge transport to some extent. In contrast, 3D COFs have a more complex pore structure and thus exhibit higher specific surface area and richer active sites, which greatly enhance the 3D charge carrier transport. Therefore, compared to 2D COFs, 3D COFs have stronger applicability in energy storage and conversion, sensing, and optoelectronics. In this review, it is first introduced the design principles for 3D COFs, and in particular summarize the development of conjugated building blocks in 3D COFs, with a special focus on their application in optoelectronics. Subsequently, the preparation of 3D COF powders and thin films and methods to improve the stability and functionalization of 3D COFs are summarized. Moreover, the applications of 3D COFs in electronics are outlined. Finally, conclusions and future research directions for 3D COFs are presented.
Collapse
Affiliation(s)
- Wei Huang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shuai Yang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liping Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
21
|
Guo Z, Zhang Z, Sun J. Topological Analysis and Structural Determination of 3D Covalent Organic Frameworks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312889. [PMID: 38290005 DOI: 10.1002/adma.202312889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/24/2024] [Indexed: 02/01/2024]
Abstract
3D covalent organic frameworks (3D COFs) constitute a new type of crystalline materials that consist of a range of porous structures with numerous applications in the fields of adsorption, separation, and catalysis. However, because of the complexity of the three-periodic net structure, it is desirable to develop a thorough structural comprehension, along with a means to precisely determine the actual structure. Indeed, such advancements would considerably contribute to the rational design and application of 3D COFs. In this review, the reported topologies of 3D COFs are introduced and categorized according to the configurations of their building blocks, and a comprehensive overview of diffraction-based structural determination methods is provided. The current challenges and future prospects for these materials will also be discussed.
Collapse
Affiliation(s)
- Zi'ang Guo
- College of Chemistry and Molecular Engineering, Beijing National Laboratory of Molecular Sciences, Peking University, Beijing, 100871, P. R. China
| | - Zeyue Zhang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory of Molecular Sciences, Peking University, Beijing, 100871, P. R. China
| | - Junliang Sun
- College of Chemistry and Molecular Engineering, Beijing National Laboratory of Molecular Sciences, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
22
|
Das S, Mabuchi H, Irie T, Sasaki K, Nozaki M, Tomioka R, Wen D, Zhao Y, Ben T, Negishi Y. 3D Covalent Organic Framework with "the" Topology. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307666. [PMID: 38279566 DOI: 10.1002/smll.202307666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/16/2024] [Indexed: 01/28/2024]
Abstract
Discovery of new topology covalent organic frameworks (COFs) is a mainstay in reticular chemistry and materials research because it not only serves as a stepwise guide to the designed construction of covalent-organic architectures but also helps to comprehend function from structural design point-of-view. Proceeding on this track, the first 3D COF, TUS-38, with the topology is constructed by reticulating a planar triangular 3-c node of D3h symmetry with a tetragonal prism 8-c node of D2h symmetry via [3 + 8] reversible imine condensation reaction. TUS-38 represents a twofold interpenetrated multidirectional pore network with a high degree of crystallinity and structural integrity. Interestingly, stemming from the nitrogen-rich s-triazine rings with electron-deficient character and ─C ═ N─ linkages composing the TUS-38 framework that benefit to the charge-transfer and hence dipole-dipole electrostatic interactions between the framework and iodine in addition to exclusive topological characteristics of the exotic the net, TUS-38 achieves an exemplary capacity for iodine vapor uptake reaching 6.3 g g-1. Recyclability studies evidence that TUS-38 can be reused at least five times retaining 95% of its initial adsorption capacity; while density functional theory (DFT) calculations have heightened the understanding of the interactions between iodine molecules and the framework.
Collapse
Affiliation(s)
- Saikat Das
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Haruna Mabuchi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Tsukasa Irie
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Kohki Sasaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Mika Nozaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Rina Tomioka
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Dan Wen
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Yu Zhao
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Teng Ben
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Yuichi Negishi
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| |
Collapse
|
23
|
Wang X, Jin Y, Li N, Zhang H, Liu X, Yang X, Pan H, Wang T, Wang K, Qi D, Jiang J. 12 Connecting Sites Linked Three-dimensional Covalent Organic Frameworks with Intrinsic Non-interpenetrated shp Topology for Photocatalytic H 2O 2 Synthesis. Angew Chem Int Ed Engl 2024; 63:e202401014. [PMID: 38334002 DOI: 10.1002/anie.202401014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/10/2024]
Abstract
Developing high connectivity (>8) three-dimensional (3D) covalent organic frameworks (COFs) towards new topologies and functions remains a great challenge owing to the difficulty in getting high connectivity organic building blocks. This however represents the most important step towards promoting the diversity of COFs due to the still limited dynamic covalent bonds available for constructing COFs at this stage. Herein, highly connected phthalocyanine-based (Pc-based) 3D COFs MPc-THHI-COFs (M=H2, Ni) were afforded from the reaction between 2,3,9,10,16,17,23,24-octacarboxyphthalocyanine M(TAPc) (M=H2, Ni) and 5,5',5'',5''',5'''',5'''''-(triphenylene-2,3,6,7,10,11-hexayl)hexa(isophthalohydrazide) (THHI) with 12 connecting sites. Powder X-ray diffraction analysis together with theoretical simulations and transmission electron microscopy reveals their crystalline nature with an unprecedented non-interpenetrated shp topology. Experimental and theoretical investigations disclose the broadened visible light absorption range and narrow optical band gap of MPc-THHI-COFs. This in combination with their 3D nanochannels endows them with efficient photocatalysis performance for H2O2 generation from O2 and H2O via 2e- oxygen reduction reaction and 2e- water oxidation reaction under visible-light irradiation (λ >400 nm). This work provides valuable result for the development of high connectivity functional COFs towards diverse application potentials.
Collapse
Affiliation(s)
- Xinxin Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yucheng Jin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Ning Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hao Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiaolin Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiya Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Houhe Pan
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Tianyu Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Kang Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Dongdong Qi
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
24
|
Li X, Song Q. "Homoleptic" Tetracoordinate Boron Compounds. Inorg Chem 2024; 63:5295-5314. [PMID: 38488071 DOI: 10.1021/acs.inorgchem.4c00102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
"Homoleptic" tetracoordinate boron compounds, in which the central boron atom links to four identical atoms, are a special and important family of boron compounds. During the past decades, they have been extensively employed in inorganic, organic, macromolecular, and materials chemistry. Many of them exhibit a diverse range of outstanding properties, and therefore, the synthesis and application of those compounds have emerged as a hot research topic in modern boron chemistry. This review summarizes and discusses the "homoleptic" tetracoordinate boron compounds, which are organized according to the kinds of atoms coordinated to the central boron.
