1
|
Sun HH, Zhou ZB, Fu Y, Qi QY, Wang ZX, Xu S, Zhao X. Azobenzene-Bridged Covalent Organic Frameworks Boosting Photocatalytic Hydrogen Peroxide Production from Alkaline Water: One Atom Makes a Significant Improvement. Angew Chem Int Ed Engl 2024; 63:e202409250. [PMID: 39136238 DOI: 10.1002/anie.202409250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Indexed: 10/17/2024]
Abstract
Covalent organic frameworks (COFs) have been demonstrated as promising photocatalysts for hydrogen peroxide (H2O2) production. However, the construction of COFs with new active sites, high photoactivity, and wide-range light absorption for efficient H2O2 production remains challenging. Herein, we present the synthesis of a novel azobenzene-bridged 2D COF (COF-TPT-Azo) with excellent performance on photocatalytic H2O2 production under alkaline conditions. Notably, although COF-TPT-Azo differs by only one atom (-N=N- vs. -C=N-) from its corresponding imine-linked counterpart (COF-TPT-TPA), COF-TPT-Azo exhibits a significantly narrower band gap, enhanced charge transport, and prompted photoactivity. Remarkably, when employed as a metal-free photocatalyst, COF-TPT-Azo achieves a high photocatalytic H2O2 production rate up to 1498 μmol g-1 h-1 at pH = 11, which is 7.9 times higher than that of COF-TPT-TPA. Further density functional theory (DFT) calculations reveal that the -N=N- linkages are the active sites for photocatalysis. This work provides new prospects for developing high-performance COF-based photocatalysts.
Collapse
Affiliation(s)
- Hui-Hui Sun
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Zhi-Bei Zhou
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Yubin Fu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Qiao-Yan Qi
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Zhen-Xue Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Shunqi Xu
- School of Energy and Environment, Southeast University, 211189, Nanjing, Jiangsu, China
| | - Xin Zhao
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
| |
Collapse
|
2
|
Sun J, Chen F, Liu J, Zhang Y, He D, Dodonov VA, Zhao Y. Reactions of an Anionic Gallylene with Azobenzene or Azide Compounds Through C(sp 2)-H and C(sp 3)-H Activation. Molecules 2024; 29:5021. [PMID: 39519661 PMCID: PMC11547653 DOI: 10.3390/molecules29215021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
The activation of inert C-H bonds remains a challenge in current chemistry. Here, we report the excellent reactivity of the anionic gallylene species [LGa:][Na(THF)3] (L = [(2,6-iPr2C6H3)NC(CH3)]22-, 1) that allows the selective activation one ortho sp2 C-H bond of several azobenzene and azide derivatives at ambient temperature, with the transfer of the hydrogen atom to one of the nitrogen atoms. The process leads to the formation of the aryl amido products [LGa-κ2N,C-PhNN(H)(p-R-C6H3)][Na(solvent)3] (2, R = H solvent = DME (1,2-Dimethoxyethane); 3, R = -OMe, solvent = DME; 4, R = -NMe2 solvent = THF), [LGa-κ2N,C-(m-CH3-C6H4)NN(H)(m-CH3-C6H3)][Na(15-C-5)2] (5) with new Ga-C and Ga-N bonds. Moreover, 1 is also effective for the C-H activation of two azides RN3 (R = 2,4,6-Me3C6H2 or 2,6-iPr2C6H3), resulting in the formation of gallium amides [LGa(NH-2-(CH2)-4,6-Me2C6H2)][Na(15-C-5)2] (6) and [LGa(NH-2,6-iPr2C6H3)2][Na(THF)5] (7) through intra- or intermolecular sp3 C-H amination. Significantly, these reactions occur for the highly challenging activation of inert C(sp2)-H and C(sp3)-H bonds, thus demonstrating the excellent reactivity of the Ga(I) species 1. The products 2-7 were characterized by X-ray crystallography, 1H and 13C NMR, UV-vis spectroscopy, and density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Jinfeng Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China
| | - Fangfeng Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China
| | - Juan Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China
| | - Yihu Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China
| | - Dongyu He
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China
| | - Vladimir A. Dodonov
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China
- Grigory Alekseevich Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences (IOMC RAS), Tropinina 49, Nizhny Novgorod 603950, Russia
| | - Yanxia Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China
| |
Collapse
|
3
|
Scheiner S. Anions as Lewis Acids in Noncovalent Bonds. Chemistry 2024; 30:e202402267. [PMID: 38975959 DOI: 10.1002/chem.202402267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/09/2024]
Abstract
The ability of an anion to serve as electron-accepting Lewis acid in a noncovalent bond is assessed via DFT calculations. NH3 is taken as the common base, and is paired with a host of ACln - anions, with central atom A=Ca, Sr, Mg, Te, Sb, Hg, Zn, Ag, Ga, Ti, Sn, I, and B. Each anion reacts through its σ or π-hole although the electrostatic potential of this hole is quite negative in most cases. Despite the contact between this negative hole and the negative region of the approaching nucleophile, the electrostatic component of the interaction energy of each bond is highly favorable, and accounts for more than half of the total attractive energy. The double negative charge of dianions precludes a stable complex with NH3.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, 84322-0300, USA
