1
|
Dizani M, Sorrentino D, Agarwal S, Stewart JM, Franco E. Protein Recruitment to Dynamic DNA-RNA Host Condensates. J Am Chem Soc 2024; 146:29344-29354. [PMID: 39418394 DOI: 10.1021/jacs.4c07555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
We describe the design and characterization of artificial nucleic acid condensates that are engineered to recruit and locally concentrate proteins of interest in vitro. These condensates emerge from the programmed interactions of nanostructured motifs assembling from three DNA strands and one RNA strand that can include an aptamer domain for the recruitment of a target protein. Because condensates are designed to form regardless of the presence of target protein, they function as "host" compartments. As a model protein, we consider Streptavidin (SA) due to its widespread use in binding assays. In addition to demonstrating protein recruitment, we describe two approaches to control the onset of condensation and protein recruitment. The first approach uses UV irradiation, a physical stimulus that bypasses the need for exchanging molecular inputs and is particularly convenient to control condensation in emulsion droplets. The second approach uses RNA transcription, a ubiquitous biochemical reaction that is central to the development of the next generation of living materials. We then show that the combination of RNA transcription and degradation leads to an autonomous dissipative system in which host condensates and protein recruitment occur transiently and that the host condensate size as well as the time scale of the transition can be controlled by the level of RNA-degrading enzyme. We conclude by demonstrating that biotinylated beads can be recruited to SA-host condensates, which may therefore find immediate use for the physical separation of a variety of biotin-tagged components.
Collapse
Affiliation(s)
- Mahdi Dizani
- Department of Mechanical & Aerospace Engineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Daniela Sorrentino
- Department of Mechanical & Aerospace Engineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Siddharth Agarwal
- Department of Mechanical & Aerospace Engineering, University of California at Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Jaimie Marie Stewart
- Department of Bioengineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Elisa Franco
- Department of Mechanical & Aerospace Engineering, University of California at Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California at Los Angeles, Los Angeles, California 90095, United States
- Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
2
|
Yamashita N, Sato Y, Suzuki Y, Ishikawa D, Takinoue M. DNA-Origami-Armored DNA Condensates. Chembiochem 2024; 25:e202400468. [PMID: 39075031 DOI: 10.1002/cbic.202400468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 07/31/2024]
Abstract
DNA condensates, formed by liquid-liquid phase separation (LLPS), emerge as promising soft matter assemblies for creating artificial cells. The advantages of DNA condensates are their molecular permeability through the surface due to their membrane-less structure and their fluidic property. However, they face challenges in the design of their surface, e. g., unintended fusion and less regulation of permeable molecules. Addressing them, we report surface modification of DNA condensates with DNA origami nanoparticles, employing a Pickering-emulsion strategy. We successfully constructed core-shell structures with DNA origami coatings on DNA condensates and further enhanced the condensate stability toward fusion via connecting DNA origamis by responding to DNA input strands. The 'armoring' prevented the fusion of DNA condensates, enabling the formation of multicellular-like structures of DNA condensates. Moreover, the permeability was altered through the state change from coating to armoring the DNA condensates. The armored DNA condensates have significant potential for constructing artificial cells, offering increased surface stability and selective permeability for small molecules while maintaining compartmentalized space and multicellular organization.
Collapse
Affiliation(s)
- Nagi Yamashita
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Yusuke Sato
- Department of Intelligent and Control Systems, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka, 820-8502, Japan
| | - Yuki Suzuki
- Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie, 514-8507, Japan
| | - Daisuke Ishikawa
- Department of Precision Biomedical Engineering, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Masahiro Takinoue
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
- Department of Computer Science, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
- Research Center for Autonomous Systems Materialogy (ASMat), Institute of Innovative Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| |
Collapse
|
3
|
Lin P, Zhang S, Komatsubara F, Konishi H, Nakata E, Morii T. Artificial Compartments Encapsulating Enzymatic Reactions: Towards the Construction of Artificial Organelles. Chempluschem 2024:e202400483. [PMID: 39351818 DOI: 10.1002/cplu.202400483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/30/2024] [Indexed: 11/08/2024]
Abstract
Cells have used compartmentalization to implement complex biological processes involving thousands of enzyme cascade reactions. Enzymes are spatially organized into the cellular compartments to carry out specific and efficient reactions in a spatiotemporally controlled manner. These compartments are divided into membrane-bound and membraneless organelles. Mimicking such cellular compartment systems has been a challenge for years. A variety of artificial scaffolds, including liposomes, polymersomes, proteins, nucleic acids, or hybrid materials have been used to construct artificial membrane-bound or membraneless compartments. These artificial compartments may have great potential for applications in biosynthesis, drug delivery, diagnosis and therapeutics, among others. This review first summarizes the typical examples of cellular compartments. In particular, the recent studies on cellular membraneless organelles (biomolecular condensates) are reviewed. We then summarize the recent advances in the construction of artificial compartments using engineered platforms. Finally, we provide our insights into the construction of biomimetic systems and the applications of these systems. This review article provides a timely summary of the relevant perspectives for the future development of artificial compartments, the building blocks for the construction of artificial organelles or cells.
