1
|
Ran P, Qiu A, Liu T, Wang F, Tian B, Xiang B, Li J, Lv Y, Ding M. Universal high-efficiency electrocatalytic olefin epoxidation via a surface-confined radical promotion. Nat Commun 2024; 15:8877. [PMID: 39406721 PMCID: PMC11480342 DOI: 10.1038/s41467-024-53049-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
Production of epoxides via selective oxidation of olefins affords a fundamental source of key intermediates for the industrial manufacture of diverse chemical stocks and materials. Current oxidation strategy generally works under harsh conditions including high temperature, high pressure, and/or request for potentially hazardous oxidants, leading to substantial challenges in sustainability and energy efficiency. To this end, direct electrocatalytic epoxidation poses as a promising solution to these issues, yet their industrial applications are limited by the low selectivity, low yield, and poor stability of the electrocatalysts. Here we report a universal electrochemical epoxidation approach via a kinetically confined surface radical pathway. High epoxidation efficiency can be achieved under mild working conditions (e.g., >99% selectivity, >80% yield and >80% Faraday efficiency for cyclohexene-to-cyclohexene oxide conversion), which can be extended to broad scope of olefin substrates. The catalytic performance originated from a surface bimolecular (L-H) reaction mechanism involving formation and surface confinement of bromine radicals due to kinetic restriction, which effectively activates inert C=C bonds while avoiding the homogenous radical side reactions. With the use of renewable energy and water as green oxygen source, successful implementation of this approach will pave the way for more sustainable chemical production and manufacturing.
Collapse
Affiliation(s)
- Pan Ran
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Aoqian Qiu
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Tianshu Liu
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Fangyuan Wang
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Bailin Tian
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Beiyao Xiang
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Jun Li
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Yang Lv
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Mengning Ding
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China.
| |
Collapse
|
2
|
Chen L, Yin ZH, Cui JY, Li CQ, Song K, Liu H, Wang JJ. Unlocking Lattice Oxygen on Selenide-Derived NiCoOOH for Amine Electrooxidation and Efficient Hydrogen Production. J Am Chem Soc 2024; 146:27090-27099. [PMID: 39305252 DOI: 10.1021/jacs.4c09252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
In pursuit of advancing the electrooxidation of amines, which is typically encumbered by the inertness of C(sp3)-H/N(sp3)-H bonds, our study introduces a high-performance electrocatalyst that significantly enhances the production efficiency of vital chemicals and fuels. We propose a novel electrocatalytic strategy employing a uniquely designed (NixCo1-x)Se2-R electrocatalyst, which is activated through Se-O exchange and electron orbital spin manipulation. This catalyst efficiently generates M4+ species, thus enabling the activation of lattice oxygen and streamlining the electrooxidation of amines. Empirical evidence from isotope labeling, molecular probes, and computational analyses indicates that the electrocatalyst fosters the formation of energetically favorable peroxy radical intermediates, which substantially expedite the reaction kinetics. The refined electrocatalyst achieves an exceptional current density of 20 mA cm-2 at a potential of 1.315 V, with selectivity surpassing 99% for propionitrile, while demonstrating remarkable stability over 560 h. This work emphasizes the criticality of deciphering the fundamental mechanisms of amine electrooxidation and charts a more sustainable pathway for the nitrile and hydrogen production, marking a substantial advancement in the field of electrocatalysis.
Collapse
Affiliation(s)
- Long Chen
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Zhao-Hua Yin
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Jun-Yuan Cui
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Chao-Qun Li
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Kepeng Song
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
- Institute for Advanced Interdisciplinary Research (IAIR), University of Jinan, Jinan 250022, China
| | - Jian-Jun Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
- Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
| |
Collapse
|
3
|
Xu Z, Kovács E. Beyond Traditional Synthesis: Electrochemical Approaches to Amine Oxidation for Nitriles and Imines. ACS ORGANIC & INORGANIC AU 2024; 4:471-484. [PMID: 39371318 PMCID: PMC11450732 DOI: 10.1021/acsorginorgau.4c00025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 10/08/2024]
Abstract
The electrochemical oxidation of amines to nitriles and imines represents a critical frontier in organic electrochemistry, offering a sustainable pathway to these valuable compounds. Nitriles and amines are pivotal in various industrial applications, including pharmaceuticals, agrochemicals, and materials science. This review encapsulates the recent advancements in the electrooxidation process, emphasizing mechanistic understanding, electrode material innovations, optimization of reaction conditions, and exploration of solvent and electrolyte systems. Additionally, the review addresses the operational parameters that significantly affect the electrooxidation process, such as current density, temperature, and electrode surface, offering insights into their optimization for enhanced performance. By providing a comprehensive view of the current state and prospects of amine electrooxidation to nitriles and imines, this review aims to inspire further development, innovation, and research in this promising area of green chemistry.
Collapse
Affiliation(s)
- Zhining Xu
- Institute
of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
- Hevesy
György PhD School of Chemistry, Eötvös
Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| | - Ervin Kovács
- Institute
of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| |
Collapse
|
4
|
Kim T, Kim Y, Wuttig A. Interfacial Science for Electrosynthesis. CURRENT OPINION IN ELECTROCHEMISTRY 2024; 47:101569. [PMID: 39092135 PMCID: PMC11290363 DOI: 10.1016/j.coelec.2024.101569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Interfacial science and electroorganic syntheses are inextricably linked because all electrochemical reactions occur at the interface between the electrode and the solution. Thus, the surface chemistry of the electrode material impacts the organic reaction selectivity. In this short review, we highlight emergent examples of electrode surface chemistries that enable selective electroorganic synthesis in three reaction classes: (1) hydrogenation, (2) oxidation, and (3) reductive C‒C bond formation between two electrophiles. We showcase the breadth of techniques, including materials and in-situ characterization, requisite to establish mechanistic schemes consistent with the observed reactivity patterns. Leveraging an electrode's unique surface chemistry will provide complementary approaches to tune the selectivity of electroorganic syntheses and unlock an electrode's catalytic properties.
Collapse
Affiliation(s)
- Taemin Kim
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, United States
| | - YeJi Kim
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, United States
| | - Anna Wuttig
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, United States
| |
Collapse
|
5
|
Li M, Cheng X. Aggregation-induced C-C bond formation on an electrode driven by the surface tension of water. Nat Commun 2024; 15:7540. [PMID: 39215021 PMCID: PMC11364745 DOI: 10.1038/s41467-024-52042-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Electrochemical organic synthesis is typically conducted in organic media. The solvent and related supporting electrolytes negatively affect the greenness of electrosynthesis. In this work, with 100% water used as the solvent, we realize aggregation-driven electrochemical radical cross coupling of unsaturated compounds driven by water tension. A key finding is that aggregation of the substrate at the electrode confined the radical intermediate and prevented side reactions, thus providing a way to regulate radical reactions in addition to their native properties. The reaction provides up to 90% yields with almost quantitative chemoselectivity. The pure water system readily yields the products via cold filtration, and the solvent is recycled repeatedly. In particular, the life span of the radical species generated in the reaction increase significantly because of the confined environment in the aggregation state. The greenness of this protocol is further enhanced with readily separation of product from media using cooling and filtration.