Collapse
Affiliation(s)
- Xin Li
- Institute of Next Generation Matter Transformation, College of Materials Science & Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Qiuling Song
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| |
Collapse
|
25
|
Li Z, Xu G, Zhang C, Ma S, Jiang Y, Xiong H, Tian G, Wu Y, Wei Y, Chen X, Yang Y, Wei F. Synthesis of 12-Connected Three-Dimensional Covalent Organic Framework with lnj Topology. J Am Chem Soc 2024; 146:4327-4332. [PMID: 38277433 DOI: 10.1021/jacs.3c12995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
The structural exploration of three-dimensional covalent organic frameworks (3D COFs) is of great significance to the development of COF materials. Different from structurally diverse MOFs, which have a variety of connectivity (3-24), now the valency of 3D COFs is limited to only 4, 6, and 8. Therefore, the exploration of organic building blocks with higher connectivity is a necessary path to broaden the scope of 3D COF structures. Herein, for the first time, we have designed and synthesized a 12-connected triptycene-based precursor (triptycene-12-CHO) with 12 symmetrical distributions of aldehyde groups, which is also the highest valency reported until now. Based on this unique 12-connected structure, we have successfully prepared a novel 3D COF with lnj topology (termed 3D-lnj-COF). The as-synthesized 3D COF exhibits honeycomb main pores and permanent porosity with a Brunauer-Emmett-Teller surface area of 1159.6 m2 g-1. This work not only provides a strategy for synthesizing precursors with a high connectivity but also provides inspiration for enriching the variety of 3D COFs.
Collapse
Affiliation(s)
- Zonglong Li
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Guojie Xu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Chenxi Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Ordos Laboratory, Ordos, Inner Mongolia 017010, China
- Institute for Carbon Neutrality, Tsinghua University, Beijing 100084, China
| | - Shuan Ma
- National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, The State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084, China
| | - Yaxin Jiang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Hao Xiong
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Guo Tian
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yanzhou Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Yen Wei
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xiao Chen
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yang Yang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Fei Wei
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Ordos Laboratory, Ordos, Inner Mongolia 017010, China
| |
Collapse
|
26
|
Mabuchi H, Irie T, Sakai J, Das S, Negishi Y. Covalent Organic Frameworks: Cutting-Edge Materials for Carbon Dioxide Capture and Water Harvesting from Air. Chemistry 2024; 30:e202303474. [PMID: 38078517 DOI: 10.1002/chem.202303474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Indexed: 01/12/2024]
Abstract
The implacable rise of carbon dioxide (CO2 ) concentration in the atmosphere and acute water stress are one of the central challenges of our time. Present-day chemistry is strongly inclined towards more sustainable solutions. Covalent organic frameworks (COFs), attributable to their structural designability with atomic precision, functionalizable chemical environment and robust extended architectures, have demonstrated promising performances in CO2 trapping and water harvesting from air. In this Review, we discuss the major developments in this field as well as sketch out the opportunities and shortcomings that remain over large-scale COF synthesis, device engineering, and long-term performance in real environments.
Collapse
Affiliation(s)
- Haruna Mabuchi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Tsukasa Irie
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Jin Sakai
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Saikat Das
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| |
Collapse
|
27
|
Wang X, Wada Y, Shimada T, Kosaka A, Adachi K, Hashizume D, Yazawa K, Uekusa H, Shoji Y, Fukushima T, Kawano M, Murakami Y. Triple Isomerism in 3D Covalent Organic Frameworks. J Am Chem Soc 2024; 146:1832-1838. [PMID: 38206810 DOI: 10.1021/jacs.3c13863] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Isomerism in covalent organic frameworks (COFs) has scarcely been known. Here, for the first time we show 3D COFs with three framework isomers or polymorphs constructed from the same building blocks. All isomers were obtained as large (>10 μm) crystals; although their crystal shapes were distinctly different, they showed identical FT-IR and solid-state NMR spectra. Our structural analyses revealed unprecedented triple isomerism in 3D COFs (noninterpenetrated dia, qtz, and 3-fold interpenetrated dia-c3 nets). Furthermore, this Communication reports the first known COF with qtz topology for which the structure determination was based on Rietveld analysis. We achieved triple framework isomerism by reticulating a tetrahedral building block with a flexible junction and a linear building block with PEO side chains and by varying solution compositions. Our energy calculations, along with the discovery of interisomer transition, revealed that the isomer with qtz topology was a kinetic isomer. Thus, this simple yet little-explored concept of reticulating only flexible building blocks is an effective pathway to significantly broaden the diversity of 3D COFs, which have been proposed for a myriad of applications.
Collapse
Affiliation(s)
- Xiaohan Wang
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
- Department of Mechanical Engineering, School of Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan
| | - Yuki Wada
- Department of Chemistry, School of Science, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan
| | - Terumasa Shimada
- Department of Chemistry, School of Science, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan
| | - Atsuko Kosaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8503, Japan
| | - Kiyohiro Adachi
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
| | - Daisuke Hashizume
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
| | | | - Hidehiro Uekusa
- Department of Chemistry, School of Science, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan
| | - Yoshiaki Shoji
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8503, Japan
| | - Takanori Fukushima
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8503, Japan
| | - Masaki Kawano
- Department of Chemistry, School of Science, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan
| | - Yoichi Murakami
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
- Department of Mechanical Engineering, School of Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
28
|
Yue Y, Ji D, Liu Y, Wei D. Chemical Sensors Based on Covalent Organic Frameworks. Chemistry 2024; 30:e202302474. [PMID: 37843045 DOI: 10.1002/chem.202302474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
Covalent organic frameworks (COFs) are a type of crystalline porous polymer composed of light elements through strong covalent bonds. COFs have attracted considerable attention due to their unique designable structures and excellent material properties. Currently, COFs have shown outstanding potential in various fields, including gas storage, pollutant removal, catalysis, adsorption, optoelectronics, and their research in the sensing field is also increasingly flourishing. In this review, we focus on COF-based sensors. Firstly, we elucidate the fundamental principles of COF-based sensors. Then, we present the primary application areas of COF-based sensors and their recent advancements, encompassing gas, ions, organic compounds, and biomolecules sensing. Finally, we discuss the future trends and challenges faced by COF-based sensors, outlining their promising prospects in the field of sensing.
