1
|
Dellai A, Krismer I, Prampolini G, Champagne B, Ramos TN, Castet F. Solvent effects on the second harmonic responses of donor-acceptor Stenhouse adducts: from implicit to hybrid solvation models. Phys Chem Chem Phys 2025; 27:672-686. [PMID: 39665533 DOI: 10.1039/d4cp03674c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
The effect of conformational dynamics and solvent interactions on the second-order nonlinear optical (NLO) responses of the open and closed forms of a donor-acceptor Stenhouse adduct (DASA) are investigated by a mixed quantum/classical computational approach, which couples molecular dynamics (MD) simulations and time-dependent density functional theory (TD-DFT) calculations. The latter are further combined with various solvation schemes, including polarizable continuum models, hybrid QM/MM approaches using either non polarizable or polarizable electrostatic embedding, and QM/QM' schemes with explicit treatment of a few molecules of the first solvation shell. The performances of the different solvation models are discussed in the context of comparisons with experimental data obtained from hyper-Rayleigh scattering measurements.
Collapse
Affiliation(s)
- Angela Dellai
- Univ. Bordeaux, CNRS, Bordeaux INP, Institut des Sciences Moléculaires, UMR 5255, F-33400 Talence, France.
| | - Isabella Krismer
- Univ. Bordeaux, CNRS, Bordeaux INP, Institut des Sciences Moléculaires, UMR 5255, F-33400 Talence, France.
| | | | - Benoît Champagne
- Unité de Chimie Physique Théorique et Structurale, Chemistry Department, Namur Institute of Structured Matter, University of Namur, Belgium.
| | - Tárcius N Ramos
- Unité de Chimie Physique Théorique et Structurale, Chemistry Department, Namur Institute of Structured Matter, University of Namur, Belgium.
| | - Frédéric Castet
- Univ. Bordeaux, CNRS, Bordeaux INP, Institut des Sciences Moléculaires, UMR 5255, F-33400 Talence, France.
| |
Collapse
|
2
|
Reyes CA, Karr A, Ramsperger CA, K ATG, Lee HJ, Picazo E. Compartmentalizing Donor-Acceptor Stenhouse Adducts for Structure-Property Relationship Analysis. J Am Chem Soc 2024. [PMID: 39729546 DOI: 10.1021/jacs.4c14198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
Abstract
The development of photoswitches that absorb low energy light is of notable interest due to the growing demand for smart materials and therapeutics necessitating benign stimuli. Donor-acceptor Stenhouse adducts (DASAs) are molecular photoswitches that respond to light in the visible to near-infrared spectrum. As a result of their modular assembly, DASAs can be modified at the donor, acceptor, triene, and backbone heteroatom molecular compartments for the tuning of optical and photoswitching properties. This Perspective focuses on the electronic and steric contributions at each compartment and how they influence photophysical properties through the adjustment of the isomerization energetic landscape. An emphasis on current synthetic strategies and their limitations highlights opportunities for DASA architecture, and thus photophysical property expansion.
Collapse
Affiliation(s)
- Cesar A Reyes
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089, United States
| | - Alexander Karr
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089, United States
| | - Chloe A Ramsperger
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089, United States
| | - A Talim G K
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089, United States
| | - Hye Joon Lee
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089, United States
| | - Elias Picazo
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
3
|
Liu Y, Zhu P, Fan Q, Zhao Z, Wei L, Ma Y, Xu H, Guo W, Luo J, Sun Z. Unusual Thermo-Enhanced Second Harmonic Generation in Organic Configurationally-Locked Polyene Crystals. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2412218. [PMID: 39582285 DOI: 10.1002/advs.202412218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/29/2024] [Indexed: 11/26/2024]
Abstract
To modulate nonlinear optical (NLO) effects of crystalline material holds great application potential in the photoelectronic and optical fields. Organic configurationally-locked polyene represents an exciting NLO family with large second harmonic generation (SHG) effects, whereas it is a huge blank to switch and modulate their NLO property through external stimuli. For the first time, here present unusual thermo-enhanced SHG activities are presented in a polyene-based NLO compound, 2-{3-[2-(4-pyrrolidinphenyl)vinyl]-5,5-dimethylcyclohex-2-enylidene}malononitrile (1), giving a record-high magnitude of SHG enhancement up to ≈170% during its isomorphic phase transition. Theoretical analysis discloses this behavior stems from the reduced degree of torsion in the π-conjugated structures in 1, as verified by dihedral angles between its pyrrolidine and phenyl planes. As the first study on thermo-enhanced SHG properties of organic crystals, this work affords a new avenue of modulating physical properties to fabricate high-performance photoelectronic and optical devices.
