1
|
Yang J, Wang J, Zhang H, Li S, Wang X, Baimanov D, Zhang Z, Li Y, Yu P, Zhang X, Wang L. Rapid Detection of Spike Protein Receptor Binding Region of SARS-CoV-2 and Its Variants Using a Nanosheet Probe. Anal Chem 2025; 97:3729-3738. [PMID: 39924735 DOI: 10.1021/acs.analchem.4c06613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Strategies for the rapid detection of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) are critically needed due to conventional methods' limitations: narrow range, virus mutation-induced failure, time-consuming, and complex operations. Herein, we propose a method utilizing CuInP2S6 nanosheet probes and Bio-Layer Interferometry (BLI) technology for the rapid (5-10 min), noninvasive, and broad-spectrum detection of the SARS-CoV-2 spike receptor binding domain (RBD) in human saliva. The nanoprobe exhibits a higher binding affinity to the RBD compared to most saliva proteins, allowing it to be immobilized on BLI sensors for easier detection of protein binding and elution. An eluent buffer containing Tween-20 and salts was employed to separate salivary proteins while retaining the RBD on the probes. This system can detect the RBD across a broad spectrum and a low limit of 25 ng/mL (S/N = 3) in less than 10 min. To validate this system, experiments with pseudoviruses showed accurate identification and binding of the RBD. Molecular dynamics simulations elucidated the mechanism for selective binding of probes to RBD. In conclusion, we propose a conceptual study based on an in situ strategy with inorganic nanoprobes alongside BLI techniques for convenient, noninvasive, and rapid detection of SARS-CoV-2 and its variants. This strategy is anticipated to inspire the design and implementation of nanoprobes for the rapid and selective detection of pathogens in the future.
Collapse
Affiliation(s)
- Jiacheng Yang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Laboratory of Interface Science and Biology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
- Peking University Ningbo Institute of Marine Medicines, Ningbo 315832, P. R. China
| | - Heng Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shijiao Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Laboratory of Interface Science and Biology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiaofeng Wang
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, P. R. China
| | - Didar Baimanov
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Laboratory of Interface Science and Biology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zehao Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Laboratory of Interface Science and Biology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yang Li
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, P. R. China
| | - Peng Yu
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China
| | - Xinfeng Zhang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, P. R. China
| | - Liming Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Laboratory of Interface Science and Biology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
2
|
Liu R, Li J, Salena BJ, Li Y. Aptamer and DNAzyme Based Colorimetric Biosensors for Pathogen Detection. Angew Chem Int Ed Engl 2025; 64:e202418725. [PMID: 39551709 PMCID: PMC11753613 DOI: 10.1002/anie.202418725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/01/2024] [Accepted: 11/15/2024] [Indexed: 11/19/2024]
Abstract
The detection of pathogens is critical for preventing and controlling health hazards across clinical, environmental, and food safety sectors. Functional nucleic acids (FNAs), such as aptamers and DNAzymes, have emerged as versatile molecular tools for pathogen detection due to their high specificity and affinity. This review focuses on the in vitro selection of FNAs for pathogens, with emphasis on the selection of aptamers for specific biomarkers and intact pathogens, including bacteria and viruses. Additionally, the selection of DNAzymes for bacterial detection is discussed. The integration of these FNAs into colorimetric biosensors has enabled the development of simple, cost-effective diagnostic platforms. Both non-catalytic and catalytic colorimetric biosensors are explored, including those based on gold nanoparticles, polydiacetylenes, protein enzymes, G-quadruplexes, and nanozymes. These biosensors offer visible detection through color changes, making them ideal for point-of-care diagnostics. The review concludes by highlighting current challenges and future perspectives for advancing FNA-based colorimetric biosensing technologies for pathogen detection.
Collapse
Affiliation(s)
- Rudi Liu
- Department of Biochemistry and Biomedical SciencesMichael G. DeGroote Institute of Infectious Disease ResearchSchool of Biomedical EngineeringBiointerfaces InstituteMcMaster University1280 Main Street WestHamiltonOntarioL8S 4K1Canada
| | - Jiuxing Li
- Department of Biochemistry and Biomedical SciencesMichael G. DeGroote Institute of Infectious Disease ResearchSchool of Biomedical EngineeringBiointerfaces InstituteMcMaster University1280 Main Street WestHamiltonOntarioL8S 4K1Canada
| | - Bruno J. Salena
- Department of MedicineMcMaster University1280 Main Street WestHamiltonOntarioL8S 4K1Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical SciencesMichael G. DeGroote Institute of Infectious Disease ResearchSchool of Biomedical EngineeringBiointerfaces InstituteMcMaster University1280 Main Street WestHamiltonOntarioL8S 4K1Canada
| |
Collapse
|
3
|
Wang Q, Li J, Zhang Z, Amini R, Derdall A, Gu J, Xia J, Salena BJ, Yamamura D, Soleymani L, Li Y. Fighting Mutations with Mutations: Evolutionarily Adapting a DNA Aptamer for High-Affinity Recognition of Mutated Spike Proteins of SARS-CoV-2. Angew Chem Int Ed Engl 2025; 64:e202415226. [PMID: 39256966 DOI: 10.1002/anie.202415226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/12/2024]
Abstract
An on-going challenge with COVID-19, which has huge implications for future pandemics, is the rapid emergence of viral variants that makes diagnostic tools less accurate, calling for rapid identification of recognition elements for detecting new variants caused by mutations. We hypothesize that we can fight mutations of the viruses with mutations of existing recognition elements. We demonstrate this concept via rapidly evolving an existing DNA aptamer originally selected for the spike protein (S-protein) of wildtype SARS-CoV-2 to enhance the interaction with the same protein of the Omicron variants. The new aptamer, MBA5SA1, has acquired 22 mutations within its 40-nucleotide core sequence and improved its binding affinity for the S-proteins of diverse Omicron subvariants by >100-fold compared to its parental aptamer (improved from nanomolar to picomolar affinity). Deep sequencing analysis reveals dynamic competitions among several MBA5SA1 variants in response to increasing selection pressure imposed during in vitro selection, with MBA5SA1 being the final winner of the competition. Additionally, MBA5SA1 was implemented into an enzyme-linked aptamer binding assay (ELABA), which was applied for detecting Omicron variants in the saliva of infected patients. The assay produced a sensitivity of 86.5 % and a specificity of 100 %, which were established with 83 clinical samples.