Collapse
Affiliation(s)
- Yang Yue
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Daizong Ji
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, China
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, China
| |
Collapse
|
29
|
Liu Y, Liu X, Su A, Gong C, Chen S, Xia L, Zhang C, Tao X, Li Y, Li Y, Sun T, Bu M, Shao W, Zhao J, Li X, Peng Y, Guo P, Han Y, Zhu Y. Revolutionizing the structural design and determination of covalent-organic frameworks: principles, methods, and techniques. Chem Soc Rev 2024; 53:502-544. [PMID: 38099340 DOI: 10.1039/d3cs00287j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Covalent organic frameworks (COFs) represent an important class of crystalline porous materials with designable structures and functions. The interconnected organic monomers, featuring pre-designed symmetries and connectivities, dictate the structures of COFs, endowing them with high thermal and chemical stability, large surface area, and tunable micropores. Furthermore, by utilizing pre-functionalization or post-synthetic functionalization strategies, COFs can acquire multifunctionalities, leading to their versatile applications in gas separation/storage, catalysis, and optoelectronic devices. Our review provides a comprehensive account of the latest advancements in the principles, methods, and techniques for structural design and determination of COFs. These cutting-edge approaches enable the rational design and precise elucidation of COF structures, addressing fundamental physicochemical challenges associated with host-guest interactions, topological transformations, network interpenetration, and defect-mediated catalysis.
Collapse
Affiliation(s)
- Yikuan Liu
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Xiaona Liu
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - An Su
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Chengtao Gong
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Shenwei Chen
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Liwei Xia
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Chengwei Zhang
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Xiaohuan Tao
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Yue Li
- Institute of Intelligent Computing, Zhejiang Lab, Hangzhou 311121, China
| | - Yonghe Li
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Tulai Sun
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Mengru Bu
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Wei Shao
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Jia Zhao
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Xiaonian Li
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Yongwu Peng
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Peng Guo
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yu Han
- School of Emergent Soft Matter, South China University of Technology, Guangzhou, China.
- King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| | - Yihan Zhu
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| |
Collapse
|
30
|
Wang Y, Wang M, Chen T, Yu W, Liu H, Cheng H, Bi W, Zhou M, Xie Y, Wu C. Pyrazine-linked Iron-coordinated Tetrapyrrole Conjugated Organic Polymer Catalyst with Spatially Proximate Donor-Acceptor Pairs for Oxygen Reduction in Fuel Cells. Angew Chem Int Ed Engl 2023; 62:e202308070. [PMID: 37779100 DOI: 10.1002/anie.202308070] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/25/2023] [Accepted: 10/01/2023] [Indexed: 10/03/2023]
Abstract
Nitrogen-coordinated iron (Fe-N4 ) materials represent the most promising non-noble electrocatalysts for the cathodic oxygen reduction reaction (ORR) of fuel cells. However, molecular-level structure design of Fe-N4 electrocatalyst remains a great challenge. In this study, we develop a novel Fe-N4 conjugated organic polymer (COP) electrocatalyst, which allows for precise design of the Fe-N4 structure, leading to unprecedented ORR performance. At the molecular level, we have successfully organized spatially proximate iron-pyrrole/pyrazine (FePr/Pz) pairs into fully conjugated polymer networks, which in turn endows FePr sites with firmly covalent-bonded matrix, strong d-π electron coupling and highly dense distribution. The resulting pyrazine-linked iron-coordinated tetrapyrrole (Pz-FeTPr) COP electrocatalyst exhibits superior performance compared to most ORR electrocatalysts, with a half-wave potential of 0.933 V and negligible activity decay after 40,000 cycles. When used as the cathode electrocatalyst in a hydroxide exchange membrane fuel cell, the Pz-FeTPr COP achieves a peak power density of ≈210 mW cm-2 . We anticipate the COP based Fe-N4 catalyst design could be an effective strategy to develop high-performance catalyst for facilitating the progress of fuel cells.
Collapse
Affiliation(s)
- Yang Wang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Minghao Wang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Ting Chen
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Weisheng Yu
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Hongfei Liu
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Han Cheng
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Wentuan Bi
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, 230031, China
| | - Min Zhou
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Yi Xie
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, 230031, China
| | - Changzheng Wu
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, 230031, China
| |
Collapse
|
31
|
Yun Q, Ge Y, Shi Z, Liu J, Wang X, Zhang A, Huang B, Yao Y, Luo Q, Zhai L, Ge J, Peng Y, Gong C, Zhao M, Qin Y, Ma C, Wang G, Wa Q, Zhou X, Li Z, Li S, Zhai W, Yang H, Ren Y, Wang Y, Li L, Ruan X, Wu Y, Chen B, Lu Q, Lai Z, He Q, Huang X, Chen Y, Zhang H. Recent Progress on Phase Engineering of Nanomaterials. Chem Rev 2023. [PMID: 37962496 DOI: 10.1021/acs.chemrev.3c00459] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
As a key structural parameter, phase depicts the arrangement of atoms in materials. Normally, a nanomaterial exists in its thermodynamically stable crystal phase. With the development of nanotechnology, nanomaterials with unconventional crystal phases, which rarely exist in their bulk counterparts, or amorphous phase have been prepared using carefully controlled reaction conditions. Together these methods are beginning to enable phase engineering of nanomaterials (PEN), i.e., the synthesis of nanomaterials with unconventional phases and the transformation between different phases, to obtain desired properties and functions. This Review summarizes the research progress in the field of PEN. First, we present representative strategies for the direct synthesis of unconventional phases and modulation of phase transformation in diverse kinds of nanomaterials. We cover the synthesis of nanomaterials ranging from metal nanostructures such as Au, Ag, Cu, Pd, and Ru, and their alloys; metal oxides, borides, and carbides; to transition metal dichalcogenides (TMDs) and 2D layered materials. We review synthesis and growth methods ranging from wet-chemical reduction and seed-mediated epitaxial growth to chemical vapor deposition (CVD), high pressure phase transformation, and electron and ion-beam irradiation. After that, we summarize the significant influence of phase on the various properties of unconventional-phase nanomaterials. We also discuss the potential applications of the developed unconventional-phase nanomaterials in different areas including catalysis, electrochemical energy storage (batteries and supercapacitors), solar cells, optoelectronics, and sensing. Finally, we discuss existing challenges and future research directions in PEN.