Collapse
Affiliation(s)
- Yi Liu
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences Beijing, Beijing, 100049, P. R. China
| | - Pengfei Zhu
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Qingshun Fan
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences Beijing, Beijing, 100049, P. R. China
| | - Zihao Zhao
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences Beijing, Beijing, 100049, P. R. China
| | - Linjie Wei
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Yu Ma
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences Beijing, Beijing, 100049, P. R. China
| | - Haojie Xu
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences Beijing, Beijing, 100049, P. R. China
| | - Wuqian Guo
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Junhua Luo
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences Beijing, Beijing, 100049, P. R. China
| | - Zhihua Sun
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences Beijing, Beijing, 100049, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| |
Collapse
|
4
|
Kulinich AV, Ishchenko AA. Merocyanines: Electronic Structure and Spectroscopy in Solutions, Solid State, and Gas Phase. Chem Rev 2024; 124:12086-12144. [PMID: 39423353 DOI: 10.1021/acs.chemrev.4c00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Merocyanines, owing to their readily tunable electronic structure, are arguably the most versatile functional dyes, with ample opportunities for tailored design via variations of both the donor/acceptor (D/A) end groups and π-conjugated polymethine chain. A plethora of spectral properties, such as strong solvatochromism, high polarizability and hyperpolarizabilities, and sensitizing capacity, motivates extensive studies for their applications in light-converting materials for optoelectronics, nonlinear optics, optical storage, fluorescent probes, etc. Evidently, an understanding of the intrinsic structure-property relationships is a prerequisite for the successful design of functional dyes. For merocyanines, these regularities have been explored for over 70 years, but only in the past three decades have these studies expanded beyond the theory of their color and solvatochromism toward their electronic structure in the ground and excited states. This Review outlines the fundamental principles, essential for comprehension of the variable nature of merocyanines, with the main emphasis on understanding the impact of internal (chemical structure) and external (intermolecular interactions) factors on the electronic symmetry of the D-π-A chromophore. The research on the structure and properties of merocyanines in different media is reviewed in the context of interplay of the three virtual states: nonpolar polyene, ideal polymethine, and zwitterionic polyene.