Collapse
Affiliation(s)
- Peng Lin
- Institute of Advanced Energy, Kyoto University, Uji-shi, Kyoto, 611-0011, Japan
| | - Shiwei Zhang
- Institute of Advanced Energy, Kyoto University, Uji-shi, Kyoto, 611-0011, Japan
| | - Futa Komatsubara
- Graduate School of Energy Science, Kyoto University, Yoshida-hommachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hiroaki Konishi
- Institute of Advanced Energy, Kyoto University, Uji-shi, Kyoto, 611-0011, Japan
| | - Eiji Nakata
- Institute of Advanced Energy, Kyoto University, Uji-shi, Kyoto, 611-0011, Japan
| | - Takashi Morii
- Institute of Advanced Energy, Kyoto University, Uji-shi, Kyoto, 611-0011, Japan
- Department of Health and Nutrition, Kyoto Koka Women's University, Ukyo-ku, Kyoto, 615-0882, Japan
| |
Collapse
|
4
|
Yin C, Yu X, Chen C, Jin X, Tian L. Engineering the Spatial Distribution of Amphiphilic Molecule within Complex Coacervate Microdroplet via Modulating Charge Strength of Polyelectrolytes. SMALL METHODS 2024; 8:e2301760. [PMID: 38725320 DOI: 10.1002/smtd.202301760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/18/2024] [Indexed: 10/24/2024]
Abstract
The investigation of the interplay between complex coacervate microdroplets and amphiphilic molecules offers valuable insights into the processes of prebiotic compartmentalization on the early Earth and presents a promising avenue for future advancements in biotechnology. Herein, the interaction between complex coacervate microdroplets and amphiphilic molecule (decanoic acid) is systematically investigated by varying charge strengths of negatively charged polyelectrolytes (DNA and PAA) and positively charged polyelectrolytes (PDDA and DEAE-Dextran). It is found that the interaction between amphiphilic molecule and complex coacervate microdroplets depended on the delicate balance between the interaction between decanoic acid and polyelectrolyte and the interaction between two polyelectrolytes. The different spatial distribution of amphiphilic molecule can result in differences in the internal microenvironment, which can further alter the uptake or exclusion of small molecules and biomolecules with different charges and polarities and functional biological process.
Collapse
Affiliation(s)
- Chengying Yin
- Department of Ambulatory Surgery, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xinran Yu
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Chong Chen
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou, 310053, China
| | - Xiaofen Jin
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310027, China
| | - Liangfei Tian
- Department of Ambulatory Surgery, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou, 310053, China
| |
Collapse
|
5
|
Maruyama T, Gong J, Takinoue M. Temporally controlled multistep division of DNA droplets for dynamic artificial cells. Nat Commun 2024; 15:7397. [PMID: 39191726 DOI: 10.1038/s41467-024-51299-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024] Open
Abstract
Synthetic droplets mimicking bio-soft matter droplets formed via liquid-liquid phase separation (LLPS) in living cells have recently been employed in nanobiotechnology for artificial cells, molecular robotics, molecular computing, etc. Temporally controlling the dynamics of synthetic droplets is essential for developing such bio-inspired systems because living systems maintain their functions based on the temporally controlled dynamics of biomolecular reactions and assemblies. This paper reports the temporal control of DNA-based LLPS droplets (DNA droplets). We demonstrate the timing-controlled division of DNA droplets via time-delayed division triggers regulated by chemical reactions. Controlling the release order of multiple division triggers results in order control of the multistep droplet division, i.e., pathway-controlled division in a reaction landscape. Finally, we apply the timing-controlled division into a molecular computing element to compare microRNA concentrations. We believe that temporal control of DNA droplets will promote the design of dynamic artificial cells/molecular robots and sophisticated biomedical applications.
Collapse
Affiliation(s)
- Tomoya Maruyama
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Jing Gong
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Masahiro Takinoue
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan.
- Department of Computer Science, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan.
