1
|
Shennan BDA, Fukuta T, Yamane M, Koyama T, Mitsunuma H, Kanai M. Catalytic Phosphorylation of Tyrosine via a Radical Arbuzov Reaction. J Am Chem Soc 2025; 147:6349-6354. [PMID: 39933554 DOI: 10.1021/jacs.4c17637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Synthetic protein/peptide modification is a powerful strategy for the development of new therapeutics and tools for chemical biology. Accordingly, the development of a synthetic variant of biological tyrosine phosphorylation, a cornerstone of the post-translational modification landscape, could find widespread application in the study of this fundamental biochemical signal. This work describes the development of a mechanistically novel, redox-neutral, photocatalytic tyrosine phosphorylation reaction via a radical Arbuzov-type mechanism. The reaction proceeds with good tyrosine selectivity in di-, tri-, and oligopeptides under mild conditions near neutral pH, tolerating potentially problematic functionality. As the first photocatalytic tyrosine phosphorylation reaction, this work represents a major advance toward the goal of synthetic tyrosine phosphorylation.
Collapse
Affiliation(s)
- Benjamin D A Shennan
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Chemistry, Chemical Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Tomoyuki Fukuta
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mina Yamane
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takashi Koyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Harunobu Mitsunuma
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
2
|
Rangan RS, Petty RM, Acharya S, Emmitte KA, do Valle RS, Lam C, Essajee SI, Mayhew W, Young O, Brooks CD, Forster MJ, Tovar-Vidales T, Clark AF. Phenethylaminylation: Preliminary In Vitro Evidence for the Covalent Transamidation of Psychedelic Phenethylamines to Glial Proteins using 3,5-Dimethoxy-4-(2-Propynyloxy)-Phenethylamine as a Model Compound. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.13.638188. [PMID: 40027829 PMCID: PMC11870397 DOI: 10.1101/2025.02.13.638188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Psychedelics are well known for their ability to produce profoundly altered states of consciousness. But, more importantly, the effects of psychedelics can influence neurobehavioral changes that last well after these acute subjective effects end. This phenomenon is currently being leveraged in the development of psychedelic-assisted psychotherapies for the treatment of multiple neuropsychiatric disorders. The cellular and molecular mechanisms by which single doses of psychedelics are able to mediate long-term cognitive changes are an active area of research. We hypothesize that psychedelics contribute to long term changes in cellular state by covalently modifying proteins. This post-translational modification by psychedelics is possible through the transglutaminase-mediated transamidation of their amine termini to glutamine carboxamide residues. Here, we synthesize and utilize a propargylated analogue of mescaline - the classic serotonergic psychedelic phenethylamine found in cacti species - to identify putative protein targets of psychedelic modifications through the use of click-chemistry in a primary human astrocyte cell culture model. Our preliminary findings indicate that a diverse array of glial proteins may be substrates for transglutaminase 2-mediated monoaminylation by our model phenethylamine ("phenethylaminylation"). Based on these points, we speculatively highlight new directions for the study of this putative noncanonical psychedelic activity.
