1
|
Schulz T, Marian CM. Simulating the full spin manifold of triplet-pair states in a series of covalently linked TIPS-pentacenes. J Comput Chem 2024; 45:2727-2738. [PMID: 39139132 DOI: 10.1002/jcc.27475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/15/2024]
Abstract
Combined density functional theory and multireference configuration interaction methods have been used to elucidate singlet fission (SF) pathways and mechanisms in three regioisomers of side-on linked pentacene dimers. In addition to the optically bright singlets (S 1 and S 2 ) and singly excited triplets (T 1 and T 2 ), the full spin manifold of multiexcitonic triplet-pair states ( 1 ME, 3 ME, 5 ME) has been considered. In the ortho- and para-regioisomers, the 1 ME and S 1 potentials intersect upon geometry relaxation of the S 1 excitation. In the meta-regioisomer, the crossing occurs upon delocalization of the optically bright excitation. The energetic accessibility of these conical intersections and the absence of low-lying charge-transfer states suggests a direct SF mechanism, assisted by charge-resonance effects in the 1 ME state. While the 5 ME state does not appear to play a role in the SF mechanism of the ortho- and para-regioisomers, its participation in the disentanglement of the triplet pair is conceivable in the meta-regioisomer.
Collapse
Affiliation(s)
- Timo Schulz
- Institute of Theoretical and Computational Chemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christel M Marian
- Institute of Theoretical and Computational Chemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
2
|
Lavarda G, Sharma A, Beslać M, Jansen SAH, Meskers SCJ, Friend RH, Rao A, Meijer EW. Long-Lived Triplets from Singlet Fission in Pentacene-Decorated Helical Supramolecular Polymers. J Am Chem Soc 2024; 146:28985-28993. [PMID: 39380134 PMCID: PMC11505394 DOI: 10.1021/jacs.4c09844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024]
Abstract
Singlet fission (SF), which involves the conversion of a singlet excited state into two triplet excitons, holds great potential to boost the efficiency of photovoltaics. However, losses due to triplet-triplet annihilation hamper the efficient harvesting of SF-generated triplet excitons, which limits an effective implementation in solar energy conversion schemes. A fundamental understanding of the underlying structure-property relationships is thus crucial to define design principles for cutting-edge SF materials, yet it remains elusive. Herein, we harness helical supramolecular polymers decorated with pentacene side groups to elucidate intermolecular SF dynamics in solution and promote the formation of long-lived mobile triplets. By leveraging the hydrogen bonding-driven assembly of benzene-1,3,5-tricarboxamide (BTA) cores into one-dimensional scaffolds, we direct the organization of appended pentacene motifs into long-range ordered helical frameworks. Dynamic interactions between weakly coupled SF pendants mediate singlet conversion within hundreds of picoseconds, affording triplet quantum yields well above 100%. Moreover, analysis of triplet dynamics with a Monte Carlo simulation model reveals that triplet diffusion along the supramolecular fibers is favored over annihilation, resulting in independent triplets exhibiting considerably slow decay on the time scale of tens of microseconds. The molecular packing within the assembly is tuned by subtle changes in monomer design to increase the rate and efficiency of SF while ensuring exceptionally long-lived mobile triplets, allowing to maintain triplet quantum yields exceeding 100% for at least 100 ns. This work opens new opportunities to exploit self-assembled supramolecular polymers as functional templates to achieve long-lived SF-generated triplets.
Collapse
Affiliation(s)
- Giulia Lavarda
- Institute
for Complex Molecular Systems and Laboratory of Macromolecular and
Organic Chemistry, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Ashish Sharma
- Department
of Physics, Cavendish Laboratory, University
of Cambridge, Cambridge CB30HE, United
Kingdom
| | - Marko Beslać
- Institute
for Complex Molecular Systems and Laboratory of Macromolecular and
Organic Chemistry, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Stef A. H. Jansen
- Institute
for Complex Molecular Systems and Laboratory of Macromolecular and
Organic Chemistry, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Stefan C. J. Meskers
- Institute
for Complex Molecular Systems and Laboratory of Macromolecular and
Organic Chemistry, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Richard H. Friend
- Department
of Physics, Cavendish Laboratory, University
of Cambridge, Cambridge CB30HE, United
Kingdom
| | - Akshay Rao
- Department
of Physics, Cavendish Laboratory, University
of Cambridge, Cambridge CB30HE, United
Kingdom
| | - E. W. Meijer
- Institute
for Complex Molecular Systems and Laboratory of Macromolecular and
Organic Chemistry, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
3
|
Magne C, Streckaite S, Boto RA, Domínguez-Ojeda E, Gromova M, Echeverri A, Brigiano FS, Ha-Thi MH, Fanckevičius M, Jašinskas V, Quaranta A, Pascal AA, Koepf M, Casanova D, Pino T, Robert B, Contreras-García J, Finkelstein-Shapiro D, Gulbinas V, Llansola-Portoles MJ. Perylene-derivative singlet exciton fission in water solution. Chem Sci 2024:d4sc04732j. [PMID: 39416301 PMCID: PMC11472385 DOI: 10.1039/d4sc04732j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
We provide direct evidence of singlet fission occurring with water-soluble compounds. We show that perylene-3,4,9,10-tetracarboxylate forms dynamic dimers in aqueous solution, with lifetimes long enough to allow intermolecular processes such as singlet fission. As these are transient dimers rather than stable aggregates, they retain a significant degree of disorder. We performed a comprehensive analysis of such dynamic assemblies using time-resolved absorption and fluorescence spectroscopy, nuclear magnetic resonance spectroscopy, and theoretical modelling, allowing us to observe the characteristic signatures of singlet fission and develop a model to characterize the different species observed. Our findings reveal that structure fluctuations within perylene-3,4,9,10-tetracarboxylate associations are key in favoring either singlet fission or charge separation. The efficiency of triplet formation is higher than 100%, and the disordered system leads to triplets living in the nanosecond time range.
