1
|
He A, Zuo D, Jiang G, Tang X, Wang L, Feng L, Zhao Z, Wei J, Zheng N, Shen H. Eight-electron Pt/Cu superatom encapsulating three "electron-donating" hydrides. SCIENCE ADVANCES 2025; 11:eads4488. [PMID: 39772673 PMCID: PMC11708884 DOI: 10.1126/sciadv.ads4488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025]
Abstract
Hydrides in metal complexes or nanoclusters are typically viewed as electron-withdrawing. Several recent reports have demonstrated the emergence of "electron-donating" hydrides in tailoring the structure, electronic structure, and reactivity of metal nanoclusters. However, the number of such hydrides included in each cluster kernel is limited to one or two. There is even no structure model, neither theoretical nor experimental, for encapsulating a third electron-donating hydride into one cluster entity. Here, we present a structurally precise superatomic nanocluster, PtH3Cu23(iso-propyl-PhS)18(PPh3)4 (PtH3Cu23), which contains three interstitial electron-donating hydrides. The molecular structure of PtH3Cu23 describes the encapsulation of a PtCu12 core that contains three interstitial hydrides in a distorted anticuboctahedral architecture, in an outer sphere consisting of copper atoms and thiolate and phosphine ligands. Density functional theory calculations reveal that the three hydrides in PtH3Cu23 contribute their valence electrons to the cluster superatomic electron count of eight. In this regard, the cluster represents a rare Pt-included copper-hydride superatom with eight free electrons.
Collapse
Affiliation(s)
- Ayisha He
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Dongjie Zuo
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Guangmei Jiang
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Xiongkai Tang
- New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National and Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lin Wang
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Liubin Feng
- New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National and Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zaiwang Zhao
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Jianyu Wei
- School of Materials and New Energy, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Nanfeng Zheng
- New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National and Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
| | - Hui Shen
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
2
|
Kumar S, Mishra S, Das A, Mahiya K, Laha S, Maji M, Patra AK. Analogous copper nanoclusters (Cu 16/17) with two electron superatomic and mixed valence copper(II)/copper(I) and copper(I)/copper(0) characters. NANOSCALE 2025; 17:982-991. [PMID: 39588686 DOI: 10.1039/d4nr03578j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The reported copper nanoclusters (Cu NCs) of either CuII or CuI or mixed valence (MV) CuII/CuI or CuI/Cu0 characters are found to be stabilized with a discrete set of ligand donors; hence, analogous Cu NCs with a common architecture supported by the same or nearly the same donor set that exhibit different MV states of Cu, such as CuII/CuI and CuI/Cu0, are unknown. Such a series of highest nuclearity copper clusters supported by aromatic thiol-S donor ligands, namely [(L4)12CuI15CuII(μ4-S)](PF6)3 (1), [(MeL4)12CuI15Cu0(μ4-S)]ClO4·8C7H8 (2) and [(L4)12CuI15Cu02(DMF)](PF6)3·C2H5OH·2C7H8 (3), where XL4 = 2-((3-X-thiophen)-(2-yl-methylene)amino)-4-(trifluoromethyl)benzenethiol (X = H/Me), have been synthesized and their electronic structural properties have been examined and reported herein. The Cu16 NCs, 1 and 2, feature a central sulfido-S (Ss) bridged tetracopper SsCu4 core inside a sphere-shaped Cu12S12 truncated octahedron. As 1 and 2 have a non-metal (chalcogen or halogen) central atom (here Ss) instead of a metallic Cu core inside the Cu12S12 shell, they are of the inverse coordination complex (ICC) category, rather than superatomic with a core-shell (the core is a metal and the shell is a metal-ligand framework) structure. The NC 1, in the presence of polar solvents, converts to a two electron superatomic Cu17 NC, 3. The NC 3 features a trigonal pyramidal-shaped Cu4 core inside a modified Cu12S12, i.e. Cu13S12 shell. The transformation of 1 to 3 may be visualized as the replacement of the central sulfido-S by an extra Cu atom (generated from decomposed molecules of 1) and the shifting of a Cu atom of the SsCu4 unit to the Cu12S12 shell, resulting in a Cu13S12 shell. The present work offers the first example of (i) an ICC that has Cu0 character (i.e.2), (ii) a superatomic Cu NC (i.e.3) stabilized by an aromatic thiol-S donor ligand and (iii) spontaneous ICC (i.e.1) → superatomic NC (i.e.3) conversion that does not require any reducing agent, but rather occurs in the presence of a dioxygen oxidant. The probable mechanisms for the reversible 1 ↔ 3 conversions have been discussed. The presence of Ss in 1 and 2 unveils the first evidence of benzene thiol C-S bond cleavage, to the best of our knowledge. The spectroelectrochemical studies shed light on the choice of CuII/CuI and CuI/Cu0 character of 1 and 2, respectively, which is supported by high resolution XPS and Cu LMM Auger spectroscopy.
Collapse
Affiliation(s)
- Shibaditya Kumar
- Department of Chemistry, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur 713209, India.
| | - Saikat Mishra
- Department of Chemistry, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur 713209, India.
| | - Aniruddha Das
- Department of Chemistry, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur 713209, India.
| | - Kuldeep Mahiya
- Department of Chemistry, F. G. M. Government College, Adampur, Hisar-125052, Haryana, India
| | - Sourav Laha
- Department of Chemistry, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur 713209, India.
| | - Milan Maji
- Department of Chemistry, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur 713209, India.
| | - Apurba K Patra
- Department of Chemistry, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur 713209, India.
| |
Collapse
|
3
|
Dou X, Saalah S, Chiam CK, Xie J, Sipaut CS. Ultrasmall metal nanoclusters as efficient luminescent probes for bioimaging. J Mater Chem B 2024. [PMID: 39679535 DOI: 10.1039/d4tb02207f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Ultrasmall metal nanoclusters (NCs, <2 nm) have emerged as a novel class of luminescent probes due to their atomically precise size and tailored physicochemical properties. The rapid advancements in the design and utilization of metal NC-based luminescent probes are facilitated by the atomic-level manipulation of metal NCs. This review article explores (i) the engineering of metal NCs' functions for bioimaging applications, and (ii) the diverse uses of metal NCs in bioimaging. We begin by presenting an overview of the engineering functions of metal NCs as luminescent probes for bioimaging applications, highlighting key strategies for enhancing NCs' luminescence, biocompatibility and targeting capabilities towards biological specimens. Our discussion then centers on the bioimaging applications of metal NCs in subcellular organelles, individual cells, tissues, and entire organs. Finally, we offer a perspective on the challenges and potential developments in the future use of metal NCs for bioimaging applications.
Collapse
Affiliation(s)
- Xinyue Dou
- Chemical Engineering Programme, Faculty of Engineering, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia.
| | - Sariah Saalah
- Chemical Engineering Programme, Faculty of Engineering, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia.
| | - Chel-Ken Chiam
- Chemical Engineering Programme, Faculty of Engineering, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia.
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | - Coswald Stephen Sipaut
- Chemical Engineering Programme, Faculty of Engineering, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia.
| |
Collapse
|
4
|
Jin Y, Zhang Z, Zheng H, Cheng X, Geng L, Zhou Z, Han H. Unveiling the Formation Mechanism for Binary Semiconductor Nanoclusters: a Two-Step Pathway to a Double-Shell Structured Copper Sulfide Nanocluster. ACS NANO 2024; 18:33681-33695. [PMID: 39585078 DOI: 10.1021/acsnano.4c13264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
This work represents an important step in the quest to unveil the formation mechanism of atomically precise binary semiconductor nanoclusters. In this study, we develop an acid-assisted C-S bond cleavage approach, wherein the C-S bonds in the metal thiolate precursor can be readily cleaved to release S2- with the assistance of a suitable acid in the presence of Cu2O as the catalyst. This process spontaneously fosters the formation of a [-Cu-S-Cu-] framework and promotes the structural growth into a high nuclearity assembly. Specifically, by employing Cu(I) tert-butyl thiolate ([CuStBu]∞) and carboxylate acid CH2═CHCOOH as the copper/sulfur precursor and C-S bond "scissor", a high-nuclearity nanocluster [S-Cu56] (Cu56S12(OOCCH═CH2)12(SC(CH3)3)20) featuring a double-shell configuration has been effectively prepared in high yield. Importantly, the [CuStBu]∞ precursor and the intermediate [S-Cu14] (Cu14(StBu)8(OOCCH═CH2)6) cluster have also been successfully isolated and structurally characterized, which ultimately enables the establishment of a two-step formation pathway for the [S-Cu56] nanocluster. Furthermore, in contrast to conventional reduction synthetic routes for metal nanoclusters containing Cu(0) or Cu(I), the acid-assisted C-S bond cleavage approach represents an oxidation process with respect to the constituent metals, yielding highly charged Cu(II) cations in the copper sulfide nanocluster.
Collapse
Affiliation(s)
- Yuhao Jin
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Zhenyi Zhang
- Bruker (Beijing) Scientific Technology Co. Ltd., Shanghai 200233, China
| | - Huijuan Zheng
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Xianghan Cheng
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Longlong Geng
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Zheng Zhou
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Haixiang Han
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| |
Collapse
|
5
|
Li H, Li P, Zhang J, Lin Z, Bai L, Shen H. Applications of nanotheranostics in the second near-infrared window in bioimaging and cancer treatment. NANOSCALE 2024; 16:21697-21730. [PMID: 39508492 DOI: 10.1039/d4nr03058c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Achieving accurate and efficient tumor imaging is crucial in the field of tumor treatment, as it facilitates early detection and precise localization of tumor tissues, thereby informing therapeutic strategies and surgical interventions. The optical imaging technology within the second near-infrared (NIR-II) window has garnered significant interest for its remarkable benefits, such as enhanced tissue penetration depth, superior signal-to-background ratio (SBR), minimal tissue autofluorescence, reduced photon attenuation, and lower tissue scattering. This review explained the design and optimization strategies of nano-agents responsive to the NIR-II window, such as single-walled carbon nanotubes, quantum dots, lanthanum-based nanomaterials, and noble metal nanomaterials. These nano-agents enable non-invasive, deep-tissue imaging with high spatial resolution in the NIR-II window, and their superior optical properties significantly improve the accuracy, efficiency, and versatility of imaging-guided tumor treatments. And we discussed the characteristics and advantages of fluorescence imaging (FL)/photoacoustic imaging (PA) in NIR-II window, providing a comprehensive overview of the latest research progress of different nano-agents in FL/PA imaging-guided tumor therapy. Furthermore, we exhaustively reviewed the latest applications of multifunctional nano-phototherapy technologies carried out by NIR-II light including photothermal therapy (PTT), photodynamic therapy (PDT), and combined modalities like photothermal-chemodynamic therapy (PTT-CDT), photothermal-chemotherapy (PTT-CT), and photothermal- immunotherapy (PTT-IO). These imaging-guided integrated tumor therapy approaches within the NIR-II window have gradually matured over the past decade and are expected to become a safe and effective non-invasive tumor treatment. Finally, we outlined the prospects and challenges of development and innovation of the NIR-II integrated diagnosis and therapy nanoplatform. This review aims to provide insightful perspectives for future advancements in NIR-II optical tumor diagnosis and integrated treatment platforms.