Collapse
Affiliation(s)
- Andrii V Kulinich
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Akademika Kukharya St., Kyiv 02094, Ukraine
| | - Alexander A Ishchenko
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Akademika Kukharya St., Kyiv 02094, Ukraine
| |
Collapse
|
5
|
Zhang J, Ma Q, Wang H, Zhang P, Su X, Zhang A, Li W. Crowding for Confinement: Reversible Isomerization of First-Generation Donor-Acceptor Stenhouse Adduct Derivatives in Water Modulated by Thermoresponsive Dendritic Macromolecules. Molecules 2024; 29:5055. [PMID: 39519696 PMCID: PMC11547267 DOI: 10.3390/molecules29215055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Mimicking nature, the reversible isomerization of hydrophobic dyes in aqueous solutions is appealing for bio-applications. Here, we report on the reversible isomerization of first-generation solvatochromic donor-acceptor Stenhouse adducts (DASAs) in water within dendritic matrices, realized either through the dendronization of DASAs or the incorporation of DASA pendants into dendronized copolymers. These dendritic macromolecules contain three-fold dendritic oligoethylene glycols (OEGs), which afford the macromolecules water-solubility and unprecedented thermoresponsive behavior. The thermoresponsive behavior of both dendronized DASAs and dendronized copolymers is dominated by the peripherals of dendritic OEGs. However, the hydrophilicity of the acceptor from DASA moieties also play a role in mediating their thermal phase transitions, and more importantly, tailor the hydrophobic interactions between dendritic OEGs and DASA moieties. Intriguingly, dendritic topologies contribute confinement to encapsulate the DASA moieties through crowding effects, and cooperative interactions from the crowded dendritic OEGs modulate the DASA moieties with different isomerization in aqueous media. The thermally induced collapse of dendritic OEGs, accompanied by the aggregation of dendritic macromolecules, leads to the formation of hydrophobic domains, which exert enhanced crowding effects to efficiently encapsulate the DASA moieties. Compared to the low molar mass of dendronized DASAs, thermally collapsed dendronized copolymers can efficiently retard the hydration of DASA pendants through cooperation between neighboring dendritic OEGs and afford the DASA pendants with better confined microenvironments to mediate their isomerization recovery by up to 90% from a cyclic charged (hydrophilic) state into a noncharged (hydrophobic) linear state in water. This dendritic confinement exhibits excellent fatigue resistance after several cycles of alternating photo-irradiation and thermal annealing at elevated temperatures.
Collapse
Affiliation(s)
| | | | | | | | - Xinyan Su
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Mailbox 152, Shangda Rd. 99, Shanghai 200444, China
| | - Afang Zhang
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Mailbox 152, Shangda Rd. 99, Shanghai 200444, China
| | - Wen Li
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Mailbox 152, Shangda Rd. 99, Shanghai 200444, China
| |
Collapse
|
6
|
Zhu XZ, Chen SH, Xu JB, Huang JH, Yan JF, Yuan YF. Unveiling the Twisted Aromatic Donor Effect on the Nonlinear Response of D-π-A Type Malononitrile-Derived Chromophores. Chemistry 2024; 30:e202402023. [PMID: 39032086 DOI: 10.1002/chem.202402023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/22/2024]
Abstract
This study presents the design, synthesis, and comprehensive characterization of a novel series of D-π-A type malononitrile-derived chromophores, BTC-1-BTC-4. Combining various spectroscopic techniques, nonlinear Z-scan measurements, and quantum chemical calculations, we revealed the intricate relationship between nonlinear optical properties and the interplay of molecular structure, intramolecular charge transfer (ICT), and dipole moments (μ). Our experimental and computational findings corroborate that the polarization degree in the ground state, the charge separation in the excited state and twisted intramolecular charge transfer (TICT) collectively dictate the nonlinear optical properties of the compounds. Notably, BTC-1 exhibits an exceptional nonlinear absorption coefficient β value (2×10-8 m W-1), attributed to its optimized charge transfer efficiency and pronounced degree of charge separation. Our findings provide actionable insights for the rational design of high-performance organic Nonlinear optics (NLO) materials with potential applications in advanced photonic devices.