- Research Center for Autonomous Systems Materialogy (ASMat), Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan.
| |
Collapse
|
6
|
Agrawal A, Radakovic A, Vonteddu A, Rizvi S, Huynh VN, Douglas JF, Tirrell MV, Karim A, Szostak JW. Did the exposure of coacervate droplets to rain make them the first stable protocells? SCIENCE ADVANCES 2024; 10:eadn9657. [PMID: 39167649 PMCID: PMC11338219 DOI: 10.1126/sciadv.adn9657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/17/2024] [Indexed: 08/23/2024]
Abstract
Membraneless coacervate microdroplets have long been proposed as model protocells as they can grow, divide, and concentrate RNA by natural partitioning. However, the rapid exchange of RNA between these compartments, along with their rapid fusion, both within minutes, means that individual droplets would be unable to maintain their separate genetic identities. Hence, Darwinian evolution would not be possible, and the population would be vulnerable to collapse due to the rapid spread of parasitic RNAs. In this study, we show that distilled water, mimicking rain/freshwater, leads to the formation of electrostatic crosslinks on the interface of coacervate droplets that not only suppress droplet fusion indefinitely but also allow the spatiotemporal compartmentalization of RNA on a timescale of days depending on the length and structure of RNA. We suggest that these nonfusing membraneless droplets could potentially act as protocells with the capacity to evolve compartmentalized ribozymes in prebiotic environments.
Collapse
Affiliation(s)
- Aman Agrawal
- William A. Brookshire Department of Chemical & Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Aleksandar Radakovic
- Howard Hughes Medical Institute, Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Anusha Vonteddu
- Materials Science and Engineering Program, University of Houston, Houston, TX 77204, USA
| | - Syed Rizvi
- William A. Brookshire Department of Chemical & Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Vivian N. Huynh
- William A. Brookshire Department of Chemical & Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Jack F. Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Matthew V. Tirrell
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
- Argonne National Laboratory, Lemont, IL, 60439 USA
| | - Alamgir Karim
- William A. Brookshire Department of Chemical & Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
- Materials Science and Engineering Program, University of Houston, Houston, TX 77204, USA
| | - Jack W. Szostak
- Howard Hughes Medical Institute, Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
7
|
Udono H, Fan M, Saito Y, Ohno H, Nomura SIM, Shimizu Y, Saito H, Takinoue M. Programmable Computational RNA Droplets Assembled via Kissing-Loop Interaction. ACS NANO 2024; 18:15477-15486. [PMID: 38831645 PMCID: PMC11191694 DOI: 10.1021/acsnano.3c12161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 06/05/2024]
Abstract
DNA droplets, artificial liquid-like condensates of well-engineered DNA sequences, allow the critical aspects of phase-separated biological condensates to be harnessed programmably, such as molecular sensing and phase-state regulation. In contrast, their RNA-based counterparts remain less explored despite more diverse molecular structures and functions ranging from DNA-like to protein-like features. Here, we design and demonstrate computational RNA droplets capable of two-input AND logic operations. We use a multibranched RNA nanostructure as a building block comprising multiple single-stranded RNAs. Its branches engaged in RNA-specific kissing-loop (KL) interaction enables the self-assembly into a network-like microstructure. Upon two inputs of target miRNAs, the nanostructure is programmed to break up into lower-valency structures that are interconnected in a chain-like manner. We optimize KL sequences adapted from viral sequences by numerically and experimentally studying the base-wise adjustability of the interaction strength. Only upon receiving cognate microRNAs, RNA droplets selectively show a drastic phase-state change from liquid to dispersed states due to dismantling of the network-like microstructure. This demonstration strongly suggests that the multistranded motif design offers a flexible means to bottom-up programming of condensate phase behavior. Unlike submicroscopic RNA-based logic operators, the macroscopic phase change provides a naked-eye-distinguishable readout of molecular sensing. Our computational RNA droplets can be applied to in situ programmable assembly of computational biomolecular devices and artificial cells from transcriptionally derived RNA within biological/artificial cells.