Collapse
Affiliation(s)
- Rajiv S. Rangan
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmacology and Neuroscience; University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - R. Max Petty
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmacology and Neuroscience; University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Suchismita Acharya
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmacology and Neuroscience; University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Kyle A. Emmitte
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy; University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Rafael S. do Valle
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Chandra Lam
- Center for Anatomical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Salman I. Essajee
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - William Mayhew
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmacology and Neuroscience; University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Olivia Young
- Department of Pharmacology and Neuroscience; University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Calvin D. Brooks
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmacology and Neuroscience; University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Michael J. Forster
- Department of Pharmacology and Neuroscience; University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Tara Tovar-Vidales
- Center for Anatomical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Abbot F. Clark
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmacology and Neuroscience; University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
3
|
Zheng Q, Weekley BH, Vinson DA, Zhao S, Bastle RM, Thompson RE, Stransky S, Ramakrishnan A, Cunningham AM, Dutta S, Chan JC, Di Salvo G, Chen M, Zhang N, Wu J, Fulton SL, Kong L, Wang H, Zhang B, Vostal L, Upad A, Dierdorff L, Shen L, Molina H, Sidoli S, Muir TW, Li H, David Y, Maze I. Bidirectional histone monoaminylation dynamics regulate neural rhythmicity. Nature 2025; 637:974-982. [PMID: 39779849 PMCID: PMC11754111 DOI: 10.1038/s41586-024-08371-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 11/08/2024] [Indexed: 01/11/2025]
Abstract
Histone H3 monoaminylations at Gln5 represent an important family of epigenetic marks in brain that have critical roles in permissive gene expression1-3. We previously demonstrated that serotonylation4-10 and dopaminylation9,11-13 of Gln5 of histone H3 (H3Q5ser and H3Q5dop, respectively) are catalysed by transglutaminase 2 (TG2), and alter both local and global chromatin states. Here we found that TG2 additionally functions as an eraser and exchanger of H3 monoaminylations, including H3Q5 histaminylation (H3Q5his), which displays diurnally rhythmic expression in brain and contributes to circadian gene expression and behaviour. We found that H3Q5his, in contrast to H3Q5ser, inhibits the binding of WDR5, a core member of histone H3 Lys4 (H3K4) methyltransferase complexes, thereby antagonizing methyltransferase activities on H3K4. Taken together, these data elucidate a mechanism through which a single chromatin regulatory enzyme has the ability to sense chemical microenvironments to affect the epigenetic states of cells, the dynamics of which have critical roles in the regulation of neural rhythmicity.
Collapse
Affiliation(s)
- Qingfei Zheng
- Department of Radiation Oncology, College of Medicine and Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Benjamin H Weekley
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David A Vinson
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shuai Zhao
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Ryan M Bastle
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Stephanie Stransky
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY, USA
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ashley M Cunningham
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sohini Dutta
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jennifer C Chan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Giuseppina Di Salvo
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - Min Chen
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nan Zhang
- Department of Radiation Oncology, College of Medicine and Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Jinghua Wu
- Department of Radiation Oncology, College of Medicine and Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Sasha L Fulton
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lingchun Kong
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Haifeng Wang
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Baichao Zhang
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Lauren Vostal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tri-Institutional PhD Program in Chemical Biology, New York, NY, USA
| | - Akhil Upad
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tri-Institutional PhD Program in Chemical Biology, New York, NY, USA
| | - Lauren Dierdorff
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Li Shen
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Henrik Molina
- The Rockefeller University Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY, USA
| | - Tom W Muir
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Haitao Li
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, School of Basic Medical Sciences, Tsinghua University, Beijing, China.
- SXMU-TM Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| | - Yael David
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Tri-Institutional PhD Program in Chemical Biology, New York, NY, USA.
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA.
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA.
| | - Ian Maze
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Howard Hughes Medical Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
4
|