Collapse
Affiliation(s)
- Chloe Magne
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC) Gif-sur-Yvette 91190 France
| | - Simona Streckaite
- Department of Molecular Compound Physics, Center for Physical Sciences and Technology Saulėtekio Avenue 3 Vilnius LT-10257 Lithuania
| | - Roberto A Boto
- Donostia International Physics Center (DIPC) Donostia 20018 Euskadi Spain
| | | | - Marina Gromova
- Université Grenoble Alpes, CNRS, CEA, IRIG, MEM Grenoble F-38054 France
| | - Andrea Echeverri
- Sorbonne Université, CNRS, Laboratoire de Chimie Théorique, LCT Paris F. 75005 France
| | - Flavio Siro Brigiano
- Sorbonne Université, CNRS, Laboratoire de Chimie Théorique, LCT Paris F. 75005 France
| | - Minh-Huong Ha-Thi
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay Orsay 91405 France
| | - Marius Fanckevičius
- Department of Molecular Compound Physics, Center for Physical Sciences and Technology Saulėtekio Avenue 3 Vilnius LT-10257 Lithuania
| | - Vidmantas Jašinskas
- Department of Molecular Compound Physics, Center for Physical Sciences and Technology Saulėtekio Avenue 3 Vilnius LT-10257 Lithuania
| | - Annamaria Quaranta
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC) Gif-sur-Yvette 91190 France
| | - Andrew A Pascal
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC) Gif-sur-Yvette 91190 France
| | - Matthieu Koepf
- Université Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux Grenoble F-38054 France
| | - David Casanova
- Donostia International Physics Center (DIPC) Donostia 20018 Euskadi Spain
- IKERBASQUE, Basque Foundation for Science Bilbao 48009 Euskadi Spain
| | - Thomas Pino
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay Orsay 91405 France
| | - Bruno Robert
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC) Gif-sur-Yvette 91190 France
| | | | | | - Vidmantas Gulbinas
- Department of Molecular Compound Physics, Center for Physical Sciences and Technology Saulėtekio Avenue 3 Vilnius LT-10257 Lithuania
| | - Manuel J Llansola-Portoles
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC) Gif-sur-Yvette 91190 France
| |
Collapse
|
4
|
Papadopoulos I, Hui JKH, Morikawa MA, Kawahara Y, Kaneko K, Miyata K, Onda K, Kimizuka N. Chirality in Singlet Fission: Controlling Singlet Fission in Aqueous Nanoparticles of Tetracenedicarboxylic Acid Ion Pairs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405864. [PMID: 39135542 DOI: 10.1002/advs.202405864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/22/2024] [Indexed: 10/25/2024]
Abstract
The singlet fission characteristics of aqueous nanoparticles, self-assembled from ion pairs of tetracene dicarboxylic acid and various amines with or without chirality, are thoroughly investigated. The structure of the ammonium molecule, the counterion, is found to play a decisive role in determining the molecular orientation of the ion pairs and its regularity, spectroscopic properties, the strength of the intermolecular coupling between the tetracene chromophores, and the consequent singlet fission process. Using chiral amines has led to the formation of crystalline nanosheets and efficient singlet fission with a triplet quantum yield as high as 133% ±20% and a rate constant of 6.99 × 109 s-1. The chiral ion pairs also provide a separation channel to free triplets with yields as high as 33% ±10%. In contrast, nanoparticles with achiral counterions do not show singlet fission, which gave low or high fluorescence quantum yields depending on the size of the counterions. The racemic ion pair produces a correlated triplet pair intermediate by singlet fission, but no decorrelation into two free triplets is observed, as triplet-triplet annihilation dominates. The introduction of chirality enables higher control over orientation and singlet fission in self-assembled chromophores. It provides new design guidelines for singlet fission materials.
Collapse
Affiliation(s)
- Ilias Papadopoulos
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Joseph Ka-Ho Hui
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Masa-Aki Morikawa
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
- Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yasuhito Kawahara
- Department of Materials Science and Engineering, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kenji Kaneko
- Department of Materials Science and Engineering, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kiyoshi Miyata
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Ken Onda
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Nobuo Kimizuka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
- Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
5
|
Gordillo-Gámez F, Gao Y, Aragó J, Ortí E, Aranda D, Kertesz M, Tykwinski RR, Casado J. Aggregation of One-Dimensional Wires: The Case of Long Oligoynes. Angew Chem Int Ed Engl 2024; 63:e202404014. [PMID: 38934233 DOI: 10.1002/anie.202404014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 06/28/2024]
Abstract
We show an unexpected aggregation phenomenon of a long oligoyne (Py[16]) with 16 contiguous triple bonds and endcapped with bulky 3,5-bi(3,5-bis-tert-butylphenyl)pyridine groups. Aggregation of 1D π-conjugated oligoyne chains is rare given the minimal π-π intermolecular interactions as well as its flexibility that works against self-assembly. In dilute solutions, the reversible aggregation of Py[16] initiates at low temperature in the range of 140-180 K, and is not observed for shorter oligoynes in this series. Cryogenic UV/Vis electronic absorption spectra and vibrational Raman spectra with different laser wavelength lines tuning from in-resonance to off-resonance conditions have been used to extract the vibrational features characterizing the monomer and aggregate species. Theoretical calculations complement the spectroscopic findings.
Collapse
Affiliation(s)
- Fernando Gordillo-Gámez
- Department of Physical Chemistry, University of Málaga, Andalucia-Tech, Campus de Teatinos s/n, 29071, Málaga, Spain
| | - Yueze Gao
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Juan Aragó
- Instituto de Ciencia Molecular (ICMol), Universitat de València, 46980, Paterna, Spain
| | - Enrique Ortí
- Instituto de Ciencia Molecular (ICMol), Universitat de València, 46980, Paterna, Spain
| | - Daniel Aranda
- Instituto de Ciencia Molecular (ICMol), Universitat de València, 46980, Paterna, Spain
| | - Miklos Kertesz
- Department of Chemistry and Institute of Soft Matter, Georgetown University, Washington, D.C.-20057-1227, United States
| | - Rik R Tykwinski
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Juan Casado
- Department of Physical Chemistry, University of Málaga, Andalucia-Tech, Campus de Teatinos s/n, 29071, Málaga, Spain
| |
Collapse
|
6
|
Peng B, Wang Z, Jiang J, Huang Y, Liu W. Investigation of ultrafast intermediate states during singlet fission in lycopene H-aggregate using femtosecond stimulated Raman spectroscopy. J Chem Phys 2024; 160:194304. [PMID: 38757619 DOI: 10.1063/5.0200802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
The singlet fission process involves the conversion of one singlet excited state into two triplet states, which has significant potential for enhancing the energy utilization efficiency of solar cells. Carotenoid, a typical π conjugated chromophore, exhibits specific aggregate morphologies known to display singlet fission behavior. In this study, we investigate the singlet fission process in lycopene H-aggregates using femtosecond stimulated Raman spectroscopy aided by quantum chemical calculation. The experimental results reveal two reaction pathways that effectively relax the S2 (11Bu+) state populations in lycopene H-aggregates: a monomer-like singlet excited state relaxation pathway through S2 (11Bu+) → 11Bu- → S1 (21Ag-) and a dominant sequential singlet fission reaction pathway involving the S2 (11Bu+) state, followed by S* state, a triplet pair state [1(TT)], eventually leading to a long lifetime triplet state T1. Importantly, the presence of both anionic and cationic fingerprint Raman peaks in the S* state is indicative of a substantial charge-transfer character.
Collapse
Affiliation(s)
- Bo Peng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ziyu Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jiaming Jiang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yifan Huang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Weimin Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
7
|
Wang X, Gao S, Luo Y, Liu X, Tom R, Zhao K, Chang V, Marom N. Computational Discovery of Intermolecular Singlet Fission Materials Using Many-Body Perturbation Theory. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:7841-7864. [PMID: 38774154 PMCID: PMC11103713 DOI: 10.1021/acs.jpcc.4c01340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/24/2024]
Abstract
Intermolecular singlet fission (SF) is the conversion of a photogenerated singlet exciton into two triplet excitons residing on different molecules. SF has the potential to enhance the conversion efficiency of solar cells by harvesting two charge carriers from one high-energy photon, whose surplus energy would otherwise be lost to heat. The development of commercial SF-augmented modules is hindered by the limited selection of molecular crystals that exhibit intermolecular SF in the solid state. Computational exploration may accelerate the discovery of new SF materials. The GW approximation and Bethe-Salpeter equation (GW+BSE) within the framework of many-body perturbation theory is the current state-of-the-art method for calculating the excited-state properties of molecular crystals with periodic boundary conditions. In this Review, we discuss the usage of GW+BSE to assess candidate SF materials as well as its combination with low-cost physical or machine learned models in materials discovery workflows. We demonstrate three successful strategies for the discovery of new SF materials: (i) functionalization of known materials to tune their properties, (ii) finding potential polymorphs with improved crystal packing, and (iii) exploring new classes of materials. In addition, three new candidate SF materials are proposed here, which have not been published previously.