Collapse
Affiliation(s)
- Qing Wang
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Jiuxing Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Zijie Zhang
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Ryan Amini
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Abigail Derdall
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Jimmy Gu
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Jianrun Xia
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Bruno J Salena
- Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Deborah Yamamura
- Department of Pathology and Molecular Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
- Michael G. DeGroote Institute of Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Leyla Soleymani
- Department of Pathology and Molecular Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
- Michael G. DeGroote Institute of Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
- Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
- Michael G. DeGroote Institute of Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
- Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| |
Collapse
|
4
|
Amini R, Ma J, Zhang Z, Wang Q, Gu J, Soleymani L, Li Y. Dimeric DNA Aptamers for the Spike Protein of SARS-CoV-2 Derived from a Structured Library with Dual Random Domains. SMALL METHODS 2024:e2401600. [PMID: 39703130 DOI: 10.1002/smtd.202401600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/12/2024] [Indexed: 12/21/2024]
Abstract
Multimeric aptamer strategies are often adopted to improve the binding affinity of an aptamer toward its target molecules. In most cases, multimeric aptamers are constructed by connecting pre-identified monomeric aptamers derived from in vitro selection. Although multimerization provides an added benefit of enhanced binding avidity, the characterization of different aptamer pairings adds more steps to an already lengthy procedure. Therefore, an aptamer engineering strategy that directly selects for multimeric aptamers is highly desirable. Here, an in vitro selection strategy is reported on using a pre-structured DNA library that forms dimeric aptamers. Rather than using a library containing a single random region, which is nearly ubiquitous in existing aptamer selections, the library contains two random regions separated by a flexible poly-thymidine linker. Following sixteen rounds of selection against the SARS-CoV-2 spike protein, a relevant model target protein due to the COVID-19 pandemic, the top aptamers displayed superb affinity with KD values as low as 150 pM. Further analysis reveals that each random region functions as a distinct binding moiety and works together to achieve higher affinity. The demonstrated strategy provides an accelerated method to obtain high-affinity aptamers, which may prove useful in future aptamer diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Ryan Amini
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Jian Ma
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Zijie Zhang
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Qing Wang
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Jimmy Gu
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Leyla Soleymani
- Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
- Michael G. DeGroote Institute of Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
- Michael G. DeGroote Institute of Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
5
|
Chu M, Zhang Y, Ji C, Zhang Y, Yuan Q, Tan J. DNA Nanomaterial-Based Electrochemical Biosensors for Clinical Diagnosis. ACS NANO 2024; 18:31713-31736. [PMID: 39509537 DOI: 10.1021/acsnano.4c11857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Sensitive and quantitative detection of chemical and biological molecules for screening, diagnosis and monitoring diseases is essential to treatment planning and response monitoring. Electrochemical biosensors are fast, sensitive, and easy to miniaturize, which has led to rapid development in clinical diagnosis. Benefiting from their excellent molecular recognition ability and high programmability, DNA nanomaterials could overcome the Debye length of electrochemical biosensors by simple molecular design and are well suited as recognition elements for electrochemical biosensors. Therefore, to enhance the sensitivity and specificity of electrochemical biosensors, significant progress has been made in recent years by optimizing the DNA nanomaterials design. Here, the establishment of electrochemical sensing strategies based on DNA nanomaterials is reviewed in detail. First, the structural design of DNA nanomaterial is examined to enhance the sensitivity of electrochemical biosensors by improving recognition and overcoming Debye length. In addition, the strategies of electrical signal transduction and signal amplification based on DNA nanomaterials are reviewed, and the applications of DNA nanomaterial-based electrochemical biosensors and integrated devices in clinical diagnosis are further summarized. Finally, the main opportunities and challenges of DNA nanomaterial-based electrochemical biosensors in detecting disease biomarkers are presented in an aim to guide the design of DNA nanomaterial-based electrochemical devices with high sensitivity and specificity.
Collapse
Affiliation(s)
- Mengge Chu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yawen Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Cailing Ji
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yun Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jie Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
6
|
Liu R, Li J, Gu J, Salena BJ, Li Y. Higher Affinity Enables More Accurate Detection of SARS-CoV-2 in Human Saliva Using Aptamer-Based Litmus Test. Angew Chem Int Ed Engl 2024; 63:e202407049. [PMID: 39133199 DOI: 10.1002/anie.202407049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 08/13/2024]
Abstract
Many aptamers have been generated by systematic evolution of ligands by exponential enrichment (SELEX) to recognize spike proteins of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2&ek), some of which have been engineered into dimeric and trimeric versions for enhanced affinity for diagnostic applications. However, no studies have been conducted to compare the utilities of monomeric, dimeric and trimeric aptamers in diagnostic assays with real clinical samples to answer the question of what levels of affinity an aptamer must have for accurate clinical diagnostics. Herein, we carried out a comparative study with two monomeric aptamers MSA1 and MSA5, one dimeric aptamer and two homotrimeric aptamers constructed with MSA1 and MSA5, with affinity varying by 1000-fold. Using a colorimetric sandwich assay to analyze 48 human saliva samples, we found that the trimeric aptamer assay (Kd≈10 pM) can identify the SARS-CoV-2 infection much more accurately than the dimeric aptamer assay (Kd≈100 pM) and monomeric aptamer assay (Kd≈10,000 pM). Based on the experimental data, we theoretically predict the levels of affinity an aptamer needs to possess to achieve 80-100 % sensitivity and 100 % specificity. The findings from this study highlight the need for deriving very high affinity aptamers to enable highly accurate detection of viral infection for future pandemics.