Collapse
Affiliation(s)
- Xiang-Zhao Zhu
- Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Department of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Song-Hua Chen
- College of Chemistry and Material Science, Longyan University, Longyan, 364012, China
| | - Jia-Bei Xu
- School of Physical Science and Technology, Soochow University, Suzhou, 215006, China
| | - Jian-Hua Huang
- College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Jian-Feng Yan
- Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Department of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Yao-Feng Yuan
- Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Department of Chemistry, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
7
|
Rodriguez V, Verreault D. Hyper-Rayleigh Scattering and Third-Harmonic Scattering in Chiral Liquids: Basic Evidences and Differences with Linear Chiroptical Techniques. J Phys Chem Lett 2024; 15:6334-6342. [PMID: 38856676 DOI: 10.1021/acs.jpclett.4c01119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Nonlinear chiroptical methods like hyper-Rayleigh optical activity (HROA) and third-harmonic optical activity (THOA) have a great potential in characterizing structure-chiroptical properties of molecular systems. Here, with these methods, we bring for the first time experimental and theoretical evidence of nonlinear chiroptical differences between enantiomers of simple chiral molecules, using exclusively linearly polarized incident light. The origin of these unexpected nonlinear chiroptical contributions comes from a new nonlinear source term of the form βOA(∇×μ(nω)), which is a bilinear coupling term including the linear chirality parameter, βOA, and the curl of the nonlinear induced electric dipole moment, μ(nω), both involving dipolar magnetic interactions. Through a simple nonlinear chiroptical model that we propose, we show that specific nonlinear chiroptical parameters can be quantified, thus bringing new insights into stereochemical and electronic structural features of molecular and supramolecular systems.
Collapse
Affiliation(s)
- Vincent Rodriguez
- Institut des Sciences Moléculaires, Univ. Bordeaux, CNRS, Bordeaux INP, UMR 5255, F-33405 Talence, France
| | - Dominique Verreault
- Institut des Sciences Moléculaires, Univ. Bordeaux, CNRS, Bordeaux INP, UMR 5255, F-33405 Talence, France
| |
Collapse
|
8
|
Philip AM, Krogh ME, Laursen BW. Robust Red-Absorbing Donor-Acceptor Stenhouse Adduct Photoswitches. Chemistry 2024; 30:e202400621. [PMID: 38536207 DOI: 10.1002/chem.202400621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Indexed: 04/25/2024]
Abstract
Donor-Acceptor Stenhouse Adduct (DASA), a class of push-pull negative photochrome, has received large interest lately owing to its versatile synthesis, modularity and excellent photoswitching in solutions. From a technological perspective, it is imperative for this class of photoswitches to work robustly in solid state, e. g. thin films. We feature a molecular framework for the optimized design of DASAs by introducing a new thioindoline donor (D3) and assessing its performance against known 2nd generation indoline-based donors. The systematic structure-function investigations suggest that to achieve robust reversible photoswitching, a ground state with low charge separation is desired. DASAs with stronger electron donors and a larger charge separation in the ground state result in a low population of the photothermalstationary state (PTSS) and reduced photostability. The DASA with thioindoline donor (D3A3) seems to be a special case among the donor series as it causes a red shift (ca. 15 nm), however with less polarization of the ground state and marginally better photostability as compared to the unsubstituted 2-methyl indoline (D1A3). We also emphasize the consideration of the key additional factors that can modulate the red-light photoswitching properties of DASA chromophores in polymer thin films, which might not be dominant in homogenous solution state.
Collapse
Affiliation(s)
- Abbey M Philip
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Marie E Krogh
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Bo W Laursen
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Copenhagen, 2100, Denmark
| |
Collapse
|
9
|
Dellai A, Naim C, Cerezo J, Prampolini G, Castet F. Dynamic effects on the nonlinear optical properties of donor acceptor stenhouse adducts: insights from combined MD + QM simulations. Phys Chem Chem Phys 2024; 26:13639-13654. [PMID: 38511505 DOI: 10.1039/d4cp00310a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The second-order nonlinear optical (NLO) responses of a donor-acceptor stenhouse adduct (DASA) are investigated by using a computational approach combining molecular dynamics simulations and density functional theory (DFT) calculations. Specific force fields for the open and closed photoswitching forms are first parameterized and validated according to the Joyce protocol, in order to finely reproduce the geometrical features and potential energy surfaces of both isomers in chloroform solution. Then, DFT calculations are performed on structural snapshots extracted at regular time steps of the MD trajectories to address the influence of the thermalized conformational dynamics on the NLO responses related to hyper-Rayleigh scattering (HRS) experiments. We show that accounting for the structural dynamics largely enhances the HRS hyperpolarizability (βHRS) compared to DFT calculations considering solely equilibrium geometries, and greatly improves the agreement with experimental measurements. Furthermore, we show that the NLO responses of the NLO-active open form are correlated with the bond order alternation along the triene bridge connecting the donor and acceptor moieties, which is rationalized using simple essential state models.