Collapse
Affiliation(s)
- Xiaopeng Wang
- School
of Foundational Education, University of
Health and Rehabilitation Sciences, Qingdao 266113, China
- Qingdao
Institute for Theoretical and Computational Sciences, Institute of
Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Siyu Gao
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yiqun Luo
- Department
of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Xingyu Liu
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Rithwik Tom
- Department
of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Kaiji Zhao
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Vincent Chang
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Noa Marom
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department
of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
8
|
Wang K, You X, Miao X, Yi Y, Peng S, Wu D, Chen X, Xu J, Sfeir MY, Xia J. Activated Singlet Fission Dictated by Anti-Kasha Property in a Rylene Imide Dye. J Am Chem Soc 2024; 146:13326-13335. [PMID: 38693621 DOI: 10.1021/jacs.4c01732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
A key challenge in the search of new materials capable of singlet fission (SF) arises from the primary energy conservation criterion, i.e., the energy of the triplet exciton has to be half that of the singlet (E(S1) ≥ 2E(T1)), which excludes most photostable organic materials from consideration and confines the design strategy to materials with low energy triplet states. One potential way to overcome this energy requirement and improve the triplet energy is to enable a SF channel from higher energy ("hot") excitonic states (Sn) in a process called activated SF. Herein, we demonstrate that efficient activated SF is achieved in a rylene imide-based derivative acenaphth[l, 2-a]acenaphthylene diimide (AADI). This process is enabled by an increase in the energy gap to greater than 1.0 eV between the S3 and S1 states due to the incorporation of an antiaromatic pentalene unit, which leads to the emergence of anti-Kasha properties in the isolated molecule. Transient spectroscopy studies show that AADI undergoes ultrafast SF from higher singlet excited states in thin film, with excitation wavelength-dependent SF yields. The SF yield of ∼200% is observed upon higher energy excitation, and long-lived free triplets persist on the μs time scale suggesting that AADI can be used in SF-enhanced devices. Our results suggest that enlarging the Sn-S1 energy gap is an effective way to turn on the activated SF channel and shed light on the development of novel, stable SF materials with high triplet energies.
Collapse
Affiliation(s)
- Kangwei Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Xiaoxiao You
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Xiaodan Miao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy Sciences, Beijing 100049, China
| | - Yuanping Yi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy Sciences, Beijing 100049, China
| | - Shaoqian Peng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Di Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Xingyu Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Jingwen Xu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Matthew Y Sfeir
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York 10016, United States
- Department of Physics, Graduate Center, City University of New York, New York 10031, United States
| | - Jianlong Xia
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
9
|
Özcan E, Šímová I, Bína D, Litvín R, Polívka T. Ultrafast spectroscopy of the hydrophilic carotenoid crocin at various pH. Phys Chem Chem Phys 2024; 26:10225-10233. [PMID: 38497307 DOI: 10.1039/d4cp00665h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
This study delves into the pH-dependent effects on the excited-state behavior of crocin, a hydrophilic carotenoid with diverse functions in biological systems. Steady-state spectroscopy demonstrates notable changes in absorption and fluorescence spectra, characterized by a pH-dependent blue shift and altered resolution of vibrational bands. Transient absorption spectra further elucidate these effects, highlighting a significant blue shift in the S1-Sn peak with increasing pH. Detailed kinetic analysis shows the pH-dependent dynamics of crocin's excited states. At pH 11, a shortening of effective conjugation is observed, resulting in a prolonged S1/ICT lifetime. Conversely, at pH 9, our data suggest a more complex scenario, suggesting the presence of two distinct crocin species with different relaxation patterns. This implies structural alterations within the crocin molecule, potentially linked to the deprotonation of hydroxyl groups in crocin and/or saponification at high pH.
Collapse
Affiliation(s)
- Emrah Özcan
- Department of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic.
| | - Ivana Šímová
- Department of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic.
| | - David Bína
- Department of Chemistry, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics and Biochemistry, České Budějovice, Czech Republic
| | - Radek Litvín
- Department of Chemistry, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics and Biochemistry, České Budějovice, Czech Republic
| | - Tomáš Polívka
- Department of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic.
| |
Collapse
|
10
|
Crisci L, Coppola F, Petrone A, Rega N. Tuning ultrafast time-evolution of photo-induced charge-transfer states: A real-time electronic dynamics study in substituted indenotetracene derivatives. J Comput Chem 2024; 45:210-221. [PMID: 37706600 DOI: 10.1002/jcc.27231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
Photo-induced charge transfer (CT) states are pivotal in many technological and biological processes. A deeper knowledge of such states is mandatory for modeling the charge migration dynamics. Real-time time-dependent density functional theory (RT-TD-DFT) electronic dynamics simulations are employed to explicitly observe the electronic density time-evolution upon photo-excitation. Asymmetrically substituted indenotetracene molecules, given their potential application as n-type semiconductors in organic photovoltaic materials, are here investigated. Effects of substituents with different electron-donating characters are analyzed in terms of the overall electronic energy spacing and resulting ultrafast CT dynamics through linear response (LR-)TD-DFT and RT-TD-DFT based approaches. The combination of the computational techniques here employed provided direct access to the electronic density reorganization in time and to its spatial and rational representation in terms of molecular orbital occupation time evolution. Such results can be exploited to design peculiar directional charge dynamics, crucial when photoactive materials are used for light-harvesting applications.
Collapse
Affiliation(s)
- Luigi Crisci
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di M.S. Angelo, Naples, Italy
- Scuola Normale Superiore di Pisa, Pisa, Italy
| | | | - Alessio Petrone
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di M.S. Angelo, Naples, Italy
- Scuola Superiore Meridionale, Naples, Italy
- Istituto Nazionale Di Fisica Nucleare, Sezione di Napoli, Complesso Universitario di M.S. Angelo ed. 6, Naples, Italy
| | - Nadia Rega
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di M.S. Angelo, Naples, Italy
- Scuola Superiore Meridionale, Naples, Italy
- Istituto Nazionale Di Fisica Nucleare, Sezione di Napoli, Complesso Universitario di M.S. Angelo ed. 6, Naples, Italy
| |
Collapse
|
11
|
Dong J, Wang P. Discovery of ultra-weakly coupled β-carotene J-aggregates by machine learning. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123950. [PMID: 38277780 DOI: 10.1016/j.saa.2024.123950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/13/2024] [Accepted: 01/21/2024] [Indexed: 01/28/2024]
Abstract
Carotenoid aggregates are omnipresent in natural world and can be synthesized in hydrophilic environments. Despite different types of carotenoid aggregates have been reported hitherto, the way to predict the formation of carotenoid aggregates, i.e. H- or J-aggregates, is still challenging. Here, for the first time, we established machine learning models that can predict the formation behavior of carotenoid aggregates. The models are trained based on a database containing different types of carotenoid aggregates reported in the literatures. With the help of these machine learning models, we found a series of unknown types of β-carotene J-aggregates. These novel aggregates are ultra-weakly coupled and have absorption bands up to 700 nm, different from all the carotenoid aggregates reported previously. Our work demonstrates that the machine learning is a powerful tool to predict the formation behavior of carotenoid aggregates and can further lead into the discovery of new carotenoid aggregates for different applications.