Collapse
Affiliation(s)
- Rudi Liu
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, L8S 4K1, Hamilton, Ontario, Canada
| | - Jiuxing Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, L8S 4K1, Hamilton, Ontario, Canada
| | - Jimmy Gu
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, L8S 4K1, Hamilton, Ontario, Canada
| | - Bruno J Salena
- Department of Medicine, McMaster University, 1280 Main Street West, L8S 4K1, Hamilton, Ontario, Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, L8S 4K1, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute of Infectious Disease Research, McMaster University, 1280 Main Street West, L8S 4K1, Hamilton, Ontario, Canada
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, L8S 4K1, Hamilton, Ontario, Canada
- Biointerfaces Institute, McMaster University, 1280 Main Street West, L8S 4K1, Hamilton, Ontario, Canada
| |
Collapse
|
7
|
Brylev VA, Ryabukhina EV, Nazarova EV, Samoylenkova NS, Gulyak EL, Sapozhnikova KA, Dzarieva FM, Ustinov AV, Pronin IN, Usachev DY, Kopylov AM, Golovin AV, Pavlova GV, Ryazantsev DY, Korshun VA. Towards Aptamer-Targeted Drug Delivery to Brain Tumors: The Synthesis of Ramified Conjugates of an EGFR-Specific Aptamer with MMAE on a Cathepsin B-Cleavable Linker. Pharmaceutics 2024; 16:1434. [PMID: 39598559 PMCID: PMC11597439 DOI: 10.3390/pharmaceutics16111434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/02/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Targeted delivery of chemotherapeutic agents is a well-established approach to cancer therapy. Antibody-drug conjugates (ADCs) typically carry toxic payloads attached to a tumor-associated antigen-targeting IgG antibody via an enzyme-cleavable linker that releases the drug inside the cell. Aptamers are a promising alternative to antibodies in terms of antigen targeting; however, their polynucleotide nature and smaller size result in a completely different PK/PD profile compared to an IgG. This may prove advantageous: owing to their lower molecular weight, aptamer-drug conjugates may achieve better penetration of solid tumors compared to ADCs. Methods: On the way to therapeutic aptamer-drug conjugates, we aimed to develop a versatile and modular approach for the assembly of aptamer-enzymatically cleavable payload conjugates of various drug-aptamer ratios. We chose the epidermal growth factor receptor (EGFR), a transmembrane protein often overexpressed in brain tumors, as the target antigen. We used the 46 mer EGFR-targeting DNA sequence GR-20, monomethylauristatin E (MMAE) on the cathepsin-cleavable ValCit-p-aminobenzylcarbamate linker as the payload, and pentaerythritol-based tetraazide as the branching point for the straightforward synthesis of aptamer-drug conjugates by means of a stepwise Cu-catalyzed azide-alkyne cycloaddition (CuAAC) click reaction. Results: Branched aptamer conjugates of 1:3, 2:2, and 3:1 stoichiometry were synthesized and showed higher cytotoxic activity compared to a 1:1 conjugate, particularly on several glioma cell lines. Conclusions: This approach is convenient and potentially applicable to any aptamer sequence, as well as other payloads and cleavable linkers, thus paving the way for future development of aptamer-drug therapeutics by easily providing a range of branched conjugates for in vitro and in vivo testing.
Collapse
Affiliation(s)
- Vladimir A. Brylev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia (E.L.G.); (K.A.S.); (V.A.K.)
- Burdenko National Medical Research Center of Neurosurgery, 4th Tverskaya-Yamskaya 16, 125047 Moscow, Russia
| | - Ekaterina V. Ryabukhina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia (E.L.G.); (K.A.S.); (V.A.K.)
| | | | - Nadezhda S. Samoylenkova
- Burdenko National Medical Research Center of Neurosurgery, 4th Tverskaya-Yamskaya 16, 125047 Moscow, Russia
| | - Evgeny L. Gulyak
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia (E.L.G.); (K.A.S.); (V.A.K.)
| | - Ksenia A. Sapozhnikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia (E.L.G.); (K.A.S.); (V.A.K.)
| | - Fatima M. Dzarieva
- Burdenko National Medical Research Center of Neurosurgery, 4th Tverskaya-Yamskaya 16, 125047 Moscow, Russia
- Institute of Higher Nervous Activity and Neurophysiology, Butlerova 5A, 117485 Moscow, Russia
| | - Alexey V. Ustinov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia (E.L.G.); (K.A.S.); (V.A.K.)
| | - Igor N. Pronin
- Burdenko National Medical Research Center of Neurosurgery, 4th Tverskaya-Yamskaya 16, 125047 Moscow, Russia
| | - Dmitry Y. Usachev
- Burdenko National Medical Research Center of Neurosurgery, 4th Tverskaya-Yamskaya 16, 125047 Moscow, Russia
| | - Alexey M. Kopylov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia; (A.M.K.)
| | - Andrey V. Golovin
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia; (A.M.K.)