Collapse
Affiliation(s)
- Hirotake Udono
- Department
of Computer Science, Tokyo Institute of
Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Minzhi Fan
- Department
of Computer Science, Tokyo Institute of
Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Yoko Saito
- Department
of Computer Science, Tokyo Institute of
Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Hirohisa Ohno
- Department
of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shin-ichiro M. Nomura
- Department
of Robotics, Graduate School of Engineering, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yoshihiro Shimizu
- Laboratory
for Cell-Free Protein Synthesis, RIKEN Center
for Biosystems Dynamics Research, Suita, Osaka 565-0874, Japan
| | - Hirohide Saito
- Department
of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Masahiro Takinoue
- Department
of Computer Science, Tokyo Institute of
Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
- Department
of Life Science and Technology, Tokyo Institute
of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
- Research
Center for Autonomous Systems Materialogy (ASMat), Institute of Innovative
Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
8
|
Samanta A, Baranda Pellejero L, Masukawa M, Walther A. DNA-empowered synthetic cells as minimalistic life forms. Nat Rev Chem 2024; 8:454-470. [PMID: 38750171 DOI: 10.1038/s41570-024-00606-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 06/13/2024]
Abstract
Cells, the fundamental units of life, orchestrate intricate functions - motility, adaptation, replication, communication, and self-organization within tissues. Originating from spatiotemporally organized structures and machinery, coupled with information processing in signalling networks, cells embody the 'sensor-processor-actuator' paradigm. Can we glean insights from these processes to construct primitive artificial systems with life-like properties? Using de novo design approaches, what can we uncover about the evolutionary path of life? This Review discusses the strides made in crafting synthetic cells, utilizing the powerful toolbox of structural and dynamic DNA nanoscience. We describe how DNA can serve as a versatile tool for engineering entire synthetic cells or subcellular entities, and how DNA enables complex behaviour, including motility and information processing for adaptive and interactive processes. We chart future directions for DNA-empowered synthetic cells, envisioning interactive systems wherein synthetic cells communicate within communities and with living cells.
Collapse
Affiliation(s)
- Avik Samanta
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Mainz, Germany.
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, India.
| | | | - Marcos Masukawa
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Mainz, Germany
| | - Andreas Walther
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Mainz, Germany.
| |
Collapse
|
9
|
Abraham GR, Chaderjian AS, N Nguyen AB, Wilken S, Saleh OA. Nucleic acid liquids. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:066601. [PMID: 38697088 DOI: 10.1088/1361-6633/ad4662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/02/2024] [Indexed: 05/04/2024]
Abstract
The confluence of recent discoveries of the roles of biomolecular liquids in living systems and modern abilities to precisely synthesize and modify nucleic acids (NAs) has led to a surge of interest in liquid phases of NAs. These phases can be formed primarily from NAs, as driven by base-pairing interactions, or from the electrostatic combination (coacervation) of negatively charged NAs and positively charged molecules. Generally, the use of sequence-engineered NAs provides the means to tune microsopic particle properties, and thus imbue specific, customizable behaviors into the resulting liquids. In this way, researchers have used NA liquids to tackle fundamental problems in the physics of finite valence soft materials, and to create liquids with novel structured and/or multi-functional properties. Here, we review this growing field, discussing the theoretical background of NA liquid phase separation, quantitative understanding of liquid material properties, and the broad and growing array of functional demonstrations in these materials. We close with a few comments discussing remaining open questions and challenges in the field.
Collapse
Affiliation(s)
- Gabrielle R Abraham
- Physics Department,University of California, Santa Barbara, CA 93106, United States of America
| | - Aria S Chaderjian
- Physics Department,University of California, Santa Barbara, CA 93106, United States of America
| | - Anna B N Nguyen
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106, United States of America
| | - Sam Wilken
- Physics Department,University of California, Santa Barbara, CA 93106, United States of America
- Materials Department, University of California, Santa Barbara, CA 93106, United States of America
| | - Omar A Saleh
- Physics Department,University of California, Santa Barbara, CA 93106, United States of America
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106, United States of America
- Materials Department, University of California, Santa Barbara, CA 93106, United States of America
| |
Collapse
|
10
|
Liu W, Deng J, Song S, Sethi S, Walther A. A facile DNA coacervate platform for engineering wetting, engulfment, fusion and transient behavior. Commun Chem 2024; 7:100. [PMID: 38693272 PMCID: PMC11063173 DOI: 10.1038/s42004-024-01185-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/19/2024] [Indexed: 05/03/2024] Open
Abstract
Biomolecular coacervates are emerging models to understand biological systems and important building blocks for designer applications. DNA can be used to build up programmable coacervates, but often the processes and building blocks to make those are only available to specialists. Here, we report a simple approach for the formation of dynamic, multivalency-driven coacervates using long single-stranded DNA homopolymer in combination with a series of palindromic binders to serve as a synthetic coacervate droplet. We reveal details on how the length and sequence of the multivalent binders influence coacervate formation, how to introduce switching and autonomous behavior in reaction circuits, as well as how to engineer wetting, engulfment and fusion in multi-coacervate system. Our simple-to-use model DNA coacervates enhance the understanding of coacervate dynamics, fusion, phase transition mechanisms, and wetting behavior between coacervates, forming a solid foundation for the development of innovative synthetic and programmable coacervates for fundamental studies and applications.