| |
Collapse
|
4
|
Filbin CJ, Haque MH, Locke CK, Mallon CJ, Curtis K, Osho KE, Borotto NB, Tucker MJ, Odoh SO, Yang Y. Reversible Photochromism of 4,4'-Disubstituted 2,2'-Bipyridine in the Presence of SO 3. Chemphyschem 2024; 25:e202400150. [PMID: 38777787 DOI: 10.1002/cphc.202400150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
We report an unusual photochromic behavior of 4,4'-disubstituted-2,2'-bipyridine. It was found that in the presence of a SO3 source and HCl, 2,2'-bipyridine-4,4'-dibutyl ester undergoes a color change from yellow to magenta in solution with maximum absorbance at 545 nm upon irradiation with 395 nm light. The photochromism is thermally reversible in solution. Different from the known bipyridine-based photoswitching pathways, the photo response does not involve any metal which form colored complexes or the formation of colored free radical cations like the photo-reduction of viologens. A combination of experimental and computational analysis was used to probe the mechanism. The results suggest the colored species to be a complex formed between N-oxide of the 2,2'-bipyridine-4,4'-dibutyl ester and SO2; the N-oxide and SO2 are formed from photoactivated oxidation of the bipyridine with SO3 serving as the oxygen source. This complex represents a new addition to the library of photoswitches that is easy to synthesize, reversible in solution, and of high fatigue resistance, making it a promising candidate for applications in photo-switchable materials and SO3 detection. We also demonstrated experimentally similar photochromic behaviors with 2,2'-bipyridine-containing polymers.
Collapse
Affiliation(s)
- Connor J Filbin
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia St., Reno, Nevada, 89557, US
| | - Md Hasanul Haque
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia St., Reno, Nevada, 89557, US
| | - Cameron K Locke
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia St., Reno, Nevada, 89557, US
| | - Christopher J Mallon
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia St., Reno, Nevada, 89557, US
| | - Kevin Curtis
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia St., Reno, Nevada, 89557, US
| | - Kemi E Osho
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia St., Reno, Nevada, 89557, US
| | - Nicholas B Borotto
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia St., Reno, Nevada, 89557, US
| | - Matthew J Tucker
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia St., Reno, Nevada, 89557, US
| | - Samuel O Odoh
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia St., Reno, Nevada, 89557, US
| | - Ying Yang
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia St., Reno, Nevada, 89557, US
| |
Collapse
|
5
|
Zakrzewski J, Liberka M, Wang J, Chorazy S, Ohkoshi SI. Optical Phenomena in Molecule-Based Magnetic Materials. Chem Rev 2024; 124:5930-6050. [PMID: 38687182 PMCID: PMC11082909 DOI: 10.1021/acs.chemrev.3c00840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Since the last century, we have witnessed the development of molecular magnetism which deals with magnetic materials based on molecular species, i.e., organic radicals and metal complexes. Among them, the broadest attention was devoted to molecule-based ferro-/ferrimagnets, spin transition materials, including those exploring electron transfer, molecular nanomagnets, such as single-molecule magnets (SMMs), molecular qubits, and stimuli-responsive magnetic materials. Their physical properties open the application horizons in sensors, data storage, spintronics, and quantum computation. It was found that various optical phenomena, such as thermochromism, photoswitching of magnetic and optical characteristics, luminescence, nonlinear optical and chiroptical effects, as well as optical responsivity to external stimuli, can be implemented into molecule-based magnetic materials. Moreover, the fruitful interactions of these optical effects with magnetism in molecule-based materials can provide new physical cross-effects and multifunctionality, enriching the applications in optical, electronic, and magnetic devices. This Review aims to show the scope of optical phenomena generated in molecule-based magnetic materials, including the recent advances in such areas as high-temperature photomagnetism, optical thermometry utilizing SMMs, optical addressability of molecular qubits, magneto-chiral dichroism, and opto-magneto-electric multifunctionality. These findings are discussed in the context of the types of optical phenomena accessible for various classes of molecule-based magnetic materials.