- Department of Microbiology, Virology and Immunology, Sechenov First Moscow State Medical University, Trubetskaya 8, 119991 Moscow, Russia
| | - Galina V. Pavlova
- Burdenko National Medical Research Center of Neurosurgery, 4th Tverskaya-Yamskaya 16, 125047 Moscow, Russia
- Institute of Higher Nervous Activity and Neurophysiology, Butlerova 5A, 117485 Moscow, Russia
- Department of Medical Genetics, Sechenov First Moscow State Medical University, Trubetskaya 8, 119991 Moscow, Russia
| | - Dmitry Yu. Ryazantsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia (E.L.G.); (K.A.S.); (V.A.K.)
| | - Vladimir A. Korshun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia (E.L.G.); (K.A.S.); (V.A.K.)
- Burdenko National Medical Research Center of Neurosurgery, 4th Tverskaya-Yamskaya 16, 125047 Moscow, Russia
| |
Collapse
|
8
|
Zhang J, Xu Y, Chen M, Wang S, Lin G, Huang Y, Yang C, Yang Y, Song Y. Spatial Engineering of Heterotypic Antigens on a DNA Framework for the Preparation of Mosaic Nanoparticle Vaccines with Enhanced Immune Activation against SARS-CoV-2 Variants. Angew Chem Int Ed Engl 2024; 63:e202412294. [PMID: 39030890 DOI: 10.1002/anie.202412294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/22/2024]
Abstract
Mosaic nanoparticle vaccines with heterotypic antigens exhibit broad-spectrum antiviral capabilities, but the impact of antigen proportions and distribution patterns on vaccine-induced immunity remains largely unexplored. Here, we present a DNA nanotechnology-based strategy for spatially assembling heterotypic antigens to guide the rational design of mosaic nanoparticle vaccines. By utilizing two aptamers with orthogonal selectivity for the original SARS-CoV-2 spike trimer and Omicron receptor-binding domain (RBD), along with a DNA soccer-ball framework, we precisely manipulate the spacing, stoichiometry, and overall distribution of heterotypic antigens to create mosaic nanoparticles with average, bipolar, and unipolar antigen distributions. Systematic in vitro and in vivo immunological investigations demonstrate that 30 heterotypic antigens in equivalent proportions, with an average distribution, lead to higher production of broad-spectrum neutralizing antibodies compared to the bipolar and unipolar distributions. Furthermore, the precise assembly utilizing our developed methodology reveals that a mere increment of five Omicron RBD antigens on a nanoparticle (from 15 to 20) not only diminishes neutralization against the Omicron variant but also triggers excessive inflammation. This work provides a unique perspective on the rational design of mosaic vaccines by highlighting the significance of the spatial placement and proportion of heterotypic antigens in their structure-activity mechanisms.
Collapse
Affiliation(s)
- Jialu Zhang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yunyun Xu
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Mingying Chen
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, Fujian, 361005, China
| | - Shengwen Wang
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Guihong Lin
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yihao Huang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, Fujian, 361005, China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, Fujian, 361005, China
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yang Yang
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yanling Song
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, Fujian, 361005, China
| |
Collapse
|
9
|
Hu C, Yang S, Li S, Liu X, Liu Y, Chen Z, Chen H, Li S, He N, Cui H, Deng Y. Viral aptamer screening and aptamer-based biosensors for virus detection: A review. Int J Biol Macromol 2024; 276:133935. [PMID: 39029851 DOI: 10.1016/j.ijbiomac.2024.133935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Virus-induced infectious diseases have a detrimental effect on public health and exert significant influence on the global economy. Therefore, the rapid and accurate detection of viruses is crucial for effectively preventing and diagnosing infections. Aptamer-based detection technologies have attracted researchers' attention as promising solutions. Aptamers, small single-stranded DNA or RNA screened via systematic evolution of ligands by exponential enrichment (SELEX), possess a high affinity towards their target molecules. Numerous aptamers targeting viral marker proteins or virions have been developed and widely employed in aptamer-based biosensors (aptasensor) for virus detection. This review introduces SELEX schemes for screening aptamers and discusses distinctive SELEX strategies designed explicitly for viral targets. Furthermore, recent advances in aptamer-based biosensing methods for detecting common viruses using different virus-specific aptamers are summarized. Finally, limitations and prospects associated with developing of aptamer-based biosensors are discussed.
Collapse
Affiliation(s)
- Changchun Hu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shuting Yang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Shuo Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Xueying Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Yuan Liu
- Institute for Future Sciences, University of South China, Changsha, Hunan 410000, China; Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Hui Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Nongyue He
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Haipo Cui
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China; Institute for Future Sciences, University of South China, Changsha, Hunan 410000, China; Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
10
|
Dong Y, Wang J, Chen L, Chen H, Dang S, Li F. Aptamer-based assembly systems for SARS-CoV-2 detection and therapeutics. Chem Soc Rev 2024; 53:6830-6859. [PMID: 38829187 DOI: 10.1039/d3cs00774j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Nucleic acid aptamers are oligonucleotide chains with molecular recognition properties. Compared with antibodies, aptamers show advantages given that they are readily produced via chemical synthesis and elicit minimal immunogenicity in biomedicine applications. Notably, aptamer-encoded nucleic acid assemblies further improve the binding affinity of aptamers with the targets due to their multivalent synergistic interactions. Specially, aptamers can be engineered with special topological arrangements in nucleic acid assemblies, which demonstrate spatial and valence matching towards antigens on viruses, thus showing potential in the detection and therapeutic applications of viruses. This review presents the recent progress on the aptamers explored for SARS-CoV-2 detection and infection treatment, wherein applications of aptamer-based assembly systems are introduced in detail. Screening methods and chemical modification strategies for aptamers are comprehensively summarized, and the types of aptamers employed against different target domains of SARS-CoV-2 are illustrated. The evolution of aptamer-based assembly systems for the detection and neutralization of SARS-CoV-2, as well as the construction principle and characteristics of aptamer-based DNA assemblies are demonstrated. The typically representative works are presented to demonstrate how to assemble aptamers rationally and elaborately for specific applications in SARS-CoV-2 diagnosis and neutralization. Finally, we provide deep insights into the current challenges and future perspectives towards aptamer-based nucleic acid assemblies for virus detection and neutralization in nanomedicine.