Collapse
Affiliation(s)
- Wei Liu
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Jie Deng
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, 430074, Wuhan, China
| | - Siyu Song
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Soumya Sethi
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Andreas Walther
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany.
| |
Collapse
|
11
|
Naz M, Zhang L, Chen C, Yang S, Dou H, Mann S, Li J. Self-assembly of stabilized droplets from liquid-liquid phase separation for higher-order structures and functions. Commun Chem 2024; 7:79. [PMID: 38594355 PMCID: PMC11004187 DOI: 10.1038/s42004-024-01168-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 04/03/2024] [Indexed: 04/11/2024] Open
Abstract
Dynamic microscale droplets produced by liquid-liquid phase separation (LLPS) have emerged as appealing biomaterials due to their remarkable features. However, the instability of droplets limits the construction of population-level structures with collective behaviors. Here we first provide a brief background of droplets in the context of materials properties. Subsequently, we discuss current strategies for stabilizing droplets including physical separation and chemical modulation. We also discuss the recent development of LLPS droplets for various applications such as synthetic cells and biomedical materials. Finally, we give insights on how stabilized droplets can self-assemble into higher-order structures displaying coordinated functions to fully exploit their potentials in bottom-up synthetic biology and biomedical applications.
Collapse
Affiliation(s)
- Mehwish Naz
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai, 201203, China
| | - Lin Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai, 201203, China
| | - Chong Chen
- MediCity Research Laboratory, University of Turku, Tykistökatu 6, Turku, 20520, Finland
| | - Shuo Yang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai, 201203, China.
| | - Hongjing Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai, 201203, China.
| | - Stephen Mann
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai, 201203, China.
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, UK.
- Max Planck-Bristol Centre for Minimal Biology, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK.
| | - Jianwei Li
- MediCity Research Laboratory, University of Turku, Tykistökatu 6, Turku, 20520, Finland.
| |
Collapse
|
12
|
Agarwal S, Osmanovic D, Dizani M, Klocke MA, Franco E. Dynamic control of DNA condensation. Nat Commun 2024; 15:1915. [PMID: 38429336 PMCID: PMC10907372 DOI: 10.1038/s41467-024-46266-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 02/21/2024] [Indexed: 03/03/2024] Open
Abstract
Artificial biomolecular condensates are emerging as a versatile approach to organize molecular targets and reactions without the need for lipid membranes. Here we ask whether the temporal response of artificial condensates can be controlled via designed chemical reactions. We address this general question by considering a model problem in which a phase separating component participates in reactions that dynamically activate or deactivate its ability to self-attract. Through a theoretical model we illustrate the transient and equilibrium effects of reactions, linking condensate response and reaction parameters. We experimentally realize our model problem using star-shaped DNA motifs known as nanostars to generate condensates, and we take advantage of strand invasion and displacement reactions to kinetically control the capacity of nanostars to interact. We demonstrate reversible dissolution and growth of DNA condensates in the presence of specific DNA inputs, and we characterize the role of toehold domains, nanostar size, and nanostar valency. Our results will support the development of artificial biomolecular condensates that can adapt to environmental changes with prescribed temporal dynamics.
Collapse
Affiliation(s)
- Siddharth Agarwal
- Mechanical and Aerospace Engineering, University of California at Los Angeles, Los Angeles, CA, 90095, USA
- Bioengineering, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Dino Osmanovic
- Mechanical and Aerospace Engineering, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Mahdi Dizani
- Mechanical and Aerospace Engineering, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Melissa A Klocke
- Mechanical and Aerospace Engineering, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Elisa Franco
- Mechanical and Aerospace Engineering, University of California at Los Angeles, Los Angeles, CA, 90095, USA.
- Bioengineering, University of California at Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
13
|
Peng Z, Iwabuchi S, Izumi K, Takiguchi S, Yamaji M, Fujita S, Suzuki H, Kambara F, Fukasawa G, Cooney A, Di Michele L, Elani Y, Matsuura T, Kawano R. Lipid vesicle-based molecular robots. LAB ON A CHIP 2024; 24:996-1029. [PMID: 38239102 PMCID: PMC10898420 DOI: 10.1039/d3lc00860f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/12/2023] [Indexed: 02/28/2024]
Abstract
A molecular robot, which is a system comprised of one or more molecular machines and computers, can execute sophisticated tasks in many fields that span from nanomedicine to green nanotechnology. The core parts of molecular robots are fairly consistent from system to system and always include (i) a body to encapsulate molecular machines, (ii) sensors to capture signals, (iii) computers to make decisions, and (iv) actuators to perform tasks. This review aims to provide an overview of approaches and considerations to develop molecular robots. We first introduce the basic technologies required for constructing the core parts of molecular robots, describe the recent progress towards achieving higher functionality, and subsequently discuss the current challenges and outlook. We also highlight the applications of molecular robots in sensing biomarkers, signal communications with living cells, and conversion of energy. Although molecular robots are still in their infancy, they will unquestionably initiate massive change in biomedical and environmental technology in the not too distant future.