Collapse
Affiliation(s)
- Qinbai Yun
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Department of Chemical and Biological Engineering & Energy Institute, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yiyao Ge
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Zhenyu Shi
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Jiawei Liu
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), Singapore, 627833, Singapore
| | - Xixi Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - An Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Biao Huang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Yao Yao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Qinxin Luo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Li Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Jingjie Ge
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
| | - Yongwu Peng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chengtao Gong
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Meiting Zhao
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Yutian Qin
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Chen Ma
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Gang Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Qingbo Wa
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xichen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Zijian Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Siyuan Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Wei Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Hua Yang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yi Ren
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yongji Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Lujing Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xinyang Ruan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yuxuan Wu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Bo Chen
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Qipeng Lu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhuangchai Lai
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Qiyuan He
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Xiao Huang
- Institute of Advanced Materials (IAM), School of Flexible Electronics (SoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
32
|
Feng JD, Zhang WD, Liu Y, Han WK, Zhu RM, Gu ZG. A 3D Covalent Organic Framework with In-situ Formed Pd Nanoparticles for Efficient Electrochemical Oxygen Reduction. Chemistry 2023; 29:e202302201. [PMID: 37565784 DOI: 10.1002/chem.202302201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/12/2023]
Abstract
Non-platinum noble metals are highly desirable for the development of highly active, stable oxygen reduction reaction (ORR) electrocatalysts for fuel cells and metal-air batteries. However, how to improve the utilization of non-platinum noble metals is an urgent issue. Herein, a highly efficient catalyst for ORR was prepared through homogeneous loading of Pd precursors by a domain-limited method in a three-dimensional covalent organic framework (COF) followed by pyrolysis. The morphology of the Pd nanoparticles (Pd NPs) was well maintained after carbonization, which was attributed to the rigid structure of the 3D COF. Thanks to the uniform distribution of Pd NPs in the carbon, the catalyst exhibited a remarkable half-wave potential of 0.906 V and a Tafel slope of 70 mV dec-1 in 0.1 M KOH, surpassing the commercial Pt/C catalyst (0.863 V and 75 mV dec-1 ). Furthermore, a maximum power density of 144.0 mW cm-2 was achieved at 252 mA cm-2 , which was significantly higher than the control battery (105.1 mW cm-2 ). This work not only provides a simple strategy for in-situ preparation of highly dispersible metal catalysts in COFs, but also offers new insights into the ORR electrocatalysis.
Collapse
Affiliation(s)
- Jing-Dong Feng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Wen-Da Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yong Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Wang-Kang Han
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Ruo-Meng Zhu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Zhi-Guo Gu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| |
Collapse
|
33
|
Qin Y, Zhu X, Huang R. Covalent organic frameworks: linkage types, synthetic methods and bio-related applications. Biomater Sci 2023; 11:6942-6976. [PMID: 37750827 DOI: 10.1039/d3bm01247f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Covalent organic frameworks (COFs) are composed of small organic molecules linked via covalent bonds, which have tunable mesoporous structure, good biocompatibility and functional diversities. These excellent properties make COFs a promising candidate for constructing biomedical nanoplatforms and provide ample opportunities for nanomedicine development. A systematic review of the linkage types and synthesis methods of COFs is of indispensable value for their biomedical applications. In this review, we first summarize the types of various linkages of COFs and their corresponding properties. Then, we highlight the reaction temperature, solvent and reaction time required by different synthesis methods and show the most suitable synthesis method by comparing the merits and demerits of various methods. To appreciate the cutting-edge research on COFs in bioscience technology, we also summarize the bio-related applications of COFs, including drug delivery, tumor therapy, bioimaging, biosensing and antimicrobial applications. We hope to provide insight into the interdisciplinary research on COFs and promote the development of COF nanomaterials for biomedical applications and their future clinical translations.
Collapse
Affiliation(s)
- Yanhui Qin
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China.
| | - Xinran Zhu
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China.
| | - Rongqin Huang
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
34
|
Li H, Dilipkumar A, Abubakar S, Zhao D. Covalent organic frameworks for CO 2 capture: from laboratory curiosity to industry implementation. Chem Soc Rev 2023; 52:6294-6329. [PMID: 37591809 DOI: 10.1039/d2cs00465h] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
CO2 concentration in the atmosphere has increased by about 40% since the 1960s. Among various technologies available for carbon capture, adsorption and membrane processes have been receiving tremendous attention due to their potential to capture CO2 at low costs. The kernel for such processes is the sorbent and membrane materials, and tremendous progress has been made in designing and fabricating novel porous materials for carbon capture. Covalent organic frameworks (COFs), a class of porous crystalline materials, are promising sorbents for CO2 capture due to their high surface area, low density, controllable pore size and structure, and preferable stabilities. However, the absence of synergistic developments between materials and engineering processes hinders achieving the qualitative leap for net-zero emissions. Considering the lack of a timely review on the combination of state-of-the-art COFs and engineering processes, in this Tutorial Review, we emphasize the developments of COFs for meeting the challenges of carbon capture and disclose the strategies of fabricating COFs for realizing industrial implementation. Moreover, this review presents a detailed and basic description of the engineering processes and industrial status of carbon capture. It highlights the importance of machine learning in integrating simulations of molecular and engineering levels. We aim to stimulate both academia and industry communities for joined efforts in bringing COFs to practical carbon capture.
Collapse
Affiliation(s)
- He Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| | - Akhil Dilipkumar
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| | - Saifudin Abubakar
- ExxonMobil Asia Pacific Pte. Ltd., 1 HarbourFront Place, #06-00 HarbourFront Tower 1, 098633, Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| |
Collapse
|
35
|
Vardhan H, Rummer G, Deng A, Ma S. Large-Scale Synthesis of Covalent Organic Frameworks: Challenges and Opportunities. MEMBRANES 2023; 13:696. [PMID: 37623757 PMCID: PMC10456518 DOI: 10.3390/membranes13080696] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023]
Abstract
Connecting organic building blocks by covalent bonds to design porous crystalline networks has led to covalent organic frameworks (COFs), consequently transferring the flexibility of dynamic linkages from discrete architectures to extended structures. By virtue of the library of organic building blocks and the diversity of dynamic linkages and topologies, COFs have emerged as a novel field of organic materials that propose a platform for tailor-made complex structural design. Progress over the past two decades in the design, synthesis, and functional exploration of COFs in diverse applications successively established these frameworks in materials chemistry. The large-scale synthesis of COFs with uniform structures and properties is of profound importance for commercialization and industrial applications; however, this is in its infancy at present. An innovative designing and synthetic approaches have paved novel ways to address future hurdles. This review article highlights the fundamental of COFs, including designing principles, coupling reactions, topologies, structural diversity, synthetic strategies, characterization, growth mechanism, and activation aspects of COFs. Finally, the major challenges and future trends for large-scale COF fabrication are outlined.