Collapse
Affiliation(s)
- Mengfan Li
- State Key Laboratory of Coordination Chemistry, Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Xu Cheng
- State Key Laboratory of Coordination Chemistry, Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| |
Collapse
|
6
|
Zhang G, Hu J, Zhang W, Yu K, Zhang W, Gao Q. Enhancing Benzylamine Electro-Oxidation and Hydrogen Evolution Through in-situ Electrochemical Activation of CoC 2O 4 Nanoarrays. CHEMSUSCHEM 2024:e202401446. [PMID: 39161988 DOI: 10.1002/cssc.202401446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 08/21/2024]
Abstract
The sluggish anodic oxygen evolution reaction (OER) seriously restricts the overall efficiency of water splitting. Here, we present an environmentally friendly and efficient aniline oxidation (BOR) to replace the sluggish OER, accomplishing the co-production of H2 and high value-added benzonitrile (BN) at low voltages. Cobalt oxalates grown on cobalt foam (CoC2O4 ⋅ 2H2O/CF) are adopted as the pre-catalysts, which further evolve into working electrocatalysts active for BOR and HER via appropriate electrochemical activation. Thereinto, cyclic voltammetry activation at positive potentials is performed to reconstruct cobalt oxalate via extensive oxidation, resulting in enriched Co(III) species and nanoporous structures beneficial for BOR, while chronoamperometry at negative potentials is introduced for the cathodic activation toward efficient HER with obvious improvement. The two activated electrodes can be combined into a two-electrode system, which achieves a high current density of 75 mA cm-2 at the voltage of 1.95 V, with the high Faraday efficiencies of both BOR (90.0 %) and HER (90.0 %) and the satisfactory yield of BN (76.8 %).
Collapse
Affiliation(s)
- Guanqiao Zhang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
| | - Jialai Hu
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
| | - Wanling Zhang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
| | - Kun Yu
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
| | - Wenbiao Zhang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials and Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Qingsheng Gao
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
7
|
Song M, Feng M, Li F, Lv S, Zhou Y, Chen Z. Electrosynthesis of Amides through Cu- and Co-Incorporated Nickel Hydroxide-Catalyzed Oxidation of Primary Amines Coupled with Hydrogen Evolution. Inorg Chem 2024; 63:15215-15223. [PMID: 39088415 DOI: 10.1021/acs.inorgchem.4c02797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
The electrocatalytic oxidation of organic molecules coupled with hydrogen evolution reaction can reduce overpotential and can be connected in series with nonelectrochemical processes to achieve the preparation of more high-value compounds. Herein, Cu- and Co-incorporated nickel hydroxide (CuCo-Ni(OH)2) was synthesized and applied to the anodic benzylamine oxidation reaction, which is 280 mV lower than the corresponding oxygen evolution reaction to reach the current density of 50 mA cm-2. When the electrocatalytic oxidation of benzylamine and hydrogen evolution reaction are coupled to form an electrolytic cell, the potential to reach 10 mA cm-2 is reduced by 197 mV compared to the overall water splitting. The benzylamine is converted to benzamide with 99.3% conversion and 90.2% faraday efficiency under 1.45 V constant voltage electrolysis, and the catalytic performance remains at a high level after 4 cycles. The characterization and density functional theory calculations show that Cu and Co share the transfer charge from Ni, making it easy for CuCo-Ni(OH)2 to deprotonate Ni-O* sites. The formed Ni-O* sites exhibit lower energy barriers in the proton transfer of benzylamine to benzonitrile and hydration intermediates, resulting in a better catalytic performance of CuCo-Ni(OH)2 than Ni(OH)2 in the electrocatalytic oxidation of benzylamine to benzamide.
Collapse
Affiliation(s)
- Manman Song
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Mengmeng Feng
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Feng Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Shanshan Lv
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Yan Zhou
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Zheng Chen
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| |
Collapse
|
8
|
Yang X, Wei E, Dong Y, Fan Y, Gao H, Luo X, Yang W. Promoting OH* adsorption by defect engineering of CuO catalysts for selective electro-oxidation of amines to nitriles coupled with hydrogen production. Chem Sci 2024; 15:12580-12588. [PMID: 39118613 PMCID: PMC11304779 DOI: 10.1039/d4sc01571a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/28/2024] [Indexed: 08/10/2024] Open
Abstract
Developing a high-efficiency benzylamine oxidation reaction (BOR) to replace the sluggish oxygen evolution reaction (OER) is an attractive pathway to promote H2 production and concurrently realize organic conversion. However, the electrochemical BOR performance is still far from satisfactory. Herein, we present a self-supported CuO nanorod array with abundant oxygen vacancies on copper foam (Vo-rich CuO/CF) as a promising anode for selective electro-oxidation of benzylamine (BA) to benzonitrile (BN) coupled with cathodic H2 generation. In situ infrared spectroscopy demonstrates the selective conversion of BA into BN on Vo-rich CuO. Furthermore, in situ Raman spectroscopy discloses a direct electro-oxidation mechanism of BA driven by electroactive hydroxyl species (OH*) over the Vo-rich CuO catalyst. Theoretical and experimental studies verify that the presence of oxygen vacancies is more favorable for the adsorption of OH* and BA molecules, enabling accelerated kinetics for the BOR. As expected, the Vo-rich CuO/CF electrode delivers outstanding BOR activity and stability, giving a high faradaic efficiency (FE) of over 93% for BN production at a potential of 0.40 V vs. Ag/AgCl. Impressively, almost 100% FE for H2 production can be further achieved at the NiSe cathode by integrating BA oxidation in a two-electrode electrolyzer.
Collapse
Affiliation(s)
- Xu Yang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Enhui Wei
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Yuan Dong
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Yu Fan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Hongtao Gao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Wenlong Yang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| |
Collapse
|
9
|
Wang P, Zheng J, Xu X, Zhang YQ, Shi QF, Wan Y, Ramakrishna S, Zhang J, Zhu L, Yokoshima T, Yamauchi Y, Long YZ. Unlocking Efficient Hydrogen Production: Nucleophilic Oxidation Reactions Coupled with Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404806. [PMID: 38857437 DOI: 10.1002/adma.202404806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/19/2024] [Indexed: 06/12/2024]
Abstract
Electrocatalytic water splitting driven by sustainable energy is a clean and promising water-chemical fuel conversion technology for the production of high-purity green hydrogen. However, the sluggish kinetics of anodic oxygen evolution reaction (OER) pose challenges for large-scale hydrogen production, limiting its efficiency and safety. Recently, the anodic OER has been replaced by a nucleophilic oxidation reaction (NOR) with biomass as the substrate and coupled with a hydrogen evolution reaction (HER), which has attracted great interest. Anode NOR offers faster kinetics, generates high-value products, and reduces energy consumption. By coupling NOR with hydrogen evolution reaction, hydrogen production efficiency can be enhanced while yielding high-value oxidation products or degrading pollutants. Therefore, NOR-coupled HER hydrogen production is another new green electrolytic hydrogen production strategy after electrolytic water hydrogen production, which is of great significance for realizing sustainable energy development and global decarbonization. This review explores the potential of nucleophilic oxidation reactions as an alternative to OER and delves into NOR mechanisms, guiding future research in NOR-coupled hydrogen production. It assesses different NOR-coupled production methods, analyzing reaction pathways and catalyst effects. Furthermore, it evaluates the role of electrolyzers in industrialized NOR-coupled hydrogen production and discusses future prospects and challenges. This comprehensive review aims to advance efficient and economical large-scale hydrogen production.