Collapse
Affiliation(s)
- Huimin Li
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Pengju Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China
| | - Jiarui Zhang
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Ziyi Lin
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Lintao Bai
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Heyun Shen
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
6
|
Chen M, Guo C, Qin L, Wang L, Qiao L, Chi K, Tang Z. Atomically Precise Cu Nanoclusters: Recent Advances, Challenges, and Perspectives in Synthesis and Catalytic Applications. NANO-MICRO LETTERS 2024; 17:83. [PMID: 39625605 PMCID: PMC11615184 DOI: 10.1007/s40820-024-01555-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/30/2024] [Indexed: 12/06/2024]
Abstract
Atomically precise metal nanoclusters are an emerging type of nanomaterial which has diverse interfacial metal-ligand coordination motifs that can significantly affect their physicochemical properties and functionalities. Among that, Cu nanoclusters have been gaining continuous increasing research attentions, thanks to the low cost, diversified structures, and superior catalytic performance for various reactions. In this review, we first summarize the recent progress regarding the synthetic methods of atomically precise Cu nanoclusters and the coordination modes between Cu and several typical ligands and then discuss the catalytic applications of these Cu nanoclusters with some explicit examples to explain the atomical-level structure-performance relationship. Finally, the current challenges and future research perspectives with some critical thoughts are elaborated. We hope this review can not only provide a whole picture of the current advances regarding the synthesis and catalytic applications of atomically precise Cu nanoclusters, but also points out some future research visions in this rapidly booming field.
Collapse
Affiliation(s)
- Mengyao Chen
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China
| | - Chengyu Guo
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China
| | - Lubing Qin
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China
| | - Lei Wang
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China
| | - Liang Qiao
- Petrochemical Research Institute, PetroChina Company Limited, Beijing, 102206, People's Republic of China
| | - Kebin Chi
- Petrochemical Research Institute, PetroChina Company Limited, Beijing, 102206, People's Republic of China
| | - Zhenghua Tang
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China.
- Key Laboratory of Functional Inorganic Material Chemistry (Heilongjiang University), Ministry of Education, Harbin, 150001, People's Republic of China.
| |
Collapse
|
7
|
Liu Y, Wang L, Ma Q, Xu X, Gao X, Zhu H, Feng T, Dou X, Eguchi M, Yamauchi Y, Yuan X. Simultaneous generation of residue-free reactive oxygen species and bacteria capture for efficient electrochemical water disinfection. Nat Commun 2024; 15:10175. [PMID: 39580419 PMCID: PMC11585557 DOI: 10.1038/s41467-024-53174-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 10/04/2024] [Indexed: 11/25/2024] Open
Abstract
Residue-free and highly efficient techniques for drinking water disinfection are urgently needed. Herein, we report an electrochemical water disinfection system equipped with atomically precise Ag28 nanoclusters (NCs) as electrode materials. The deployment of these Ag28 NCs not only provides sufficient electrosorption sites for intelligent microbe enrichment but also ensures high-efficiency dual-mode microbial killing through the in situ electrocatalytic production of residue-free reactive oxygen species (ROS) and the inherent antimicrobial activity of Ag28 NCs. Moreover, the design of the system enables a cyclical "alive microbe capture-killing-dead microbe desorption" process for continuous water disinfection. On this basis, this water disinfection system is efficient against broad-spectrum microbes (with >99.99% antimicrobial activity), durable (with a performance reduction of only 0.75% over 40 cycles and 99.90% antimicrobial efficiency for over 5 h of continuous operation), versatile (i.e., other NCs can be used), scalable (with water productivity of 213.33 L h-1 m-2), energy efficient (with a low energy consumption of 4.91 Wh m-3; 1.04 Wh m-3 without the pumping cost) and applicable for various real water samples. This study may open new avenues for global water disinfection techniques.
Collapse
Affiliation(s)
- Yong Liu
- School of Material Science and Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Lihao Wang
- School of Material Science and Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Qianhui Ma
- School of Material Science and Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Xingtao Xu
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China.
| | - Xin Gao
- School of Material Science and Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Haiguang Zhu
- School of Material Science and Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Ting Feng
- School of Material Science and Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Xinyue Dou
- School of Material Science and Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Miharu Eguchi
- School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, Australia
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, Australia.
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Aichi, Japan.
- Department of Plant & Environmental New Resources, College of Life Sciences, Kyung Hee University, Yongin-si, South Korea.
| | - Xun Yuan
- School of Material Science and Engineering, Qingdao University of Science and Technology, Qingdao, China.
| |
Collapse
|
8
|
Cheng Z, Wang T, Luo M, Wu S, Hua S, Li Y, Yang Y, Zou L, Wei J, Li P. A new luminescent nickel nanocluster with solvent and ion induced emission enhancement toward heavy metal analysis. Biosens Bioelectron 2024; 264:116660. [PMID: 39142230 DOI: 10.1016/j.bios.2024.116660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/20/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024]
Abstract
Expanding the family of fluorescent metal clusters beyond gold, silver, and copper has always been an issue for researchers to solve. In this study, a novel type of cysteine-capped nickel nanoclusters (Cys-Ni NCs) with bright turquoise emission was developed. The as-synthesized Ni NCs showed aggregation-induced emission enhancement (AIEE) properties across Cd2+ and various polar organic solvents. Concurrently, solvents with different viscosities were used to explore the principle of solvent-induced AIEE of Cys-Ni NCs, revealing a positive correlation between fluorescence intensity and solution viscosity. In addition, the concentration of Cd2+ that induced the AIEE effect was reduced by nearly two orders of magnitude in highly viscous solvents, indicating the possibility of Cys-Ni NCs as a promising nanomaterial platform for Cd2+ sensing analysis. Moreover, we propose a novel fluorescent sensing method for rapid detection of Cu2+ based on the carboxyl group of Cys-Ni NCs coupling with Cu2+. Further, validation of Cu2+ detecting methodologies in environmental water samples with the accuracy up to 93.94% underscores their potential as robust and efficient sensing platforms. This study expands the repertoire of fluorescent metal nanoclusters for highly sensitive and selective sensing of hazardous ions and paves the way for further exploration and wide applications in Cu2+ detection in biological and medicine fields.
Collapse
Affiliation(s)
- Zehua Cheng
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China; School of Pharmaceutical Sciences, Liaoning University, Shenyang, Liaoning 110036, China
| | - Ting Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Mai Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Sijia Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Shiyao Hua
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Yuqing Li
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Yu Yang
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liang Zou
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Jinchao Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China.
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China.
| |
Collapse
|
9
|
Agrawal S, Shil D, Gupta A, Mukherjee S. Superstructures of copper nanoclusters as NIR TADF emitters: solvent-dependent optical and morphological modulation. NANOSCALE 2024; 16:20556-20569. [PMID: 39429123 DOI: 10.1039/d4nr03074e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Herein, we report 2-mercaptopyridine-templated copper nanoclusters (CuNCs) which display near infra-red (NIR) emission, both in the solid and colloidal states. Interestingly, the NIR emission can be modulated to orange emission by preparing the CuNCs in a mixed solvent system of chloroform and methanol instead of water. The drastic change in the photo-physical properties of the CuNCs when prepared in two different solvent systems is accompanied by a unique morphological tuning. Further studies reveal that the strong NIR emission is the result of thermally activated delayed fluorescence (TADF) which is confirmed by the long excited state lifetime (∼4 μs at room temperature), time resolved emission spectroscopy (TRES) measurements, temperature-dependent photoluminescence studies, temperature-dependent lifetime studies, and excitation-transmittance dependent TRES intensity measurements. The CuNCs exhibit an exceptionally small singlet-triplet energy gap of 58.2 meV, indicating a highly efficient TADF in the system. Moreover, the solvent-dependent morphological tuning of the nanocluster superstructures rendering a drastic change in the photo-physical signatures is the consequence of different ΔE(S1-T1) values for the CuNCs in different solvent environments. Further findings corroborate that the electronic structure of the surface ligands can also help us to tune the ΔE(S1-T1) energy gap for these nanoclusters.
Collapse
Affiliation(s)
- Sameeksha Agrawal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India.
| | - Debanggana Shil
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India.
| | - Aakash Gupta
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400 076, Maharashtra, India
| | - Saptarshi Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India.
| |
Collapse
|
10
|
Jia T, Cheng PM, Zhang MX, Liu WD, Li CY, Su HF, Long LS, Zheng LS, Kong XJ. Ln III/Cu I Bimetallic Nanoclusters with Enhanced NIR-II Luminescence. J Am Chem Soc 2024; 146:28618-28623. [PMID: 39400366 DOI: 10.1021/jacs.4c09447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Coinage-metal clusters with excellent luminescence properties have attracted considerable interest due to their intriguing structures and potential applications. However, achieving strong near-infrared (NIR) luminescence in these clusters is highly challenging. Here, we have successfully synthesized the first LnIII/CuI bimetallic clusters, formulated as [LnCu54O6Cl3(2-MeO-PhC≡C)36] (ClO4)6 (Ln = Yb for YbCu54, Er for ErCu54, and Gd for GdCu54). Single crystal X-ray diffraction showed that the LnCu54 clusters have a three-layered core-shell structure, consisting of (LnO6)@Cu18Cl3@Cu36 units protected by 36 2-MeO-PhC≡C- ligands. Notably, the YbCu54 cluster exhibits significant NIR-II luminescence at 986 nm with the solid quantum efficiency of 33.3%, the highest among Cu clusters with NIR-II emission. This work not only reports the first category of LnIII/CuI clusters but also presents a method to enhance NIR luminescence in coinage-metal clusters through the incorporation of LnIII ions.