Collapse
Affiliation(s)
- Harsh Vardhan
- Department of Chemistry and Fermentation Sciences, Appalachian State University, 525 Rivers Street, Boone, NC 28608, USA
| | - Grace Rummer
- Department of Chemistry and Fermentation Sciences, Appalachian State University, 525 Rivers Street, Boone, NC 28608, USA
| | - Angela Deng
- Department of Chemistry and Fermentation Sciences, Appalachian State University, 525 Rivers Street, Boone, NC 28608, USA
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, Denton, TX 76203, USA
| |
Collapse
|
36
|
Wayment LJ, Wang X, Huang S, McCoy MS, Chen H, Hu Y, Jin Y, Sharma S, Zhang W. 3D Covalent Organic Framework as a Metastable Intermediate in the Formation of a Double-Stranded Helical Covalent Polymer. J Am Chem Soc 2023. [PMID: 37406308 DOI: 10.1021/jacs.3c04734] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
The design and development of intricate artificial architectures have been pursued for decades. Helical covalent polymer (HCP) was recently reported as an unexpected topology that consists of chiral 1D polymers assembled through weak hydrogen bonds from achiral building blocks. However, many questions remained about the formation, driving force, and the single-handedness observed in each crystal. In this work, we reveal a metastable, racemic, fully covalently cross-linked, 3D covalent organic framework (COF) as an intermediate in the early stage of polymerization, which slowly converts into single-handed HCP double helices through partial fragmentation and self-sorting with the aid of a series of hydrogen bonding. Our work provides an intriguing example where weak noncovalent bonds serve as the determining factor of the overall product structure and facilitate the formation of a sophisticated polymeric architecture.
Collapse
Affiliation(s)
- Lacey J Wayment
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Xubo Wang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Shaofeng Huang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Matthew S McCoy
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Hongxuan Chen
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Yiming Hu
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Yinghua Jin
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Sandeep Sharma
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
37
|
Zhu D, Zhu Y, Chen Y, Yan Q, Wu H, Liu CY, Wang X, Alemany LB, Gao G, Senftle TP, Peng Y, Wu X, Verduzco R. Three-dimensional covalent organic frameworks with pto and mhq-z topologies based on Tri- and tetratopic linkers. Nat Commun 2023; 14:2865. [PMID: 37208348 DOI: 10.1038/s41467-023-38538-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 05/06/2023] [Indexed: 05/21/2023] Open
Abstract
Three-dimensional (3D) covalent organic frameworks (COFs) possess higher surface areas, more abundant pore channels, and lower density compared to their two-dimensional counterparts which makes the development of 3D COFs interesting from a fundamental and practical point of view. However, the construction of highly crystalline 3D COF remains challenging. At the same time, the choice of topologies in 3D COFs is limited by the crystallization problem, the lack of availability of suitable building blocks with appropriate reactivity and symmetries, and the difficulties in crystalline structure determination. Herein, we report two highly crystalline 3D COFs with pto and mhq-z topologies designed by rationally selecting rectangular-planar and trigonal-planar building blocks with appropriate conformational strains. The pto 3D COFs show a large pore size of 46 Å with an extremely low calculated density. The mhq-z net topology is solely constructed from totally face-enclosed organic polyhedra displaying a precise uniform micropore size of 1.0 nm. The 3D COFs show a high CO2 adsorption capacity at room temperature and can potentially serve as promising carbon capture adsorbents. This work expands the choice of accessible 3D COF topologies, enriching the structural versatility of COFs.
Collapse
Affiliation(s)
- Dongyang Zhu
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, MS-362, Houston, TX, 77005, USA
| | - Yifan Zhu
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, MS-325, Houston, TX, 77005, USA
| | - Yu Chen
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, MS-362, Houston, TX, 77005, USA
| | - Qianqian Yan
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, MS-325, Houston, TX, 77005, USA
| | - Han Wu
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Chun-Yen Liu
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, MS-362, Houston, TX, 77005, USA
| | - Xu Wang
- Shared Equipment Authority, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Lawrence B Alemany
- Shared Equipment Authority, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Guanhui Gao
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, MS-325, Houston, TX, 77005, USA
- Shared Equipment Authority, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Thomas P Senftle
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, MS-362, Houston, TX, 77005, USA
| | - Yongwu Peng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Xiaowei Wu
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Fujian Institute of Research on the Structure of Matter, Haixi Institutes, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Rafael Verduzco
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, MS-362, Houston, TX, 77005, USA.
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, MS-325, Houston, TX, 77005, USA.
| |
Collapse
|
38
|
Wu Y, Xie Y, Liu X, Li Y, Wang J, Chen Z, Yang H, Hu B, Shen C, Tang Z, Huang Q, Wang X. Functional nanomaterials for selective uranium recovery from seawater: Material design, extraction properties and mechanisms. Coord Chem Rev 2023; 483:215097. [DOI: doi.org/10.1016/j.ccr.2023.215097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
|
39
|
Wu Y, Xie Y, Liu X, Li Y, Wang J, Chen Z, Yang H, Hu B, Shen C, Tang Z, Huang Q, Wang X. Functional nanomaterials for selective uranium recovery from seawater: Material design, extraction properties and mechanisms. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
40
|
Chen H, Hu Y, Luo C, Lei Z, Huang S, Wu J, Jin Y, Yu K, Zhang W. Spiroborate-Linked Ionic Covalent Adaptable Networks with Rapid Reprocessability and Closed-Loop Recyclability. J Am Chem Soc 2023; 145:9112-9117. [PMID: 37058550 DOI: 10.1021/jacs.3c00774] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
Covalent adaptable networks (CANs) represent a novel class of polymeric materials crosslinked by dynamic covalent bonds. Since their first discovery, CANs have attracted great attention due to their high mechanical strength and stability like conventional thermosets under service conditions and easy reprocessability like thermoplastics under certain external stimuli. Here, we report the first example of ionic covalent adaptable networks (ICANs), a type of crosslinked ionomers, consisting of negatively charged backbone structures. More specifically, two ICANs with different backbone compositions were prepared through spiroborate chemistry. Given the dynamic nature of the spiroborate linkages, the resulting ionomer thermosets display rapid reprocessability and closed-loop recyclability under mild conditions. The materials mechanically broken into smaller pieces can be reprocessed into coherent solids at 120 °C within only 1 min with nearly 100% recovery of the mechanical properties. Upon treating the ICANs with dilute hydrochloric acid at room temperature, the valuable monomers can be easily chemically recycled in almost quantitative yield. This work demonstrates the great potential of spiroborate bonds as a novel dynamic ionic linkage for development of new reprocessable and recyclable ionomer thermosets.
