1
|
Tao Q, Zheng Y, Li Q, Long Y, Wang J, Jin Z, Zhou X. Aerobic Reconstruction of Amines to Amides: A C-N/C-C Bond Cleavage Approach. Org Lett 2024. [PMID: 39680724 DOI: 10.1021/acs.orglett.4c04366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Herein, an aerobic reconstruction of amines to amides via C(sp3)-N bond and C(sp2)-C(sp3) bond cleavage is described. This method features a metal-free reaction, insensitivity to oxygen or moisture, and ambient air as the terminal oxidant. Preliminary mechanistic studies suggest that the reaction pathway of amine oxidation, followed by imine exchange and Beckmann rearrangement, is involved.
Collapse
Affiliation(s)
- Qinyue Tao
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Yanling Zheng
- School of Pharmacy, North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Qiang Li
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Yang Long
- School of Pharmacy, North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Jing Wang
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610064, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zewei Jin
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Xiangge Zhou
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
2
|
Du H, Wang T, Li M, Yin Z, Lv R, Zhang M, Wu X, Tang Y, Li H, Fu G. Identifying Highly Active and Selective Cobalt X-Ides for Electrocatalytic Hydrogenation of Quinoline. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2411090. [PMID: 39221520 DOI: 10.1002/adma.202411090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Earth-abundant Co X-ides are emerging as promising catalysts for the electrocatalytic hydrogenation of quinoline (ECHQ), yet challenging due to the limited fundamental understanding of ECHQ mechanism on Co X-ides. This work identifies the catalytic performance differences of Co X-ides in ECHQ and provides significant insights into the catalytic mechanism of ECHQ. Among selected Co X-ides, the Co3O4 presents the best ECHQ performance with a high conversion of 98.2% and 100% selectivity at ambient conditions. The Co3O4 sites present a higher proportion of 2-coordinated hydrogen-bonded water at the interface than other Co X-ides at a low negative potential, which enhances the kinetics of subsequent water dissociation to produce H*. An ideal 1,4/2,3-H* addition pathway on Co3O4 surface with a spontaneous desorption of 1,2,3,4-tetrahydroquinoline is demonstrated through operando tracing and theoretical calculations. In comparison, the Co9S8 sites display the lowest ECHQ performance due to the high thermodynamic barrier in the H* formation step, which suppresses subsequent hydrogenation; while the ECHQ on Co(OH)F and CoP sites undergo the 1,2,3,4- and 4,3/1,2-H* addition pathway respectively with the high desorption barriers and thus low conversion of quinoline. Moreover, the Co3O4 presents a wide substrate scope and allows excellent conversion of other quinoline derivatives and N-heterocyclic substrates.
Collapse
Affiliation(s)
- Han Du
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Tianyi Wang
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Meng Li
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210096, China
| | - Zitong Yin
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Ransheng Lv
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Muzhe Zhang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Xiangrui Wu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Hao Li
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Gengtao Fu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
3
|
Xie KA, Bednarova E, Joe CL, Sherwood TC, Welin ER, Rovis T. A Unified Method for Oxidative and Reductive Decarboxylative Arylation with Orange Light-Driven Ir/Ni Metallaphotoredox Catalysis. J Am Chem Soc 2024; 146:25780-25787. [PMID: 39236338 DOI: 10.1021/jacs.4c08375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Carboxylic acids and their derivatives are powerful building blocks in dual Ir/Ni metallaphotoredox methods of decarboxylative arylation due to their abundance as feedstock compounds. However, the library of accessible carboxylic acids is limited by trends in radical stability, often necessitating the development of specific systems for challenging substrates. Herein, we disclose the application of a new Ir(III) photocatalyst and low-energy orange light Ir/Ni metallaphotoredox system with broad applicability in activating both native carboxylic acids and redox-active esters (RAEs). This method represents the first known example of complementary oxidative and reductive decarboxylative paradigms with broadly similar reaction conditions, unlocking the reactivity for challenging substrates. We further show a wide scope of aryl halide and acid coupling partners in both regimes, with added advantages over blue-light-catalyzed aryl alkylation for photosensitive substrates.