Collapse
Affiliation(s)
- Jakub
J. Zakrzewski
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Lojasiewicza
11, 30-348 Krakow, Poland
| | - Michal Liberka
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Lojasiewicza
11, 30-348 Krakow, Poland
| | - Junhao Wang
- Department
of Materials Science, Faculty of Pure and Applied Science, University of Tsukuba, 1-1-1 Tonnodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Szymon Chorazy
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Shin-ichi Ohkoshi
- Department
of Chemistry, School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
6
|
Lin X, Jia S, Ye H, He P, You L. Neighboring Effects of Sulfur Oxidation State on Dynamic Covalent Bonds and Assemblies. Org Lett 2024; 26:3640-3645. [PMID: 38635892 DOI: 10.1021/acs.orglett.4c01143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
The impact of a varied sulfur oxidation state (sulfide, sulfoxide, and sulfone) on imine dynamic covalent chemistry is presented. The role of noncovalent interactions, including chalcogen bonds and CH hydrogen bonds, on aldehyde/imine structures and imine exchange reactions was elucidated through experimental and computational evidence. The change in the sulfur oxidation state and diamine linkage further allowed the regulation of imine macrocycles, providing a platform for controlling molecular assemblies.
Collapse
Affiliation(s)
- Xin Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuaipeng Jia
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hebo Ye
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Peng He
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- College of Chemistry and Material Science, Fujian Normal University, Fuzhou, 350007, China
| | - Lei You
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Jia S, Ye H, He P, Lin X, You L. Selection of isomerization pathways of multistep photoswitches by chalcogen bonding. Nat Commun 2023; 14:7139. [PMID: 37932318 PMCID: PMC10628202 DOI: 10.1038/s41467-023-43013-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023] Open
Abstract
Multistep photoswitches are able to engage in different photoisomerization pathways and are challenging to control. Here we demonstrate a multistep sequence of E/Z isomerization and photocyclization/cycloreversion of photoswitches via manipulating the strength and mechanism of noncovalent chalcogen bonding interactions. The incorporation of chalcogens and the formyl group on open ethene bridged dithienylethenes offers a versatile skeleton for single photochromic molecules. While bidirectional E/Z photoswitching is dominated by neutral tellurium arising from enhanced resonance-assisted chalcogen bonding, the creation of cationic telluronium enables the realization of photocyclization/cycloreversion. The reversible nucleophilic substitution reactions further allow interconversion between neutral tellurium and cationic telluronium and selection of photoisomerization mechanisms on purpose. By leveraging unique photoswitching patterns and dynamic covalent reactivity, light and pH stimuli-responsive multistate rewritable materials were constructed, triggered by an activating reagent for additional control. The results should provide ample opportunities to molecular recognition, intelligent switches, information encryption, and smart materials.