Collapse
Affiliation(s)
- Hongxuan Chen
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Yiming Hu
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Chaoqian Luo
- Department of Mechanical Engineering, University of Colorado Denver, Denver, Colorado 80217, United States
| | - Zepeng Lei
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Shaofeng Huang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Jingyi Wu
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Yinghua Jin
- RockyTech, Ltd., Boulder, Colorado 80309, United States
| | - Kai Yu
- Department of Mechanical Engineering, University of Colorado Denver, Denver, Colorado 80217, United States
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
41
|
Yuan Y, Bang KT, Wang R, Kim Y. Macrocycle-Based Covalent Organic Frameworks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210952. [PMID: 36608278 DOI: 10.1002/adma.202210952] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Macrocycles with well-defined cavities and the ability to undergo supramolecular interactions are classical materials that have played an essential role in materials science. However, one of the most substantial barriers limiting the utilization of macrocycles is their aggregation, which blocks the active regions. Among many attempted strategies to prevent such aggregation, installing macrocycles into covalent organic frameworks (COFs), which are porous and stable reticular networks, has emerged as an ideal solution. The resulting macrocycle-based COFs (M-COFs) preserve the macrocycles' unique activities, enabling applications in various fields such as single-atom catalysis, adsorption/separation, optoelectronics, phototherapy, and structural design of forming single-layered or mechanically interlocked COFs. The resulting properties are unmatchable by any combination of macrocycles with other substrates, opening a new chapter in advanced materials. This review focuses on the latest progress in the concepts, synthesis, properties, and applications of M-COFs, and presents an in-depth outlook on the challenges and opportunities in this emerging field.
Collapse
Affiliation(s)
- Yufei Yuan
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Ki-Taek Bang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Rui Wang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Yoonseob Kim
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| |
Collapse
|
42
|
Liu W, Wang K, Zhan X, Liu Z, Yang X, Jin Y, Yu B, Gong L, Wang H, Qi D, Yuan D, Jiang J. Highly Connected Three-Dimensional Covalent Organic Framework with Flu Topology for High-Performance Li-S Batteries. J Am Chem Soc 2023; 145:8141-8149. [PMID: 36989190 DOI: 10.1021/jacs.3c01102] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Lithium-sulfur batteries (LSBs) have been considered as a promising candidate for next-generation energy storage devices, which however still suffer from the shuttle effect of the intermediate lithium polysulfides (LiPSs). Covalent-organic frameworks (COFs) have exhibited great potential as sulfur hosts for LSBs to solve such a problem. Herein, a pentiptycene-based D2h symmetrical octatopic polyaldehyde, 6,13-dimethoxy-2,3,9,10,18,19,24,25-octa(4'-formylphenyl)pentiptycene (DMOPTP), was prepared and utilized as a building block toward preparing COFs. Condensation of DMOPTP with 4-connected tetrakis(4-aminophenyl)methane affords an expanded [8 + 4] connected network 3D-flu-COF, with a flu topology. The non-interpenetrated nature of the flu topology endows 3D-flu-COF with a high Brunauer-Emmett-Teller surface area of 2860 m2 g-1, large octahedral cavities, and cross-linked tunnels in the framework, enabling a high loading capacity of sulfur (∼70 wt %), strong LiPS adsorption capability, and facile ion diffusion. Remarkably, when used as a sulfur host for LSBs, 3D-flu-COF delivers a high capacity of 1249 mA h g-1 at 0.2 C (1.0 C = 1675 mA g-1), outstanding rate capability (764 mA h g-1 at 5.0 C), and excellent stability, representing one of the best results among the thus far reported COF-based sulfur host materials for LSBs and being competitive with the state-of-the-art inorganic host materials.
Collapse
Affiliation(s)
- Wenbo Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kang Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaoning Zhan
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhixin Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiya Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yucheng Jin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Baoqiu Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lei Gong
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hailong Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Dongdong Qi
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Daqiang Yuan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
43
|
Wang L, Zhao J, Chen J, Jiang T, Zhang Q, Zhong S, Dmytro S. Phenediamine bridging phthalocyanine-based covalent organic framework polymers used as anode materials for lithium-ion batteries. Phys Chem Chem Phys 2023; 25:8050-8063. [PMID: 36876636 DOI: 10.1039/d3cp00007a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
In this study, phenediamine bridging phthalocyanine-based covalent organic framework materials (CoTAPc-PDA, CoTAPc-BDA and CoTAPc-TDA) with increasingly-widening pore sizes are prepared by reacting cobalt octacarboxylate phthalocyanine with p-phenylenediamine (PDA), benzidine (BDA) and 4,4''-diamino-p-terphenyl (TDA), respectively. The effects of frame size on the morphology structure and its electrochemical properties were explored. X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) and transmission electron microscopy (TEM) images show that the pore sizes of the CoTAPc-PDA, CoTAPc-BDA and CoTAPc-TDA are about 1.7 nm, 2.0 nm and 2.3 nm, respectively, which are close to the simulated results after geometric conformation optimization using Material Studio software. In addition, the specific surface areas of CoTAPc-PDA, CoTAPc-BDA and CoTAPc-TDA are 62, 81 and 137 m2 g-1, respectively. With increase in the frame size, the specific surface area of the corresponding material increases, which is bound to produce different electrochemical behaviors. Consequently, the initial capacities of the CoTAPc-PDA, CoTAPc-BDA and CoTAPc-TDA electrodes in lithium-ion batteries (LIBs) are 204, 251 and 382 mA h g-1, respectively. As the charge and discharge processes continue, the active points in the electrode material are continuously activated, leading to a continuous increase in charge and discharge capacities. After 300 cycles, the CoTAPc-PDA, CoTAPc-BDA and CoTAPc-TDA electrodes exhibit capacities of 519, 680 and 826 mA h g-1, respectively, and after 600 cycles, the capacities are maintained at 602, 701 and 865 mA h g-1, respectively, with a stable capacity retention rate at a current density of 100 mA g-1. The results show that the large-size frame structure materials have a larger specific surface area and more favorable lithium ion transmission channels, which produce greater active point utilization and smaller charge transmission impedance, thus showing larger charge and discharge capacity and superior rate capability. This study fully confirms that frame size is a key factor affecting the properties of organic frame electrodes, providing design ideas for the development of high-performance organic frame electrode materials.