Collapse
Affiliation(s)
- Katherine A Xie
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Eva Bednarova
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Candice L Joe
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Trevor C Sherwood
- Small Molecule Drug Discovery, Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | - Eric R Welin
- Small Molecule Drug Discovery, Bristol Myers Squibb, San Diego, California 92121, United States
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
4
|
Zhen YY, Qu JP, Kang YB. Synthesis Enabled by E-to-Z Isomerization Using CBZ6 as Energy Transfer Photocatalyst. Org Lett 2024; 26:5177-5181. [PMID: 38856646 DOI: 10.1021/acs.orglett.4c01715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The reactions of Z-isomers and E-isomers usually are different in consideration of the regioselectivity of chemoselectivity. The syntheses of Z-isomers are not feasible in many cases. The energy transfer (EnT) E/Z-photoisomerization might yield the Z-isomers. In this work, CBZ6 was proven to be an EnT photocatalyst for the E → Z-isomerization of C-C or C-N double bonds. The transformations of in situ generated Z-isomers of oximes and stilbenes consequently afforded the desired reversed Beckmann rearrangement products and phenanthrenes, respectively.
Collapse
Affiliation(s)
- Ying-Ying Zhen
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jian-Ping Qu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yan-Biao Kang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
5
|
Zhu WF, Empel C, Pelliccia S, Koenigs RM, Proschak E, Hernandez-Olmos V. Photochemistry in Medicinal Chemistry and Chemical Biology. J Med Chem 2024. [PMID: 38457829 DOI: 10.1021/acs.jmedchem.3c02109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Photochemistry has emerged as a transformative force in organic chemistry, significantly expanding the chemical space accessible for medicinal chemistry. Light-induced reactions enable the efficient synthesis of intricate organic structures and have found applications throughout the different stages of the drug discovery and development processes. Moreover, photochemical techniques provide innovative solutions in chemical biology, allowing precise spatiotemporal drug activation and targeted delivery. In this Perspective, we highlight the already numerous remarkable applications and the even more promising future of photochemistry in medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- W Felix Zhu
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Claire Empel
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| | - Sveva Pelliccia
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| | - Rene M Koenigs
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Victor Hernandez-Olmos
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| |
Collapse
|
6
|
Dutta S, Erchinger JE, Strieth-Kalthoff F, Kleinmans R, Glorius F. Energy transfer photocatalysis: exciting modes of reactivity. Chem Soc Rev 2024; 53:1068-1089. [PMID: 38168974 DOI: 10.1039/d3cs00190c] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Excited (triplet) states offer a myriad of attractive synthetic pathways, including cycloadditions, selective homolytic bond cleavages and strain-release chemistry, isomerizations, deracemizations, or the fusion with metal catalysis. Recent years have seen enormous advantages in enabling these reactivity modes through visible-light-mediated triplet-triplet energy transfer catalysis (TTEnT). This tutorial review provides an overview of this emerging strategy for synthesizing sought-after organic motifs in a mild, selective, and sustainable manner. Building on the photophysical foundations of energy transfer, this review also discusses catalyst design, as well as the challenges and opportunities of energy transfer catalysis.