Collapse
Affiliation(s)
- Shuaipeng Jia
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hebo Ye
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Peng He
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Xin Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei You
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, China.
| |
Collapse
|
8
|
Wu X, Yuan Y, Zhao S, Lei Y, Fu X, Lei J, Jiang L. The Synergistic Effects between Liquid Crystal and Crystalline Phase on Photo-Responsive Elastomers toward Quick Photo-Responsive Performance. Macromol Rapid Commun 2023; 44:e2300354. [PMID: 37572076 DOI: 10.1002/marc.202300354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/05/2023] [Indexed: 08/14/2023]
Abstract
Adopting only a small amount of azobenzene molecular to design liquid crystal photo-responsive materials capable of quick response and flexible adjustability is in high demand but is challenging. Herein, azobenzenemolecules into polyurethane elastomer containing crystalline structure for preparing azobenzene liquid-crystal elastomers (ALCEs) are demonstrated and this phenomenon of the synergistic effects between liquid crystal and crystalline phase is discovered. The key point of the work is that the synthetic ALCEs can utilize the reversible isomerism capability of azobenzene molecules under light irradiation, which can pry the motion of the macromolecular crystalline region in system to realize the large macroscopic deformation of the photo-responsive behavior. Obviously, the ALCEs sample containing azobenzene molecule and polyethylene glycol crystallization can quickly bend, illuminated by ultraviolet light and rapidly straighten under green light. Under the same ultraviolet irradiation, the bending speed, final bending angle, recovery rate and recovery ratio of ALCEs are larger than that of ALCEs without any crystalline structure. This ALCEs based on the synergistic effects between liquid crystal and crystalline phase can break through the current dilemma that the application of traditional azobenzene photo-responsive materials is limited by their concentration, greatly expanding the design thought and their scope of application.
Collapse
Affiliation(s)
- Xudong Wu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, P. R. China
| | - Ye Yuan
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, P. R. China
- Scientific Research Institute, Luzhou North Chemistry Industry Corporation, Luzhou, 646100, P. R. China
| | - Shiwei Zhao
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, P. R. China
| | - Yuan Lei
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, P. R. China
| | - Xiaowei Fu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, P. R. China
| | - Jingxin Lei
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, P. R. China
| | - Liang Jiang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
9
|
Xie J, Hou H, Lu H, Lu F, Liu W, Wang X, Cheng L, Zhang Y, Wang Y, Wang Y, Diwu J, Hu B, Chai Z, Wang S. Photochromic Uranyl-Based Coordination Polymer for Quantitative and On-Site Detection of UV Radiation Dose. Inorg Chem 2023; 62:15834-15841. [PMID: 37724987 DOI: 10.1021/acs.inorgchem.3c00972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
A highly sensitive detection of ultraviolet (UV) radiation is required in a broad range of scientific research, chemical industries, and health-related applications. Traditional UV photodetectors fabricated by direct wide-band-gap inorganic semiconductors often suffer from several disadvantages such as complicated manufacturing procedures, requiring multiple operations and high-cost instruments to obtain a readout. Searching for new materials or simple strategies to develop UV dosimeters for quantitative, accurate, and on-site detection of UV radiation dose is still highly desirable. Herein, a photochromic uranyl-based coordination polymer [(UO2)(PBPCA)·DMF]·DMF (PBPCA = pyridine-3,5-bis(phenyl-4-carboxylate), DMF = N,N'-dimethylformamide, denoted as SXU-1) with highly radiolytic and chemical stabilities was successfully synthesized via the solvothermal method at 100 °C. Surprisingly, the fresh samples of SXU-1 underwent an ultra-fast UV-induced (365 nm, 2 mW) color variation from yellow to orange in less than 1 s, and then the color changed further from orange to brick red after the subsequent irradiation, inspiring us to develop a colorimetric dosimeter based on red-green-blue (RGB) parameters. The mechanism of radical-induced photochromism was intensively investigated by UV-vis absorption spectra, EPR analysis, and SC-XRD data. Furthermore, SXU-1 was incorporated into an optoelectronic device to fabricate a novel dosimeter for convenient, quantitative, and on-site detection of UV radiation dose.