Collapse
Affiliation(s)
- Tao Jia
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Pei-Ming Cheng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ming-Xuan Zhang
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Wei-Dong Liu
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chong-Yang Li
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hai-Feng Su
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - La-Sheng Long
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lan-Sun Zheng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiang-Jian Kong
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
11
|
Deng G, Malola S, Ki T, Liu X, Yoo S, Lee K, Bootharaju MS, Häkkinen H, Hyeon T. Structural Isomerism in Bimetallic Ag 20Cu 12 Nanoclusters. J Am Chem Soc 2024; 146:26751-26758. [PMID: 39292876 DOI: 10.1021/jacs.4c06832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Structural isomers of atomically precise metal nanoclusters are highly sought after for investigating structure-property relationships in nanostructured materials. However, they are extremely rare, particularly those of alloys, primarily due to the challenges in their synthesis and structural characterization. Herein, for the first time, a pair of bimetallic isomeric AgCu nanoclusters has been controllably synthesized and structurally characterized. These two isomers share an identical molecular formula, Ag20Cu12(C≡CR)24 (denoted as Ag20Cu12-1 and Ag20Cu12-2; HC≡CR is 3,5-bis(trifluoromethyl)phenylacetylene). Single-crystal X-ray diffraction data analysis revealed that Ag20Cu12-1 possesses an Ag17Cu4 core composed of two interpenetrating hollow Ag11Cu2 structures. This core is stabilized by four different types of surface motifs: eight -C≡CR, one Cu(C≡CR)2, one Ag3Cu3(C≡CR)6, and two Cu2(C≡CR)4 units. Ag20Cu12-2 features a bitetrahedron Ag14 core, which is stabilized by three Ag2Cu4(C≡CR)8 units. Interestingly, Ag20Cu12-2 undergoes spontaneous transformation to Ag20Cu12-1 in the solution-state. Density functional theory calculations explain the electronic and optical properties and confirm the higher relative stability of Ag20Cu12-1 compared to Ag20Cu12-2. The controlled synthesis and structural isomerism of alloy nanoclusters presented in this work will stimulate and broaden research on nanoscale isomerism.
Collapse
Affiliation(s)
- Guocheng Deng
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Sami Malola
- Departments of Physics and Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Taeyoung Ki
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Xiaolin Liu
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seungwoo Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Kangjae Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Megalamane S Bootharaju
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Hannu Häkkinen
- Departments of Physics and Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
12
|
Bodiuzzaman M, Murugesan K, Yuan P, Maity B, Sagadevan A, Malenahalli H N, Wang S, Maity P, Alotaibi MF, Jiang DE, Abulikemu M, Mohammed OF, Cavallo L, Rueping M, Bakr OM. Modulating Decarboxylative Oxidation Photocatalysis by Ligand Engineering of Atomically Precise Copper Nanoclusters. J Am Chem Soc 2024; 146:26994-27005. [PMID: 39297671 DOI: 10.1021/jacs.4c08688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Copper nanoclusters (Cu NCs) characterized by their well-defined electronic and optical properties are an ideal platform for organic photocatalysis and exploring atomic-level behaviors. However, their potential as greener, efficient catalysts for challenging reactions like decarboxylative oxygenation under mild conditions remains unexplored. Herein, we present Cu13(Nap)3(PPh3)7H10 (hereafter Cu13Nap), protected by 1-naphthalene thiolate (Nap), which performs well in decarboxylative oxidation (90% yield) under photochemical conditions. In comparison, the isostructural Cu13(DCBT)3(PPh3)7H10 (hereafter Cu13DCBT), stabilized by 2,4-dichlorobenzenethiolate (DCBT), yields only 28%, and other previously reported Cu NCs (Cu28, Cu29, Cu45, Cu57, and Cu61) yield in the range of 6-18%. The introduction of naphthalene thiolate to the surface of Cu13 NCs influences their electronic structure and charge transfer in the ligand shell, enhancing visible light absorption and catalytic performance. Density functional theory (DFT) and experimental evidence suggest that the reaction proceeds primarily through an energy transfer mechanism. The energy transfer pathway is uncommon in the context of previous reports for decarboxylative oxidation reactions. Our findings suggest that strategically manipulating ligands holds significant potential for creating composite active sites on atomically precise copper NCs, resulting in enhanced catalytic efficacy and selectivity across various challenging reactions.
Collapse
Affiliation(s)
- Mohammad Bodiuzzaman
- Center for Renewable Energy and Storage Technologies (CREST), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Kathiravan Murugesan
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Peng Yuan
- Center for Renewable Energy and Storage Technologies (CREST), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Bholanath Maity
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Arunachalam Sagadevan
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Naveen Malenahalli H
- Center for Renewable Energy and Storage Technologies (CREST), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Song Wang
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Partha Maity
- Center for Renewable Energy and Storage Technologies (CREST), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Mohammed F Alotaibi
- Center for Renewable Energy and Storage Technologies (CREST), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - De-En Jiang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1604, United States
| | - Mutalifu Abulikemu
- Center for Renewable Energy and Storage Technologies (CREST), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Omar F Mohammed
- Center for Renewable Energy and Storage Technologies (CREST), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Luigi Cavallo
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Osman M Bakr
- Center for Renewable Energy and Storage Technologies (CREST), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
13
|
Guo Y, Zhang Z, Han H, Zhou Z. Chiral Separation of Copper Sulfide [S-Cu 36] Nanocluster Using a Chiral Adaptive Counterion. NANO LETTERS 2024; 24:11985-11991. [PMID: 39241022 DOI: 10.1021/acs.nanolett.4c03538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
This work presents a new strategy to achieve the growth of copper sulfide nanoclusters with high nuclearity. Through a phosphine-assisted C-S reductive cleavage approach, an intrinsically chiral [Cu4] cluster passes through a [S-Cu9] cluster and transforms into a higher-nuclearity [S-Cu36] cluster, which features a core-shell structure with a [Cu4]4+ core encapsulated by a chiral [Cu20S12] shell. Interestingly, the spiral arrangement of the bidental ligands on the surface of the [S-Cu36] cluster leads to the L-/R-enantiomeric configurations. Moreover, by utilization of [Na(THF)6]+ as a chiral adaptive counterion, [S-Cu36] can be interlocked separately, thus enabling the isolation of homochiral clusters. Theoretical calculation suggests that the configuration transition between two enantiomeric [Na(THF)6]+ species is favorable at room temperature, thereby promoting the cocrystallization of resulting chiral products. This study introduces a novel perspective on the synthesis of chiral copper sulfide nanoclusters and presents an innovative approach to achieving the chiral separation of nanoclusters.
Collapse
Affiliation(s)
- Yumeng Guo
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Zhenyi Zhang
- Bruker (Beijing) Scientific Technology Co., Ltd., Shanghai 200233, China
| | - Haixiang Han
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Zheng Zhou
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| |
Collapse
|
14
|
Chiu TH, Pillay MN, Wu YY, Niihori Y, Negishi Y, Chen JY, Chen YJ, Kahlal S, Saillard JY, Liu CW. Controlled aggregation of Pt/PtH/Rh/RhH doped silver superatomic nanoclusters into 16-electron supermolecules. Chem Sci 2024:d4sc02920h. [PMID: 39246344 PMCID: PMC11376050 DOI: 10.1039/d4sc02920h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/11/2024] [Indexed: 09/10/2024] Open
Abstract
The assembly of discrete superatomic nanoclusters into larger constructs is a significant stride towards developing a new set of artificial/pseudo-elements. Herein, we describe a novel series of 16-electron supermolecules derived from the combination of discrete 8-electron superatomic synthons containing interstitial hydrides as vertex-sharing building blocks. The symmetric (RhH)2Ag33[S2P(OPr)2]17 (1) and asymmetric PtHPtAg32[S2P(OPr)2]17 (2) are characterized by ESI-MS, SCXRD, NMR, UV-vis absorption spectra, electrochemical and computational methods. Cluster 1 represents the first group 9-doped 16-electron supermolecule, composed of two icosahedral (RhH)@Ag12 8-electron superatoms sharing a silver vertex. Cluster 2 results from the assembly of two distinct icosahedral units, Pt@Ag12, and (PtH)@Ag12. In both cases, the presence of the interstitial hydrides is unprecedented. The stability of the supermolecules is investigated, and 2 spontaneously transforms into Pt2Ag33[S2P(OPr)2]17 (3) with thermal treatment. The lability of the hydride within the icosahedral framework in solution at low-temperature was confirmed by the VT-NMR.
Collapse
Affiliation(s)
- Tzu-Hao Chiu
- Department of Chemistry, National Dong Hwa University Hualien 97401 Taiwan Republic of China
| | - Michael N Pillay
- Department of Chemistry, National Dong Hwa University Hualien 97401 Taiwan Republic of China
| | - Ying-Yann Wu
- Department of Chemistry, National Dong Hwa University Hualien 97401 Taiwan Republic of China
| | - Yoshiki Niihori
- Department of Applied Chemistry, Tokyo University of Science 1-3 Kagurazaka, Shinjuku Tokyo 162-8601 Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Tokyo University of Science 1-3 Kagurazaka, Shinjuku Tokyo 162-8601 Japan
| | - Jie-Ying Chen
- Department of Chemistry, Fu Jen Catholic University New Taipei City 24205 Taiwan Republic of China
| | - Yuan Jang Chen
- Department of Chemistry, Fu Jen Catholic University New Taipei City 24205 Taiwan Republic of China
| | - Samia Kahlal
- Univ Rennes, CNRS, ISCR-UMR 6226 F-35000 Rennes France
| | | | - C W Liu
- Department of Chemistry, National Dong Hwa University Hualien 97401 Taiwan Republic of China
| |
Collapse
|
15
|
Yang Y, Guo S, Zhang Q, Guan ZJ, Wang QM. A Cages-on-Cluster Structure Constructed by Post-Clustering Covalent Modifications and Guest-Enabled Stimuli-Responsive Luminescence. Angew Chem Int Ed Engl 2024; 63:e202404798. [PMID: 38713516 DOI: 10.1002/anie.202404798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/09/2024]
Abstract
A gold(I)-cluster-based twin-cage has been constructed by post-clustering covalent modification of a hexa-aldehyde cluster precursor with triaminotriethylamines. The cages-on-cluster structure has double cavities and four binding sites, which show site-discriminative binding for silver(I) and copper(I) guests. The guests in the tripodal hats affect the luminescence of the cluster: the tetra-silver(I) host-guest complex is weakly red-emissive, while the bis-copper(I)-bis-silver(I) one is non-emissive but is a stimuli-responsive supramolecule. The copper(I) ion inside the tri-imine cavity is oxidation sensitive, which enables the release of the bright emissive precursor cluster triggered by H2O2 solution. The hybridization of a cluster with cavities to construct a cluster-based cage presents an innovative concept for functional cluster design, and the post-clustering covalent modification opens up new avenues for finely tuning the properties of clusters.