Collapse
Affiliation(s)
- Angela Dellai
- Univ. Bordeaux, CNRS, Bordeaux INP, Institut des Sciences Moléculaires, UMR 5255, F-33400 Talence, France.
| | - Carmelo Naim
- Univ. Bordeaux, CNRS, Bordeaux INP, Institut des Sciences Moléculaires, UMR 5255, F-33400 Talence, France.
- Donostia International Physics Center (DIPC), Manuel Lardizabal Ibilbidea 4, 20018 Donostia, Euskadi, Spain
| | - Javier Cerezo
- Departamento de Química and Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | - Frédéric Castet
- Univ. Bordeaux, CNRS, Bordeaux INP, Institut des Sciences Moléculaires, UMR 5255, F-33400 Talence, France.
| |
Collapse
|
10
|
Siddique MBA, Su J, Meng Y, Cheng SB. Electron transfer-mediated synergistic nonlinear optical response in the Ag n@C 18 (n = 4-6) complexes: A DFT study on the electronic structures and optical characteristics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 312:124069. [PMID: 38422934 DOI: 10.1016/j.saa.2024.124069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/31/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Seeking highly efficient and stable non-linear optical (NLO) materials is crucial yet challenging, given their promising applications in laser diodes and photovoltaics. In this study, we employ the excess electron and charge transfer strategies to theoretically design three novel complexes, namely Agn@C18 (n = 4-6), by adsorbing silver clusters onto the cyclo[18]carbon ring (C18). Our aim is to investigate the NLO characteristics of these complexes using density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations. The results reveal that the adsorption of Ag clusters onto C18 leads to a decrease in excitation energy and an increase in dipole moment and oscillator strengths, thereby significantly enhancing the hyperpolarizability of the complexes. Strikingly, among all these complexes, Ag6@C18 exhibits the highest first hyperpolarizability value of approximately 109496.2620 au calculated at the B3LYP/cc-PVDZ-pp level of theory, which is about 1.3 × 106 times higher than that of pure C18. This finding validates the effectiveness of the proposed strategies in enhancing the NLO response of the species. Moreover, the calculated UV-Vis absorption spectrum demonstrates that the Agn@C18 complexes with excess electrons exhibit absorption at longer wavelengths (ranging from 385 to 731 nm) compared to C18. In addition, the stability, chemical bonding, and charge transfer characteristics of the Agn@C18 (n = 4-6) complexes were also discussed. These findings highlight the potential of these complexes for the development of highly efficient NLO devices.
Collapse
Affiliation(s)
| | - Jie Su
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Yanan Meng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Shi-Bo Cheng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China.
| |
Collapse
|
11
|
Zheng PX, Ou SL, Qu LY, Zhang Y, Jiang SQ, Li X, Wan JX, Zhang M, Bao X. Enriched switching in a donor-acceptor Stenhouse adduct via reversible covalent bonding. Chem Commun (Camb) 2024; 60:1333-1336. [PMID: 38197312 DOI: 10.1039/d3cc03160h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
We have utilized reversible covalent bonding to expand the accessible states of a molecular switch. Introducing a hydroxyl group onto the donor moiety of a donor-acceptor Stenhouse adduct (DASA) imparts an acidity response by forming an oxazolidine ring through intramolecular nucleophilic addition. Furthermore, we observed distinct color changes under cryogenic conditions, extending the thermal responsiveness beyond the cyclization equilibrium observed at elevated temperatures. These unique responses present promising prospects for diverse applications compared to traditional photoinduced binary isomerization.