Collapse
Affiliation(s)
- Zugui Peng
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Shoji Iwabuchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Kayano Izumi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Sotaro Takiguchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Misa Yamaji
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Shoko Fujita
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Harune Suzuki
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Fumika Kambara
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Genki Fukasawa
- School of Life Science and Technology, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-Ku, Tokyo 152-8550, Japan
| | - Aileen Cooney
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Lorenzo Di Michele
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
- FabriCELL, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Yuval Elani
- Department of Chemical Engineering, Imperial College London, South Kensington, London SW7 2AZ, UK
- FabriCELL, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Tomoaki Matsuura
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-Ku, Tokyo 152-8550, Japan
| | - Ryuji Kawano
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| |
Collapse
|
14
|
Gao R, Yu X, Kumar BVVSP, Tian L. Hierarchical Structuration in Protocellular System. SMALL METHODS 2023; 7:e2300422. [PMID: 37438327 DOI: 10.1002/smtd.202300422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/12/2023] [Indexed: 07/14/2023]
Abstract
Spatial control is one of the ubiquitous features in biological systems and the key to the functional complexity of living cells. The strategies to achieve such precise spatial control in protocellular systems are crucial to constructing complex artificial living systems with functional collective behavior. Herein, the authors review recent advances in the spatial control within a single protocell or between different protocells and discuss how such hierarchical structured protocellular system can be used to understand complex living systems or to advance the development of functional microreactors with the programmable release of various biomacromolecular payloads, or smart protocell-biological cell hybrid system.
Collapse
Affiliation(s)
- Rui Gao
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xinran Yu
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | | | - Liangfei Tian
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- Department of Ultrasound, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310027, China
- Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou, 310053, China
| |
Collapse
|
15
|
Takinoue M. DNA droplets for intelligent and dynamical artificial cells: from the viewpoint of computation and non-equilibrium systems. Interface Focus 2023; 13:20230021. [PMID: 37577000 PMCID: PMC10415743 DOI: 10.1098/rsfs.2023.0021] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/05/2023] [Indexed: 08/15/2023] Open
Abstract
Living systems are molecular assemblies whose dynamics are maintained by non-equilibrium chemical reactions. To date, artificial cells have been studied from such physical and chemical viewpoints. This review briefly gives a perspective on using DNA droplets in constructing artificial cells. A DNA droplet is a coacervate composed of DNA nanostructures, a novel category of synthetic DNA self-assembled systems. The DNA droplets have programmability in physical properties based on DNA base sequence design. The aspect of DNA as an information molecule allows physical and chemical control of nanostructure formation, molecular assembly and molecular reactions through the design of DNA base pairing. As a result, the construction of artificial cells equipped with non-equilibrium behaviours such as dynamical motions, phase separations, molecular sensing and computation using chemical energy is becoming possible. This review mainly focuses on such dynamical DNA droplets for artificial cell research in terms of computation and non-equilibrium chemical reactions.
Collapse
Affiliation(s)
- Masahiro Takinoue
- Department of Computer Science, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
- Living Systems Materialogy (LiSM) Research Group, International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
16
|
Mayer T, Givelet L, Simmel FC. Micro-compartmentalized strand displacement reactions with a random pool background. Interface Focus 2023; 13:20230011. [PMID: 37577002 PMCID: PMC10415739 DOI: 10.1098/rsfs.2023.0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/26/2023] [Indexed: 08/15/2023] Open
Abstract
Toehold-mediated strand displacement (TMSD) is a widely used process in dynamic DNA nanotechnology, which has been applied for the actuation of molecular devices, in biosensor applications, and for DNA-based molecular computation. Similar processes also occur in a biological context, when RNA strands invade secondary structures or duplexes of other RNA or DNA molecules. Complex reaction environments-inside cells or synthetic cells-potentially contain a large number of competing nucleic acid molecules that transiently bind to the components of the strand displacement reaction of interest and thus slow down its kinetics. Here, we investigate the kinetics of TMSD reactions compartmentalized into water-in-oil emulsion droplets-in both the presence and absence of a random sequence background-using a droplet microfluidic 'stopped flow' set-up. The set-up enables one to determine the kinetics within thousands of droplets and easily vary experimental parameters such as the stoichiometry of the TMSD components. While the average kinetics in the droplets coincides precisely with the bulk behaviour, we observe considerable variability among the droplets. This variability is partially explained by the encapsulation procedure itself, but appears to be more pronounced in reactions involving a random pool background.