Collapse
Affiliation(s)
- Subhabrata Dutta
- University of Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany.
| | - Johannes E Erchinger
- University of Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany.
| | - Felix Strieth-Kalthoff
- University of Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany.
| | - Roman Kleinmans
- University of Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany.
| | - Frank Glorius
- University of Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany.
| |
Collapse
|
7
|
Wei H, Xie M, Chen M, Jiang Q, Wang T, Xing P. Shedding light on cellular dynamics: the progress in developing photoactivated fluorophores. Analyst 2024; 149:689-699. [PMID: 38180167 DOI: 10.1039/d3an01994b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Photoactivated fluorophores (PAFs) are highly effective imaging tools that exhibit a removal of caging groups upon light excitation, resulting in the restoration of their bright fluorescence. This unique property allows for precise control over the spatiotemporal aspects of small molecule substances, making them indispensable for studying protein labeling and small molecule signaling within live cells. In this comprehensive review, we explore the historical background of this field and emphasize recent advancements based on various reaction mechanisms. Additionally, we discuss the structures and applications of the PAFs. We firmly believe that the development of more novel PAFs will provide powerful tools to dynamically investigate cells and expand the applications of these techniques into new domains.
Collapse
Affiliation(s)
- Huihui Wei
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| | - Mingli Xie
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| | - Min Chen
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| | - Qinhong Jiang
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| | - Tenghui Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| | - Panfei Xing
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| |
Collapse
|
8
|
Göttemann LT, Wiesler S, Sarpong R. Oxidative cleavage of ketoximes to ketones using photoexcited nitroarenes. Chem Sci 2023; 15:213-219. [PMID: 38131093 PMCID: PMC10732129 DOI: 10.1039/d3sc05414d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
The methoxime group has emerged as a versatile directing group for a variety of C-H functionalizations. Despite its importance as a powerful functional handle, conversion of methoximes to the parent ketone, which is often desired, usually requires harsh and functional group intolerant reaction conditions. Therefore, the application of methoximes and their subsequent conversion to the corresponding ketone in a late-stage context can be problematic. Here, we present an alternative set of conditions to achieve mild and functional group tolerant conversion of methoximes to the parent ketones using photoexcited nitroarenes. The utility of this methodology is showcased in its application in the total synthesis of cephanolide D. Furthermore, mechanistic insight into this transformation obtained using isotope labeling studies as well as the analysis of reaction byproducts is provided.
Collapse
Affiliation(s)
- Lucas T Göttemann
- Department of Chemistry, Latimer Hall, University of California Berkeley California 94720 USA
| | - Stefan Wiesler
- Department of Chemistry, Latimer Hall, University of California Berkeley California 94720 USA
| | - Richmond Sarpong
- Department of Chemistry, Latimer Hall, University of California Berkeley California 94720 USA
| |
Collapse
|
9
|
Xu ZW, Wang S. Access to Chiral O,O-Acetals Enabled by Palladium-Catalyzed Asymmetric Addition of Oximes to Alkoxyallenes. Chemistry 2023; 29:e202301883. [PMID: 37653541 DOI: 10.1002/chem.202301883] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/19/2023] [Accepted: 08/31/2023] [Indexed: 09/02/2023]
Abstract
Enantiomerically pure acyclic O,O-acetal compounds (up to 97 % ee) have been accessed through chemo-, regio- and enantioselective palladium-catalyzed addition of oximes to alkoxyallenes. DFT calculations support that a protonative hydropalladation pathway is favourable, in which the hydrogen bonding interaction between the amide group of the diphosphine ligand and the alkoxyallene is critical for the highly stereoselective formation of the dioxygenated stereogenic center.
Collapse
Affiliation(s)
- Zhuo-Wei Xu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, 210023, Nanjing, Jiangsu, China
| | - Shaozhong Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, 210023, Nanjing, Jiangsu, China
| |
Collapse
|
10
|
Qi Z, Wang S. Construction of Cyclic Nitrones Enabled by Photodriven and Gold-Catalyzed 1,3-Azaprotio Transfer of Allenyloximes. J Org Chem 2023; 88:15395-15403. [PMID: 37874944 DOI: 10.1021/acs.joc.3c01937] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
A protocol was developed to construct five- to seven-membered cyclic nitrones through the gold-catalyzed 1,3-azaprotio transfer of allenyloximes under photoirradiation. The photoisomerization of oximes was suggested to convert the inert stereoisomer to a reactive one. This photodriven and gold-catalyzed ring formation could be further extended to the thermodynamically stable aryl ketoximes with an E-configuration, which previously displayed chemical inertness in the absence of light irradiation.