Collapse
Affiliation(s)
- Jia Dong
- Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China.
| | - Peng Wang
- Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China.
| |
Collapse
|
12
|
Sousa C, Sánchez-Mansilla A, Broer R, Straatsma TP, de Graaf C. A Nonorthogonal Configuration Interaction Approach to Singlet Fission in Perylenediimide Compounds. J Phys Chem A 2023; 127:9944-9958. [PMID: 37964533 PMCID: PMC10694806 DOI: 10.1021/acs.jpca.3c04975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/07/2023] [Accepted: 10/31/2023] [Indexed: 11/16/2023]
Abstract
Perylenediimide molecules constitute a family of chromophores that undergo singlet fission, a process in which an excited singlet state converts into lower energy triplets on two neighboring molecules, potentially increasing the efficiency of organic solar cells. Here, the nonorthogonal configuration interaction method is applied to study the effect of the different crystal packing of various perylenediimide derivatives on the relative energies of the singlet and triplet states, the intermolecular electronic couplings, and the relative rates for singlet fission. The analysis of the wave functions and electronic couplings reveals that charge transfer states play an important role in the singlet fission mechanism. Dimer conformations where the PDI molecules are at large displacements along the long axis and short on the short axis are posed as the most favorable for singlet fission. The role of the substituent at the imide group has been inspected concluding that, although it has no effect in the energies, for some conformations it significantly influences the electronic couplings, and therefore, replacing this substituent with hydrogen may introduce artifacts in the computational modeling of the PDI molecules.
Collapse
Affiliation(s)
- C. Sousa
- Departament
de Ciència de Materials i Química Física and
Institut de Química Teòrica i Computacional, Universitat de Barcelona, 08028 Barcelona, Spain
| | - A. Sánchez-Mansilla
- Departament
de Química Física i Inorgànica, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - R. Broer
- Zernike
Institute of Advanced Materials, University
of Groningen, 9747 AG Groningen, The Netherlands
| | - T. P. Straatsma
- National
Center for Computational Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831-6373, United States
- Department
of Chemistry and Biochemistry, University
of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| | - C. de Graaf
- Departament
de Química Física i Inorgànica, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
13
|
Barford W. Singlet Fission in Lycopene H-Aggregates. J Phys Chem Lett 2023; 14:9842-9847. [PMID: 37890074 PMCID: PMC10641873 DOI: 10.1021/acs.jpclett.3c02435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
A theory of singlet fission (SF) in carotenoid dimers is applied to explain the SF in lycopene H-aggregates observed after high-energy photoexcitation. The explanation proposed here is that a high energy, delocalized bright 1Bu+ state first relaxes and localizes onto a single lycopene monomer. The high-energy intramonomer state then undergoes internal conversion to the 11Bu- state. Once populated, the 11Bu- state allows exothermic bimolecular singlet fission, while its internal conversion to the 21Ag- state is symmetry forbidden. The simulation of SF predicts that the intramonomer triplet-pair state undergoes almost complete population transfer to the intermonomer singlet-pair state within 100 ps. Simultaneously, ZFS interactions begin to partially populate the intermonomer quintet triplet-pair state up to ca. 2 ns, after which hyperfine interactions thermally equilibrate the triplet-pair states, thus forming free single triplets within 50 ns.
Collapse
Affiliation(s)
- William Barford
- Department of Chemistry, Physical and
Theoretical Chemistry Laboratory,University
of Oxford, Oxford, OX1 3QZ, United
Kingdom
| |
Collapse
|
14
|
Nishida Y, Berg PC, Shakersain B, Hecht K, Takikawa A, Tao R, Kakuta Y, Uragami C, Hashimoto H, Misawa N, Maoka T. Astaxanthin: Past, Present, and Future. Mar Drugs 2023; 21:514. [PMID: 37888449 PMCID: PMC10608541 DOI: 10.3390/md21100514] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
Astaxanthin (AX), a lipid-soluble pigment belonging to the xanthophyll carotenoids family, has recently garnered significant attention due to its unique physical properties, biochemical attributes, and physiological effects. Originally recognized primarily for its role in imparting the characteristic red-pink color to various organisms, AX is currently experiencing a surge in interest and research. The growing body of literature in this field predominantly focuses on AXs distinctive bioactivities and properties. However, the potential of algae-derived AX as a solution to various global environmental and societal challenges that threaten life on our planet has not received extensive attention. Furthermore, the historical context and the role of AX in nature, as well as its significance in diverse cultures and traditional health practices, have not been comprehensively explored in previous works. This review article embarks on a comprehensive journey through the history leading up to the present, offering insights into the discovery of AX, its chemical and physical attributes, distribution in organisms, and biosynthesis. Additionally, it delves into the intricate realm of health benefits, biofunctional characteristics, and the current market status of AX. By encompassing these multifaceted aspects, this review aims to provide readers with a more profound understanding and a robust foundation for future scientific endeavors directed at addressing societal needs for sustainable nutritional and medicinal solutions. An updated summary of AXs health benefits, its present market status, and potential future applications are also included for a well-rounded perspective.
Collapse
Affiliation(s)
- Yasuhiro Nishida
- Fuji Chemical Industries, Co., Ltd., 55 Yokohoonji, Kamiich-machi, Nakaniikawa-gun, Toyama 930-0405, Japan
| | | | - Behnaz Shakersain
- AstaReal AB, Signum, Forumvägen 14, Level 16, 131 53 Nacka, Sweden; (P.C.B.); (B.S.)
| | - Karen Hecht
- AstaReal, Inc., 3 Terri Lane, Unit 12, Burlington, NJ 08016, USA;
| | - Akiko Takikawa
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan;
| | - Ruohan Tao
- Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda 669-1330, Japan; (R.T.); (Y.K.); (C.U.); (H.H.)
| | - Yumeka Kakuta
- Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda 669-1330, Japan; (R.T.); (Y.K.); (C.U.); (H.H.)
| | - Chiasa Uragami
- Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda 669-1330, Japan; (R.T.); (Y.K.); (C.U.); (H.H.)
| | - Hideki Hashimoto
- Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda 669-1330, Japan; (R.T.); (Y.K.); (C.U.); (H.H.)
| | - Norihiko Misawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Suematsu, Nonoichi-shi 921-8836, Japan;
| | - Takashi Maoka
- Research Institute for Production Development, 15 Shimogamo-morimoto-cho, Sakyo-ku, Kyoto 606-0805, Japan
| |
Collapse
|
15
|
Kim J, Teo HT, Hong Y, Liau YC, Yim D, Han Y, Oh J, Kim H, Chi C, Kim D. Leveraging Charge-Transfer Interactions in Through-Space-Coupled Pentacene Dendritic Oligomer for Singlet Exciton Fission. J Am Chem Soc 2023; 145:19812-19823. [PMID: 37656929 DOI: 10.1021/jacs.3c05660] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Singlet exciton fission in organic chromophores has received much attention during the past decade. Inspired by numerous spectroscopic studies in the solid state, there have been vigorous efforts to study singlet exciton fission dynamics in covalently bonded oligomers, which aims to investigate underlying mechanisms of this intriguing process in simplified model systems. In terms of through-space orbital interactions, however, most of covalently bonded pentacene oligomers studied so far fall into weakly interacting systems since they manifest chain-like structures based on various (non)conjugated linkers. Therefore, it remains as a compelling question to answer how through-space interactions in the solid state intervene this photophysical process since it is hypersensitive to displacements and orientations between neighboring chromophores. Herein, as one of experimental studies to answer this question, we introduced a tight-packing dendritic structure whose mesityl-pentacene constituents are coupled via moderate through-space orbital interactions. Based on the comparison with a suitably controlled dendritic structure, which is in a weak coupling regime, important mechanistic viewpoints are tackled such as configurational mixings between singlet, charge-transfer, and triplet pair states and the role of chromophore multiplication. We underscore that our through-space-coupled dendritic oligomer in a quasi-intermediate coupling regime provides a hint on the interplay of multiconfigurational excited-states, which might have drawn complexity in singlet exciton fission kinetics throughout numerous solid-state morphologies.