Collapse
Affiliation(s)
- Peng Xuan Zheng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, China.
| | - Song Lin Ou
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, China.
| | - Lei Yu Qu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, China.
| | - Ying Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, China.
| | - Shi Qing Jiang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, China.
| | - Xiang Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, China.
| | - Jun Xiong Wan
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, China.
| | - Min Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Xin Bao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, China.
| |
Collapse
|
12
|
Postils V, Burešová Z, Casanova D, Champagne B, Bureš F, Rodriguez V, Castet F. Second-order nonlinear optical properties of X-shaped pyrazine derivatives. Phys Chem Chem Phys 2024; 26:1709-1721. [PMID: 38131670 DOI: 10.1039/d3cp04516a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
This work reports an investigation of the second-order NLO properties of two isomer series of X-shaped pyrazine derivatives, by means of HRS measurements and DFT calculations. The systems differ in the relative position of the donor and acceptor substituents with respect to the axis formed by the nitrogen atoms of the central pyrazine ring. Although the magnitude of the second harmonic signal is similar, HRS measurements revealed that the anisotropy of the NLO response strongly differs in the two chromophore series, the one of the 2,3-isomers being strikingly dipolar, while the one of the 2,6-isomers is mostly octupolar. The experimental observations are well supported by DFT calculations. In particular, the sum-over-states approach allows us to rationalize the different NLO anisotropies observed in the two isomer series through a detailed analysis of the symmetry of the low-lying excited states.
Collapse
Affiliation(s)
- Verònica Postils
- Univ. Bordeaux, CNRS, Bordeaux INP, Institut des Sciences Moléculaires, UMR 5255, F-33400 Talence, France.
| | - Zuzana Burešová
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice 532 10, Czech Republic
| | - David Casanova
- Donostia International Physics Center (DIPC), Manuel Lardizabal Ibilbidea 4, 20018 Donostia, Euskadi, Spain
- Ikerbasque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Euskadi, Spain
| | - Benoît Champagne
- Unité de Chimie Physique Théorique et Structurale, Chemistry Department, Namur Institute of Structured Matter, University of Namur, Belgium
| | - Filip Bureš
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice 532 10, Czech Republic
| | - Vincent Rodriguez
- Univ. Bordeaux, CNRS, Bordeaux INP, Institut des Sciences Moléculaires, UMR 5255, F-33400 Talence, France.
| | - Frédéric Castet
- Univ. Bordeaux, CNRS, Bordeaux INP, Institut des Sciences Moléculaires, UMR 5255, F-33400 Talence, France.
| |
Collapse
|
13
|
Li R, Mou B, Yamada M, Li W, Nakashima T, Kawai T. From Visible to Near-Infrared Light-Triggered Photochromism: Negative Photochromism. Molecules 2023; 29:155. [PMID: 38202738 PMCID: PMC10780068 DOI: 10.3390/molecules29010155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Photochromic compounds, whose key molecular properties can be effectively modulated by light irradiation, have attracted significant attention for their potential applications in various research fields. The restriction of photoisomerization coloration induced by ultraviolet light limits their applications in the biomedical field and some other fields. Negative photochromism, wherein a relatively stable colored isomer transforms to a colorless metastable isomer under low-energy light irradiation, offers advantages in applications within materials science and life science. This review provides a summary of negatively photochromic compounds based on different molecular skeletons. Their corresponding design strategies and photochromic properties are presented to provide practical guidelines for future investigations. Negatively photochromic compounds can effectively expand the range of photochromic switches for future applications, offering unique properties such as responsiveness to visible to near-infrared light.