Collapse
Affiliation(s)
- Yang Yang
- Department of Chemistry, College of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Shan Guo
- Department of Chemistry, College of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| | - Qian Zhang
- Department of Chemistry, College of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| | - Zong-Jie Guan
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Quan-Ming Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
16
|
Zhang C, Si WD, Wang Z, Tung CH, Sun D. Chiral Ligand-Concentration Mediating Asymmetric Transformations of Silver Nanoclusters: NIR-II Circularly Polarized Phosphorescence Lighting. Angew Chem Int Ed Engl 2024; 63:e202404545. [PMID: 38664228 DOI: 10.1002/anie.202404545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Indexed: 07/02/2024]
Abstract
Near infrared (NIR) emitter with circularly polarized phosphorescence (CPP), known as NIR CPP, has emerged as a key part in the research of cutting-edge luminescent materials. However, it remains a challenge to obtain nanoclusters with NIR CPP activity. Here, we propose an asymmetric transformation approach to efficiently synthesize two pairs of chiral silver nanoclusters (R/S-Ag29 and R/S-Ag16) using an achiral Ag10 nanocluster as starting material in the presence of different concentration chiral inducer (R/S)-1,1'-binaphthyl-2,2'-diyl hydrogenphosphate (R/S-BNP). R/S-Ag29, formed in the low-concentration R/S-BNP, exhibits a unique kernel-shell structure consisting of a distorted Ag13 icosahedron and an integrated cage-like organometallic shell with a C3 symmetry, and possesses a superatomic 6-electron configuration (1S2|1P4). By contrast, R/S-Ag16, formed in the high-concentration R/S-BNP, features a sandwich-like pentagram with AgI-pure kernel. Profiting from the hierarchically chiral structures and superatomic kernel-dominated phosphorescence, R/S-Ag29 exhibits infrequent CPP activity in the second near-infrared (975 nm) region, being the first instance of NIR-II CPP observed among CPL-active metal nanoclusters. This study presents a new approach to reduce the difficulty of de novo synthesis for chiral silver nanomaterials, and facilitates the design of CPP-active superatomic nanoclusters in NIR region.
Collapse
Affiliation(s)
- Chengkai Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, 250100, Ji'nan, People's Republic of China
| | - Wei-Dan Si
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, 250100, Ji'nan, People's Republic of China
| | - Zhi Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, 250100, Ji'nan, People's Republic of China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, 250100, Ji'nan, People's Republic of China
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, 250100, Ji'nan, People's Republic of China
| |
Collapse
|
17
|
Deng G, Ki T, Yoo S, Liu X, Lee K, Bootharaju MS, Hyeon T. [Au 9Ag 6(CCR) 10(DPPM) 2Cl 2](PPh 4): a four-electron cluster with a bi-decahedral twisted metal core. NANOSCALE 2024; 16:11090-11095. [PMID: 38766759 DOI: 10.1039/d4nr01471e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The assembly of cluster units in a distinct manner can give rise to nanoclusters exhibiting unique geometrical structures and properties. Herein, we present a one-pot synthesis and structural characterization of a AuAg alloy cluster, [Au9Ag6(CCR)10(DPPM)2Cl2](PPh4), denoted as Au9Ag6 (where HCCR is 3,5-bis(trifluoromethyl)phenylacetylene, and DPPM is bis(diphenylphosphino)methane). Single-crystal X-ray diffraction data analysis reveals that Au9Ag6 features a distinctive Au7Ag6 bi-decahedral core, formed by a twisted assembly of two Au4Ag3 decahedra sharing one vertex. The Au4Ag3 building blocks are bridged by two gold atoms on opposite sides of the bi-decahedral core. The Au9Ag6 cluster is monoanionic and it is stabilized by two chloride, two DPPM and ten alkynyl ligands. This cluster represents the first instance of a cluster of clusters built upon decahedral units.
Collapse
Affiliation(s)
- Guocheng Deng
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Taeyoung Ki
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seungwoo Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Xiaolin Liu
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Kangjae Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Megalamane S Bootharaju
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
18
|
Biswas S, Negishi Y. Exploring the impact of various reducing agents on Cu nanocluster synthesis. Dalton Trans 2024; 53:9657-9663. [PMID: 38624154 DOI: 10.1039/d4dt00296b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The synthesis of copper (Cu) nanoclusters (NCs) has experienced significant advancements in recent years. Despite the exploration of metal NCs dating back almost two decades, challenges specific to Cu NC synthesis arise from the variable oxidation states and heightened reactivity of intermediate Cu complexes, distinguishing it from its analogous counterparts. In this study, we present a comprehensive overview of this newly evolving research domain, focusing on the synthetic aspects. We delve into various factors influencing the synthesis of Cu NCs, with specific emphasis on the role of reducing agents. The impact of the reducing agent is particularly pivotal in this synthetic process, ultimately influencing the formation of model M(0)-containing NCs, which are less readily accessible in the context of Cu NCs. We anticipate that this frontier article will pave the way for accelerated research in the field of Cu NCs. By aiding in the selection of specific reaction conditions and reducing agents, we believe that this work will contribute to a faster-paced exploration of Cu NCs, further advancing our understanding and applications in this exciting area of nanomaterial research.
Collapse
Affiliation(s)
- Sourav Biswas
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
- Research Institute for Science & Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
19
|
Liu LJ, Zhang MM, Deng Z, Yan LL, Lin Y, Phillips DL, Yam VWW, He J. NIR-II emissive anionic copper nanoclusters with intrinsic photoredox activity in single-electron transfer. Nat Commun 2024; 15:4688. [PMID: 38824144 PMCID: PMC11144245 DOI: 10.1038/s41467-024-49081-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/20/2024] [Indexed: 06/03/2024] Open
Abstract
Ultrasmall copper nanoclusters have recently emerged as promising photocatalysts for organic synthesis, owing to their exceptional light absorption ability and large surface areas for efficient interactions with substrates. Despite significant advances in cluster-based visible-light photocatalysis, the types of organic transformations that copper nanoclusters can catalyze remain limited to date. Herein, we report a structurally well-defined anionic Cu40 nanocluster that emits in the second near-infrared region (NIR-II, 1000-1700 nm) after photoexcitation and can conduct single-electron transfer with fluoroalkyl iodides without the need for external ligand activation. This photoredox-active copper nanocluster efficiently catalyzes the three-component radical couplings of alkenes, fluoroalkyl iodides, and trimethylsilyl cyanide under blue-LED irradiation at room temperature. A variety of fluorine-containing electrophiles and a cyanide nucleophile can be added onto an array of alkenes, including styrenes and aliphatic olefins. Our current work demonstrates the viability of using readily accessible metal nanoclusters to establish photocatalytic systems with a high degree of practicality and reaction complexity.
Collapse
Affiliation(s)
- Li-Juan Liu
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
- Chemistry and Chemical Engineering of Guangdong Laboratory, Shantou, China
| | - Mao-Mao Zhang
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Ziqi Deng
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Liang-Liang Yan
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, China
- Institute of Molecular Functional Materials, The University of Hong Kong, Hong Kong, China
| | - Yang Lin
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | | | - Vivian Wing-Wah Yam
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, China
- Institute of Molecular Functional Materials, The University of Hong Kong, Hong Kong, China
| | - Jian He
- Department of Chemistry, The University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, China.
- Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen, China.
| |
Collapse
|
20
|
Zhou H, Yang T, Deng H, Yun Y, Jin S, Xiong L, Zhu M. An insight, at the atomic level, into the structure and catalytic properties of the isomers of the Cu 22 cluster. NANOSCALE 2024; 16:10318-10324. [PMID: 38738311 DOI: 10.1039/d4nr00973h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The study of structural isomerism in copper nanoclusters has been relatively limited compared to that in gold and silver nanoclusters. In this work, we present the controlled synthesis and structures of two isomeric copper nanoclusters, denoted as Cu22-1 and Cu22-2, whose compositions were determined to be Cu22(SePh)10(Se)6(P(Ph-4F)3)8 through single-crystal X-ray diffraction (SCXRD). The structural isomerism of Cu22-1 and Cu22-2 arises from the different arrangements of a few Cu(SeR)(PR3) motifs on the surface structure. These subtle changes in the surface structure also influence the distortion of the core and the spatial arrangement of the clusters, and affect the electronic structure. Furthermore, due to their distinct structures, Cu22-1 and Cu22-2 exhibit different catalytic properties in the copper-catalyzed [3 + 2] azide-alkyne cycloaddition (CuAAC). Notably, Cu22-1 demonstrates efficient catalytic activity for photoinduced AAC, achieving a yield of 90% within 1 hour. This research contributes to the understanding of structural isomerism in copper nanoclusters and offers insights into the structure-function relationship in these systems.
Collapse
Affiliation(s)
- Huimin Zhou
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui 230601, P. R. China.
| | - Tao Yang
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui 230601, P. R. China.
| | - Huijuan Deng
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui 230601, P. R. China.
| | - Yapei Yun
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui 230601, P. R. China.
| | - Shan Jin
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui 230601, P. R. China.
| | - Lin Xiong
- School of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, PR China.
| | - Manzhou Zhu
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui 230601, P. R. China.
| |
Collapse
|
21
|
Zhong RR, Xie M, Luan CZ, Zhang LM, Hao DB, Yuan SF, Wu T. Highly intense NIR emissive Cu 4Pt 2 bimetallic clusters featuring Pt(i)-Cu 4-Pt(i) sandwich kernel. Chem Sci 2024; 15:7552-7559. [PMID: 38784728 PMCID: PMC11110137 DOI: 10.1039/d4sc01022a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Metal nanoclusters (NCs) capable of near-infrared (NIR) photoluminescence (PL) are gaining increasing interest for their potential applications in bioimaging, cell labelling, and phototherapy. However, the limited quantum yield (QY) of NIR emission in metal NCs, especially those emitting beyond 800 nm, hinders their widespread applications. Herein, we present a bright NIR luminescence (PLQY up to 36.7%, ∼830 nm) bimetallic Cu4Pt2 NC, [Cu4Pt2(MeO-C6H5-C[triple bond, length as m-dash]C)4(dppy)4]2+ (dppy = diphenyl-2-pyridylphosphine), with a high yield (up to 67%). Furthermore, by modifying the electronic effects of R in RC[triple bond, length as m-dash]C- (R = MeO-C6H5, F-C6H5, CF3-C6H5, Nap, and Biph), we can effectively modulate phosphorescence properties, including the PLQY, emission wavelength, and excited state decay lifetime. Experimental and computational studies both demonstrate that in addition to the electron effects of substituents, ligand modification enhances luminescence intensity by suppressing non-radiation transitions through intramolecular interactions. Simultaneously, it allows the adjustment of emitting wavelengths by tuning the energy gaps and first excited triplet states through intermolecular interactions of ligand substituents. This study provides a foundation for rational design of the atomic-structures of alloy metal NCs to enhance their PLQY and tailor the PL wavelength of NIR emission.