Collapse
Affiliation(s)
- Zhenjie Qi
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shaozhong Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
11
|
Onneken C, Morack T, Soika J, Sokolova O, Niemeyer N, Mück-Lichtenfeld C, Daniliuc CG, Neugebauer J, Gilmour R. Light-enabled deracemization of cyclopropanes by Al-salen photocatalysis. Nature 2023; 621:753-759. [PMID: 37612509 PMCID: PMC10533403 DOI: 10.1038/s41586-023-06407-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 07/05/2023] [Indexed: 08/25/2023]
Abstract
Privileged chiral catalysts-those that share common structural features and are enantioselective across a range of reactions-continue to transform the chemical-research landscape1. In recent years, new reactivity modes have been achieved through excited-state catalysis, processes activated by light, but it is unclear if the selectivity of ground-state privileged catalysts can be matched. Although the interception of photogenerated intermediates by ground-state cycles has partially addressed this challenge2, single, chiral photocatalysts that simultaneously regulate reactivity and selectivity are conspicuously scarce3. So far, precision donor-acceptor recognition motifs remain crucial in enantioselective photocatalyst design4. Here we show that chiral Al-salen complexes, which have well-defined photophysical properties, can be used for the efficient photochemical deracemization5 of cyclopropyl ketones (up to 98:2 enantiomeric ratio (e.r.)). Irradiation at λ = 400 nm (violet light) augments the reactivity of the commercial catalyst to enable reactivity and enantioselectivity to be regulated simultaneously. This circumvents the need for tailored catalyst-substrate recognition motifs. It is predicted that this study will stimulate a re-evaluation of many venerable (ground-state) chiral catalysts in excited-state processes, ultimately leading to the identification of candidates that may be considered 'privileged' in both reactivity models.
Collapse
Affiliation(s)
- Carina Onneken
- Institute of Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany
| | - Tobias Morack
- Institute of Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany
- Department of Chemistry, Yale University, New Haven, CT, USA
| | - Julia Soika
- Institute of Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany
| | - Olga Sokolova
- Institute of Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany
| | - Niklas Niemeyer
- Institute of Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany
- Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany
| | - Christian Mück-Lichtenfeld
- Institute of Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany
- Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany
| | - Constantin G Daniliuc
- Institute of Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany
| | - Johannes Neugebauer
- Institute of Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany.
- Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany.
| | - Ryan Gilmour
- Institute of Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany.
| |
Collapse
|
12
|
Qi Z, An Z, Huang B, Wu M, Wu Q, Jiang D. Visible-light-catalyzed synthesis of 1,3-benzoxazines via formal [4 + 2] cycloaddition of oximes with o-hydroxybenzyl alcohols. Org Biomol Chem 2023; 21:6419-6423. [PMID: 37522185 DOI: 10.1039/d3ob00882g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
A formal [4 + 2] cycloaddition of oximes with o-hydroxybenzyl alcohols was developed to easily synthesize diverse 1,3-benzoxazine derivatives. This synthesis was achieved under visible light-based organocatalytic and TsOH conditions. The reaction proceeds through the photoisomerization of oximes via visible light-mediated energy transfer, followed by the nucleophilic attack of o-QMs to oximes as a 1,2-dipole synthon, cyclization, and isomerization. The reaction exhibits a broad substrate scope and can be carried out under mild conditions. To demonstrate its synthetic usefulness, a gram-scale reaction was conducted, and the resulting 1,3-benzoxazine products were further transformed into other valuable compounds.