Collapse
Affiliation(s)
- Juno Kim
- Department of Chemistry, Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 03722, Korea
| | - Hao Ting Teo
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Yongseok Hong
- Department of Chemistry, Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 03722, Korea
| | - Yuan Cheng Liau
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Daniel Yim
- Department of Chemistry, Incheon National University, Incheon 22012, Korea
| | - Yi Han
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Juwon Oh
- Department of ICT Environmental Health System and Department of Chemistry, Soonchunhyang University, Asan 31538, Korea
| | - Hyungjun Kim
- Department of Chemistry, Incheon National University, Incheon 22012, Korea
| | - Chunyan Chi
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Dongho Kim
- Department of Chemistry, Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
16
|
Barford W, Chambers CA. Theory of singlet fission in carotenoid dimers. J Chem Phys 2023; 159:084116. [PMID: 37646371 DOI: 10.1063/5.0155476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/03/2023] [Indexed: 09/01/2023] Open
Abstract
We develop a theory of singlet fission in carotenoid dimers. Following photoexcitation of the "bright" state (i.e., a singlet electron-hole pair) in a single carotenoid, the first step in the singlet fission process is ultrafast intramolecular conversion into the highly correlated "dark" (or 2Ag) state. This state has both entangled singlet triplet-pair and charge-transfer character. Our theory is predicated on the assumption that it is the singlet triplet-pair component of the "dark" state that undergoes bimolecular singlet fission. We use valence bond theory to develop a minimal two-chain model of the triplet-pair states. The single and double chain triplet-pair spectra are described, as this helps explain the dynamics and the equilibrated populations. We simulate the dynamics of the initial entangled pair state using the quantum Liouville equation, including both spin-conserving and spin-nonconserving dephasing processes. By computing the intrachain and interchain singlet, triplet, and quintet triplet-pair populations, we show that singlet fission critically depends on the interchain coupling and the driving potential (that determines endothermic vs exothermic fission).
Collapse
Affiliation(s)
- William Barford
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, OX1 3QZ, United Kingdom
- Balliol College, University of Oxford, Oxford, OX1 3BJ, United Kingdom
| | - Cameron A Chambers
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, OX1 3QZ, United Kingdom
- Lincoln College, University of Oxford, Oxford, OX1 3DR, United Kingdom
| |
Collapse
|
17
|
Sutherland G, Pidgeon JP, Lee HKH, Proctor MS, Hitchcock A, Wang S, Chekulaev D, Tsoi WC, Johnson MP, Hunter CN, Clark J. Twisted Carotenoids Do Not Support Efficient Intramolecular Singlet Fission in the Orange Carotenoid Protein. J Phys Chem Lett 2023; 14:6135-6142. [PMID: 37364284 PMCID: PMC10331831 DOI: 10.1021/acs.jpclett.3c01139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
Singlet exciton fission is the spin-allowed generation of two triplet electronic excited states from a singlet state. Intramolecular singlet fission has been suggested to occur on individual carotenoid molecules within protein complexes provided that the conjugated backbone is twisted out of plane. However, this hypothesis has been forwarded only in protein complexes containing multiple carotenoids and bacteriochlorophylls in close contact. To test the hypothesis on twisted carotenoids in a "minimal" one-carotenoid system, we study the orange carotenoid protein (OCP). OCP exists in two forms: in its orange form (OCPo), the single bound carotenoid is twisted, whereas in its red form (OCPr), the carotenoid is planar. To enable room-temperature spectroscopy on canthaxanthin-binding OCPo and OCPr without laser-induced photoconversion, we trap them in a trehalose glass. Using transient absorption spectroscopy, we show that there is no evidence of long-lived triplet generation through intramolecular singlet fission despite the canthaxanthin twist in OCPo.
Collapse
Affiliation(s)
- George
A. Sutherland
- Plants,
Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K.
| | - James P. Pidgeon
- Department
of Physics and Astronomy, University of
Sheffield, Sheffield S3 7RH, U.K.
| | - Harrison Ka Hin Lee
- SPECIFIC,
Faculty of Science and Engineering, Swansea
University, Swansea SA1 8EN, U.K.
| | - Matthew S. Proctor
- Plants,
Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K.
| | - Andrew Hitchcock
- Plants,
Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K.
| | - Shuangqing Wang
- Department
of Physics and Astronomy, University of
Sheffield, Sheffield S3 7RH, U.K.
| | - Dimitri Chekulaev
- Department
of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K.
| | - Wing Chung Tsoi
- SPECIFIC,
Faculty of Science and Engineering, Swansea
University, Swansea SA1 8EN, U.K.
| | - Matthew P. Johnson
- Plants,
Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K.
| | - C. Neil Hunter
- Plants,
Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K.
| | - Jenny Clark
- Department
of Physics and Astronomy, University of
Sheffield, Sheffield S3 7RH, U.K.
| |
Collapse
|
18
|
Purdy M, Walton JR, Fallon KJ, Toolan DTW, Budden P, Zeng W, Corpinot MK, Bučar DK, van Turnhout L, Friend R, Rao A, Bronstein H. Aza-Cibalackrot: Turning on Singlet Fission Through Crystal Engineering. J Am Chem Soc 2023; 145:10712-10720. [PMID: 37133417 DOI: 10.1021/jacs.3c00971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Singlet fission is a photophysical process that provides a pathway for more efficient harvesting of solar energy in photovoltaic devices. The design of singlet fission candidates is non-trivial and requires careful optimization of two key criteria: (1) correct energetic alignment and (2) appropriate intermolecular coupling. Meanwhile, this optimization must not come at the cost of molecular stability or feasibility for device applications. Cibalackrot is a historic and stable organic dye which, although it has been suggested to have ideal energetics, does not undergo singlet fission due to large interchromophore distances, as suggested by single crystal analysis. Thus, while the energetic alignment is satisfactory, the molecule does not have the desired intermolecular coupling. Herein, we improve this characteristic through molecular engineering with the first synthesis of an aza-cibalackrot and show, using ultrafast transient spectroscopy, that singlet fission is successfully "turned on."