Collapse
Affiliation(s)
- Peng Wang
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Physics, Qingdao University, Qingdao, 266071, P. R. China
| | - Jie Zheng
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens (SCEN), College of Textiles Clothing, Qingdao University, Qingdao, 266071, P. R. China
| | - Xue Xu
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Physics, Qingdao University, Qingdao, 266071, P. R. China
| | - Yu-Qing Zhang
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens (SCEN), College of Textiles Clothing, Qingdao University, Qingdao, 266071, P. R. China
| | - Qiao-Fu Shi
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens (SCEN), College of Textiles Clothing, Qingdao University, Qingdao, 266071, P. R. China
| | - Yong Wan
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Physics, Qingdao University, Qingdao, 266071, P. R. China
| | - Seeram Ramakrishna
- Center for Nanotechnology & Sustainability, Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Singapore
| | - Jun Zhang
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Physics, Qingdao University, Qingdao, 266071, P. R. China
| | - Liyang Zhu
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Tokihiko Yokoshima
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Yusuke Yamauchi
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Yun-Ze Long
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Physics, Qingdao University, Qingdao, 266071, P. R. China
| |
Collapse
|
10
|
Gao T, An Q, Tang X, Yue Q, Zhang Y, Li B, Li P, Jin Z. Recent progress in energy-saving electrocatalytic hydrogen production via regulating the anodic oxidation reaction. Phys Chem Chem Phys 2024; 26:19606-19624. [PMID: 39011574 DOI: 10.1039/d4cp01680g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Hydrogen energy with its advantages of high calorific value, renewable nature, and zero carbon emissions is considered an ideal candidate for clean energy in the future. The electrochemical decomposition of water, powered by renewable and clean energy sources, presents a sustainable and environmentally friendly approach to hydrogen production. However, the traditional electrochemical overall water-splitting reaction (OWSR) is limited by the anodic oxygen evolution reaction (OER) with sluggish kinetics. Although important advances have been made in efficient OER catalysts, the theoretical thermodynamic difficulty predetermines the inevitable large potential (1.23 V vs. RHE for the OER) and high energy consumption for the conventional water electrolysis to obtain H2. Besides, the generation of reactive oxygen species at high oxidation potentials can lead to equipment degradation and increase maintenance costs. Therefore, to address these challenges, thermodynamically favorable anodic oxidation reactions with lower oxidation potentials than the OER are used to couple with the cathodic hydrogen evolution reaction (HER) to construct new coupling hydrogen production systems. Meanwhile, a series of robust catalysts applied in these new coupled systems are exploited to improve the energy conversion efficiency of hydrogen production. Besides, the electrochemical neutralization energy (ENE) of the asymmetric electrolytes with a pH gradient can further promote the decrease in application voltage and energy consumption for hydrogen production. In this review, we aim to provide an overview of the advancements in electrochemical hydrogen production strategies with low energy consumption, including (1) the traditional electrochemical overall water splitting reaction (OWSR, HER-OER); (2) the small molecule sacrificial agent oxidation reaction (SAOR) and (3) the electrochemical oxidation synthesis reaction (EOSR) coupling with the HER (HER-SAOR, HER-EOSR), respectively; (4) regulating the pH gradient of the cathodic and anodic electrolytes. The operating principle, advantages, and the latest progress of these hydrogen production systems are analyzed in detail. In particular, the recent progress in the catalytic materials applied to these coupled systems and the corresponding catalytic mechanism are further discussed. Furthermore, we also provide a perspective on the potential challenges and future directions to foster advancements in electrocatalytic green sustainable hydrogen production.
Collapse
Affiliation(s)
- Taotao Gao
- Institute for Advanced Study and School of Mechanical Engineering, Chengdu University, Chengdu, 610106, P. R. China
| | - Qi An
- Institute for Advanced Study and School of Mechanical Engineering, Chengdu University, Chengdu, 610106, P. R. China
| | - Xiangmin Tang
- Institute for Advanced Study and School of Mechanical Engineering, Chengdu University, Chengdu, 610106, P. R. China
| | - Qu Yue
- Institute for Advanced Study and School of Mechanical Engineering, Chengdu University, Chengdu, 610106, P. R. China
| | - Yang Zhang
- Institute for Advanced Study and School of Mechanical Engineering, Chengdu University, Chengdu, 610106, P. R. China
| | - Bing Li
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000, P. R. China
| | - Panpan Li
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Zhaoyu Jin
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China.
| |
Collapse
|
11
|
Ma A, Lee Y, Seo D, Kim J, Park S, Son J, Kwon W, Nam D, Lee H, Kim Y, Um H, Shin H, Nam KM. Unlocking the Potential of Bi 2S 3-Derived Bi Nanoplates: Enhanced Catalytic Activity and Selectivity in Electrochemical and Photoelectrochemical CO 2 Reduction to Formate. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400874. [PMID: 38760899 PMCID: PMC11267354 DOI: 10.1002/advs.202400874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/24/2024] [Indexed: 05/20/2024]
Abstract
Various electrocatalysts are extensively examined for their ability to selectively produce desired products by electrochemical CO2 reduction reaction (CO2RR). However, an efficient CO2RR electrocatalyst doesn't ensure an effective co-catalyst on the semiconductor surface for photoelectrochemical CO2RR. Herein, Bi2S3 nanorods are synthesized and electrochemically reduced to Bi nanoplates that adhere to the substrates for application in the electrochemical and photoelectrochemical CO2RR. Compared with commercial-Bi, the Bi2S3-derived Bi (S-Bi) nanoplates on carbon paper exhibit superior electrocatalytic activity and selectivity for formate (HCOO-) in the electrochemical CO2RR, achieving a Faradaic efficiency exceeding 93%, with minimal H2 production over a wide potential range. This highly selective S-Bi catalyst is being employed on the Si photocathode to investigate the behavior of electrocatalysts during photoelectrochemical CO2RR. The strong adhesion of the S-Bi nanoplates to the Si nanowire substrate and their unique catalytic properties afford exceptional activity and selectivity for HCOO- under simulated solar irradiation. The selectivity observed in electrochemical CO2RR using the S-Bi catalyst correlates with that seen in the photoelectrochemical CO2RR system. Combined pulsed potential methods and theoretical analyses reveal stabilization of the OCHO* intermediate on the S-Bi catalyst under specific conditions, which is critical for developing efficient catalysts for CO2-to-HCOO- conversion.
Collapse
Affiliation(s)
- Ahyeon Ma
- Department of Chemistry and Institute for Future EarthPusan National UniversityGeumjeong‐guBusan46241Republic of Korea
| | - Yongsoon Lee
- Graduate School of Energy Science and Technology (GEST)Chungnam National UniversityDaejeon34134Republic of Korea
| | - Dongho Seo
- Department of Chemistry and Institute for Future EarthPusan National UniversityGeumjeong‐guBusan46241Republic of Korea
| | - Jiyoon Kim
- Department of Chemistry and Institute for Future EarthPusan National UniversityGeumjeong‐guBusan46241Republic of Korea
| | - Soohyeok Park
- Department of Chemical EngineeringKangwon National UniversityChuncheonGangwon‐do24341Republic of Korea
| | - Jihoon Son
- Graduate School of Energy Science and Technology (GEST)Chungnam National UniversityDaejeon34134Republic of Korea
| | - Woosuck Kwon
- Department of Energy Science and EngineeringDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42988Republic of Korea
| | - Dae‐Hyun Nam
- Department of Energy Science and EngineeringDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42988Republic of Korea
| | - Hyosung Lee
- Korea Research Institute of Standards and Science (KRISS)267 GajeongYuseongDaejeon34113Republic of Korea
- Department of Measurement EngineeringUniversity of Science and Technology217, Gajeong, YuseongDaejeon34113Republic of Korea
| | - Yong‐Il Kim
- Korea Research Institute of Standards and Science (KRISS)267 GajeongYuseongDaejeon34113Republic of Korea
- Department of Measurement EngineeringUniversity of Science and Technology217, Gajeong, YuseongDaejeon34113Republic of Korea
| | - Han‐Don Um
- Department of Chemical EngineeringKangwon National UniversityChuncheonGangwon‐do24341Republic of Korea
| | - Hyeyoung Shin
- Graduate School of Energy Science and Technology (GEST)Chungnam National UniversityDaejeon34134Republic of Korea
| | - Ki Min Nam
- Department of Chemistry and Institute for Future EarthPusan National UniversityGeumjeong‐guBusan46241Republic of Korea
| |
Collapse
|
12
|
Yao Y, Zhao G, Guo X, Xiong P, Xu Z, Zhang L, Chen C, Xu C, Wu TS, Soo YL, Cui Z, Li MMJ, Zhu Y. Facet-Dependent Surface Restructuring on Nickel (Oxy)hydroxides: A Self-Activation Process for Enhanced Oxygen Evolution Reaction. J Am Chem Soc 2024; 146:15219-15229. [PMID: 38775440 DOI: 10.1021/jacs.4c02292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Unraveling the catalyst surface structure and behavior during reactions is essential for both mechanistic understanding and performance optimization. Here we report a phenomenon of facet-dependent surface restructuring intrinsic to β-Ni(OH)2 catalysts during oxygen evolution reaction (OER), discovered by the correlative ex situ and operando characterization. The ex situ study after OER reveals β-Ni(OH)2 restructuring at the edge facets to form nanoporous Ni1-xO, which is Ni deficient containing Ni3+ species. Operando liquid transmission electron microscopy (TEM) and Raman spectroscopy further identify the active role of the intermediate β-NiOOH phase in both the OER catalysis and Ni1-xO formation, pinpointing the complete surface restructuring pathway. Such surface restructuring is shown to effectively increase the exposed active sites, accelerate Ni oxidation kinetics, and optimize *OH intermediate bonding energy toward fast OER kinetics, which leads to an extraordinary activity enhancement of ∼16-fold. Facilitated by such a self-activation process, the specially prepared β-Ni(OH)2 with larger edge facets exhibits a 470-fold current enhancement than that of the benchmark IrO2, demonstrating a promising way to optimize metal-(oxy)hydroxide-based catalysts.