Collapse
Affiliation(s)
- Thomas Mayer
- Department of Bioscience, School of Natural Sciences, Technical University Munich, Garching, Germany
| | - Louis Givelet
- Department of Bioscience, School of Natural Sciences, Technical University Munich, Garching, Germany
| | - Friedrich C. Simmel
- Department of Bioscience, School of Natural Sciences, Technical University Munich, Garching, Germany
| |
Collapse
|
17
|
Walczak M, Mancini L, Xu J, Raguseo F, Kotar J, Cicuta P, Di Michele L. A Synthetic Signaling Network Imitating the Action of Immune Cells in Response to Bacterial Metabolism. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301562. [PMID: 37156014 PMCID: PMC11475590 DOI: 10.1002/adma.202301562] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/16/2023] [Indexed: 05/10/2023]
Abstract
State-of-the-art bottom-up synthetic biology allows to replicate many basic biological functions in artificial-cell-like devices. To mimic more complex behaviors, however, artificial cells would need to perform many of these functions in a synergistic and coordinated fashion, which remains elusive. Here, a sophisticated biological response is considered, namely the capture and deactivation of pathogens by neutrophil immune cells, through the process of netosis. A consortium consisting of two synthetic agents is designed-responsive DNA-based particles and antibiotic-loaded lipid vesicles-whose coordinated action mimics the sought immune-like response when triggered by bacterial metabolism. The artificial netosis-like response emerges from a series of interlinked sensing and communication pathways between the live and synthetic agents, and translates into both physical and chemical antimicrobial actions, namely bacteria immobilization and exposure to antibiotics. The results demonstrate how advanced life-like responses can be prescribed with a relatively small number of synthetic molecular components, and outlines a new strategy for artificial-cell-based antimicrobial solutions.
Collapse
Affiliation(s)
- Michal Walczak
- Biological and Soft SystemsCavendish LaboratoryUniversity of CambridgeJJ Thomson AvenueCambridgeCB3 0HEUK
| | - Leonardo Mancini
- Biological and Soft SystemsCavendish LaboratoryUniversity of CambridgeJJ Thomson AvenueCambridgeCB3 0HEUK
| | - Jiayi Xu
- Biological and Soft SystemsCavendish LaboratoryUniversity of CambridgeJJ Thomson AvenueCambridgeCB3 0HEUK
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhilippa Fawcett DriveCambridgeCB3 0ASUK
| | - Federica Raguseo
- Department of ChemistryMolecular Sciences Research HubImperial College LondonWood LaneLondonW12 0BZUK
- fabriCELLMolecular Sciences Research HubImperial College LondonWood LaneLondonW12 0BZUK
| | - Jurij Kotar
- Biological and Soft SystemsCavendish LaboratoryUniversity of CambridgeJJ Thomson AvenueCambridgeCB3 0HEUK
| | - Pietro Cicuta
- Biological and Soft SystemsCavendish LaboratoryUniversity of CambridgeJJ Thomson AvenueCambridgeCB3 0HEUK
| | - Lorenzo Di Michele
- Biological and Soft SystemsCavendish LaboratoryUniversity of CambridgeJJ Thomson AvenueCambridgeCB3 0HEUK
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhilippa Fawcett DriveCambridgeCB3 0ASUK
- Department of ChemistryMolecular Sciences Research HubImperial College LondonWood LaneLondonW12 0BZUK
- fabriCELLMolecular Sciences Research HubImperial College LondonWood LaneLondonW12 0BZUK
| |
Collapse
|
18
|
Liu W, Lupfer C, Samanta A, Sarkar A, Walther A. Switchable Hydrophobic Pockets in DNA Protocells Enhance Chemical Conversion. J Am Chem Soc 2023; 145:7090-7094. [PMID: 36971596 DOI: 10.1021/jacs.3c00997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Synthetic cell models help us understand living cells and the origin of life. Key aspects of living cells are crowded interiors where secondary structures, such as the cytoskeleton and membraneless organelles/condensates, can form. These can form dynamically and serve structural or functional purposes, such as protection from heat shock or as crucibles for various biochemical reactions. Inspired by these phenomena, we introduce a crowded all-DNA protocell and encapsulate a temperature-switchable DNA-b-polymer block copolymer, in which the synthetic polymer phase-segregates at elevated temperatures. We find that thermoreversible phase segregation of the synthetic polymer occurs via bicontinuous phase separation, resulting in artificial organelle structures that can reorient into larger domains depending on the viscoelastic properties of the protocell interior. Fluorescent sensors confirm the formation of hydrophobic compartments, which enhance the reactivity of bimolecular reactions. This study leverages the strengths of biological and synthetic polymers to construct advanced biohybrid artificial cells that provide insights into phase segregation under crowded conditions and the formation of organelles and microreactors in response to environmental stress.