Collapse
Affiliation(s)
- Ruiji Li
- School of Pharmacy, Jining Medical University, Rizhao 276826, China; (B.M.); (W.L.)
| | - Bingzhao Mou
- School of Pharmacy, Jining Medical University, Rizhao 276826, China; (B.M.); (W.L.)
| | - Mihoko Yamada
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), Ikoma 630-0192, Japan
| | - Wei Li
- School of Pharmacy, Jining Medical University, Rizhao 276826, China; (B.M.); (W.L.)
| | - Takuya Nakashima
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), Ikoma 630-0192, Japan
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Sumiyoshi, Osaka 558-8585, Japan
| | - Tsuyoshi Kawai
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), Ikoma 630-0192, Japan
| |
Collapse
|
14
|
Clerc M, Sandlass S, Rifaie-Graham O, Peterson JA, Bruns N, Read de Alaniz J, Boesel LF. Visible light-responsive materials: the (photo)chemistry and applications of donor-acceptor Stenhouse adducts in polymer science. Chem Soc Rev 2023; 52:8245-8294. [PMID: 37905554 PMCID: PMC10680135 DOI: 10.1039/d3cs00508a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Indexed: 11/02/2023]
Abstract
Donor-acceptor Stenhouse adduct (DASA) photoswitches have gained a lot of attention since their discovery in 2014. Their negative photochromism, visible light absorbance, synthetic tunability, and the large property changes between their photoisomers make them attractive candidates over other commonly used photoswitches for use in materials with responsive or adaptive properties. The development of such materials and their translation into advanced technologies continues to widely impact forefront materials research, and DASAs have thus attracted considerable interest in the field of visible-light responsive molecular switches and dynamic materials. Despite this interest, there have been challenges in understanding their complex behavior in the context of both small molecule studies and materials. Moreover, incorporation of DASAs into polymers can be challenging due to their incompatibility with the conditions for most common polymerization techniques. In this review, therefore, we examine and critically discuss the recent developments and challenges in the field of DASA-containing polymers, aiming at providing a better understanding of the interplay between the properties of both constituents (matrix and photoswitch). The first part summarizes current understanding of DASA design and switching properties. The second section discusses strategies of incorporation of DASAs into polymers, properties of DASA-containing materials, and methods for studying switching of DASAs in materials. We also discuss emerging applications for DASA photoswitches in polymeric materials, ranging from light-responsive drug delivery systems, to photothermal actuators, sensors and photoswitchable surfaces. Last, we summarize the current challenges in the field and venture on the steps required to explore novel systems and expand both the functional properties and the application opportunities of DASA-containing polymers.
Collapse
Affiliation(s)
- Michèle Clerc
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, 9014 St. Gallen, Switzerland.
- University of Fribourg, Department of Chemistry, 1700 Fribourg, Switzerland
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, UK
- Swiss National Center of Competence in Research Bio-Inspired Materials, Switzerland
| | - Sara Sandlass
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - Omar Rifaie-Graham
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Julie A Peterson
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA.
| | - Nico Bruns
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, UK
- Swiss National Center of Competence in Research Bio-Inspired Materials, Switzerland
- Department of Chemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany.
| | - Javier Read de Alaniz
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA.
| | - Luciano F Boesel
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, 9014 St. Gallen, Switzerland.