Collapse
Affiliation(s)
- Yunduo Yao
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Guangming Zhao
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Xuyun Guo
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Pei Xiong
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Zhihang Xu
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Longhai Zhang
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Changsheng Chen
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Chao Xu
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Tai-Sing Wu
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Yun-Liang Soo
- Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Zhiming Cui
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Molly Meng-Jung Li
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Ye Zhu
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| |
Collapse
|
13
|
Sun L, Pan X, Xie YN, Zheng J, Xu S, Li L, Zhao G. Accelerated Dynamic Reconstruction in Metal-Organic Frameworks with Ligand Defects for Selective Electrooxidation of Amines to Azos Coupling with Hydrogen Production. Angew Chem Int Ed Engl 2024; 63:e202402176. [PMID: 38470010 DOI: 10.1002/anie.202402176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/28/2024] [Accepted: 03/09/2024] [Indexed: 03/13/2024]
Abstract
Electrosynthesis coupled hydrogen production (ESHP) mostly involves catalyst reconstruction in aqueous phase, but accurately identifying and controlling the process is still a challenge. Herein, we modulated the electronic structure and exposed unsaturated sites of metal-organic frameworks (MOFs) via ligand defect to promote the reconstruction of catalyst for azo electrosynthesis (ESA) coupled with hydrogen production overall reaction. The monolayer Ni-MOFs achieved 89.8 % Faraday efficiency and 90.8 % selectivity for the electrooxidation of 1-methyl-1H-pyrazol-3-amine (Pyr-NH2) to azo, and an 18.5-fold increase in H2 production compared to overall water splitting. Operando X-ray absorption fine spectroscopy (XAFS) and various in situ spectroscopy confirm that the ligand defect promotes the potential dependent dynamic reconstruction of Ni(OH)2 and NiOOH, and the reabsorption of ligand significantly lowers the energy barrier of rate-determining step (*Pyr-NH to *Pyr-N). This work provides theoretical guidance for modulation of electrocatalyst reconstruction to achieve highly selective ESHP.
Collapse
Affiliation(s)
- Lingzhi Sun
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, P. R. China
| | - Xun Pan
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, P. R. China
| | - Ya-Nan Xie
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, P. R. China
| | - Jingui Zheng
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, P. R. China
| | - Shaohan Xu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, P. R. China
| | - Lina Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Shanghai, 201800, P. R. China
| | - Guohua Zhao
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, P. R. China
| |
Collapse
|
14
|
Mu Y, Chen B, Zhang H, Fei M, Liu T, Mehta N, Wang DZ, Miller AJM, Diaconescu PL, Wang D. Highly Selective Electrochemical Baeyer-Villiger Oxidation through Oxygen Atom Transfer from Water. J Am Chem Soc 2024; 146:13438-13444. [PMID: 38687695 DOI: 10.1021/jacs.4c02601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The Baeyer-Villiger oxidation of ketones is a crucial oxygen atom transfer (OAT) process used for ester production. Traditionally, Baeyer-Villiger oxidation is accomplished by thermally oxidizing the OAT from stoichiometric peroxides, which are often difficult to handle. Electrochemical methods hold promise for breaking the limitation of using water as the oxygen atom source. Nevertheless, existing demonstrations of electrochemical Baeyer-Villiger oxidation face the challenges of low selectivity. We report in this study a strategy to overcome this challenge. By employing a well-known water oxidation catalyst, Fe2O3, we achieved nearly perfect selectivity for the electrochemical Baeyer-Villiger oxidation of cyclohexanone. Mechanistic studies suggest that it is essential to produce surface hydroperoxo intermediates (M-OOH, where M represents a metal center) that promote the nucleophilic attack on ketone substrates. By confining the reactions to the catalyst surfaces, competing reactions (e.g., dehydrogenation, carboxylic acid cation rearrangements, and hydroxylation) are greatly limited, thereby offering high selectivity. The surface-initiated nature of the reaction is confirmed by kinetic studies and spectroelectrochemical characterizations. This discovery adds nucleophilic oxidation to the toolbox of electrochemical organic synthesis.
Collapse
Affiliation(s)
- Yu Mu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Boqiang Chen
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Hongna Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Muchun Fei
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Tianying Liu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Neal Mehta
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - David Z Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Alexander J M Miller
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Paula L Diaconescu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Dunwei Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
15
|
Paniya S, Gaonkar AD, Vankayala K. Iodide-assisted energy-saving hydrogen production using self-supported sulfate ion-modified NiFe(oxy)hydroxide nanosheets. Chem Commun (Camb) 2024; 60:4174-4177. [PMID: 38390953 DOI: 10.1039/d3cc04833k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Hybrid water electrolysis (HyWES) with iodide oxidation as non-OER for energy-saving H2 production is demonstrated using self-supported sulfate ion modified Ni,Fe(oxy)hydroxide as the anode. The sulfate ions adsorbed on the catalyst show a promoting effect in achieving high electrochemical activity. The HyWES requires a voltage as low as 1.36 V to achieve the bechmark current density of 10 mA cm-2.
Collapse
Affiliation(s)
- Shraddha Paniya
- Functional Materials for Electrochemistry and Solar Energy (FunMatES) Group, Energy and Environmental Chemistry Lab, Department of Chemistry, Birla Institute of Technology and Science, Pilani, K K Birla Goa Campus, Goa, 403726, India.
| | - Asmita Dileep Gaonkar
- Functional Materials for Electrochemistry and Solar Energy (FunMatES) Group, Energy and Environmental Chemistry Lab, Department of Chemistry, Birla Institute of Technology and Science, Pilani, K K Birla Goa Campus, Goa, 403726, India.
| | - Kiran Vankayala
- Functional Materials for Electrochemistry and Solar Energy (FunMatES) Group, Energy and Environmental Chemistry Lab, Department of Chemistry, Birla Institute of Technology and Science, Pilani, K K Birla Goa Campus, Goa, 403726, India.
| |
Collapse
|
16
|
Liu C, Chen F, Zhao BH, Wu Y, Zhang B. Electrochemical hydrogenation and oxidation of organic species involving water. Nat Rev Chem 2024; 8:277-293. [PMID: 38528116 DOI: 10.1038/s41570-024-00589-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2024] [Indexed: 03/27/2024]
Abstract
Fossil fuel-driven thermochemical hydrogenation and oxidation using high-pressure H2 and O2 are still popular but energy-intensive CO2-emitting processes. At present, developing renewable energy-powered electrochemical technologies, especially those using clean, safe and easy-to-handle reducing agents and oxidants for organic hydrogenation and oxidation reactions, is urgently needed. Water is an ideal carrier of hydrogen and oxygen. Electrochemistry provides a powerful route to drive water splitting under ambient conditions. Thus, electrochemical hydrogenation and oxidation transformations involving water as the hydrogen source and oxidant, respectively, have been developed to be mild and efficient tools to synthesize organic hydrogenated and oxidized products. In this Review, we highlight the advances in water-participating electrochemical hydrogenation and oxidation reactions of representative organic molecules. Typical electrode materials, performance metrics and key characterization techniques are firstly introduced. General electrocatalyst design principles and controlling the microenvironment for promoting hydrogenation and oxygenation reactions involving water are summarized. Furthermore, paired hydrogenation and oxidation reactions are briefly introduced before finally discussing the challenges and future opportunities of this research field.