Collapse
Affiliation(s)
- Yuhang Dong
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Jingping Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Ling Chen
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Haonan Chen
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Shuangbo Dang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Feng Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| |
Collapse
|
11
|
Kawamoto Y, Wu Y, Park S, Hidaka K, Sugiyama H, Takahashi Y, Takakura Y. Multivalent dendritic DNA aptamer molecules for the enhancement of therapeutic effects. Chem Commun (Camb) 2024; 60:6256-6259. [PMID: 38768325 DOI: 10.1039/d4cc00578c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Dendritic DNA molecules, referred to as DNA dendrons, consist of multiple covalently linked strands and are expected to improve the cellular uptake and potency of therapeutic oligonucleotides because of their multivalency. In this study, we developed an efficient synthetic method for producing DNA dendrons using strain-promoted azide-alkyne cycloaddition. Integration of the antitumor aptamer AS1411 into DNA dendrons enhanced cellular uptake and antiproliferative activity in cancer cells. These findings demonstrate that the incorporation of multivalent aptamers into DNA dendrons can effectively boost their therapeutic effects.
Collapse
Affiliation(s)
- Yusuke Kawamoto
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-shimoadachicho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - You Wu
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-shimoadachicho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Soyoung Park
- Immunology Frontier Research Center, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kumi Hidaka
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuki Takahashi
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-shimoadachicho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Yoshinobu Takakura
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-shimoadachicho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
12
|
Ali M, Nair P, Capretta A, Brennan JD. In-vitro Clinical Diagnostics using RNA-Cleaving DNAzymes. Chembiochem 2024; 25:e202400085. [PMID: 38574237 DOI: 10.1002/cbic.202400085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/06/2024]
Abstract
Over the last three decades, significant advancements have been made in the development of biosensors and bioassays that use RNA-cleaving DNAzymes (RCDs) as molecular recognition elements. While early examples of RCDs were primarily responsive to metal ions, the past decade has seen numerous RCDs reported for more clinically relevant targets such as bacteria, cancer cells, small metabolites, and protein biomarkers. Over the past 5 years several RCD-based biosensors have also been evaluated using either spiked biological matrixes or patient samples, including blood, serum, saliva, nasal mucus, sputum, urine, and faeces, which is a critical step toward regulatory approval and commercialization of such sensors. In this review, an overview of the methods used to generate RCDs and the properties of key RCDs that have been utilized for in vitro testing is first provided. Examples of RCD-based assays and sensors that have been used to test either spiked biological samples or patient samples are then presented, highlighting assay performance in different biological matrixes. A summary of current prospects and challenges for development of in vitro diagnostic tests incorporating RCDs and an overview of future directions of the field is also provided.
Collapse
Affiliation(s)
- Monsur Ali
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Parameswaran Nair
- Division of Respirology, McMaster University, and, Firestone Institute of Respiratory Health at St. Joseph's Health Care, Hamilton, ON, L8N 4A6, Canada
| | - Alfredo Capretta
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - John D Brennan
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
13
|
Sen P, Zhang Z, Sakib S, Gu J, Li W, Adhikari BR, Motsenyat A, L'Heureux-Hache J, Ang JC, Panesar G, Salena BJ, Yamamura D, Miller MS, Li Y, Soleymani L. High-Precision Viral Detection Using Electrochemical Kinetic Profiling of Aptamer-Antigen Recognition in Clinical Samples and Machine Learning. Angew Chem Int Ed Engl 2024; 63:e202400413. [PMID: 38458987 DOI: 10.1002/anie.202400413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/10/2024]
Abstract
High-precision viral detection at point of need with clinical samples plays a pivotal role in the diagnosis of infectious diseases and the control of a global pandemic. However, the complexity of clinical samples that often contain very low viral concentrations makes it a huge challenge to develop simple diagnostic devices that do not require any sample processing and yet are capable of meeting performance metrics such as very high sensitivity and specificity. Herein we describe a new single-pot and single-step electrochemical method that uses real-time kinetic profiling of the interaction between a high-affinity aptamer and an antigen on a viral surface. This method generates many data points per sample, which when combined with machine learning, can deliver highly accurate test results in a short testing time. We demonstrate this concept using both SARS-CoV-2 and Influenza A viruses as model viruses with specifically engineered high-affinity aptamers. Utilizing this technique to diagnose COVID-19 with 37 real human saliva samples results in a sensitivity and specificity of both 100 % (27 true negatives and 10 true positives, with 0 false negative and 0 false positive), which showcases the superb diagnostic precision of this method.