Collapse
Affiliation(s)
- Jian Xie
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, China
| | - Huiliang Hou
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huangjie Lu
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feifan Lu
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, China
| | - Wei Liu
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Xia Wang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Liwei Cheng
- State Key Laboratory of Radiation Medicine and Protection, School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yugang Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yanlong Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yaxing Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Juan Diwu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Baowei Hu
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, China
| | - Zhifang Chai
- State Key Laboratory of Radiation Medicine and Protection, School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
10
|
Zhang P, Zhang X, Kreuzer LP, Schwaiger DM, Lu M, Cubitt R, Zhong Q, Müller-Buschbaum P. Kinetics of UV Radiation-Induced Fast Collapse and Recovery in Thermally Cycled and Rehydrated Light- and Thermo- Double-Responsive Copolymer Films Probed by In Situ Neutron Reflectivity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:10464-10474. [PMID: 37458993 DOI: 10.1021/acs.langmuir.3c00905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
The kinetics of UV radiation-induced fast collapse and recovery in thermally cycled and rehydrated light- and thermo- double-responsive copolymer films of poly(oligo(ethylene glycol) methyl ether methacrylate-co-6-(4-phenylazophenoxy)hexyl acrylate), abbreviated as P(OEGMA300-co-PAHA), are probed by in situ neutron reflectivity (NR). The copolymer film is exposed to a thermal treatment starting at a temperature of 60 °C, which is well above its transition temperature (TT = 53 °C) before the temperature is rapidly decreased from 60 to 23 °C. Based on the applied protocol, the initially collapsed P(OEGMA300-co-PAHA) film is rehydrated due to the switching of polymer chains from a more hydrophobic to a more hydrophilic state when the temperature falls below its TT. The whole rehydration process can be divided into 3 stages: D2O absorption, chain rearrangement, and film reswelling. After rehydration, the thermally cycled P(OEGMA300-co-PAHA) film is switched by UV irradiation via setting the UV radiation on and off. Considering the UV-induced collapse and recovery, both processes are slower than those observed in freshly hydrated films without any thermal stimulus history. Therefore, the experienced thermal history of the film should be considered in the design of sensors and detectors based on double-responsive copolymer films.
Collapse
Affiliation(s)
- Panpan Zhang
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province; Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, 310018 Hangzhou, China
| | - Xuan Zhang
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province; Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, 310018 Hangzhou, China
| | - Lucas P Kreuzer
- Department of Physics, Chair for Functional Materials, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Street 1, 85748 Garching, Germany
- Heinz Maier-Leibnitz Zentrum (MLZ), Technical University of Munich, Lichtenbergstraße 1, 85748 Garching, Germany
| | - Dominik M Schwaiger
- Department of Physics, Chair for Functional Materials, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Street 1, 85748 Garching, Germany
| | - Min Lu
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province; Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, 310018 Hangzhou, China
| | - Robert Cubitt
- Institut Laue-Langevin, 6 Rue Jules Horowitz, 38000 Grenoble, France
| | - Qi Zhong
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province; Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, 310018 Hangzhou, China
- Department of Physics, Chair for Functional Materials, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Street 1, 85748 Garching, Germany
| | - Peter Müller-Buschbaum
- Department of Physics, Chair for Functional Materials, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Street 1, 85748 Garching, Germany
- Heinz Maier-Leibnitz Zentrum (MLZ), Technical University of Munich, Lichtenbergstraße 1, 85748 Garching, Germany
| |
Collapse
|
11
|
Abd El-Lateef HM, Khalaf MM, Amer AA, Kandeel M, Abdelhamid AA, Abdou A. Synthesis, Characterization, Antimicrobial, Density Functional Theory, and Molecular Docking Studies of Novel Mn(II), Fe(III), and Cr(III) Complexes Incorporating 4-(2-Hydroxyphenyl azo)-1-naphthol (Az). ACS OMEGA 2023; 8:25877-25891. [PMID: 37521661 PMCID: PMC10373178 DOI: 10.1021/acsomega.3c01413] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023]
Abstract
This work synthesized three new CrAz2, MnAz2, and FeAz2 complexes and investigated them using IR, mass, UV spectroscopy, elemental analysis, conductivity and magnetic tests, and thermogravimetric analysis. The azo-ligand, 4-(2-hydroxyphenylAzo)-1-naphthol (Az), couples with metal ions via its nitrogen (in -N=N- bonds) and oxygen (in hydroxyl group) atoms, according to the IR spectra of these complexes. Through thermal examination (TG/TGA), the number and location of water in the complexes were also determined. Density functional theory (DFT) theory is applied to ameliorate the structures of the ligand (Az) and metal complexes and analyze the quantum chemical characteristics of these complexes. The antifungal and antibacterial activity of the ligand and its complexes opposed to several hazardous bacteria and fungi was investigated in vitro. Metal complexes were discovered to have a higher inhibitory impact on some organisms than the free ligand. The MnAz2 complex exhibited the best activity among the studied materials, whereas the CrAz2 complex had the lowest. The compounds' binding affinity to the E. coli (PDB ID: 1hnj) structure was predicted using molecular docking. Binding energies were calculated by analyzing protein-substrate interactions. These encouraging findings imply that these chemicals may have physiological effects and may be valuable for a variety of medical uses in the future.