Collapse
Affiliation(s)
- Michael Purdy
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge CB2 1EW, U.K
| | - Jessica R Walton
- Department of Physics, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Kealan J Fallon
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge CB2 1EW, U.K
| | - Daniel T W Toolan
- Department of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF, U.K
| | - Peter Budden
- Department of Physics, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Weixuan Zeng
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge CB2 1EW, U.K
| | - Merina K Corpinot
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K
| | - Dejan-Krešimir Bučar
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K
| | - Lars van Turnhout
- Department of Physics, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Richard Friend
- Department of Physics, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Akshay Rao
- Department of Physics, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Hugo Bronstein
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge CB2 1EW, U.K
| |
Collapse
|
19
|
Tom R, Gao S, Yang Y, Zhao K, Bier I, Buchanan EA, Zaykov A, Havlas Z, Michl J, Marom N. Inverse Design of Tetracene Polymorphs with Enhanced Singlet Fission Performance by Property-Based Genetic Algorithm Optimization. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:1373-1386. [PMID: 36999121 PMCID: PMC10042130 DOI: 10.1021/acs.chemmater.2c03444] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/06/2023] [Indexed: 06/19/2023]
Abstract
The efficiency of solar cells may be improved by using singlet fission (SF), in which one singlet exciton splits into two triplet excitons. SF occurs in molecular crystals. A molecule may crystallize in more than one form, a phenomenon known as polymorphism. Crystal structure may affect SF performance. In the common form of tetracene, SF is experimentally known to be slightly endoergic. A second, metastable polymorph of tetracene has been found to exhibit better SF performance. Here, we conduct inverse design of the crystal packing of tetracene using a genetic algorithm (GA) with a fitness function tailored to simultaneously optimize the SF rate and the lattice energy. The property-based GA successfully generates more structures predicted to have higher SF rates and provides insight into packing motifs associated with improved SF performance. We find a putative polymorph predicted to have superior SF performance to the two forms of tetracene, whose structures have been determined experimentally. The putative structure has a lattice energy within 1.5 kJ/mol of the most stable common form of tetracene.
Collapse
Affiliation(s)
- Rithwik Tom
- Department
of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania15213, United States
| | - Siyu Gao
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania15213, United States
| | - Yi Yang
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania15213, United States
| | - Kaiji Zhao
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania15213, United States
| | - Imanuel Bier
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania15213, United States
| | - Eric A. Buchanan
- Department
of Chemistry, University of Colorado, Boulder, Colorado80309, United States
| | - Alexandr Zaykov
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, 16610Prague 6, Czech
Republic
- Department
of Physical Chemistry, University of Chemistry
and Technology, 166 28Prague 6, Czech Republic
| | - Zdeněk Havlas
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, 16610Prague 6, Czech
Republic
| | - Josef Michl
- Department
of Chemistry, University of Colorado, Boulder, Colorado80309, United States
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, 16610Prague 6, Czech
Republic
| | - Noa Marom
- Department
of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania15213, United States
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania15213, United States
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania15213, United States
| |
Collapse
|
20
|
Manawadu D, Georges TN, Barford W. Photoexcited State Dynamics and Singlet Fission in Carotenoids. J Phys Chem A 2023; 127:1342-1352. [PMID: 36701532 PMCID: PMC9923744 DOI: 10.1021/acs.jpca.2c07781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/08/2023] [Indexed: 01/27/2023]
Abstract
We describe our simulations of the excited state dynamics of the carotenoid neurosporene, following its photoexcitation into the "bright" (nominally 11Bu+) state. To account for the experimental and theoretical uncertainty in the relative energetic ordering of the nominal 11Bu+ and 21Ag- states at the Franck-Condon point, we consider two parameter sets. In both cases, there is ultrafast internal conversion from the "bright" state to a "dark" singlet triplet-pair state, i.e., to one member of the "2Ag" family of states. For one parameter set, internal conversion from the 11Bu+ to 21Ag- states occurs via the dark, intermediate 11Bu- state. In this case, there is a cross over of the 11Bu+ and 11Bu- diabatic energies within 5 fs and an associated avoided crossing of the S2 and S3 adiabatic energies. After the adiabatic evolution of the S2 state from predominately 11Bu+ character to predominately 11Bu- character, there is a slower nonadiabatic transition from S2 to S1, accompanied by an increase in the population of the 21Ag- state. For the other parameter set, the 21Ag- energy lies higher than the 11Bu+ energy at the Franck-Condon point. In this case, there is cross over of the 21Ag- and 11Bu+ energies and an avoided crossing of the S1 and S2 energies, as the S1 state evolves adiabatically from being of 11Bu+ character to 21Ag- character. We make a direct connection from our predictions to experimental observables by calculating the time-resolved excited state absorption. For the case of direct 11Bu+ to 21Ag- internal conversion, we show that the dominant transition at ca. 2 eV, being close to but lower in energy than the T1 to T1* transition, can be attributed to the 21Ag- component of S1. Moreover, we show that it is the charge-transfer exciton component of the 21Ag- state that is responsible for this transition (to a higher-lying exciton state), and not its triplet-pair component. These simulations are performed using the adaptive tDMRG method on the extended Hubbard model of π-conjugated electrons. The Ehrenfest equations of motion are used to simulate the coupled nuclei dynamics. We next discuss the microscopic mechanism of "bright" to "dark" state internal conversion and emphasize that this occurs via the exciton components of both states. Finally, we describe a mechanism relying on torsional relaxation whereby the strongly bound intrachain triplet-pairs of the "dark" state may undergo interchain exothermic dissociation.
Collapse
Affiliation(s)
- Dilhan Manawadu
- Department
of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, United Kingdom
- Linacre
College, University of Oxford, Oxford OX1 3JA, United Kingdom
| | - Timothy N. Georges
- Department
of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, United Kingdom
- Brasenose
College, University of Oxford, Oxford OX1 4AJ, United Kingdom
| | - William Barford
- Department
of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
21
|
Millington O, Montanaro S, Leventis A, Sharma A, Dowland SA, Sawhney N, Fallon KJ, Zeng W, Congrave DG, Musser AJ, Rao A, Bronstein H. Soluble Diphenylhexatriene Dimers for Intramolecular Singlet Fission with High Triplet Energy. J Am Chem Soc 2023; 145:2499-2510. [PMID: 36683341 PMCID: PMC9896565 DOI: 10.1021/jacs.2c12060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Indexed: 01/24/2023]
Abstract
Intramolecular singlet fission (iSF) facilitates single-molecule exciton multiplication, converting an excited singlet state to a pair of triplet states within a single molecule. A critical parameter in determining the feasibility of SF-enhanced photovoltaic designs is the triplet energy; many existing iSF materials have triplet energies too low for efficient transfer to silicon via a photon multiplier scheme. In this work, a series of six novel dimers based upon the high-triplet-energy, SF-active chromophore, 1,6-diphenyl-1,3,5-hexatriene (DPH) [E(T1) ∼ 1.5 eV], were designed, synthesized, and characterized. Transient absorption spectroscopy and fluorescence lifetime studies reveal that five of the dimers display iSF activity, with time constants for singlet fission varying between 7 ± 2 ps and 2.2 ± 0.2 ns and a high triplet yield of 163 ± 63% in the best-performing dimer. A strong dependence of the rate of fission on the coupling geometry is demonstrated. For optimized iSF behavior, close spatial proximity and minimal through-bond communication are found to be crucial for balancing the rate of SF against the reverse recombination process.
Collapse
Affiliation(s)
- Oliver Millington
- Department
of Chemistry, University of Cambridge, CambridgeCB2 1EW, U.K.