Collapse
Affiliation(s)
- Rui-Ru Zhong
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| | - Mo Xie
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| | - Cui-Zhou Luan
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| | - Lin-Mei Zhang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| | - De-Bo Hao
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| | - Shang-Fu Yuan
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| | - Tao Wu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| |
Collapse
|
22
|
Wang Y, Ye J, Liu K, Wu Y, Linghu J, Feng T, Liu Y, Dou X, Yuan X, Zhu H. Ultrasmall copper nanoclusters as an efficient antibacterial agent for primary peritonitis therapy. RSC Adv 2024; 14:15413-15418. [PMID: 38741962 PMCID: PMC11089525 DOI: 10.1039/d4ra01785d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/27/2024] [Indexed: 05/16/2024] Open
Abstract
The urgent need to develop biocompatible, non-resistant antibacterial agents to effectively combat Gram-negative bacterial infections, particularly for the treatment of peritonitis, presents a significant challenge. In this study, we introduce our water-soluble Cu30 nanoclusters (NCs) as a potent and versatile antibacterial agent tailored for addressing peritonitis. The as-synthesized atomically precise Cu30 NCs demonstrate exceptional broad-spectrum antibacterial performance, and especially outstanding bactericidal activity of 100% against Gram-negative Escherichia coli (E. coli). Our in vivo experimental findings indicate that the Cu30 NCs exhibit remarkable therapeutic efficacy against primary peritonitis caused by E. coli infection. Specifically, the treatment leads to a profound reduction of drug-resistant bacteria in the peritoneal cavity of mice with peritonitis by more than 5 orders of magnitude, along with the resolution of pathological features in the peritoneum and spleen. Additionally, comprehensive in vivo biosafety assessment underscores the remarkable biocompatibility, low biotoxicity, as well as efficient hepatic and renal clearance of Cu30 NCs, emphasizing their potential for in vivo application. This investigation is poised to advance the development of novel Cu NC-based antibacterial agents for in vivo antibacterial treatment and the elimination of abdominal inflammation.
Collapse
Affiliation(s)
- Yaru Wang
- School of Materials Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 PR China
| | - Jingrun Ye
- School of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 PR China
| | - Kang Liu
- School of Materials Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 PR China
| | - Yinghao Wu
- School of Materials Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 PR China
| | - Jiayi Linghu
- School of Materials Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 PR China
| | - Ting Feng
- School of Materials Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 PR China
| | - Yong Liu
- School of Materials Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 PR China
| | - Xinyue Dou
- School of Materials Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 PR China
| | - Xun Yuan
- School of Materials Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 PR China
| | - Haiguang Zhu
- School of Materials Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 PR China
| |
Collapse
|
23
|
Pan X, Yao Y, Zhang M, Yuan X, Yao Q, Hu W. Enzyme-mimic catalytic activities and biomedical applications of noble metal nanoclusters. NANOSCALE 2024; 16:8196-8215. [PMID: 38572762 DOI: 10.1039/d4nr00282b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Noble metal (e.g., Au and Ag) nanoclusters (NCs), which exhibit structural complexity and hierarchy comparable to those of natural proteins, have been increasingly pursued in artificial enzyme research. The protein-like structure of metal NCs not only ensures enzyme-mimic catalytic activity, including peroxidase-, catalase-, and superoxide dismutase-mimic activities, but also affords an unprecedented opportunity to correlate the catalytic performance with the cluster structure at the molecular or atomic levels. In this review, we aim to summarize the recent progress in programming and demystify the enzyme-mimic catalytic activity of metal NCs, presenting the state-of-the-art understandings of the structure-property relationship of metal NC-based artificial enzymes. By leveraging on a concise anatomy of the hierarchical structure of noble metal NCs, we manage to unravel the structural origin of the catalytic performance of metal NCs. Noteworthily, it has been proven that the surface ligands and metal-ligand interface of metal NCs are instrumental in influencing enzyme-mimic catalytic activities. In addition to the structure-property correlation, we also discuss the synthetic methodologies feasible to tailoring the cluster structure at the atomic level. Prior to the closure of this review with our perspectives in noble metal NC-based artificial enzymes, we also exemplify the biomedical applications based on the enzyme-mimic catalysis of metal NCs with the theranostics of kidney injury, brain inflammation, and tumors. The fundamental and methodological advancements delineated in this review would be conducive to further development of metal NCs as an alternative family of artificial enzymes.
Collapse
Affiliation(s)
- Xinxin Pan
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yidan Yao
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Manxi Zhang
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City, Fuzhou 350207, P. R. China
| | - Xun Yuan
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Qiaofeng Yao
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
24
|
Agrawal S, Rai S, Mahato P, Ali A, Mukherjee S. Assemble-Disassemble-Reassemble Dynamics in Copper Nanocluster-Based Superstructures. J Phys Chem Lett 2024:4880-4889. [PMID: 38682648 DOI: 10.1021/acs.jpclett.4c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Assembling metal nanoclusters (MNCs) to form superstructures generates exciting photophysical properties distinct from those of their discrete precursors. Controlling the assembly process of MNCs and understanding the assembly-disassembly dynamics can have implications in achieving the reversible self-assembly of MNCs. The formation of self-assembled copper nanoclusters (CuNCs) as homogeneous superstructures and the underlying mechanisms governing such a process remain unexplored. Smart molecular imprinting of surface ligands can establish the forces necessary for the formation of such superstructures. Herein, we report highly luminescent, ordered superstructures of 4-phenylimidazole-2-thiol (4-PIT)-protected CuNCs with the help of l-ascorbic acid as a secondary ligand. Through a comprehensive spectroscopic analysis, we deciphered the mechanism of the self-assembly process, where the role of interligand H-bonding and C-H-π interactions was established. Notably, efficient reversibility of assembly-disassembly was demonstrated by re-establishing the interligand interactions and regenerating their photophysical and morphological signatures.
Collapse
|
25
|
Zhang C, Si WD, Wang Z, Dinesh A, Gao ZY, Tung CH, Sun D. Solvent-Mediated Hetero/Homo-Phase Crystallization of Copper Nanoclusters and Superatomic Kernel-Related NIR Phosphorescence. J Am Chem Soc 2024; 146:10767-10775. [PMID: 38591723 DOI: 10.1021/jacs.4c00881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Atomically precise superatomic copper nanoclusters (Cu NCs) have been the subject of immense interest for their intriguing structures and diverse properties; nonetheless, the variable oxidation state of copper ions and complex solvation effects in wet synthesis systems pose significant challenges for comprehending their synthesis and crystallization mechanism. Herein, we present a solvent-mediated approach for the synthesis of two Cu NCs, namely, superatomic Cu26 and pure-Cu(I) Cu16. They initially formed as a hetero-phase and then separated as a homo-phase via modulating binary solvent composition. In situ UV/vis absorption and electrospray ionization mass spectra revealed that the solvent-mediated assembly was determined to be the underlying mechanism of hetero/homo-phase crystallization. Cu26 is a 2-electron superatom with a kernel-shell structure that includes a [Cu20Se12]4- shell and [Cu6]4+ kernel, containing two 1S jellium electrons. Conversely, Cu16 is a pure-Cu(I) Cu/Se nanocluster that features a [Cu16Se6]4+ core protected by extra dimercaptomaleonitrile ligands. Remarkably, Cu26 exhibits unique near-infrared phosphorescence (NIR PH) at 933 nm due to the presence of a superatomic kernel-related charge transfer state (3MM(Cu)CT). Overall, this work not only showcases the hetero/homo-phase crystallization of Cu NCs driven by a solvent-mediated assembly mechanism but also enables the rare occurrence of NIR PH within the 2-electron copper superatom family.
Collapse
Affiliation(s)
- Chengkai Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, People's Republic of China
| | - Wei-Dan Si
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, People's Republic of China
| | - Zhi Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, People's Republic of China
| | - Acharya Dinesh
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, People's Republic of China
| | - Zhi-Yong Gao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, People's Republic of China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, People's Republic of China
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, People's Republic of China
| |
Collapse
|
26
|
Zhang Y, Zhang W, Zhang TS, Ge C, Tao Y, Fei W, Fan W, Zhou M, Li MB. Site-Recognition-Induced Structural and Photoluminescent Evolution of the Gold-Pincer Nanocluster. J Am Chem Soc 2024; 146:9631-9639. [PMID: 38530981 DOI: 10.1021/jacs.3c12982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The induced structural transformation provides an efficient way to precisely modulate the fine structures and the corresponding performance of gold nanoclusters, thus constituting one of the important research topics in cluster chemistry. However, the driving forces and mechanisms of these processes are still ambiguous in many cases, limiting further applications. In this work, based on the unique coordination mode of the pincer ligand-stabilized gold nanocluster Au8(PNP)4, we revealed the site-recognition mechanism for induced transformations of gold nanoclusters. The "open nitrogen sites" on the surface of the nanocluster interact with different inducers including organic compounds and metals and trigger the conversion of Au8(PNP)4 to Au13 and Au9Ag4 nanoclusters, respectively. Control experiments verified the site-recognition mechanism, and the femtosecond and nanosecond transient absorption spectroscopy revealed the electronic and photoluminescent evolution accompanied by the structural transformation.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Wei Zhang
- Department of Chemical Physics, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Tai-Song Zhang
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Chao Ge
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Yang Tao
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Wenwen Fei
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Weigang Fan
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Meng Zhou
- Department of Chemical Physics, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Man-Bo Li
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| |
Collapse
|
27
|
Huang QQ, Lin YY, Wang YL, Qi JY, Fu F, Wei QH. Pargyline-phosphine copper(I) clusters with tunable emission for light-emitting devices. Dalton Trans 2024; 53:5844-5850. [PMID: 38469690 DOI: 10.1039/d4dt00022f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Three pargyline-phosphine copper(I) clusters, [Cu4(CC-C9H12N)3(PPh3)4](PF6) (1) and [Cu6(CC-C9H12N)4(dppy)4](X)2 (dppy = diphenyl-2-pyridylphosphine; X = PF6 for 2 and X = ClO4 for 3), were synthesized. Their structures were fully characterized using various spectroscopic methods and X-ray crystallography, which showed that the stoichiometry and nature of pargyline and phosphine ligands play an important role in tuning the structure and photophysical features of Cu(I) clusters. Interestingly, clusters 1, 2 and 3 exhibited red, orange and yellow phosphorescence with high quantum yields of 88.5%, 22.0% and 40.2%, respectively, at room temperature. Moreover, clusters 1-3 show distinct temperature-dependent emissions. The excellent luminescence performance of 1 and 3 was designed and employed for the construction of monochrome and white light-emitting devices (LEDs).