Collapse
Affiliation(s)
- Hany M. Abd El-Lateef
- Department
of Chemistry, College of Science, King Faisal
University, Al-Ahsa 31982, Saudi Arabia
- Chemistry
Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Mai M. Khalaf
- Department
of Chemistry, College of Science, King Faisal
University, Al-Ahsa 31982, Saudi Arabia
- Chemistry
Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Amer A. Amer
- Chemistry
Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Mahmoud Kandeel
- Department
of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, 31982 Al-Ahsa, Saudi Arabia
- Department
of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt
| | - Antar A. Abdelhamid
- Chemistry
Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
- Chemistry
Department, Faculty of Science, Albaha University, Albaha 1988, Saudi Arabia
| | - Aly Abdou
- Chemistry
Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| |
Collapse
|
12
|
Zou D, Li Z, Long D, Dong X, Qu H, Yang L, Cao X. Molecular Cage with Dual Outputs of Photochromism and Luminescence Both in Solution and the Solid State. ACS APPLIED MATERIALS & INTERFACES 2023; 15:13545-13553. [PMID: 36868562 DOI: 10.1021/acsami.2c23196] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The rational design of stimuli-responsive materials requires a deep understanding of the structure-activity relationship. Herein, we proposed an intramolecular conformation-locking strategy─incorporating flexible tetraphenylethylene (TPE) luminogens into the rigid scaffold of a molecular cage─to produce a molecular photoswitch with dual outputs of luminescence and photochromism in solution and in the solid states at once. The molecular cage scaffold, which restricts the intramolecular rotations of the TPE moiety, not only helps to preserve the luminescence of TPE in a dilute solution but facilitates the reversible photochromism on account of the intramolecular cyclization/cycloreversion reactions. Furthermore, we demonstrate assorted applications of this multiresponsive molecular cage, e.g., photo-switchable patterning, anticounterfeiting, and selective vapochromism sensing.
Collapse
Affiliation(s)
- Ding Zou
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Zhihao Li
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Da Long
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Xue Dong
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Hang Qu
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Liulin Yang
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Xiaoyu Cao
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
13
|
Lei Y, Yuan Y, Zhao S, Yuan A, Zhou S, Xiao Y, lei J, Jiang L. Catalyst-free, highly sensitive and adjustable photo-responsive azobenzene liquid crystal elastomers based on dynamic multiple hydrogen bond. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
14
|
Scheiner S. Adjusting the balance between hydrogen and chalcogen bonds. Phys Chem Chem Phys 2022; 24:28944-28955. [PMID: 36416473 DOI: 10.1039/d2cp04591e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A complex is assembled which pairs a carboxyl group of X1COOH with a 1,2,5-chalcogenadiazole ring containing substituents on its C atoms. The OH of the carboxyl group donates a proton to a N atom of the ring to form a OH⋯N H-bond (HB), while its carbonyl O engages in a Y⋯O chalcogen bond (ChB) with the ring in which Y = S, Se, Te. The ChB is strengthened by enlarging the size of the Y atom from S to Se to Te. Placement of an electron-withdrawing group (EWG) X1 on the acid strengthens the HB while weakening the ChB; the reverse occurs when EWGs are placed on the ring. By selection of the proper substituents on the two units, it is possible to achieve a near perfect balance between the strengths of these two bonds. These bond strengths are also reflected in the NMR spectroscopic properties of the chemical shielding of the various atoms and the coupling between the nuclei directly involved in each bond.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, USA.