Collapse
Affiliation(s)
- Zhenjie Qi
- Department of Engineering, Jining University, Qufu, Shandong, 273155, P. R. China.
| | - Zhenyu An
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Bingbing Huang
- Rarbow (Hangzhou) Pharmaceutical Co. Ltd, Hangzhou, 310000, China
| | - Mingzhong Wu
- School of Pharmacy, Liaocheng University, Liaocheng, China
| | - Quansen Wu
- Department of Engineering, Jining University, Qufu, Shandong, 273155, P. R. China.
| | - Dongfang Jiang
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Provincial First-Class Applied Discipline (Pharmacy), Changsha, 410000, China
| |
Collapse
|
13
|
Wang Z, Wierich N, Zhang J, Daniliuc CG, Studer A. Alkyl Radical Generation from Alkylboronic Pinacol Esters through Substitution with Aminyl Radicals. J Am Chem Soc 2023; 145:8770-8775. [PMID: 37058606 DOI: 10.1021/jacs.3c01129] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
Alkylboronic pinacol esters (APEs) are highly versatile reagents in organic synthesis. However, the direct generation of alkyl radicals from commonly used, bench-stable APEs has not been well explored. In this communication, alkyl radical generation from APEs through reaction with aminyl radicals is reported. The aminyl radicals are readily generated by visible-light-induced homolytic cleavage of the N-N bond in N-nitrosamines, and C radical generation occurs through nucleohomolytic substitution at boron. As an application, the highly efficient photochemical radical alkyloximation of alkenes with APEs and N-nitrosamines under mild conditions is presented. A wide range of primary, secondary, and tertiary APEs engage in this transformation that is easily scaled up.
Collapse
Affiliation(s)
- Zhe Wang
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149 Münster, Germany
| | - Nick Wierich
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149 Münster, Germany
| | - Jingjing Zhang
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149 Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149 Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
14
|
Lv XY, Abrams R, Martin R. Copper-Catalyzed C(sp 3 )-Amination of Ketone-Derived Dihydroquinazolinones by Aromatization-Driven C-C Bond Scission. Angew Chem Int Ed Engl 2023; 62:e202217386. [PMID: 36576703 DOI: 10.1002/anie.202217386] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 12/29/2022]
Abstract
Herein, we describe the development of a copper-catalyzed C(sp3 )-amination of proaromatic dihydroquinazolinones derived from ketones. The reaction is enabled by the intermediacy of open-shell species arising from homolytic C-C bond-cleavage driven by aromatization. The protocol is characterized by its operational simplicity and generality, including chemical diversification of advanced intermediates.
Collapse
Affiliation(s)
- Xin-Yang Lv
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain.,Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, c/Marcel⋅lí Domingo, 1, 43007, Tarragona, Spain
| | - Roman Abrams
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Ruben Martin
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluïs Companys, 23, 08010, Barcelona, Spain
| |
Collapse
|
15
|
Tanaka K, Hashimoto Y, Morita N, Tamura O. Directing-Group-Free Palladium-Catalyzed C–H Arylation of Aldoxime Using Oxime’s Umpolung Properties. Org Lett 2022; 24:8954-8958. [DOI: 10.1021/acs.orglett.2c03387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Kosaku Tanaka
- Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Yoshimitsu Hashimoto
- Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Nobuyoshi Morita
- Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Osamu Tamura
- Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| |
Collapse
|
16
|
Silica gel-promoted synthesis of amide by rearrangement of oxime under visible light. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Strauch C, Schroeder S, Grelier G, Niggemann M. Homolytic N-S Bond Cleavage in Vinyl Triflimides Enabled by Triplet-Triplet Energy Transfer. Chemistry 2022; 28:e202201830. [PMID: 35793203 DOI: 10.1002/chem.202201830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Indexed: 01/07/2023]
Abstract
Vinyl triflimides are a new compound class with unknown reactivity. A computational analysis identified homolytic cleavage of the N-Tf bond induced by triplet-triplet energy transfer (EnT) as a highly interesting reaction type that might be accessible. A combination of experimental and mechanistic work verified this hypothesis and proved the generated radicals to be amenable to radical-radical coupling. Thereby, vinyl triflimides were transformed into a range of α-quaternary, β-trifluoromethylated amines in a 1,2-difunctionalization reaction with no need for external CF3 reagents.