Collapse
Affiliation(s)
- Qiu-Qin Huang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Yan-Yan Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Yu-Ling Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Jia Yuan Qi
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - FengFu Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Qiao-Hua Wei
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| |
Collapse
|
28
|
Xiang H, Cheng R, Ruan C, Meng C, Gan Y, Cheng W, Zhao Y, Xu CQ, Li J, Yao C. A homologous series of macrocyclic Ni clusters: synthesis, structures, and catalytic properties. NANOSCALE 2024; 16:4563-4570. [PMID: 38305474 DOI: 10.1039/d3nr06015b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Due to their intriguing ring structures and promising applications, nickel-thiolate clusters, such as [Nin(SR)2n] (n = 4-6), have attracted tremendous interest. However, investigation of the synthesis, structures, and properties of macrocyclic Nin clusters (n > 8) has been seriously impeded. In this work, a homologous series of macrocyclic nickel clusters, Nin(4MPT)2n (n = 9-12), was fabricated by using 4-methylphenthiophenol (4MPT) as the ligand. The structures and compositions of the clusters were determined by single-crystal X-ray diffraction (SXRD) in combination with electrospray ionization mass spectrometry (ESI-MS). Experimental results and theoretical calculations show that the electronic structures of the clusters do not change significantly with the increase of Ni atoms. The coordination interactions between Ni and S atoms in [NiS4] subunits are proved to play a crucial rule in the remarkable stability of Ni clusters. Finally, these clusters display excellent catalytic activity towards the reduction of p-nitrophenol, and a linear correlation between catalytic activity and ring size was revealed. The study provides a facile approach to macrocyclic homoleptic nickel clusters, and contributes to an in-depth understanding of the structure-property correlations of nickel clusters at the atomic level.
Collapse
Affiliation(s)
- Huixin Xiang
- Strait Institute of Flexible Electronics, Fujian Normal University, Fuzhou 350117, China.
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, China
| | - Ranran Cheng
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, China
| | - Chenhao Ruan
- Strait Institute of Flexible Electronics, Fujian Normal University, Fuzhou 350117, China.
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, China
| | - Changqing Meng
- Strait Institute of Flexible Electronics, Fujian Normal University, Fuzhou 350117, China.
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, China
| | - Yuzheng Gan
- Strait Institute of Flexible Electronics, Fujian Normal University, Fuzhou 350117, China.
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, China
| | - Wanyu Cheng
- Strait Institute of Flexible Electronics, Fujian Normal University, Fuzhou 350117, China.
| | - Yue Zhao
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Cong-Qiao Xu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Jun Li
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 10084, China
| | - Chuanhao Yao
- Strait Institute of Flexible Electronics, Fujian Normal University, Fuzhou 350117, China.
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
29
|
Zhang Q, Zheng H, Zhou J, Yang JJ, Xu KY, Shen LY, Guan ZJ, Yang Y. A bowl-shaped phosphangulene-protected cubic Cu 58 nanocluster. Chem Commun (Camb) 2024; 60:2389-2392. [PMID: 38321973 DOI: 10.1039/d3cc05791g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
A bowl-shaped phosphangulene-protected cubic Cu58 nanocluster has been synthesized. The structure was determined by X-ray crystallography and further analyzed by multiple techniques. The phosphangulenes not only enable ligand substitutions with triphenylphosphines in a cluster-to-cluster transformation way, but also facilitate inter-cluster interactions with fullerenes. These interactions further influence the entirety's photocurrent response and ability to liberate hydrogen when stimulated by light.
Collapse
Affiliation(s)
- Qian Zhang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China.
| | - Hao Zheng
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China.
| | - Jie Zhou
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China.
| | - Jia-Ji Yang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China.
| | - Kai-Yue Xu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China.
| | - Lian-Yun Shen
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China.
| | - Zong-Jie Guan
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yang Yang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China.
| |
Collapse
|
30
|
Das AK, Biswas S, Pal A, Manna SS, Sardar A, Mondal PK, Sahoo B, Pathak B, Mandal S. A thiolated copper-hydride nanocluster with chloride bridging as a catalyst for carbonylative C-N coupling of aryl amines under mild conditions: a combined experimental and theoretical study. NANOSCALE 2024; 16:3583-3590. [PMID: 38268470 DOI: 10.1039/d3nr05912j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Atomically precise copper nanoclusters (Cu NCs), an emerging class of nanomaterials, have garnered significant attention owing to their versatile core-shell architecture and their potential applications in catalytic reactions. In this study, we present a straightforward synthesis strategy for [Cu29(StBu)12(PPh3)4Cl6H10][BF4] (Cu29) NCs and explore their catalytic activity in the carbonylative C-N coupling reaction involving aromatic amines and N-heteroarenes with dialkyl azodicarboxylates. Through a combination of experimental investigations and density functional theory studies, we elucidate the radical mechanisms at play. The crucial step in the catalytic process is identified as the decomposition of diisopropyl azodicarboxylates on the surface of Cu29 NCs, leading to the generation of oxyacyl radicals and the liberation of nitrogen gas. Subsequently, an oxyacyl radical abstracts a hydrogen atom from aniline, initiating the formation of an aminyl radical. Finally, the aminyl radical reacts with another oxyacyl radical, culminating in the synthesis of the desired carbamate product. This detailed analysis provides insights into the intricate catalytic pathways of Cu29 NCs, shedding light on their potential for catalyzing carbonylative C-N coupling reactions.
Collapse
Affiliation(s)
- Anish Kumar Das
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India.
| | - Sourav Biswas
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India.
| | - Amit Pal
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India.
| | - Surya Sekhar Manna
- Department of Chemistry, Indian Institute of Technology Indore, Madhya Pradesh 453552, India.
| | - Avirup Sardar
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India.
| | | | - Basudev Sahoo
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India.
| | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology Indore, Madhya Pradesh 453552, India.
| | - Sukhendu Mandal
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India.
| |
Collapse
|
31
|
Zhou H, Duan T, Lin Z, Yang T, Deng H, Jin S, Pei Y, Zhu M. Total Structure, Structural Transformation and Catalytic Hydrogenation of [Cu 41 (SC 6 H 3 F 2 ) 15 Cl 3 (P(PhF) 3 ) 6 (H) 25 ] 2- Constructed from Twisted Cu 13 Units. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307085. [PMID: 38064120 PMCID: PMC10870033 DOI: 10.1002/advs.202307085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/16/2023] [Indexed: 02/17/2024]
Abstract
Herein, a remarkable achievement in the synthesis and characterization of an atomically precise copper-hydride nanocluster, [Cu41 (SC6 H3 F2 )15 Cl3 (P(PhF)3 )6 (H)25 ]2- via a mild one-pot reaction is presented. Through X-ray crystallography analysis, it is revealed that [Cu41 (SC6 H3 F2 )15 Cl3 (P(PhF)3 )6 (H)25 ]2- exhibits a unique shell-core-shell structure. The inner Cu29 kernel is composed of three twisted Cu13 units, connected through Cu4 face sharing. Surrounding the metal core, two Cu6 metal shells, resembling a protective sandwich structure are observed. This arrangement, along with intracluster π···π interactions and intercluster C─H···F─C interactions, contributes to the enhanced stability of [Cu41 (SC6 H3 F2 )15 Cl3 (P(PhF)3 )6 (H)25 ]2- . The presence, number, and location of hydrides within the nanocluster are established through a combination of experimental and density functional theory investigations. Notably, the addition of a phosphine ligand triggers a fascinating nanocluster-to-nanocluster transformation in [Cu41 (SC6 H3 F2 )15 Cl3 (P(PhF)3 )6 (H)25 ]2- , resulting in the generation of two nanoclusters, [Cu14 (SC6 H3 F2 )3 (PPh3 )8 H10 ]+ and [Cu13 (SC6 H3 F2 )3 (P(PhF)3 )7 H10 ]0 . Furthermore, it is demonstrated that [Cu41 (SC6 H3 F2 )15 Cl3 (P(PhF)3 )6 (H)25 ]2- exhibits catalytic activity in the hydrogenation of nitroarenes. This intriguing nanocluster provides a unique opportunity to explore the assembly of M13 units, similar to other coinage metal nanoclusters, and investigate the nanocluster-to-nanocluster transformation in phosphine and thiol ligand co-protected copper nanoclusters.
Collapse
Affiliation(s)
- Huimin Zhou
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced MaterialsKey Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of EducationDepartment of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized MaterialsAnhui UniversityHefeiAnhui230601China
| | - Tengfei Duan
- Department of ChemistryKey Laboratory of Environmentally Friendly Chemistry and Applications of MOEXiangtan UniversityXiangtanHunan411105China
| | - Zidong Lin
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced MaterialsKey Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of EducationDepartment of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized MaterialsAnhui UniversityHefeiAnhui230601China
| | - Tao Yang
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced MaterialsKey Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of EducationDepartment of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized MaterialsAnhui UniversityHefeiAnhui230601China
| | - Huijuan Deng
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced MaterialsKey Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of EducationDepartment of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized MaterialsAnhui UniversityHefeiAnhui230601China
| | - Shan Jin
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced MaterialsKey Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of EducationDepartment of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized MaterialsAnhui UniversityHefeiAnhui230601China
| | - Yong Pei
- Department of ChemistryKey Laboratory of Environmentally Friendly Chemistry and Applications of MOEXiangtan UniversityXiangtanHunan411105China
| | - Manzhou Zhu
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced MaterialsKey Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of EducationDepartment of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized MaterialsAnhui UniversityHefeiAnhui230601China
| |
Collapse
|
32
|
Biswas S, Negishi Y. A Comprehensive Analysis of Luminescent Crystallized Cu Nanoclusters. J Phys Chem Lett 2024; 15:947-958. [PMID: 38252029 PMCID: PMC10839905 DOI: 10.1021/acs.jpclett.3c03374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
Photoluminescence (PL) emission is an intriguing characteristic displayed by atomically precise d10 metal nanoclusters (NCs), renowned for their meticulous atomic arrangements, which have captivated the scientific community. Cu(I) NCs are a focal point in extensive research due to their abundance, cost-effectiveness, and unique luminescent attributes. Despite similar core sizes, their luminescent characteristics vary, influenced by multiple factors. Progress hinges on synthesizing new NCs and modifying existing ones, with postsynthetic alterations impacting emission properties. The rapid advancements in this field pose challenges in discerning essential points for excelling amidst competition with other d10 NCs. This Perspective explores the intricate origins of PL emission in Cu(I) NCs, providing a comprehensive review of their correlated structural architectures. Understanding the mechanistic origin of PL emission in each cluster is crucial for correlating diverse characteristics, contributing to a deeper comprehension from both fundamental and applied scientific perspectives.