| |
Collapse
|
15
|
A kind of new type photoresponsive molecularly imprinted electrochemical sensor based on 5-[(4-(methacryloyloxy)phenyl)diazenyla]isophthalic acid for the detection of carbaryl. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05331-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Kerckhoffs A, Christensen KE, Langton MJ. Fast relaxing red and near-IR switchable azobenzenes with chalcogen and halogen substituents: periodic trends, tuneable thermal half-lives and chalcogen bonding. Chem Sci 2022; 13:11551-11559. [PMID: 36320400 PMCID: PMC9555560 DOI: 10.1039/d2sc04601f] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/18/2022] [Indexed: 11/08/2023] Open
Abstract
Molecular photoswitches operating in the red to near-IR region with controllable thermal relaxation rates are attractive components for photo-regulating biological processes. Herein, we report the synthesis of red-shifted azobenzenes functionalised with the heavier chalcogens and halogens that meet these requirements for biological application; namely fatigue-resistant photo-switching with red and near IR light and functional handles for further functionalisation for application. We report robust periodic trends for the chalcogen and halogen azobenzene series, and exploit intramolecular chalcogen bonding to tune and redshift the absorption maxima, supported by photo-physical measurements and solid-state structural analysis. Remarkably, the rate of the Z → E thermal isomerisation can be tuned over timescales spanning 107 s by judicious choice of chalcogen and halogen substituents.
Collapse
Affiliation(s)
- Aidan Kerckhoffs
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Kirsten E Christensen
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Matthew J Langton
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
17
|
Rickhoff J, Arndt NB, Böckmann M, Doltsinis NL, Ravoo BJ, Kortekaas L. Reversible, Red-Shifted Photoisomerization in Protonated Azobenzenes. J Org Chem 2022; 87:10605-10612. [PMID: 35921095 PMCID: PMC9396658 DOI: 10.1021/acs.joc.2c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Azobenzenes are among the best-studied molecular photoswitches
and play a key role in the search for red-shifted photoresponsive
materials for extended applications. Currently, most approaches deal
with aromatic substitution patterns to achieve visible light application,
on occasion paired with protonation to yield red-shifted absorption
of the azonium species. Appropriate substitution patterns are essential
to stabilize the latter approach, as conventional acids are known
to induce a fast Z- to E-conversion.
Here, we show that steady-state protonation of the azo-bridge instead
is possible in simple azobenzenes when the pKa of the acid is low enough, yielding both the Z- and E-azonium as supported by UV–vis- and 1H NMR spectroscopy as well as density functional theory calculations.
Moreover, the steady-state protonation of para-methoxyazobenzene,
specifically, yields photoisomerizable azonium ions in which the direction
of switching is essentially reversed, that is, visible light produces
the out-of-equilibrium Z-azonium. Although the current
conditions render the visible light photoswitch unsuitable for in
vivo and material application, the demonstrated understanding of simple
azobenzenes paves the way for a great range of further work on this
already widely studied photoswitch.