Collapse
Affiliation(s)
- Cuibo Liu
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, China
| | - Fanpeng Chen
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, China
| | - Bo-Hang Zhao
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, China
| | - Yongmeng Wu
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, China
| | - Bin Zhang
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, China.
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology, Tianjin University, Tianjin, China.
| |
Collapse
|
17
|
Wang X, Zhou W, Zhai S, Chen X, Peng Z, Liu Z, Deng WQ, Wu H. Metal-Organic Frameworks: Direct Synthesis by Organic Acid-Etching and Reconstruction Disclosure as Oxygen Evolution Electrocatalysts. Angew Chem Int Ed Engl 2024; 63:e202400323. [PMID: 38247990 DOI: 10.1002/anie.202400323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/17/2024] [Accepted: 01/21/2024] [Indexed: 01/23/2024]
Abstract
Metal-organic frameworks (MOFs) have emerged as promising oxygen evolution reaction (OER) electrocatalysts. Chemically bonded MOFs on supports are desirable yet lacking in routine synthesis, as they may allow variable structural evolution and the underlying structure-activity relationship to be disclosed. Herein, direct MOF synthesis is achieved by an organic acid-etching strategy (AES). Using π-conjugated ferrocene (Fc) dicarboxylic acid as the etching agent and organic ligand, a series of MFc-MOF (M=Ni, Co, Fe, Zn) nanosheets are synthesized on the metal supports. The crystal structure is studied using X-ray diffraction and low-dose transmission electron microscopy, which is quasi-lattice-matched with that of the metal, enabling in situ MOF growth. Operando Raman and attenuated total reflectance Fourier transform infrared spectroscopy disclose that the NiFc-MOF features dynamic structural rebuilding during OER. The reconstructed one showing optimized electronic structures with an upshifted total d-band center, high M-O bonding state occupancy, and localized electrons on adsorbates indicated by density functional theory calculations, exhibits outstanding OER performance with a fairly low overpotential (130 mV at 10 mA cm-2 ) and good stability (144 h). The newly established approach for direct MOF synthesis and structural reconstruction disclosure stimulate the development of more prudent catalysts for advancing OER.
Collapse
Affiliation(s)
- Xiao Wang
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266071, China
| | - Wei Zhou
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Shengliang Zhai
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266071, China
| | - Xiaokang Chen
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266071, China
| | - Zheng Peng
- Center for Transformative Science, Shanghai High Repetition Rate XFEL and Extreme Light Facility (SHINE), ShanghaiTech University, Shanghai, 201210, China
| | - Zhi Liu
- Center for Transformative Science, Shanghai High Repetition Rate XFEL and Extreme Light Facility (SHINE), ShanghaiTech University, Shanghai, 201210, China
| | - Wei-Qiao Deng
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266071, China
| | - Hao Wu
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266071, China
- Suzhou Research Institute of Shandong University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
18
|
Feng J, Qiao L, Liu C, Zhou P, Feng W, Pan H. Triggering efficient reconstructions of Co/Fe dual-metal incorporated Ni hydroxide by phosphate additives for electrochemical hydrogen and oxygen evolutions. J Colloid Interface Sci 2024; 657:705-715. [PMID: 38071819 DOI: 10.1016/j.jcis.2023.11.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/20/2023] [Accepted: 11/26/2023] [Indexed: 01/02/2024]
Abstract
Alkaline electrochemical water splitting has been considered as an efficient way for the green hydrogen production in industry, where the electrocatalysts play the critical role for the electricity-to-fuel conversion efficiency. Phosphate salts are widely used as additives in the fabrication of electrocatalysts with improved activity, but their roles on the electrocatalytic performance have not been fully understood. Herein, we fabricate Co, Fe dual-metal incorporated Ni hydroxide on Ni foam using NaH2PO4 ((Co, Fe)NiOxHy-pi) and NaH2PO2 ((Co, Fe)NiOxHy-hp) as additive, respectively. We find that (Co, Fe)NiOxHy-hp with NaH2PO2 in the fabrication shows high activity and stability for both HER and OER (a overpotential of -0.629 V and 0.65 V at 400 mA cm-2 for HER and OER, respectively). Further experiment reveals that the reconstructed structures of electrocatalyst by using NaH2PO2 (hp) endow high electrocatalytic performances: (1) in-situ generated active metal improves the accumulation, transportation and activity of hydrogen species in the HER process; and (2) in-situ generated poor-crystalline hydroxide endows superior charge/mass transportation and kinetics improvements in the OER process. Our study may provide an insightful understanding on the catalytic performance of non-precious metal electrocatalysts by controlling additives and guidance for the design and synthesis of novel electrocatalysts.
Collapse
Affiliation(s)
- Jinxian Feng
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, China
| | - Lulu Qiao
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, China
| | - Chunfa Liu
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, China
| | - Pengfei Zhou
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, China; Department of Materials and Metallurgy, Guizhou University, Guiyang, Guizhou 550025, China
| | - Wenlin Feng
- Department of Physics and Energy, Chongqing University of Technology, Chongqing 400054, China
| | - Hui Pan
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, China; Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Macao SAR, China.
| |
Collapse
|
19
|
Zhang Y, Zhao J, Cheng J, Wang X, Wang H, Shao Y, Mao X, He X. Bromine-mediated strategy endows efficient electrochemical oxidation of amine to nitrile. Chem Commun (Camb) 2024; 60:2369-2372. [PMID: 38318781 DOI: 10.1039/d3cc05861a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Conventional methods for nitrile synthesis bring inherent environmental risks due to their reliance on oxidants and harsh reaction conditions. Meanwhile, direct electrooxidation of amines to nitriles suffers from low current density. In this study, we propose an innovative indirect electrooxidation strategy for nitrile formation, mediated by Br-/Br2, utilizing a highly efficient CoS2/CoS@Graphite Felt (GF) electrode. Notably, the anodic nitrile generation can be synergistically coupled with the cathodic hydrogen evolution reaction (HER). Through meticulous optimization of reaction parameters, we achieve an impressive 98% selectivity for octanenitrile at a current density of 60 mA cm-2 with a remarkable faradaic efficiency (FE) of 87%. Furthermore, our approach demonstrates excellent versatility, as we successfully evaluate both aliphatic and aromatic primary amines, highlighting its promising potential for practical applications in the field.