Collapse
Affiliation(s)
- Sourav Biswas
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yuichi Negishi
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- Research
Institute for Science & Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
33
|
Zouchoune B, Saillard JY. Atom-Precise Ligated Copper and Copper-Rich Nanoclusters with Mixed-Valent Cu(I)/Cu(0) Character: Structure-Electron Count Relationships. Molecules 2024; 29:605. [PMID: 38338350 PMCID: PMC10856471 DOI: 10.3390/molecules29030605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
Copper homometallic and copper-rich heterometallic nanoclusters with some Cu(0) character are reviewed. Their structure and stability are discussed in terms of their number of "free" electrons. In many aspects, this structural chemistry differs from that of their silver or copper homologs. Whereas the two-electron species are by far the most numerous, only one eight-electron species is known, but more electron-rich nanoclusters have also been reported. Owing to the relatively recent development of this chemistry, it is likely that more electron-rich species will be reported in the future.
Collapse
Affiliation(s)
- Bachir Zouchoune
- Unité de Recherche de Chimie de l’Environnement et Moléculaire Structurale, Université Constantine 1 (Mentouri), Constantine 25000, Algeria;
- Laboratoire de Chimie Appliquée et Technologie des Matériaux, Université Larbi Ben M’Hidi-Oum El Bouaghi, Oum El Bouaghi 04000, Algeria
| | - Jean-Yves Saillard
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes-UMR 6226, 35000 Rennes, France
| |
Collapse
|
34
|
Hu Y, Zhang Q, Zhou J, Guo S, Xu J, Zheng H, Yang Y. Supramolecularly Dimeric Assemble of Planar Cu 13 Clusters Controlled by the Length of Spacers of Diphosphine. Inorg Chem 2023; 62:21091-21100. [PMID: 38079613 DOI: 10.1021/acs.inorgchem.3c02992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
The controlled formation of dimeric clusters is challenging. Three copper(I) clusters, labeled as {Cu13[o-Ph(C≡C)2]6(L)4}(ClO4), were synthesized by using three different ligands, including 1,4-bis(diphenylphosphino)butane (dppb), 1,5-bis(diphenylphosphino)pentane (dpppe), and bis(diphenylphosphino)hexane (dpph). By increasing the flexibility of alkyl spacers in the diphosphine ligands, the relative positions of the phenyl rings could be optimized to achieve efficient packing with maximized intercluster interactions. In the crystal structures, cluster 1 with dppb ligands did not display interlocked structures. In contrast, cluster 2 with dpppe ligands formed supramolecularly interlocked polymers through weak π-π interactions and C-H···π interactions, while cluster 3 employing dpph ligands formed supramolecularly interlocked dimers with strong π-π interactions and C-H···π interactions. The supramolecular dimer of 3 was also evidenced by analyses through electrospray ionization mass spectrometry and transmission electron microscopy. Density functional theory calculation was used to understand the electronic structure and transitions. Supramolecularly interlocked polymers/dimers with rigid structures exhibited higher quantum efficiency. The solution of these clusters demonstrated remarkable aggregation-induced emission enhancements. This study presents unique examples of planar luminescent copper clusters, featuring the first serial dialkynyl-protected cluster. It underlines the importance of ligand flexibility in creating supramolecular cluster dimers.
Collapse
Affiliation(s)
- Yun Hu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Qian Zhang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Jie Zhou
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Shan Guo
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Jia Xu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Hao Zheng
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Yang Yang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
35
|
Tang L, Han Q, Wang B, Yang Z, Song C, Feng G, Wang S. Constructing perfect cubic Ag-Cu alloyed nanoclusters through selective elimination of phosphine ligands. Phys Chem Chem Phys 2023; 26:62-66. [PMID: 38086629 DOI: 10.1039/d3cp04224c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The aspiration of chemists has always been to design and achieve control over nanoparticle morphology at the atomic level. Here, we report a synthesis strategy and crystal structure of a perfect cubic Ag-Cu alloyed nanocluster, [Ag55Cu8I12(S-C6H32,4(CH3)2)24][(PPh4)] (Ag55Cu8I12 for short). The structure of this cluster was determined by single-crystal X-ray diffraction (SCXRD) and further validated by X-ray photoelectron spectroscopy (XPS), inductively coupled plasma (ICP), Energy-dispersive X-ray spectroscopy (EDX), thermogravimetric analysis (TGA), and 1H and 31P nuclear magnetic resonance (NMR). The surface deviation of the cube was measured to be 0.291 Å, making it the flattest known cube to date.
Collapse
Affiliation(s)
- Li Tang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China.
| | - Qikai Han
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China.
| | - Bin Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China.
| | - Zhonghua Yang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China
| | - Chunyuan Song
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China.
| | - Guanyu Feng
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China.
| | - Shuxin Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China.
| |
Collapse
|
36
|
Yoo S, Yoo S, Deng G, Sun F, Lee K, Jang H, Lee CW, Liu X, Jang J, Tang Q, Hwang YJ, Hyeon T, Bootharaju MS. Nanocluster Surface Microenvironment Modulates Electrocatalytic CO 2 Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2313032. [PMID: 38113897 DOI: 10.1002/adma.202313032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Indexed: 12/21/2023]
Abstract
The catalytic activity and product selectivity of the electrochemical CO2 reduction reaction (eCO2 RR) depend strongly on the local microenvironment of mass diffusion at the nanostructured catalyst and electrolyte interface. Achieving a molecular-level understanding of the electrocatalytic reaction requires the development of tunable metal-ligand interfacial structures with atomic precision, which is highly challenging. Here, the synthesis and molecular structure of a 25-atom silver nanocluster interfaced with an organic shell comprising 18 thiolate ligands are presented. The locally induced hydrophobicity by bulky alkyl functionality near the surface of the Ag25 cluster dramatically enhances the eCO2 RR activity (CO Faradaic efficiency, FECO : 90.3%) with higher CO partial current density (jCO ) in an H-cell compared to Ag25 cluster (FECO : 66.6%) with confined hydrophilicity, which modulates surface interactions with water and CO2 . Remarkably, the hydrophobic Ag25 cluster exhibits jCO as high as -240 mA cm-2 with FECO >90% at -3.4 V cell potential in a gas-fed membrane electrode assembly device. Furthermore, this cluster demonstrates stable eCO2 RR over 120 h. Operando surface-enhanced infrared absorption spectroscopy and theoretical simulations reveal how the ligands alter the neighboring water structure and *CO intermediates, impacting the intrinsic eCO2 RR activity, which provides atomistic mechanistic insights into the crucial role of confined hydrophobicity.
Collapse
Affiliation(s)
- Seungwoo Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Suhwan Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Chemistry College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Guocheng Deng
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Fang Sun
- School of Chemistry and Chemical Engineering Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 401331, China
| | - Kangjae Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyunsung Jang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Chemistry College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chan Woo Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Xiaolin Liu
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Junghwan Jang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Qing Tang
- School of Chemistry and Chemical Engineering Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 401331, China
| | - Yun Jeong Hwang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Chemistry College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Megalamane Siddaramappa Bootharaju
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
37
|
Xu C, Jin Y, Fang H, Zheng H, Carozza JC, Pan Y, Wei PJ, Zhang Z, Wei Z, Zhou Z, Han H. A High-Nuclearity Copper Sulfide Nanocluster [S-Cu 50] Featuring a Double-Shell Structure Configuration with Cu(II)/Cu(I) Valences. J Am Chem Soc 2023; 145:25673-25685. [PMID: 37889075 DOI: 10.1021/jacs.3c08549] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
This work represents an important step in the quest for creating atomically precise binary semiconductor nanoclusters (BS-NCs). Compared with coinage metal NCs, the preparation of BS-NCs requires strict control of the reaction kinetics to guarantee the formation of an atomically precise single phase under mild conditions, which otherwise could lead to the generation of multiple phases. Herein, we developed an acid-assisted thiolate dissociation approach that employs suitable acid to induce cleavage of the S-C bonds in the Cu-S-R (R = alkyl) precursor, spontaneously fostering the formation of the [Cu-S-Cu] skeleton upon the addition of extra Cu sources. Through this method, a high-nuclearity copper sulfide nanocluster, Cu50S12(SC(CH3)3)20(CF3COO)12 (abbreviated as [S-Cu50] hereafter), has been successfully prepared in high yield, and its atomic structure was accurately modeled through single-crystal X-ray diffraction. It was revealed that [S-Cu50] exhibits a unique double-shell structural configuration of [Cu14S12]@[Cu36S20], and the innermost [Cu14] moiety displays a rhombic dodecahedron geometry, which has never been observed in previously synthesized Cu metal, hydride, or chalcogenide NCs. Importantly, [S-Cu50] represents the first example incorporating mixed Cu(II)/Cu(I) valences in reported atomically precise copper sulfide NCs, which was unambiguously confirmed by XPS, EPR, and XANES. In addition, the electronic structure of [S-Cu50] was established by a variety of optical investigations, including absorption, photoluminescence, and ultrafast transient absorption spectroscopies, as well as theoretical calculations. Moreover, [S-Cu50] is air-stable and demonstrates electrocatalytic activity in ORR with a four-electron pathway.