Collapse
Affiliation(s)
- Jonas Rickhoff
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany.,Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Busso-Peus-Straße 10, 48149 Münster, Germany
| | - Niklas B Arndt
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany.,Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Busso-Peus-Straße 10, 48149 Münster, Germany
| | - Marcus Böckmann
- Institute for Solid State Theory and Center for Multiscale Theory & Computation, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 10, 48149 Münster, Germany
| | - Nikos L Doltsinis
- Institute for Solid State Theory and Center for Multiscale Theory & Computation, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 10, 48149 Münster, Germany
| | - Bart Jan Ravoo
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany.,Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Busso-Peus-Straße 10, 48149 Münster, Germany
| | - Luuk Kortekaas
- Materials Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
18
|
Kundu S, Ghosh A, Paul I, Schmittel M. Multicomponent Pseudorotaxane Quadrilateral as Dual-Way Logic AND Gate with Two Catalytic Outputs. J Am Chem Soc 2022; 144:13039-13043. [PMID: 35834720 DOI: 10.1021/jacs.2c05065] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A multicomponent pseudorotaxane quadrilateral was reversibly toggled between three distinct switching states. Switching in the forward conversion was achieved by addition of H+ and K+ ions, and switching in the reverse direction was performed by addition of 18-crown-6 and 1-aza-18-crown-6. In both the forward and backward ways, the inputs operated an AND gate with distinct catalytic outputs. While in the forward direction the logic AND operation starting from a heteroleptic five-component assembly turned "ON" an imine hydrolysis as output (AND-1), in the inverse direction a Michael addition was ignited as the output starting from a seven-component aggregate following the AND gate logic (AND-2).
Collapse
Affiliation(s)
- Sohom Kundu
- Center of Micro- and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Amit Ghosh
- Center of Micro- and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Indrajit Paul
- Center of Micro- and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Michael Schmittel
- Center of Micro- and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| |
Collapse
|
19
|
Hao B, Wang J, Wang C, Xue K, Xiao M, Lv S, Zhu C. Bridging D-A type photosensitizers with the azo group to boost intersystem crossing for efficient photodynamic therapy. Chem Sci 2022; 13:4139-4149. [PMID: 35440990 PMCID: PMC8985587 DOI: 10.1039/d2sc00381c] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/11/2022] [Indexed: 11/21/2022] Open
Abstract
Photodynamic therapy (PDT) has attracted much attention in disease treatments. However, the exploration of a novel method for the construction of outstanding photosensitizers (PSs) with stimuli-responsiveness remains challenging. In this study, we, for the first time, report a novel and effective strategy to boost reactive oxygen species (ROS) generation by bridging donor-acceptor (D-A) type PSs with the azo group. In contrast to the counterpart without azo-bridging, the azo-bridged PSs exhibit remarkably enhanced ROS generation via both type-I and type-II photochemical reactions. Theoretical calculations suggest that azo-bridging leads to a prominent reduction in ΔE ST, thereby enabling enhanced ROS generation via efficient intersystem crossing (ISC). The resulting azo-bridged PS (denoted as Azo-TPA-Th(+)) exhibits a particularly strong bactericidal effect against clinically relevant drug-resistant bacteria, with the killing efficiency up to 99.999999% upon white light irradiation. Since azo-bridging generates an azobenzene structure, Azo-TPA-Th(+) can undergo trans-to-cis isomerization upon UV irradiation to form emissive aggregates by shutting down the ISC channel. By virtue of the fluorescence turn-on property of unbound Azo-TPA-Th(+), we propose a straightforward method to directly discern the effective photodynamic bactericidal dose without performing the tedious plate-counting assay. This study opens a brand-new avenue for the design of advanced PSs with both strong ROS generation and stimuli-responsiveness, holding great potential in high-quality PDT with rapid prediction of the therapeutic outcome.
Collapse
Affiliation(s)
- Boyi Hao
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Jiaxin Wang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Chao Wang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Ke Xue
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Minghui Xiao
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Shuyi Lv
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Chunlei Zhu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| |
Collapse
|
20
|
Jia S, Ye H, You L. Interplay between chalcogen bonds and dynamic covalent bonds. Org Chem Front 2022. [DOI: 10.1039/d2qo00684g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A combination of chalcogen bonds, one type of emerging non-covalent bonding force, and imine bonds, allow the control of the dynamic covalent chemistry with orbital interactions and the reversal of kinetic and thermodynamic selectivity.
Collapse
Affiliation(s)
- Shuaipeng Jia
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hebo Ye
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Lei You
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| |
Collapse
|