Collapse
Affiliation(s)
- Christina Strauch
- Institute of Organic Chemistry, RWTH Aachen, Landoltweg 1, 52074, Aachen, Germany
| | - Sebastian Schroeder
- Institute of Organic Chemistry, RWTH Aachen, Landoltweg 1, 52074, Aachen, Germany
| | - Gwendal Grelier
- Institute of Organic Chemistry, RWTH Aachen, Landoltweg 1, 52074, Aachen, Germany
| | - Meike Niggemann
- Institute of Organic Chemistry, RWTH Aachen, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
18
|
Melnykov KP, Tavlui O, Skreminskiy A, Kuchkovska YO, Grygorenko OO. Impact of Fluoroalkyl Substituents on the Physicochemical Properties of Saturated Heterocyclic Amines. Chemistry 2022; 28:e202201601. [DOI: 10.1002/chem.202201601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Kostiantyn P. Melnykov
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Olha Tavlui
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | | | - Yuliya O. Kuchkovska
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Current address: Biozentrum University of Basel Spitalstrasse 41 4056 Basel Switzerland
| | - Oleksandr O. Grygorenko
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| |
Collapse
|
19
|
Prusinowski AF, Sise HC, Bednar TN, Nagib DA. Radical Aza-Heck Cyclization of Imidates via Energy Transfer, Electron Transfer, and Cobalt Catalysis. ACS Catal 2022; 12:4327-4332. [PMID: 35479099 PMCID: PMC9038135 DOI: 10.1021/acscatal.2c00804] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A radical aza-Heck cyclization has been developed to afford functionally rich products with four contiguous C-heteroatom bonds. This multi-catalytic strategy provides rapid syntheses of dense, medicinally relevant motifs by enabling the conversion of alcohol-derived imidates to heteroatom-rich fragments containing vinyl oxazolines/oxazoles, allyl amines, β-amino alcohols/halides, and combinations thereof. Mechanistic insights of this process show how three distinct photocatalytic cycles cooperate to enable: (1) imidate radical generation by energy transfer, (2) dehydrogenation by Co catalysis, and (3) catalyst turnover by electron transfer.
Collapse
Affiliation(s)
- Allen F. Prusinowski
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Henry C. Sise
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Taylor N. Bednar
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - David A. Nagib
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
20
|
Corpas J, Mauleón P, Gómez Arrayás R, Carretero JC. E/Z
Photoisomerization of Olefins as an Emergent Strategy for the Control of Stereodivergence in Catalysis. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Javier Corpas
- Department of Organic Chemistry Institute for Advanced Research in Chemical Sciences (IAdChem) Center for Innovation in Advanced Chemistry (ORFEO-CINQA). Universidad Autónoma de Madrid Cantoblanco 28049 Madrid Spain
| | - Pablo Mauleón
- Department of Organic Chemistry Institute for Advanced Research in Chemical Sciences (IAdChem) Center for Innovation in Advanced Chemistry (ORFEO-CINQA). Universidad Autónoma de Madrid Cantoblanco 28049 Madrid Spain
| | - Ramón Gómez Arrayás
- Department of Organic Chemistry Institute for Advanced Research in Chemical Sciences (IAdChem) Center for Innovation in Advanced Chemistry (ORFEO-CINQA). Universidad Autónoma de Madrid Cantoblanco 28049 Madrid Spain
| | - Juan C. Carretero
- Department of Organic Chemistry Institute for Advanced Research in Chemical Sciences (IAdChem) Center for Innovation in Advanced Chemistry (ORFEO-CINQA). Universidad Autónoma de Madrid Cantoblanco 28049 Madrid Spain
| |
Collapse
|
21
|
Lu B, Xiao WJ, Chen JR. Recent Advances in Visible-Light-Mediated Amide Synthesis. Molecules 2022; 27:517. [PMID: 35056829 PMCID: PMC8781888 DOI: 10.3390/molecules27020517] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/10/2022] Open
Abstract
Visible-light photoredox catalysis has attracted tremendous interest within the synthetic community. As such, the activation mode potentially provides a more sustainable and efficient platform for the activation of organic molecules, enabling the invention of many controlled radical-involved reactions under mild conditions. In this context, amide synthesis via the strategy of photoredox catalysis has received growing interest due to the ubiquitous presence of this structural motif in numerous natural products, pharmaceuticals and functionalized materials. Employing this strategy, a wide variety of amides can be prepared effectively from halides, arenes and even alkanes under irradiation of visible light. These methods provide a robust alternative to well-established strategies for amide synthesis that involve condensation between a carboxylic acid and amine mediated by a stoichiometric activating agent. In this review, the representative progresses made on the synthesis of amides through visible light-mediated radical reactions are summarized.