Collapse
Affiliation(s)
- Yuchi Zhang
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, Jiangsu 211171, P. R. China.
| | - Jiyang Zhao
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, Jiangsu 211171, P. R. China.
| | - Jiongjia Cheng
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, Jiangsu 211171, P. R. China.
| | - Xiaofeng Wang
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, Jiangsu 211171, P. R. China.
| | - Haiying Wang
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, Jiangsu 211171, P. R. China.
| | - Yang Shao
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, Jiangsu 211171, P. R. China.
| | - Xiaoxia Mao
- Key Laboratory of Aqueous Environment Protection and Pollution Control of Yangtze River in Anhui of Anhui Provincial Education Department, College of Resources and Environment, Anqing Normal University, Anqing 246011, P. R. China
| | - Xin He
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
20
|
Yang W, Chen P, Niu X, Fan Y, Gao H, Luo X. Enhanced Hydroxyl Adsorption in Ultrathin NiO/Cr 2 O 3 In-Plane Heterostructures for Efficient Alkaline Methanol Oxidation Reaction. Chemistry 2024; 30:e202302684. [PMID: 37888750 DOI: 10.1002/chem.202302684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 10/28/2023]
Abstract
The exploration of advanced nickel-based electrocatalysts for alkaline methanol oxidation reaction (MOR) holds immense promise for value-added organic products coupled with hydrogen production, but still remain challenging. Herein, we construct ultrathin NiO/Cr2 O3 in-plane heterostructures to promote the alkaline MOR process. Experimental and theoretical studies reveal that NiO/Cr2 O3 in-plane heterostructures enable a favorable upshift of the d-band center and enhanced adsorption of hydroxyl species, leading to accelerated generation of active NiO(OH)ads species. Furthermore, ultrathin in-plane heterostructures endow the catalyst with good charge transfer ability and adsorption behavior of methanol molecules onto catalytic sites, contributing to the improvement of alkaline MOR kinetics. As a result, ultrathin NiO/Cr2 O3 in-plane heterostructures exhibit a remarkable MOR activity with a high current density of 221 mA cm-2 at 0.6 V vs Ag/AgCl, which is 7.1-fold larger than that of pure NiO nanosheets and comparable with other highly active catalysts reported so far. This work provides an effectual strategy to optimize the activity of nickel-based catalysts and highlights the dominate efficacy of ultrathin in-plane heterostructures in alkaline MOR.
Collapse
Affiliation(s)
- Wenlong Yang
- Key Laboratory of Optic-electric Sensing and, Analytical Chemistry for Life Science, MOE, Key Laboratory of Analytical Chemistry for, Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 266042, Qingdao, Shandong, P. R. China
| | - Ping Chen
- Key Laboratory of Optic-electric Sensing and, Analytical Chemistry for Life Science, MOE, Key Laboratory of Analytical Chemistry for, Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 266042, Qingdao, Shandong, P. R. China
| | - Xueqing Niu
- Key Laboratory of Optic-electric Sensing and, Analytical Chemistry for Life Science, MOE, Key Laboratory of Analytical Chemistry for, Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 266042, Qingdao, Shandong, P. R. China
| | - Yu Fan
- Key Laboratory of Optic-electric Sensing and, Analytical Chemistry for Life Science, MOE, Key Laboratory of Analytical Chemistry for, Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 266042, Qingdao, Shandong, P. R. China
| | - Hongtao Gao
- Key Laboratory of Optic-electric Sensing and, Analytical Chemistry for Life Science, MOE, Key Laboratory of Analytical Chemistry for, Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 266042, Qingdao, Shandong, P. R. China
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and, Analytical Chemistry for Life Science, MOE, Key Laboratory of Analytical Chemistry for, Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 266042, Qingdao, Shandong, P. R. China
| |
Collapse
|
21
|
Qian Q, Zhu Y, Ahmad N, Feng Y, Zhang H, Cheng M, Liu H, Xiao C, Zhang G, Xie Y. Recent Advancements in Electrochemical Hydrogen Production via Hybrid Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306108. [PMID: 37815215 DOI: 10.1002/adma.202306108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/20/2023] [Indexed: 10/11/2023]
Abstract
As one of the most promising approaches to producing high-purity hydrogen (H2 ), electrochemical water splitting powered by the renewable energy sources such as solar, wind, and hydroelectric power has attracted considerable interest over the past decade. However, the water electrolysis process is seriously hampered by the sluggish electrode reaction kinetics, especially the four-electron oxygen evolution reaction at the anode side, which induces a high reaction overpotential. Currently, the emerging hybrid electrochemical water splitting strategy is proposed by integrating thermodynamically favorable electro-oxidation reactions with hydrogen evolution reaction at the cathode, providing a new opportunity for energy-efficient H2 production. To achieve highly efficient and cost-effective hybrid water splitting toward large-scale practical H2 production, much work has been continuously done to exploit the alternative anodic oxidation reactions and cutting-edge electrocatalysts. This review will focus on recent developments on electrochemical H2 production coupled with alternative oxidation reactions, including the choice of anodic substrates, the investigation on electrocatalytic materials, and the deep understanding of the underlying reaction mechanisms. Finally, some insights into the scientific challenges now standing in the way of future advancement of the hybrid water electrolysis technique are shared, in the hope of inspiring further innovative efforts in this rapidly growing field.
Collapse
Affiliation(s)
- Qizhu Qian
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China Hefei, Anhui, 230026, P. R. China
| | - Yin Zhu
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China Hefei, Anhui, 230026, P. R. China
| | - Nazir Ahmad
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China Hefei, Anhui, 230026, P. R. China
| | - Yafei Feng
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China Hefei, Anhui, 230026, P. R. China
| | - Huaikun Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China Hefei, Anhui, 230026, P. R. China
| | - Mingyu Cheng
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China Hefei, Anhui, 230026, P. R. China
| | - Huanhuan Liu
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China Hefei, Anhui, 230026, P. R. China
| | - Chong Xiao
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China Hefei, Anhui, 230026, P. R. China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui, 230031, P. R. China
| | - Genqiang Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China Hefei, Anhui, 230026, P. R. China
| | - Yi Xie
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China Hefei, Anhui, 230026, P. R. China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui, 230031, P. R. China
| |
Collapse
|
22
|
Liu Y, Yang Z, Zou Y, Wang S, He J. Interfacial Micro-Environment of Electrocatalysis and Its Applications for Organic Electro-Oxidation Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306488. [PMID: 37712127 DOI: 10.1002/smll.202306488] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/02/2023] [Indexed: 09/16/2023]
Abstract
Conventional designing principal of electrocatalyst is focused on the electronic structure tuning, on which effectively promotes the electrocatalysis. However, as a typical kind of electrode-electrolyte interface reaction, the electrocatalysis performance is also closely dependent on the electrocatalyst interfacial micro-environment (IME), including pH, reactant concentration, electric field, surface geometry structure, hydrophilicity/hydrophobicity, etc. Recently, organic electro-oxidation reaction (OEOR), which simultaneously reduces the anodic polarization potential and produces value-added chemicals, has emerged as a competitive alternative to oxygen evolution reaction, and the role IME played in OEOR is receiving great interest. Thus, this article provides a timely review on IME and its applications toward OEOR. In this review, the IME for conventional gas-involving reactions, as a contrast, is first presented, and then the recent progresses of IME toward diverse typical OEOR are summarized; especially, some representative works are thoroughly discussed. Additionally, cutting-edge analytical methods and characterization techniques are introduced to comprehensively understand the role IME played in OEOR. In the last section, perspectives and challenges of IME regulation for OEOR are shared.
Collapse
Affiliation(s)
- Yi Liu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Zhihui Yang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Yuqin Zou
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Shuangyin Wang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Junying He
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| |
Collapse
|
23
|
Xiao D, Bao X, Dai D, Gao Y, Si S, Wang Z, Liu Y, Wang P, Zheng Z, Cheng H, Dai Y, Huang B. Boosting the Electrochemical 5-Hydroxymethylfurfural Oxidation by Balancing the Competitive Adsorption of Organic and OH - over Controllable Reconstructed Ni 3 S 2 /NiO x. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304133. [PMID: 37474109 DOI: 10.1002/adma.202304133] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/07/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
The electrocatalytic oxidation of 5-hydroxymethylfurfural (HMF) is a promising method for the efficient production of biomass-derived high-value-added chemicals. However, its practical application is limited by: 1) the low activity and selectivity caused by the competitive adsorption of HMF and OH- and 2) the low operational stability caused by the uncontrollable reconstruction of the catalyst. To overcome these limitations, a series of Ni3 S2 /NiOx -n catalysts with controllable compositions and well-defined structures are synthesized using a novel in situ controlled surface reconstruction strategy. The adsorption behavior of HMF and OH- can be continuously adjusted by varying the ratio of NiOx to Ni3 S2 on the catalysts surface, as indicated by in situ characterizations, contact angle analysis, and theoretical simulations. Owing to the balanced competitive adsorption of HMF and OH- , the optimized Ni3 S2 /NiOx -15 catalyst exhibited remarkable HMF electrocatalytic oxidation performance, with the current density reaching 366 mA cm-2 at 1.5 VRHE and the Faradaic efficiency of the product, 2,5-furanedicarboxylic acid, reaching 98%. Moreover, Ni3 S2 /NiOx -15 exhibits excellent durability, with its activity and structure remaining stable for over 100 h of operation. This study provides a new route for the design and construction of catalysts for value-added biomass conversion and offers new insights into enhancing catalytic performance by balancing competitive adsorption.