Collapse
Affiliation(s)
- Luyi Wang
- Jiangxi Key Laboratory of Power Batteries and Materials, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Sciences and Technology, Ganzhou 341000, China.
| | - Jianjun Zhao
- Jiangxi Key Laboratory of Power Batteries and Materials, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Sciences and Technology, Ganzhou 341000, China.
| | - Jun Chen
- Jiangxi Key Laboratory of Power Batteries and Materials, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Sciences and Technology, Ganzhou 341000, China. .,Yichun Lithium New Energy Industry Research Institute, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Tingting Jiang
- Jiangxi Key Laboratory of Power Batteries and Materials, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Sciences and Technology, Ganzhou 341000, China.
| | - Qian Zhang
- Jiangxi Key Laboratory of Power Batteries and Materials, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Sciences and Technology, Ganzhou 341000, China. .,Yichun Lithium New Energy Industry Research Institute, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Shengwen Zhong
- Jiangxi Key Laboratory of Power Batteries and Materials, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Sciences and Technology, Ganzhou 341000, China.
| | - Sydorov Dmytro
- Joint Department of Electrochemical Energy Systems, Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, 38A Vernadsky Ave, Kiev, 03142, Ukraine
| |
Collapse
|
44
|
Tran QN, Lee HJ, Tran N. Covalent Organic Frameworks: From Structures to Applications. Polymers (Basel) 2023; 15:polym15051279. [PMID: 36904520 PMCID: PMC10007052 DOI: 10.3390/polym15051279] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 03/06/2023] Open
Abstract
Three-dimensional covalent organic frameworks possess hierarchical nanopores, enormous surface areas with high porosity, and open positions. The synthesis of large crystals of three-dimensional covalent organic frameworks is a challenge, since different structures are generated during the synthesis. Presently, their synthesis with new topologies for promising applications has been developed by the use of building units with varied geometries. Covalent organic frameworks have multiple applications: chemical sensing, fabrication of electronic devices, heterogeneous catalysts, etc. We have presented the techniques for the synthesis of three-dimensional covalent organic frameworks, their properties, and their potential applications in this review.
Collapse
Affiliation(s)
- Quang Nhat Tran
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
- Correspondence: (Q.N.T.); (N.T.)
| | - Hyun Jong Lee
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| | - Ngo Tran
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
- Correspondence: (Q.N.T.); (N.T.)
| |
Collapse
|
45
|
Lv N, Li Q, Zhu H, Mu S, Luo X, Ren X, Liu X, Li S, Cheng C, Ma T. Electrocatalytic Porphyrin/Phthalocyanine-Based Organic Frameworks: Building Blocks, Coordination Microenvironments, Structure-Performance Relationships. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206239. [PMID: 36599650 PMCID: PMC9982586 DOI: 10.1002/advs.202206239] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/05/2022] [Indexed: 05/05/2023]
Abstract
Metal-porphyrins or metal-phthalocyanines-based organic frameworks (POFs), an emerging family of metal-N-C materials, have attracted widespread interest for application in electrocatalysis due to their unique metal-N4 coordination structure, high conjugated π-electron system, tunable components, and chemical stability. The key challenges of POFs as high-performance electrocatalysts are the need for rational design for porphyrins/phthalocyanines building blocks and an in-depth understanding of structure-activity relationships. Herein, the synthesis methods, the catalytic activity modulation principles, and the electrocatalytic behaviors of 2D/3D POFs are summarized. Notably, detailed pathways are given for modulating the intrinsic activity of the M-N4 site by the microenvironments, including central metal ions, substituent groups, and heteroatom dopants. Meanwhile, the topology tuning and hybrid system, which affect the conjugation network or conductivity of POFs, are also considered. Furthermore, the representative electrocatalytic applications of structured POFs in efficient and environmental-friendly energy conversion areas, such as carbon dioxide reduction reaction, oxygen reduction reaction, and water splitting are briefly discussed. Overall, this comprehensive review focusing on the frontier will provide multidisciplinary and multi-perspective guidance for the subsequent experimental and theoretical progress of POFs and reveal their key challenges and application prospects in future electrocatalytic energy conversion systems.
Collapse
Affiliation(s)
- Ning Lv
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Qian Li
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Huang Zhu
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Shengdong Mu
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Xianglin Luo
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Xiancheng Ren
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Xikui Liu
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Shuang Li
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Chong Cheng
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
- Med‐X Center for MaterialsSichuan UniversityChengdu610041P. R. China
| | - Tian Ma
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
- Department of UltrasoundWest China HospitalSichuan UniversityChengdu610041P. R. China
| |
Collapse
|
46
|
Yang L, Shi L, Chen H, Liang X, Tian B, Zhang K, Zou Y, Zou X. A Highly Active, Long-Lived Oxygen Evolution Electrocatalyst Derived from Open-Framework Iridates. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208539. [PMID: 36586400 DOI: 10.1002/adma.202208539] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/29/2022] [Indexed: 06/17/2023]
Abstract
The acidic oxygen evolution reaction underpins several important electrical-to-chemical energy conversions, and this energy-intensive process relies industrially on iridium-based electrocatalysts. Here, phase-selective synthesis of metastable strontium iridates with open-framework structure and their unexpected transformation into a highly active, ultrastable oxygen evolution nano-electrocatalyst are presented. This transformation involves two major steps: Sr2+ /H+ ion exchange in acid and in situ structural rearrangement under electrocatalysis conditions. Unlike its dense perovskite-structured polymorphs, the open-framework iridates have the ability to undergo rapid proton exchange in acid without framework amorphization. The resulting protonated iridates further reconstruct into ultrasmall, surface-hydroxylated, (200) crystal plane-oriented rutile nanocatalyst, instead of the common amorphous IrOx Hy phase, during acidic oxygen evolution. Such microstructural characteristics are found to benefit both the oxidation of hydroxyls and the formation of OO bonds in electrocatalytic cycle. As a result, the open-framework iridate derived nanocatalyst gives a comparable catalytic activity to the most active iridium-based oxygen evolution electrocatalysts in acid, and retains its catalytic activity for more than 1000 h.