- Swiss National Center of Competence in Research Bio-Inspired Materials, Switzerland
| |
Collapse
|
15
|
Bouquiaux C, Beaujean P, Ramos TN, Castet F, Rodriguez V, Champagne B. First hyperpolarizability of the di-8-ANEPPS and DR1 nonlinear optical chromophores in solution. An experimental and multi-scale theoretical chemistry study. J Chem Phys 2023; 159:174307. [PMID: 37933782 DOI: 10.1063/5.0174979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/10/2023] [Indexed: 11/08/2023] Open
Abstract
The solvent effects on the linear and second-order nonlinear optical properties of an aminonaphtylethenylpyridinium (ANEP) dye are investigated by combining experimental and theoretical chemistry methods. On the one hand, deep near infrared (NIR) hyper-Rayleigh scattering (HRS) measurements (1840-1950 nm) are performed on solutions of di-8-ANEPPS in deuterated chloroform, dimethylformamide, and dimethylsulfoxide to determine their first hyperpolarizablity (βHRS). For the first time, these HRS experiments are carried out in the picosecond regime in the deep NIR with very moderate (≤3 mW) average input power, providing a good signal-to-noise ratio and avoiding solvent thermal effects. Moreover, the frequency dispersion of βHRS is investigated for Disperse Red 1 (DR1), a dye commonly used as HRS external reference. On the other hand, these are compared with computational chemistry results obtained by using a sequential molecular dynamics (MD) then quantum mechanics (QM) approach. The MD method allows accounting for the dynamical nature of the molecular structures. Then, the QM part is based on TDDFT/M06-2X/6-311+G* calculations using solvation models ranging from continuum to discrete ones. Measurements report a decrease of the βHRS of di-8-ANEPPS in more polar solvents and these effects are reproduced by the different solvation models. For di-8-ANEPPS and DR1, comparisons show that the use of a hybrid solvation model, combining the description of the solvent molecules around the probe by point charges with a continuum model, already achieves quasi quantitative agreement with experiment. These results are further improved by using a polarizable embedding that includes the atomic polarizabilities in the solvent description.
Collapse
Affiliation(s)
- Charlotte Bouquiaux
- University of Namur, Theoretical Chemistry Lab, Unit of Theoretical and Structural Physical Chemistry, Namur Institute of Structured Matter, rue de Bruxelles, 61, B-5000 Namur, Belgium
| | - Pierre Beaujean
- University of Namur, Theoretical Chemistry Lab, Unit of Theoretical and Structural Physical Chemistry, Namur Institute of Structured Matter, rue de Bruxelles, 61, B-5000 Namur, Belgium
| | - Tárcius N Ramos
- University of Namur, Theoretical Chemistry Lab, Unit of Theoretical and Structural Physical Chemistry, Namur Institute of Structured Matter, rue de Bruxelles, 61, B-5000 Namur, Belgium
| | - Frédéric Castet
- University of Bordeaux, Institut des Sciences Moléculaires, UMR 5255 CNRS, cours de la Libération 351, F-33405 Talence Cedex, France
| | - Vincent Rodriguez
- University of Bordeaux, Institut des Sciences Moléculaires, UMR 5255 CNRS, cours de la Libération 351, F-33405 Talence Cedex, France
| | - Benoît Champagne
- University of Namur, Theoretical Chemistry Lab, Unit of Theoretical and Structural Physical Chemistry, Namur Institute of Structured Matter, rue de Bruxelles, 61, B-5000 Namur, Belgium
| |
Collapse
|
16
|
Miguélez R, Barrio P, González JM. Recent Advances in the Catalytic Synthesis of the Cyclopentene Core. CHEM REC 2023:e202300254. [PMID: 37821421 DOI: 10.1002/tcr.202300254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/21/2023] [Indexed: 10/13/2023]
Abstract
Five-membered carbocycles are ubiquitously found in natural products, pharmaceuticals, and other classes of organic compounds. Within this category, cyclopentenes deserve special attention due to their prevalence as targets and as well as key intermediates for synthesizing more complex molecules. Herein, we offer an overview summarizing some significant recent advances in the catalytic assembly of this structural motif. A great variety of synthetic methodologies and strategies are covered, including transition metal-catalyzed or organocatalyzed processes. Both inter- and intramolecular transformations are documented. On this ground, our expertise in the application of C-H functionalization reactions oriented towards the formation of this ring and its subsequent selective functionalization is embedded.
Collapse
Affiliation(s)
- Rubén Miguélez
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles", Universidad de Oviedo, Julián Clavería 8, 33006, Oviedo, Spain
| | - Pablo Barrio
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles", Universidad de Oviedo, Julián Clavería 8, 33006, Oviedo, Spain
| | - José M González
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles", Universidad de Oviedo, Julián Clavería 8, 33006, Oviedo, Spain
| |
Collapse
|