Collapse
Affiliation(s)
- Payel Sen
- Department of Engineering Physics, McMaster University, Canada
| | - Zijie Zhang
- Department of Biochemistry and Biomedical Sciences, McMaster University, Canada
| | - Sadman Sakib
- Department of Engineering Physics, McMaster University, Canada
| | - Jimmy Gu
- Department of Biochemistry and Biomedical Sciences, McMaster University, Canada
| | - Wantong Li
- Department of Engineering Physics, McMaster University, Canada
| | | | - Ariel Motsenyat
- Department of Integrated Biomedical Engineering and Health Sciences, McMaster University, Canada
| | | | - Jann C Ang
- Department of Biochemistry and Biomedical Sciences, McMaster University, Canada
- McMaster Immunology Research Centre, McMaster University, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Canada
| | - Gurpreet Panesar
- Department of Biochemistry and Biomedical Sciences, McMaster University, Canada
| | | | - Debora Yamamura
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Canada
| | - Matthew S Miller
- Department of Biochemistry and Biomedical Sciences, McMaster University, Canada
- McMaster Immunology Research Centre, McMaster University, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Canada
- School of Biomedical Engineering, McMaster University, Canada
| | - Leyla Soleymani
- Department of Engineering Physics, McMaster University, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Canada
- School of Biomedical Engineering, McMaster University, Canada
| |
Collapse
|
14
|
Guo Y, Song W, Dong Y, Wang X, Nie G, Li F. A Poly Aptamer Encoded DNA Nanocatcher Informs Efficient Virus Trapping. NANO LETTERS 2024; 24:3614-3623. [PMID: 38497742 DOI: 10.1021/acs.nanolett.3c04510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Broad-spectrum antiviral platforms are always desired but still lack the ability to cope with the threats to global public health. Herein, we develop a poly aptamer encoded DNA nanocatcher platform that can trap entire virus particles to inhibit infection with a broad antiviral spectrum. Ultralong single-stranded DNA (ssDNA) containing repeated aptamers was synthesized as the scaffold of a nanocatcher via a biocatalytic process, wherein mineralization of magnesium pyrophosphate on the ssDNA could occur and consequently lead to the formation of nanocatcher with interfacial nanocaves decorated with virus-binding aptamers. Once the viruses were recognized by the apatmers, they would be captured and trapped in the nanocaves via multisite synergistic interactions. Meanwhile, the size of nanocatchers was optimized to prevent their cellular uptake, which further guaranteed inhibition of virus infection. By taking SARS-CoV-2 variants as a model target, we demonstrated the broad virus-trapping capability of a DNA nanocatcher in engulfing the variants and blocking the infection to host cells.
Collapse
Affiliation(s)
- Yunhua Guo
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wenzhe Song
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuhang Dong
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xuejun Wang
- Bioinformatics Center of AMMS, Taiping Rd, Haidian District, Beijing, 100850, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Feng Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
15
|
Lin X, Li J, Wu J, Guo K, Duan N, Wang Z, Wu S. Fe-Co-Based Metal-Organic Frameworks as Peroxidase Mimics for Sensitive Colorimetric Detection and Efficient Degradation of Aflatoxin B 1. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11809-11820. [PMID: 38386848 DOI: 10.1021/acsami.3c18878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Building multifunctional platforms for integrating the detection and control of hazards has great significance in food safety and environment protection. Herein, bimetallic Fe-Co-based metal-organic frameworks (Fe-Co-MOFs) peroxidase mimics are prepared and applied to develop a bifunctional platform for the synergetic sensitive detection and controllable degradation of aflatoxin B1 (AFB1). On the one hand, Fe-Co-MOFs with excellent peroxidase-like activity are combined with target-induced catalyzed hairpin assembly (CHA) to construct a colorimetric aptasensor for the detection of AFB1. Specifically, the binding of aptamer with AFB1 releases the prelocked Trigger to initiate the CHA cycle between hairpin H2-modified Fe-Co-MOFs and hairpin H1-tethered magnetic nanoparticles to form complexes. After magnetic separation, the colorimetric signal of the supernatant in the presence of TMB and H2O2 is inversely proportional to the target contents. Under optimal conditions, this biosensor enables the analysis of AFB1 with a limit of detection of 6.44 pg/mL, and high selectivity and satisfactory recovery in real samples are obtained. On the other hand, Fe-Co-MOFs with remarkable Fenton-like catalytic degradation performance for organic contaminants are further used for the detoxification of AFB1 after colorimetric detection. The AFB1 is almost completely removed within 120 min. Overall, the introduction of CHA improves the sensing sensitivity; efficient postcolorimetric-detection degradation of AFB1 reduces the secondary contamination and risk to the experimental environment and operators. This strategy is expected to provide ideas for designing other multifunctional platforms to integrate the detection and degradation of various hazards.
Collapse
Affiliation(s)
- Xianfeng Lin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jin Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jiajun Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Kaixi Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Nuo Duan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
16
|
Li D, Sun C, Zhuang P, Mei X. Revolutionizing SARS-CoV-2 omicron variant detection: Towards faster and more reliable methods. Talanta 2024; 266:124937. [PMID: 37481886 DOI: 10.1016/j.talanta.2023.124937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
The emergence of the highly contagious Omicron variant of SARS-CoV-2 has inflicted significant damage during the ongoing COVID-19 pandemic. This new variant's significant sequence changes and mutations in both proteins and RNA have rendered many existing rapid detection methods ineffective in identifying it accurately. As the world races to control the spread of the virus, researchers are urgently exploring new diagnostic strategies to specifically detect Omicron variants with high accuracy and sensitivity. In response to this challenge, we have compiled a comprehensive overview of the latest reported rapid detection techniques. These techniques include strategies for the simultaneous detection of multiple SARS-CoV-2 variants and methods for selectively distinguishing Omicron variants. By categorizing these diagnostic techniques based on their targets, which encompass protein antigens and nucleic acids, we aim to offer a comprehensive understanding of the utilization of various recognition elements in identifying these targets. We also highlight the advantages and limitations of each approach. Our work is crucial in providing a more nuanced understanding of the challenges and opportunities in detecting Omicron variants and emerging variants.