Collapse
Affiliation(s)
- Difei Xiao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Xiaolei Bao
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, China
| | - Dujuan Dai
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Yugang Gao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Shenghe Si
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Zeyan Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Yuanyuan Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Peng Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Zhaoke Zheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Hefeng Cheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Ying Dai
- School of Physics, Shandong University, Jinan, 250100, China
| | - Baibiao Huang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| |
Collapse
|
24
|
Li Y, Jiao Y, Yan H, Yang G, Liu Y, Tian C, Wu A, Fu H. Mo-Ni-based Heterojunction with Fine-customized d-Band Centers for Hydrogen Production Coupled with Benzylamine Electrooxidation in Low Alkaline Medium. Angew Chem Int Ed Engl 2023; 62:e202306640. [PMID: 37312604 DOI: 10.1002/anie.202306640] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 06/15/2023]
Abstract
Benzylamine electrooxidation reaction (BAOR) is a promising route to produce value-added, easy-separated benzonitrile, and effectively hoist H2 production. However, achieving excellent performance in low alkaline medium is a huge challenge. The performance is intimately correlated with effective coupling of HER and BAOR, which can be achieved by manipulating the d-electron structure of catalyst to regulate the active species from water. Herein, we constructed a biphasic Mo0.8 Ni0.2 N-Ni3 N heterojunction for enhanced bifunctional performance toward HER coupled with BAOR by customizing the d-band centers. Experimental and theoretical calculations indicate that charge transfer in the heterojunction causes the upshift of the d-band centers, which one side facilitates to decrease water activation energy and optimize H* adsorption on Mo0.8 Ni0.2 N for promoting HER activity, the other side favors to more easily produce and adsorb OH* from water for forming NiOOH on Ni3 N and optimizing adsorption energy of benzylamine, thus catalyzing BAOR effectively. Accordingly, it shows an industrial current density of 220 mA cm-2 at 1.59 V and high Faradaic efficiencies (>99 %) for H2 production and converting benzylamine to benzonitrile in 0.1 M KOH/0.5 M Na2 SO4 . This work guides the design of excellent bifunctional electrocatalysts for the scalable production of green hydrogen and value-added products.
Collapse
Affiliation(s)
- Yue Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| | - Yanqing Jiao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| | - Haijing Yan
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| | - Ganceng Yang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| | - Yue Liu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| | - Chungui Tian
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| | - Aiping Wu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| | - Honggang Fu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| |
Collapse
|
25
|
Wang S, Song D, Liao L, Wang B, Li Z, Li M, Zhou W. Bi/Mn-Doped BiOCl Nanosheets Self-Assembled Microspheres toward Optimized Photocatalytic Performance. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2408. [PMID: 37686916 PMCID: PMC10490148 DOI: 10.3390/nano13172408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Doping engineering of metallic elements is of significant importance in photocatalysis, especially in the transition element range where metals possess empty 'd' orbitals that readily absorb electrons and increase carrier concentration. The doping of Mn ions produces dipole interactions that change the local structure of BiOCl, thus increasing the specific surface area of BiOCl and the number of mesoporous distributions, and providing a broader platform and richer surface active sites for catalytic reactions. The combination of Mn doping and metal Bi reduces the forbidden bandwidth of BiOCl, thereby increasing the absorption in the light region and strengthening the photocatalytic ability of BiOCl. The degradation of norfloxacin by Bi/Mn-doped BiOCl can reach 86.5% within 10 min. The synergistic effect of Mn doping and Bi metal can change the internal energy level and increase light absorption simultaneously. The photocatalytic system created by such a dual-technology combination has promising applications in environmental remediation.
Collapse
Affiliation(s)
- Shijie Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (S.W.); (L.L.); (Z.L.)
| | - Dongxue Song
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People’s Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China;
| | - Lijun Liao
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (S.W.); (L.L.); (Z.L.)
| | - Bo Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (S.W.); (L.L.); (Z.L.)
| | - Zhenzi Li
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (S.W.); (L.L.); (Z.L.)
| | - Mingxia Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People’s Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China;
| | - Wei Zhou
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (S.W.); (L.L.); (Z.L.)
| |
Collapse
|
26
|
Song T, Xue H, Sun J, Guo N, Sun J, Hao YR, Wang Q. Amorphous/crystalline heterostructure of NiFe (oxy)hydroxides for efficient oxygen evolution and urea oxidation. Chem Commun (Camb) 2023; 59:4620-4623. [PMID: 36987771 DOI: 10.1039/d3cc00991b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
A V-doped amorphous/crystalline heterostructure of NiFe (oxy)hydroxide with nanoflower morphology is developed, which exhibits excellent OER and UOR catalytic activities. V doping changes the local charge density, lowers the reaction barrier, and optimizes the electron arrangement of the NiFe LDH catalyst.
Collapse
Affiliation(s)
- Tianshan Song
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Hui Xue
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Jing Sun
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Niankun Guo
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Jiawen Sun
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Yi-Ru Hao
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Qin Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| |
Collapse
|
27
|
Qian Q, He X, Li Z, Chen Y, Feng Y, Cheng M, Zhang H, Wang W, Xiao C, Zhang G, Xie Y. Electrochemical Biomass Upgrading Coupled with Hydrogen Production under Industrial-Level Current Density. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2300935. [PMID: 36964932 DOI: 10.1002/adma.202300935] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/14/2023] [Indexed: 06/18/2023]
Abstract
As promising hydrogen energy carrier, formic acid (HCOOH) plays an indispensable role in building a complete industry chain of a hydrogen economy. Currently, the biomass upgrading assisted water electrolysis has emerged as an attractive alternative for co-producing green HCOOH and H2 in a cost-effective manner, yet simultaneously affording high current density and Faradaic efficiency (FE) still remains a big challenge. Here, the ternary NiVRu-layered double hydroxides (LDHs) nanosheet arrays for selective glycerol oxidation and hydrogen evolution catalysis are reported, which yield an industry-level 1 A cm-2 at voltage of 1.933 V, meanwhile showing considerable HCOOH and H2 productivities of 12.5 and 17.9 mmol cm-2 h-1 , with FEs of almost 80% and 96%, respectively. Experimental and theoretical results reveal that the introduced Ru atoms can tune the local electronic structure of Ni-based LDHs, which not only optimizes hydrogen adsorption kinetics for HER, but also reduces the reaction energy barriers for both the conversion of NiII into GOR-active NiIII and carboncarbon (CC) bond cleavage. In short, this work highlights the potential of large-scale H2 and HCOOH productions from integrated electrocatalytic system and provides new insights for designing advanced electrocatalyst for low-cost and sustainable energy conversion.