Collapse
|
19
|
Udono H, Gong J, Sato Y, Takinoue M. DNA Droplets: Intelligent, Dynamic Fluid. Adv Biol (Weinh) 2023; 7:e2200180. [PMID: 36470673 DOI: 10.1002/adbi.202200180] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/14/2022] [Indexed: 12/12/2022]
Abstract
Breathtaking advances in DNA nanotechnology have established DNA as a promising biomaterial for the fabrication of programmable higher-order nano/microstructures. In the context of developing artificial cells and tissues, DNA droplets have emerged as a powerful platform for creating intelligent, dynamic cell-like machinery. DNA droplets are a microscale membrane-free coacervate of DNA formed through phase separation. This new type of DNA system couples dynamic fluid-like property with long-established DNA programmability. This hybrid nature offers an advantageous route to facile and robust control over the structures, functions, and behaviors of DNA droplets. This review begins by describing programmable DNA condensation, commenting on the physical properties and fabrication strategies of DNA hydrogels and droplets. By presenting an overview of the development pathways leading to DNA droplets, it is shown that DNA technology has evolved from static, rigid systems to soft, dynamic systems. Next, the basic characteristics of DNA droplets are described as intelligent, dynamic fluid by showcasing the latest examples highlighting their distinctive features related to sequence-specific interactions and programmable mechanical properties. Finally, this review discusses the potential and challenges of numerical modeling able to connect a robust link between individual sequences and macroscopic mechanical properties of DNA droplets.
Collapse
Affiliation(s)
- Hirotake Udono
- Department of Computer Science, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8502, Japan
| | - Jing Gong
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8502, Japan
| | - Yusuke Sato
- Department of Intelligent and Control Systems, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka, 820-8502, Japan
| | - Masahiro Takinoue
- Department of Computer Science, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8502, Japan
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8502, Japan
- Living Systems Materialogy (LiSM) Research Group, International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8502, Japan
| |
Collapse
|
20
|
Walczak M, Brady RA, Leathers A, Kotar J, Di Michele L. Influence of hydrophobic moieties on the crystallization of amphiphilic DNA nanostructures. J Chem Phys 2023; 158:084501. [PMID: 36859089 DOI: 10.1063/5.0132484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Three-dimensional crystalline frameworks with nanoscale periodicity are valuable for many emerging technologies, from nanophotonics to nanomedicine. DNA nanotechnology has emerged as a prime route for constructing these materials, with most approaches taking advantage of the structural rigidity and bond directionality programmable for DNA building blocks. Recently, we have introduced an alternative strategy reliant on flexible, amphiphilic DNA junctions dubbed C-stars, whose ability to crystallize is modulated by design parameters, such as nanostructure topology, conformation, rigidity, and size. While C-stars have been shown to form ordered phases with controllable lattice parameter, response to stimuli, and embedded functionalities, much of their vast design space remains unexplored. Here, we investigate the effect of changing the chemical nature of the hydrophobic modifications and the structure of the DNA motifs in the vicinity of these moieties. While similar design variations should strongly alter key properties of the hydrophobic interactions between C-stars, such as strength and valency, only limited differences in self-assembly behavior are observed. This finding suggests that long-range order in C-star crystals is likely imposed by structural features of the building block itself rather than the specific characteristics of the hydrophobic tags. Nonetheless, we find that altering the hydrophobic regions influences the ability of C-star crystals to uptake hydrophobic molecular cargoes, which we exemplify by studying the encapsulation of antibiotic penicillin V. Besides advancing our understanding of the principles governing the self-assembly of amphiphilic DNA building blocks, our observations thus open up new routes to chemically program the materials without affecting their structure.
Collapse
Affiliation(s)
- Michal Walczak
- Department of Physics-Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Ryan A Brady
- Department of Chemistry, King's College London, London SE1 1DB, United Kingdom
| | - Adrian Leathers
- Department of Physics-Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Jurij Kotar
- Department of Physics-Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Lorenzo Di Michele
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| |
Collapse
|