Collapse
Affiliation(s)
- Lan Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Lei Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Hui Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xiao Liang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Boyuan Tian
- State Key Laboratory of Advanced Transmission Technology, State Grid Smart Grid Research Institute Co., Ltd, Changping District, Beijing, 102209, P. R. China
| | - Kexin Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yongcun Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xiaoxin Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
47
|
Luo XX, Wang XT, Ang EH, Zhang KY, Zhao XX, Lü HY, Wu XL. Advanced Covalent Organic Frameworks for Multi-Valent Metal Ion Batteries. Chemistry 2023; 29:e202202723. [PMID: 36250748 DOI: 10.1002/chem.202202723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Indexed: 12/05/2022]
Abstract
Covalent organic frameworks (COFs) have received increased interest in recent years as an advanced class of materials. By virtue of the available monomers, multiple conformations and various linkages, COFs offer a wide range of opportunities for complex structural design and specific functional development of materials, which has facilitated the widespread application in many fields, including multi-valent metal ion batteries (MVMIBs), described as the attractive candidate replacing lithium-ion batteries (LIBs). With their robust skeletons, diverse pores, flexible structures and abundant functional groups, COFs are expected to help realize a high performance MVMIBs. In this review, we present an overview of COFs, describe advances in topology design and synthetic reactions, and study the application of COFs in MVMIBs, as well as discuss challenges and solutions in the preparation of COFs electrodes, in the hope of providing constructive insights into the future direction of COFs.
Collapse
Affiliation(s)
- Xiao-Xi Luo
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Xiao-Tong Wang
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, 130024, P. R. China
| | - Edison Huixiang Ang
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, 637616, Singapore
| | - Kai-Yang Zhang
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, 130024, P. R. China
| | - Xin-Xin Zhao
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, 130024, P. R. China
| | - Hong-Yan Lü
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Xing-Long Wu
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China.,MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, 130024, P. R. China
| |
Collapse
|
48
|
Guan Q, Zhou LL, Dong YB. Construction of Covalent Organic Frameworks via Multicomponent Reactions. J Am Chem Soc 2023; 145:1475-1496. [PMID: 36646043 DOI: 10.1021/jacs.2c11071] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Multicomponent reactions (MCRs) combine at least three reactants to afford the desired product in a highly atom-economic way and are therefore viewed as efficient one-pot combinatorial synthesis tools allowing one to significantly boost molecular complexity and diversity. Nowadays, MCRs are no longer confined to organic synthesis and have found applications in materials chemistry. In particular, MCRs can be used to prepare covalent organic frameworks (COFs), which are crystalline porous materials assembled from organic monomers and exhibit a broad range of properties and applications. This synthetic approach retains the advantages of small-molecule MCRs, not only strengthening the skeletal robustness of COFs, but also providing additional driving forces for their crystallization, and has been used to prepare a series of robust COFs with diverse applications. The present perspective article provides the general background for MCRs, discusses the types of MCRs employed for COF synthesis to date, and addresses the related critical challenges and future perspectives to inspire the MCR-based design of new robust COFs and promote further progress in this emerging field.
Collapse
Affiliation(s)
- Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
49
|
Xu X, Zhang S, Xu K, Chen H, Fan X, Huang N. Janus Dione-Based Conjugated Covalent Organic Frameworks with High Conductivity as Superior Cathode Materials. J Am Chem Soc 2023; 145:1022-1030. [PMID: 36584327 DOI: 10.1021/jacs.2c10509] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The development of conductive covalent organic frameworks (COFs) with high stability is desirable for the practical applications in optoelectronics and energy storage. Herein, we developed a new kind of Janus dione-based COF, which is fully sp2 carbon-conjugated through the connection by olefin units. The electrical conductivity and carrier mobility reached up to 10-3 S cm-1 and 7.8 cm2 V-1 s-1, respectively. In addition, these COFs are strongly robust against various harsh conditions. The well-ordered two-dimensional crystalline structures, excellent porosity, high conductivity, and abundant redox-active carbonyl units render these COFs serviceable as high-performance cathode materials in lithium-ion batteries. It is worth noting that TFPPy-ICTO-COF exhibits a capacity of up to 338 mAh g-1 at a discharge rate of 0.1 C, which sets a new capacity record among COF-based lithium-ion batteries. Its capacity retention was as high as 100% even after 1000 cycles, demonstrating the remarkable stability of these Janus dione-based COF materials. This work not only expands the diversity of olefin-linked COFs but also makes a new breakthrough in energy storage.
Collapse
Affiliation(s)
- Xiaoyi Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, International Research Centre for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shuoqing Zhang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Kai Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, International Research Centre for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hongzheng Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, International Research Centre for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiulin Fan
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ning Huang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, International Research Centre for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
50
|
A self-standing three-dimensional covalent organic framework film. Nat Commun 2023; 14:220. [PMID: 36639394 PMCID: PMC9839775 DOI: 10.1038/s41467-023-35931-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Covalent crystals such as diamonds are a class of fascinating materials that are challenging to fabricate in the form of thin films. This is because spatial kinetic control of bond formation is required to create covalently bonded crystal films. Directional crystal growth is commonly achieved by chemical vapor deposition, an approach that is hampered by technical complexity and associated high cost. Here we report on a liquid-liquid interfacial approach based on physical-organic considerations to synthesize an ultrathin covalent crystal film. By distributing reactants into separate phases using hydrophobicity, the chemical reaction is confined to an interface that orients the crystal growth. A molecular-smooth interface combined with in-plane isotropic conditions enables the synthesis of films on a centimeter size scale with a uniform thickness of 13 nm. The film exhibits considerable mechanical robustness enabling a free-standing length of 37 µm, as well as a clearly anisotropic chemical structure and crystal lattice alignment.
Collapse
|