Collapse
Affiliation(s)
- Dan Li
- College of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, China.
| | - Cai Sun
- AECC Shenyang Liming Aero-Engine Co., Ltd., Shenyang, China
| | - Pengfei Zhuang
- College of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, China
| | - Xifan Mei
- Key Laboratory of Medical Tissue Engineering of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning, China.
| |
Collapse
|
17
|
Chang D, Li J, Liu R, Liu M, Tram K, Schmitt N, Li Y. A Colorimetric Biosensing Platform with Aptamers, Rolling Circle Amplification and Urease-Mediated Litmus Test. Angew Chem Int Ed Engl 2023; 62:e202315185. [PMID: 37903738 DOI: 10.1002/anie.202315185] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/01/2023]
Abstract
Here we report on an ultra-sensitive colorimetric sensing platform that takes advantage of both the strong amplification power of rolling circle amplification (RCA) and the high efficiency of a simple urease-mediated litmus test. The presence of a target triggers the RCA reaction, and urease-labelled DNA can hybridize to the biotinylated RCA products and be immobilized onto streptavidin-coated magnetic beads. The urease-laden beads are then used to hydrolyze urea, leading to an increase in pH that can be detected by a simple litmus test. We show this sensing platform can be easily integrated with aptamers for sensing diverse targets via the detection of human thrombin and platelet-derived growth factor (PDGF) utilizing structure-switching aptamers as well as SARS-CoV-2 in human saliva using a spike-binding trimeric DNA aptamer. Furthermore, we demonstrate that this colorimetric sensing platform can be integrated into a simple paper-based device for sensing applications.
Collapse
Affiliation(s)
- Dingran Chang
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4 K1, Canada
| | - Jiuxing Li
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4 K1, Canada
| | - Rudi Liu
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4 K1, Canada
| | - Meng Liu
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4 K1, Canada
| | - Kha Tram
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4 K1, Canada
| | - Natalie Schmitt
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4 K1, Canada
| | - Yingfu Li
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4 K1, Canada
| |
Collapse
|
18
|
Yu H, Zhao Q. Profiling Additional Effects of Aptamer Fluorophore Modification on Microscale Thermophoresis Characterization of Aptamer-Target Binding. Anal Chem 2023; 95:17011-17019. [PMID: 37946406 DOI: 10.1021/acs.analchem.3c03603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Aptamers are promising affinity ligands with considerable applications, such as biosensors, disease diagnosis, therapy, etc. Characterization of aptamer-target binding is important in aptamer selection and aptamer applications. Microscale thermophoresis (MST) is an emerging optical technique for molecular interactions, which monitors fluorescence responses of fluorescent molecules in a microscopic temperature gradient. Harnessing merits in trace sample consumption, high speed, free separation, free immobilization, and ratiometric analysis, MST draws intense wide attention. MST is often applied for aptamer-target binding studies using fluorescently labeled aptamers. However, the MST signal is strongly dependent on fluorophore modifications at aptamers, which brings additional challenges and effects for MST analyzing aptamer affinity. Here, we systematically explored effects of fluorophore modifications (e.g., fluorophore types, fluorophore positions, etc.) of aptamer probes on MST characterizing aptamer-target interactions and identified gaps of MST analysis in aptamer affinity determination, taking aptamers against cadmium ions and aflatoxin B1 as two representatives. The same aptamers with different fluorophore modifications showed distinct MST signals in response magnitudes and signs as well as determined affinities, and some of them failed to respond to target binding and gave false affinity information in MST. A competitive MST method can be used to extract the affinity of unmodified aptamers, excluding effects of fluorophore modification. This work highlights that appropriate fluorophore modification is crucial in MST analysis of aptamer affinity, and caution is needed in MST applications, providing a basis for rational design of the MST method for the reliable molecular interaction study.
Collapse
Affiliation(s)
- Hao Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| |
Collapse
|
19
|
Huang Y, Wu Q, Zhang J, Zhang Y, Cen S, Yang C, Song Y. Microfluidic Enrichment of Intact SARS-CoV-2 Viral Particles by Stoichiometric Balanced DNA Computation. ACS NANO 2023; 17:21973-21983. [PMID: 37901936 DOI: 10.1021/acsnano.3c08400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Health diagnostic tools for community safety and environmental monitoring require selective and quantitatively accurate active viral load assessment. Herein, we report a microfluidic enrichment strategy to separate intact SARS-CoV-2 particles by AND logic gate with inputs of cholesterol oligonucleotides for the envelope and aptamers for the spike viral proteins. Considering the unequal quantity of endogenous spikes and lipid membranes on SARS-CoV-2, a dual-domain binding strategy, with two aptamers targeting different spike domains, was applied to balance the spike-envelope stoichiometric ratio. By balancing the stoichiometric with DNA computation and promoting microscale mass transfer of the herringbone chip, the developed strategy enabled high sensitivity detection of pseudotyped SARS-CoV-2 with a limit of detection as low as 37 active virions/μL while distinguishing it from inactive counterparts, other nontarget viruses, and free spike protein. Moreover, the captured viral particles can be released through DNase I treatment with up to 90% efficiency, which is fully compatible with virus culture and sequencing. Overall, the developed strategy not only identified SARS-CoV-2-infected patients (n = 14) with 100% identification from healthy donors (n = 8) but also provided a fresh perspective on the regulation of stoichiometric ratio to achieve a more biologically relevant DNA computation.