Zhang N, Wu J, Gao S, Peng H, Li H, Gibson C, Wu S, Zhu J, Zheng Q. pH-Controlled Chemoselective Rapid Azo-Coupling Reaction (CRACR) Enables Global Profiling of Serotonylation Proteome in Cancer Cells. J Proteome Res 2024; 23:4457-4466. [PMID: 39208062 DOI: 10.1021/acs.jproteome.4c00409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Serotonylation has been identified as a novel protein posttranslational modification for decades, where an isopeptide bond is formed between the glutamine residue and serotonin through transamination. Transglutaminase 2 (also known as TGM2 or TGase2) was proven to act as the main "writer" enzyme for this PTM, and a number of key regulatory proteins (including small GTPases, fibronectin, fibrinogen, serotonin transporter, and histone H3) have been characterized as the substrates of serotonylation. However, due to the lack of pan-specific antibodies for serotonylated glutamine, the precise enrichment and proteomic profiling of serotonylation still remain challenging. In our previous research, we developed an aryldiazonium probe to specifically label protein serotonylation in a bioorthogonal manner, which depended on a pH-controlled chemoselective rapid azo-coupling reaction. Here, we report the application of a photoactive aryldiazonium-biotin probe for the global profiling of serotonylation proteome in cancer cells. Thus, over 1,000 serotonylated proteins were identified from HCT 116 cells, many of which are highly related to carcinogenesis. Moreover, a number of modification sites of these serotonylated proteins were determined, attributed to the successful application of our chemical proteomic approach. Overall, these findings provided new insights into the significant association between cellular protein serotonylation and cancer development, further suggesting that to target TGM2-mediated monoaminylation may serve as a promising strategy for cancer therapeutics.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jinghua Wu
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Shuaixin Gao
- Human Nutrition Program, Department of Human Sciences, College of Education and Human Ecology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Haidong Peng
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Huapeng Li
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
| | - Connor Gibson
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Sophia Wu
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
- Columbus Academy, Gahanna, Ohio 43230, United States
| | - Jiangjiang Zhu
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
- Human Nutrition Program, Department of Human Sciences, College of Education and Human Ecology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Qingfei Zheng
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
5
|
Li H, Wu J, Zhang N, Zheng Q. Transglutaminase 2-mediated histone monoaminylation and its role in cancer. Biosci Rep 2024; 44:BSR20240493. [PMID: 39115570 PMCID: PMC11345673 DOI: 10.1042/bsr20240493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/10/2024] Open
Abstract
Transglutaminase 2 (TGM2) has been known as a well-characterized factor regulating the progression of multiple types of cancer, due to its multifunctional activities and the ubiquitous signaling pathways it is involved in. As a member of the transglutaminase family, TGM2 catalyzes protein post-translational modifications (PTMs), including monoaminylation, amide hydrolysis, cross-linking, etc., through the transamidation of variant glutamine-containing protein substrates. Recent discoveries revealed histone as an important category of TGM2 substrates, thus identifying histone monoaminylation as an emerging epigenetic mark, which is highly enriched in cancer cells and possesses significant regulatory functions of gene transcription. In this review, we will summarize recent advances in TGM2-mediated histone monoaminylation as well as its role in cancer and discuss the key research methodologies to better understand this unique epigenetic mark, thereby shedding light on the therapeutic potential of TGM2 as a druggable target in cancer treatment.
Collapse
Affiliation(s)
- Huapeng Li
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH 43210, U.S.A
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, U.S.A
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, U.S.A
| | - Jinghua Wu
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, U.S.A
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, U.S.A
| | - Nan Zhang
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, U.S.A
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, U.S.A
| | - Qingfei Zheng
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH 43210, U.S.A
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, U.S.A
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, U.S.A
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH 43210, U.S.A
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, IN, U.S.A
| |
Collapse
|
6
|
Zhang N, Gao S, Peng H, Wu J, Li H, Gibson C, Wu S, Zhu J, Zheng Q. Chemical Proteomic Profiling of Protein Dopaminylation in Colorectal Cancer Cells. J Proteome Res 2024; 23:2651-2660. [PMID: 38838187 DOI: 10.1021/acs.jproteome.4c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Histone dopaminylation is a newly identified epigenetic mark that plays a role in the regulation of gene transcription, where an isopeptide bond is formed between the fifth amino acid of H3 (i.e., glutamine) and dopamine. Recently, we developed a chemical probe to specifically label and enrich histone dopaminylation via bioorthogonal chemistry. Given this powerful tool, we found that histone H3 glutamine 5 dopaminylation (H3Q5dop) was highly enriched in colorectal tumors, which could be attributed to the high expression level of its regulator, transglutaminase 2 (TGM2), in colon cancer cells. Due to the enzyme promiscuity of TGM2, nonhistone proteins have also been identified as dopaminylation targets; however, the dopaminylated proteome in cancer cells still remains elusive. Here, we utilized our chemical probe to enrich dopaminylated proteins from colorectal cancer cells in a bioorthogonal manner and performed the chemical proteomics analysis. Therefore, 425 dopaminylated proteins were identified, many of which are involved in nucleic acid metabolism and transcription pathways. More importantly, a number of dopaminylation sites were identified and attributed to the successful application of our chemical probe. Overall, these findings shed light on the significant association between cellular protein dopaminylation and cancer development, further suggesting that targeting these pathways may become a promising anticancer strategy.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Shuaixin Gao
- Human Nutrition Program, Department of Human Sciences, College of Education and Human Ecology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Haidong Peng
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jinghua Wu
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Huapeng Li
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
| | - Connor Gibson
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Sophia Wu
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
- Columbus Academy, Gahanna, Ohio 43230, United States
| | - Jiangjiang Zhu
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
- Human Nutrition Program, Department of Human Sciences, College of Education and Human Ecology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Qingfei Zheng
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|