Collapse
Affiliation(s)
- Cheng Xu
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Yuhao Jin
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Hao Fang
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Huijuan Zheng
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Jesse C Carozza
- Department of Chemistry, University at Albany, Albany, New York 12222, United States
| | - Yanxiong Pan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Ping-Jie Wei
- Key Laboratory for Advanced Materials of MOE & Department of Chemistry, East China University of Science and Technology Shanghai, Shanghai 200237, China
| | - Zhenyi Zhang
- Bruker (Beijing) Scientific Technology Co. Ltd., Shanghai 200233, China
| | - Zheng Wei
- Department of Chemistry, University at Albany, Albany, New York 12222, United States
| | - Zheng Zhou
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Haixiang Han
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| |
Collapse
|
38
|
Wang M, Wang L, Wu H, Sun J, Xu X, Guo S, Jia Y, Li S, Guan ZJ, Shen H. PtAg 18 superatoms costabilized by phosphines and halides: synthesis, structure, and catalysis. NANOSCALE 2023; 15:17818-17824. [PMID: 37668358 DOI: 10.1039/d3nr02196c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Reported herein is the facial synthesis, molecular structure, and catalysis of a Pt/Ag nanocluster costabilized by organic ligands of phosphines and inorganic ligands of chlorides. The nanocluster with molecular formula of [PtAg18(dppp)6Cl8](SbF6)2 has been obtained facilely by the one pot method. The structure of the cluster could be anatomized as the stabilizaiton of PtAg12-centered icosahedral core by the metalloligand of dppp-Ag-Cl, in which Cl- not only caps the surface Ag atoms but also binds the core and surface motifs. Featuring eight free electrons in its structure, the cluster exhibits high stability. More interestingly, the exposure of surface metal sites endows the cluster with counterintutively high catalytic activity in hydrogenation reactions.
Collapse
Affiliation(s)
- Meng Wang
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| | - Lin Wang
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Haoyuan Wu
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Jing Sun
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Xiaoxuan Xu
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Shuo Guo
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| | - Yanyuan Jia
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, China
| | - Simin Li
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Zong-Jie Guan
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Hui Shen
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
39
|
Peng SK, Yang H, Luo D, Ning GH, Li D. A Highly NIR Emissive Cu 16 Pd 1 Nanocluster. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2306863. [PMID: 37963848 DOI: 10.1002/smll.202306863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/24/2023] [Indexed: 11/16/2023]
Abstract
The construction of stable copper nanoclusters (Cu-NCs) with near-infrared (NIR) emission that can be used for catalysis is highly desired, yet remains a challenge. Herein, an atomically precise bimetallic Cu/Pd NC with a molecular formula of Cu16 Pd1 L10 (PPh3 )2 (Pz)6 (Pz = 3,5-(CF3 )2 Pyrazolate, L = 4-CH3 OPhC≡C- ), abbreviated as Cu16 Pd1 , is synthesized. Single-crystal X-ray crystallographic analysis of Cu16 Pd1 reveals a Cu10 Pd1 kernel with pseudo-gyroelongated square bipyramid confirmation surrounded by other 6 Cu(I) ions and protected ligands. Interestingly, it exhibits strong NIR emission with the highest photoluminescence quantum yield (PLQY) among all the Cu NCs/Cu alloys (λem > 800 nm) in the solid-state, and also displays NIR emission in solution. Experimental results and theoretical calculations suggest that the impressive NIR emission is attributed to abundant supramolecular interactions in the solid-state, including intramolecular metal-metal and intermolecular interactions. Of note, the bimetallic Cu16 Pd1 can catalyze the reduction of 4-nitrophenol. This work provides a novel method for synthesizing Cu/Pd NCs and reminds that the less studied Cu/Pd NC can serve as outstanding luminescent material, which is seldom noticed in atomically precise nanoclusters.
Collapse
Affiliation(s)
- Su-Kao Peng
- College of Chemistry and Materials Science and, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, P. R. China
| | - Hu Yang
- College of Chemistry and Materials Science and, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, P. R. China
| | - Dong Luo
- College of Chemistry and Materials Science and, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, P. R. China
| | - Guo-Hong Ning
- College of Chemistry and Materials Science and, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, P. R. China
| | - Dan Li
- College of Chemistry and Materials Science and, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
40
|
Biswas S, Das S, Negishi Y. Advances in Cu nanocluster catalyst design: recent progress and promising applications. NANOSCALE HORIZONS 2023; 8:1509-1522. [PMID: 37772632 DOI: 10.1039/d3nh00336a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
The quest for cleaner pathways to the production of fuels and chemicals from non-fossil feedstock, efficient transformation of raw materials to value-added chemicals under mild conditions, and control over the activity and selectivity of chemical processes are driving the state-of-the-art approaches to the construction and precise chemical modification of sustainable nanocatalysts. As a burgeoning category of atomically precise noble metal nanoclusters, copper nanoclusters (Cu NCs) benefitting from their exclusive structural architecture, ingenious designability of active sites and high surface-to-volume ratio qualify as potential rationally-designed catalysts. In this Minireview, we present a detailed coverage of the optimal design strategies and controlled synthesis of Cu NC catalysts with a focus on tuning of active sites at the atomic level, the implications of cluster size, shape and structure, the ligands and heteroatom doping on catalytic activity, and reaction scope ranging from chemical catalysis to emerging photocatalysis and electrocatalysis.
Collapse
Affiliation(s)
- Sourav Biswas
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Saikat Das
- Research Institute for Science & Technology, Tokyo University of Science, Tokyo 162-8601, Japan.
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
- Research Institute for Science & Technology, Tokyo University of Science, Tokyo 162-8601, Japan.
| |
Collapse
|
41
|
Zhang L, Guo M, Zhou J, Fang C, Sun X. Benchmark Models for Elucidating Ligand Effects: Thiols Ligated Isostructural Cu 6 Nanoclusters. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301633. [PMID: 37329203 DOI: 10.1002/smll.202301633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/30/2023] [Indexed: 06/18/2023]
Abstract
Atomically precise copper nanoclusters (Cu NCs) have attracted tremendous attention for their huge potential in many applications. However, the uncertainty of the growth mechanism and complexity of the crystallization process hinder the in-depth understanding of their properties. In particular, the ligand effect has been rarely explored at the atomic/molecular level due to the lack of feasible models. Herein, three isostructural Cu6 NCs ligated with diverse mono-thiol ligands (2-mercaptobenzimidazole, 2-mercaptobenzothiazole, and 2-mercaptobenzoxazole, respectively) are successfully synthesized, which provide an ideal platform to unambiguously address the intrinsic role of ligands. The overall atom-by-atom structural evolution process of Cu6 NCs is mapped out with delicate mass spectrometry (MS) for the first time. It is intriguingly found that the ligands, albeit only atomic difference (NH, O, and S), can profoundly affect the building-up processes, chemical properties, atomic structures, as well as catalytic activities of Cu NCs. Furthermore, ion-molecule reactions combined with density functional theory (DFT) calculations demonstrate that the defective sites formed on ligand can significantly contribute to the activation of molecular oxygen. This study provides fundamental insights into the ligand effect, which is vital for the delicate design of high-efficient Cu NCs-based catalysts.
Collapse
Affiliation(s)
- Lili Zhang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengdi Guo
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
| | - Jian Zhou
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cong Fang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
| | - Xiaoyan Sun
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| |
Collapse
|
42
|
Ma X, He S, Li Q, Li Q, Chai J, Ma W, Li G, Yu H, Zhu M. Motif-to-Core Nucleation in a Decahedral Evolution Pattern. Inorg Chem 2023; 62:15680-15687. [PMID: 37688540 DOI: 10.1021/acs.inorgchem.3c02467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2023]
Abstract
The atomic precision of ultrasmall metal nanoclusters has opened the door to elucidating the structural evolution principles of metal nanomaterials at the molecular level. Here, we report a novel set of super-atomic Ag clusters, including [Ag19(TBBT)16(DPPP)4]+ (Ag19), [Ag22(DMAT)8(DPPM)4Cl8]2+ (Ag22), Ag26(SPh3,5-CF3)15(DPPF)4Cl5 (Ag26), and [Ag30(DMAT)12(DPPP)4Cl8]2+ (Ag30). The core structures of these clusters correspond to one decahedral Ag7, perpendicular bi-decahedrons, three-dimensional penta-decahedrons, and hexa-decahedrons, respectively. The Ag atoms in AgS2 blocks show a strong correlation with the decahedral cores: the five equatorial Ag atoms in the decahedral Ag7 core of Ag19 all adopt the AgS2 coordination, while the Ag atoms in AgS2 blocks of Ag22, Ag26, and Ag30 unexceptionally constitute additional decahedral structures with the core Ag atoms. Specifically, two and four core Ag atoms of Ag26 and Ag30 clusters occupy positions that highly resemble that of Ag (in AgS2 motifs) of Ag22. The strong structural correlation demonstrates the motif-to-core evolution of the surface Ag (on AgS2) to build extra-decahedral blocks. Density functional theory calculations indicate that the 2e, 4e, 6e, and 8e clusters (from Ag19 to Ag30) adopt 1S2, 1S21P2, 1S21P4, and 1S21P6 electron configurations, all of which feature excellent super-atomic characters.
Collapse
Affiliation(s)
- Xiangyu Ma
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, P. R. China
- School of Materials Science and Engineering, Institute of Physical Science and Information Technology, Anhui Key Laboratory of Information Materials and Devices, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Shuping He
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, P. R. China
| | - Qingliang Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, P. R. China
| | - Qinzhen Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, P. R. China
| | - Jinsong Chai
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, P. R. China
| | - Wenxiao Ma
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, P. R. China
| | - Guang Li
- School of Materials Science and Engineering, Institute of Physical Science and Information Technology, Anhui Key Laboratory of Information Materials and Devices, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Haizhu Yu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, P. R. China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, P. R. China
| |
Collapse
|
43
|
Tan SCL, He Z, Wang G, Yu Y, Yang L. Protein-Templated Metal Nanoclusters: Molecular-like Hybrids for Biosensing, Diagnostics and Pharmaceutics. Molecules 2023; 28:5531. [PMID: 37513403 PMCID: PMC10383052 DOI: 10.3390/molecules28145531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The use of proteins as biomolecular templates to synthesize atomically precise metal nanoclusters has been gaining traction due to their appealing properties such as photoluminescence, good colloidal- and photostability and biocompatibility. The synergistic effect of using a protein scaffold and metal nanoclusters makes it especially attractive for biomedical applications. Unlike other reviews, we focus on proteins in general as the protective ligand for various metal nanoclusters and highlight their applications in the biomedical field. We first introduce the approaches and underlined principles in synthesizing protein-templated metal nanoclusters and summarize some of the typical proteins that have been used thus far. Afterwards, we highlight the key physicochemical properties and the characterization techniques commonly used for the size, structure and optical properties of protein-templated metal nanoclusters. We feature two case studies to illustrate the importance of combining these characterization techniques to elucidate the formation process of protein-templated metal nanoclusters. Lastly, we highlight the promising applications of protein-templated metal nanoclusters in three areas-biosensing, diagnostics and therapeutics.
Collapse
Affiliation(s)
- Sherwin Chong Li Tan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Zhijian He
- Department of Materials Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
| | - Guan Wang
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Yong Yu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Le Yang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
- Department of Materials Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
| |
Collapse
|