Collapse
Affiliation(s)
- Yihao Huang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Qiuyue Wu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Jialu Zhang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yuqian Zhang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Shiyun Cen
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yanling Song
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
20
|
Chen B, Liu C, Cong W, Gao F, Zou Y, Su L, Liu L, Hillisch A, Lehmann L, Bierer D, Li X, Hu HG. Cyclobutane-bearing restricted anchoring residues enabled geometry-specific hydrocarbon peptide stapling. Chem Sci 2023; 14:11499-11506. [PMID: 37886087 PMCID: PMC10599482 DOI: 10.1039/d3sc04279k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
Stapled peptides are regarded as the promising next-generation therapeutics because of their improved secondary structure, membrane permeability and metabolic stability as compared with the prototype linear peptides. Usually, stapled peptides are obtained by a hydrocarbon stapling technique, anchoring from paired olefin-terminated unnatural amino acids and the consequent ring-closing metathesis (RCM). To investigate the adaptability of the rigid cyclobutane structure in RCM and expand the chemical diversity of hydrocarbon peptide stapling, we herein described the rational design and efficient synthesis of cyclobutane-based conformationally constrained amino acids, termed (E)-1-amino-3-(but-3-en-1-yl)cyclobutane-1-carboxylic acid (E7) and (Z)-1-amino-3-(but-3-en-1-yl)cyclobutane-1-carboxylic acid (Z7). All four combinations including E7-E7, E7-Z7, Z7-Z7 and Z7-E7 were proven to be applicable in RCM-mediated peptide stapling to afford the corresponding geometry-specific stapled peptides. With the aid of the combined quantum and molecular mechanics, the E7-E7 combination was proven to be optimal in both the RCM reaction and helical stabilization. With the spike protein of SARS-CoV-2 as the target, a series of cyclobutane-bearing stapled peptides were obtained. Among them, E7-E7 geometry-specific stapled peptides indeed exhibit higher α-helicity and thus stronger biological activity than canonical hydrocarbon stapled peptides. We believe that this methodology possesses great potential to expand the scope of the existing peptide stapling strategy. These cyclobutane-bearing restricted anchoring residues served as effective supplements for the existing olefin-terminated unnatural amino acids and the resultant geometry-specific hydrocarbon peptide stapling provided more potential for peptide therapeutics.
Collapse
Affiliation(s)
- Baobao Chen
- School of Medicine or Institute of Translational Medicine, Shanghai University Shanghai 200444 China
| | - Chao Liu
- School of Medicine or Institute of Translational Medicine, Shanghai University Shanghai 200444 China
| | - Wei Cong
- School of Medicine or Institute of Translational Medicine, Shanghai University Shanghai 200444 China
| | - Fei Gao
- School of Medicine or Institute of Translational Medicine, Shanghai University Shanghai 200444 China
| | - Yan Zou
- School of Pharmacy, Second Military Medical University Shanghai 200433 China
| | - Li Su
- School of Medicine or Institute of Translational Medicine, Shanghai University Shanghai 200444 China
| | - Lei Liu
- Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Alexander Hillisch
- Bayer AG, Pharma Division, Drug Discovery Sciences Aprather Weg 18A Wuppertal 42096 Germany
- UCB BioSciences GmbH Alfred-Nobel-Straße 10 40789 Monheim am Rhein Germany
| | - Lutz Lehmann
- Bayer AG, Pharma Division, Drug Discovery Sciences Aprather Weg 18A Wuppertal 42096 Germany
| | - Donald Bierer
- Bayer AG, Pharma Division, Drug Discovery Sciences Aprather Weg 18A Wuppertal 42096 Germany
| | - Xiang Li
- School of Pharmacy, Second Military Medical University Shanghai 200433 China
| | - Hong-Gang Hu
- School of Medicine or Institute of Translational Medicine, Shanghai University Shanghai 200444 China
| |
Collapse
|
21
|
Xu G, Wang C, Yu H, Li Y, Zhao Q, Zhou X, Li C, Liu M. Structural basis for high-affinity recognition of aflatoxin B1 by a DNA aptamer. Nucleic Acids Res 2023; 51:7666-7674. [PMID: 37351632 PMCID: PMC10415127 DOI: 10.1093/nar/gkad541] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023] Open
Abstract
The 26-mer DNA aptamer (AF26) that specifically binds aflatoxin B1 (AFB1) with nM-level high affinity is rare among hundreds of aptamers for small molecules. Despite its predicted stem-loop structure, the molecular basis of its high-affinity recognition of AFB1 remains unknown. Here, we present the first high-resolution nuclear magnetic resonance structure of AFB1-AF26 aptamer complex in solution. AFB1 binds to the 16-residue loop region of the aptamer, inducing it to fold into a compact structure through the assembly of two bulges and one hairpin structure. AFB1 is tightly enclosed within a cavity formed by the bulges and hairpin, held in a place between the G·C base pair, G·G·C triple and multiple T bases, mainly through strong π-π stacking, hydrophobic and donor atom-π interactions, respectively. We further revealed the mechanism of the aptamer in recognizing AFB1 and its analogue AFG1 with only one-atom difference and introduced a single base mutation at the binding site of the aptamer to increase the discrimination between AFB1 and AFG1 based on the structural insights. This research provides an important structural basis for understanding high-affinity recognition of the aptamer, and for further aptamer engineering, modification and applications.
Collapse
Affiliation(s)
- Guohua Xu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P.R. China
| | - Chen Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P.R. China
- Department of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Hao Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China
- Department of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Yapiao Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China
- Department of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Qiang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P.R. China
- Department of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P.R. China
| | - Conggang Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P.R. China
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P.R. China
| |
Collapse
|
22
|
Liu B, Wang F, Chao J. Programmable Nanostructures Based on Framework-DNA for Applications in Biosensing. SENSORS (BASEL, SWITZERLAND) 2023; 23:3313. [PMID: 36992023 PMCID: PMC10051322 DOI: 10.3390/s23063313] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
DNA has been actively utilized as bricks to construct exquisite nanostructures due to their unparalleled programmability. Particularly, nanostructures based on framework DNA (F-DNA) with controllable size, tailorable functionality, and precise addressability hold excellent promise for molecular biology studies and versatile tools for biosensor applications. In this review, we provide an overview of the current development of F-DNA-enabled biosensors. Firstly, we summarize the design and working principle of F-DNA-based nanodevices. Then, recent advances in their use in different kinds of target sensing with effectiveness have been exhibited. Finally, we envision potential perspectives on the future opportunities and challenges of biosensing platforms.
Collapse
Affiliation(s)
- Bing Liu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Fan Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| | - Jie Chao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|