Collapse
Affiliation(s)
- Bin Lu
- Key Laboratory of Pesticides and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China; (B.L.); (W.-J.X.)
| | - Wen-Jing Xiao
- Key Laboratory of Pesticides and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China; (B.L.); (W.-J.X.)
| | - Jia-Rong Chen
- Key Laboratory of Pesticides and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China; (B.L.); (W.-J.X.)
- School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang 453007, China
| |
Collapse
|
22
|
Li Q, Dai P, Tang H, Zhang M, Wu J. Photomediated reductive coupling of nitroarenes with aldehydes for amide synthesis. Chem Sci 2022; 13:9361-9365. [PMID: 36093005 PMCID: PMC9384791 DOI: 10.1039/d2sc03047k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/15/2022] [Indexed: 12/31/2022] Open
Abstract
In view of the widespread significance of amide functional groups in organic synthesis and pharmaceutical studies, an efficient and practical synthetic protocol that avoids the use of stoichiometric activating reagents or metallic reductants is highly desirable.
Collapse
Affiliation(s)
- Qingyao Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Peng Dai
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Haidi Tang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Muliang Zhang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Jie Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| |
Collapse
|
23
|
Rai P, Maji K, Jana SK, Maji B. Intermolecular dearomative [4 + 2] cycloaddition of naphthalenes via visible-light energy-transfer-catalysis. Chem Sci 2022; 13:12503-12510. [PMID: 36349268 PMCID: PMC9628934 DOI: 10.1039/d2sc04005k] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/04/2022] [Indexed: 11/28/2022] Open
Abstract
The dearomative cycloaddition reaction serves as a blueprint for creating sp3-rich three-dimensional molecular topology from flat-aromatic compounds. However, severe reactivity and selectivity issues make this process arduous. Herein, we describe visible-light energy-transfer catalysis for the intermolecular dearomative [4 + 2] cycloaddition reaction of feedstock naphthalene molecules with vinyl benzenes. Tolerating a wide range of functional groups, structurally diverse 2-acyl naphthalenes and styrenes could easily be converted to a diverse range of bicyclo[2.2.2]octa-2,5-diene scaffolds in high yields and moderate endo-selectivities. The late-stage modification of the derivatives of pharmaceutical agents further demonstrated the broad potentiality of this methodology. The efficacy of the introduced methods was further highlighted by the post-synthetic diversification of the products. Furthermore, photoluminescence, electrochemical, kinetic, control experiments, and density-functional theory calculations support energy-transfer catalysis. Constructing 3D molecular scaffolds from aromatic hydrocarbons is challenging. Herein, we report dearomative [4 + 2] cycloaddition reaction of naphthalenes via visible-light EnT catalysis which overcomes issues of unfavorable thermodynamics, low yields, and selectivity.![]()
Collapse
Affiliation(s)
- Pramod Rai
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, WB, India
| | - Kakoli Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, WB, India
| | - Sayan K. Jana
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, WB, India
| | - Biplab Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, WB, India
| |
Collapse
|