- Cavendish
Laboratory, University of Cambridge, CambridgeCB3 0HE, U.K.
| | | | - Anastasia Leventis
- Department
of Chemistry, University of Cambridge, CambridgeCB2 1EW, U.K.
| | - Ashish Sharma
- Cavendish
Laboratory, University of Cambridge, CambridgeCB3 0HE, U.K.
| | - Simon A. Dowland
- Cavendish
Laboratory, University of Cambridge, CambridgeCB3 0HE, U.K.
| | - Nipun Sawhney
- Cavendish
Laboratory, University of Cambridge, CambridgeCB3 0HE, U.K.
| | - Kealan J. Fallon
- Department
of Chemistry, University of Cambridge, CambridgeCB2 1EW, U.K.
- Cavendish
Laboratory, University of Cambridge, CambridgeCB3 0HE, U.K.
| | - Weixuan Zeng
- Department
of Chemistry, University of Cambridge, CambridgeCB2 1EW, U.K.
| | - Daniel G. Congrave
- Department
of Chemistry, University of Cambridge, CambridgeCB2 1EW, U.K.
| | - Andrew J. Musser
- Department
of Chemistry and Chemical Biology, Cornell
University, Baker Laboratory, Ithaca, New York14853, United States
| | - Akshay Rao
- Cavendish
Laboratory, University of Cambridge, CambridgeCB3 0HE, U.K.
| | - Hugo Bronstein
- Department
of Chemistry, University of Cambridge, CambridgeCB2 1EW, U.K.
- Cavendish
Laboratory, University of Cambridge, CambridgeCB3 0HE, U.K.
| |
Collapse
|
22
|
Fallon K, Sawhney N, Toolan DTW, Sharma A, Zeng W, Montanaro S, Leventis A, Dowland S, Millington O, Congrave D, Bond A, Friend R, Rao A, Bronstein H. Quantitative Singlet Fission in Solution-Processable Dithienohexatrienes. J Am Chem Soc 2022; 144:23516-23521. [PMID: 36575926 PMCID: PMC9801381 DOI: 10.1021/jacs.2c10254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Indexed: 12/29/2022]
Abstract
Singlet fission (SF) is a promising strategy to overcome thermalization losses and enhance the efficiency of single junction photovoltaics (PVs). The development of this field has been strongly material-limited, with a paucity of materials able to undergo SF. Rarer still are examples that can produce excitons of sufficient energy to be coupled to silicon PVs (>1.1 eV). Herein, we examine a series of a short-chain polyene, dithienohexatriene (DTH), with tailored material properties and triplet (T1) energy levels greater than 1.1 eV. We find that these highly soluble materials can be easily spin-cast to create thin films of high crystallinity that exhibit ultrafast singlet fission with near perfect triplet yields of up to 192%. We believe that these materials are the first solution-processable singlet fission materials with quantitative triplet formation and energy levels appropriate for use in conjunction with silicon PVs.
Collapse
Affiliation(s)
- Kealan
J. Fallon
- Department
of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
- Cavendish
Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Nipun Sawhney
- Cavendish
Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Daniel T. W. Toolan
- Department
of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF, U.K.
| | - Ashish Sharma
- Cavendish
Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Weixuan Zeng
- Department
of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | | | - Anastasia Leventis
- Department
of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Simon Dowland
- Cavendish
Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Oliver Millington
- Department
of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Daniel Congrave
- Department
of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Andrew Bond
- Department
of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Richard Friend
- Cavendish
Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Akshay Rao
- Cavendish
Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Hugo Bronstein
- Department
of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
- Cavendish
Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K.
| |
Collapse
|
23
|
Lu L, Song Y, Liu W, Jiang L. Excitation-Dependence of Excited-State Dynamics and Vibrational Relaxation of Lutein Explored by Multiplex Transient Grating. ACS OMEGA 2022; 7:48250-48260. [PMID: 36591184 PMCID: PMC9798734 DOI: 10.1021/acsomega.2c06371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Multiplex transient grating (MTG) spectroscopy was applied to lutein in ethanol to investigate the excitation-energy dependence of the excited-state dynamics and vibrational relaxation. The transient spectra obtained upon low (480 nm) and high-energy (380 nm) excitation both recorded a strong excited-state absorption (ESA) of S1 → S n as well as a broad band in the blue wavelength that was previously proposed as the S* state. By means of Gaussian decomposition and global fitting of the ESA band, a long-time component assigned to the triplet state was derived from the kinetic trace of 480 nm excitation. Moreover, the MTG signal with a resolution of 110 fs displayed the short-time quantum beat signal. In order to unveil the vibrational coherence in the excited-state decay, the linear and non-linear simulations of the steady spectrum and dynamic signals were presented in which at least three fundamental modes standing for C-C stretching (ν1), C=C stretching (ν2), and O-H valence vibrations (ν3) were considered to analyze the experimental signals. It was identified that the vibrational coherence between ν1 and ν3 or ν2 and ν3 was responsible for quantum beat that may be associated with the triplet state. We concluded that upon low- or high-energy excitation into the S2 state, the photo-isomerization of the molecule and structural recovery on the time-scale of vibrational cooling are the key factors to form a mixed conformation in the hot-S1 state that is the precursor of a long life-time triplet.
Collapse
Affiliation(s)
- Liping Lu
- College
of Science, Nanjing Agricultural University, Nanjing, Jiangsu210095, China
| | - Yunfei Song
- National
Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan621900, China
| | - Weilong Liu
- Department
of Physics, Harbin Institute of Technology, Harbin, Heilongjiang150080, China
| | - Lilin Jiang
- Office
of Academic Research, Hezhou University, Hezhou, Guangxi542899, China
| |
Collapse
|
24
|
Bai Y, Ni W, Sun K, Chen L, Ma L, Zhao Y, Gurzadyan GG, Gelin MF. Plenty of Room on the Top: Pathways and Spectroscopic Signatures of Singlet Fission from Upper Singlet States. J Phys Chem Lett 2022; 13:11086-11094. [PMID: 36417755 DOI: 10.1021/acs.jpclett.2c03053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We investigate dynamic signatures of the singlet fission (SF) process triggered by the excitation of a molecular system to an upper singlet state SN (N > 1) and develop a computational methodology for the simulation of nonlinear spectroscopic signals revealing the SN → TT1 SF in real time. We demonstrate that SF can proceed directly from the upper state SN, bypassing the lowest excited state, S1. We determine the main SN → TT1 reaction pathways and show by computer simulation and spectroscopic measurements that the SN-initiated SF can be faster and more efficient than the traditionally studied S1 → TT1 SF. We claim that the SN → TT1 SF offers novel promising opportunities for engineering SF systems and enhancing SF yields.
Collapse
Affiliation(s)
- Yiting Bai
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Wenjun Ni
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Kewei Sun
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| | | | - Lin Ma
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangdong 510006, China
| | - Yang Zhao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Gagik G Gurzadyan
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, Dalian University of Technology, Dalian 116024, China
| | - Maxim F Gelin
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
25
|
Influence of core-twisted structure on singlet fission in perylenediimide film. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Nagaoka T, Matsui Y, Fuki M, Ogaki T, Ohta E, Kobori Y, Ikeda H. Diphenyldihydropentalenediones: Wide Singlet-Triplet Energy Gap Compounds Possessing the Planarly Fixed Diene Subunit. ACS OMEGA 2022; 7:40364-40373. [PMID: 36385848 PMCID: PMC9648098 DOI: 10.1021/acsomega.2c05341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
2,2,5,5-Tetramethyl-3,6-diphenyl-2,5-dihydropentalene-1,4-dione (PD-H) and its dimethoxy (PD-OCH3) and bis(trifluoromethyl) derivatives (PD-CF3) were developed as a new class of compounds possessing a wide excited singlet-triplet energy gap. The PD derivatives would also have a high energy level of the triplet-excited state (E T) due to the planarity of the fused-diene subunit. The results of photophysical studies revealed that the energy level of the singlet-excited state (E S) and E T of PD-H are 2.88 and 1.43 eV, respectively. These values indicate that PD-H has the energy relationship, E S > 2E T, required for it to be a singlet fission (SF) material. Moreover, the introduction of electron-donating or -withdrawing groups on the benzene rings in PD-H enables fine-tuning of E S and E T. The results of transient absorption spectroscopic studies show that PD-H, PD-OCH3, and PD-CF3 in CH2Cl2 have respective T1 lifetimes of 71, 118, and 107 μs, which are long enough to utilize its triplet exciton in other optoelectronic systems. These findings suggest that the PDs are potential candidates for SF materials with high E T levels.