Collapse
Affiliation(s)
- Qizhu Qian
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China Hefei, Anhui, 230026, P. R. China
| | - Xiaoyue He
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China Hefei, Anhui, 230026, P. R. China
| | - Ziyun Li
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China Hefei, Anhui, 230026, P. R. China
| | - Yanxu Chen
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China Hefei, Anhui, 230026, P. R. China
| | - Yafei Feng
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China Hefei, Anhui, 230026, P. R. China
| | - Mingyu Cheng
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China Hefei, Anhui, 230026, P. R. China
| | - Huaikun Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China Hefei, Anhui, 230026, P. R. China
| | - Wentao Wang
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang, Guizhou, 550018, P. R. China
| | - Chong Xiao
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China Hefei, Anhui, 230026, P. R. China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui, 230031, P. R. China
| | - Genqiang Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China Hefei, Anhui, 230026, P. R. China
| | - Yi Xie
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China Hefei, Anhui, 230026, P. R. China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui, 230031, P. R. China
| |
Collapse
|
28
|
Wang F, Gu Y, Tian B, Sun Y, Zheng L, Liu S, Wang Y, Tang L, Han X, Ma J, Ding M. Spinel-Derived Formation and Amorphization of Bimetallic Oxyhydroxides for Efficient Electrocatalytic Biomass Oxidation. J Phys Chem Lett 2023; 14:2674-2683. [PMID: 36892265 DOI: 10.1021/acs.jpclett.3c00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Replacing the oxygen evolution reaction (OER) with water-assisted oxidation of organic molecules represents a promising approach for achieving sustainable electrochemical biomass utilization. Among numerous OER catalysts, spinels have received substantial attention due to their manifold compositions and valence states, yet their application in biomass conversions remains rare. Herein, a series of spinels were investigated for the selective electrooxidation of furfural and 5-hydroxymethylfurfural, two model substrates for versatile value-added chemical products. Spinel sulfides universally exhibit superior catalytic performance compared to that of spinel oxides, and further investigations show that the replacement of oxygen with sulfur led to the complete phase transition of spinel sulfides into amorphous bimetallic oxyhydroxides during electrochemical activation, serving as the active species. Excellent values of conversion rate (100%), selectivity (100%), faradaic efficiency (>95%), and stability were achieved via sulfide-derived amorphous CuCo-oxyhydroxide. Furthermore, a volcano-like correlation was established between their BEOR and OER activities based on an OER-assisted organic oxidation mechanism.
Collapse
Affiliation(s)
- Fangyuan Wang
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuming Gu
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Bailin Tian
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuxia Sun
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Lifeng Zheng
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shengtang Liu
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yiqi Wang
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Lingyu Tang
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiao Han
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing Ma
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Mengning Ding
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
29
|
Liu C, Shi XR, Yue K, Wang P, Zhan K, Wang X, Xia BY, Yan Y. S-Species-Evoked High-Valence Ni 2+ δ of the Evolved β-Ni(OH) 2 Electrode for Selective Oxidation of 5-Hydroxymethylfurfural. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211177. [PMID: 36606317 DOI: 10.1002/adma.202211177] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/02/2023] [Indexed: 06/17/2023]
Abstract
An efficient NiSx -modified β-Ni(OH)2 electrode is reported for the selective oxidation reaction of 5-hydroxymethylfurfural (HMFOR) with excellent electrocatalytic 5-hydroxymethylfurfural (HMF) selectivity (99.4%), conversion (97.7%), and Faradaic efficiency (98.3%). The decoration of NiSx will evoke high-valence Ni2+ δ species in the reconstructed β-Ni(OH)2 electrode, which are the real active species for HMFOR. The generated NiSx /Ni(OH)O modulates the proton-coupled electron-transfer (PCET) process of HMFOR, where the electrocatalytically generated Ni(OH)O can effectively trap the protons from the CHO end in HMF to realize electron transfer. The oxygen evolution reaction (OER) competes with the HMFOR when NiSx /Ni(OH)O continues to accumulate, to generate the NiSx /NiOx (OH)y intermediate. Density functional theory (DFT) calculations and experimental results verify that the adsorption energy of HMF can be optimized through the increased NiSx composition for more efficient capture of protons and electrons in the HMFOR.
Collapse
Affiliation(s)
- Chaofan Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
- CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), 585 Heshuo Road, Shanghai, 200050, China
| | - Xue-Rong Shi
- School of Material Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai, 201620, China
| | - Kaihang Yue
- CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), 585 Heshuo Road, Shanghai, 200050, China
| | - Peijie Wang
- School of Material Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai, 201620, China
| | - Ke Zhan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Xianying Wang
- CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), 585 Heshuo Road, Shanghai, 200050, China
| | - Bao Yu Xia
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Ya Yan
- CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), 585 Heshuo Road, Shanghai, 200050, China
| |
Collapse
|
30
|
Hao Y, Li J, Cao X, Meng L, Wu J, Yang X, Li Y, Liu Z, Gong M. Origin of the Universal Potential-Dependent Organic Oxidation on Nickel Oxyhydroxide. ACS Catal 2023. [DOI: 10.1021/acscatal.2c04625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Affiliation(s)
- Yaming Hao
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Jili Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Xueting Cao
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Lingshen Meng
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Jianxiang Wu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Xuejing Yang
- National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai 200237, China
| | - Yefei Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Zhipan Liu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Ming Gong
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| |
Collapse
|
31
|
Wang X, Li L, Shi M, Wang Y, Xu G, Yuan K, Zhu P, Ding M, Chen Y. Understanding the electrocatalytic mechanism of self-template formation of hierarchical Co 9S 8/Ni 3S 2 heterojunctions for highly selective electroreduction of nitrobenzene. Chem Sci 2022; 13:11639-11647. [PMID: 36320394 PMCID: PMC9555750 DOI: 10.1039/d2sc03585e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/17/2022] [Indexed: 07/21/2023] Open
Abstract
Aqueous electrochemical nitroarene reduction reaction using H2O as the sustainable hydrogen source is an emerging technology to produce functionalized anilines. However, the development of low-cost electrocatalysts and the fundamental mechanistic understanding of the selective NO-RR still remain challenging. Herein, self-supporting hierarchical nanosheets consisting of high-density Co9S8/Ni3S2 heterojunctions on Ni foam (Co9S8/Ni3S2-NF) are constructed via an in situ self-template strategy. With combined advantages of high-loading, high surface exposure, efficient conductivity and unique electronic structure of the Co9S8/Ni3S2 interface, the as-prepared Co9S8/Ni3S2-NF exhibits efficient electrocatalytic NO-RR performance, including up to 99.0% conversion and 96.0% selectivity towards aniline, and outstanding functional group tolerance. Mechanistic investigations and theoretical calculations reveal that electron transfer from Ni3S2 to Co9S8 is beneficial for the co-adsorption of H2O and nitrobenzene molecules at the interfacial sites, promoting the formation of active hydrogen and subsequent reduction of nitrobenzene. Additionally, the interfacial charge transfer breaks the symmetry of two active Co sites at the Co9S8/Ni3S2 interface, which markedly reduces the energy barrier for reduction of nitrobenzene to aniline. This work offers a successful example for the interfacial engineering of metal sulfide-based heterojunctions with excellent electrocatalytic nitroarene reduction performance, and also paves the way for the in-depth understanding of the corresponding mechanism.
Collapse
Affiliation(s)
- Xuanping Wang
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Longbin Li
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
- Institute of Polymers and Energy Chemistry (IPEC), Nanchang University 999 Xuefu Avenue Nanchang 330031 China
| | - Mingzhu Shi
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Yiqi Wang
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University 163 Xianlin Avenue Nanjing 210023 China
| | - Guodong Xu
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Kai Yuan
- Institute of Polymers and Energy Chemistry (IPEC), Nanchang University 999 Xuefu Avenue Nanchang 330031 China
| | - Peipei Zhu
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Mengning Ding
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University 163 Xianlin Avenue Nanjing 210023 China
| | - Yiwang Chen
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
- Institute of Polymers and Energy Chemistry (IPEC), Nanchang University 999 Xuefu Avenue Nanchang 330031 China
| |
Collapse
|