Collapse
Affiliation(s)
- Tomoki Nagaoka
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka599-8531, Japan
| | - Yasunori Matsui
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka599-8531, Japan
- The
Research Institute for Molecular Electronic Devices (RIMED), Osaka Metropolitan University, 1-1 Gakuen-cho,
Nakaku, Sakai, Osaka599-8531, Japan
| | - Masaaki Fuki
- Molecular
Photoscience Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo657-8501, Japan
| | - Takuya Ogaki
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka599-8531, Japan
- The
Research Institute for Molecular Electronic Devices (RIMED), Osaka Metropolitan University, 1-1 Gakuen-cho,
Nakaku, Sakai, Osaka599-8531, Japan
| | - Eisuke Ohta
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka599-8531, Japan
| | - Yasuhiro Kobori
- Molecular
Photoscience Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo657-8501, Japan
- Graduate
School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo657-8501, Japan
| | - Hiroshi Ikeda
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka599-8531, Japan
- The
Research Institute for Molecular Electronic Devices (RIMED), Osaka Metropolitan University, 1-1 Gakuen-cho,
Nakaku, Sakai, Osaka599-8531, Japan
| |
Collapse
|
27
|
Bansal D, Kundu A, Singh VP, Pal AK, Datta A, Dasgupta J, Mukhopadhyay P. A highly contorted push-pull naphthalenediimide dimer and evidence of intramolecular singlet exciton fission. Chem Sci 2022; 13:11506-11512. [PMID: 36320404 PMCID: PMC9555572 DOI: 10.1039/d2sc04187a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/05/2022] [Indexed: 08/05/2023] Open
Abstract
Singlet fission is a process by which two molecular triplet excitons are generated subsequent to the absorption of one photon. Molecules that enable singlet fission have triplet state energy at least half of the bright singlet state energy. This stringent energy criteria have challenged chemists to device new molecular and supramolecular design principles to modulate the singlet-triplet energy gap and build singlet fission systems from a wide range of organic chromophores. Herein, we report for the first time intramolecular singlet fission in the seminal naphthalenediimide (NDI) scaffold constrained in a push-pull cyclophane architecture, while individually the NDI chromophore does not satisfy the energy criterion. The challenging synthesis of this highly contorted push-pull cyclophane is possible from the preorganized pincer-like precursor. The special architecture establishes the shortest co-facial NDI⋯NDI contacts (3.084 Å) realized to date. Using broadband femtosecond transient absorption, we find that the correlated T-T pair forms rapidly within 380 fs of photoexcitation. Electronic structure calculations at the level of state-averaged CASSCF (ne,mo)/XMCQDPT2 support the existence of the multi-excitonic T-T pair state, thereby confirming the first example of singlet exciton fission in a NDI scaffold.
Collapse
Affiliation(s)
- Deepak Bansal
- School of Physical Sciences, Jawaharlal Nehru University New Delhi 110067 India
| | - Arup Kundu
- Department of Chemical Sciences, Tata Institute of Fundamental Research Mumbai 400005 India
| | - Vijay Pal Singh
- School of Physical Sciences, Jawaharlal Nehru University New Delhi 110067 India
| | - Arun K Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science Kolkata 700032 West Bengal India
| | - Ayan Datta
- School of Chemical Sciences, Indian Association for the Cultivation of Science Kolkata 700032 West Bengal India
| | - Jyotishman Dasgupta
- Department of Chemical Sciences, Tata Institute of Fundamental Research Mumbai 400005 India
| | - Pritam Mukhopadhyay
- School of Physical Sciences, Jawaharlal Nehru University New Delhi 110067 India
| |
Collapse
|
28
|
Biswas S, Niedzwiedzki DM, Pakrasi HB. Introduction of cysteine-mediated quenching in the CP43 protein of photosystem II builds resilience to high-light stress in a cyanobacterium. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148580. [PMID: 35654167 DOI: 10.1016/j.bbabio.2022.148580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 05/16/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Photosystem (PS) II is prone to photodamage both as a direct consequence of light, and indirectly by producing reactive oxygen species. Engineering high-light tolerance in cyanobacteria with minimal impact on PSII function is desirable in synthetic biology. IsiA, a CP43 homolog found exclusively in cyanobacteria, can dissipate excess light energy. We have recently determined that the sole cysteine residue of IsiA in Synechocystis sp. PCC 6803 has a critical role in non-photochemical quenching. Similar cysteine-mediated energy quenching has also been observed in green‑sulfur bacteria. Sequence analysis of IsiA and CP43 aligns cysteine 260 of IsiA with valine 277 of CP43 in Synechocystis sp. PCC 6803. In the current study, we explore the impact of replacing valine 277 of CP43 to a cysteine on growth, PSII activity and high-light tolerance. Our results imply a decline in the PSII output for the mutant (CP43V277C) presumably due to the dissipation of absorbed light energy by cysteine. Spectroscopic analysis of isolated PSII from this mutant strain also suggests a delayed transfer of excitation energy from CP43-associated chlorophyll a to PSII reaction center. The mutation makes the PSII high-light tolerant and provides a small advantage in growth under high-light conditions. This previously unexplored strategy to engineer high-light tolerance could be a step further towards developing cyanobacterial cells as biofactories.
Collapse
Affiliation(s)
- Sandeep Biswas
- Department of Biology, Washington University, St. Louis, MO 63130, USA.
| | - Dariusz M Niedzwiedzki
- Center for Solar Energy and Energy Storage, Washington University, St. Louis, MO 63130, USA; Department of Energy, Environmental & Chemical Engineering, Washington University, St. Louis, MO 63130, USA.
| | - Himadri B Pakrasi
- Department of Biology, Washington University, St. Louis, MO 63130, USA.
| |
Collapse
|
29
|
Parallel triplet formation pathways in a singlet fission material. Nat Commun 2022; 13:5244. [PMID: 36068233 PMCID: PMC9448805 DOI: 10.1038/s41467-022-32844-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/18/2022] [Indexed: 11/08/2022] Open
Abstract
Harvesting long-lived free triplets in high yields by utilizing organic singlet fission materials can be the cornerstone for increasing photovoltaic efficiencies potentially. However, except for polyacenes, which are the most studied systems in the singlet fission field, spin-entangled correlated triplet pairs and free triplets born through singlet fission are relatively poorly characterized. By utilizing transient absorption and photoluminescence spectroscopy in supramolecular aggregate thin films consisting of Hamilton-receptor-substituted diketopyrrolopyrrole derivatives, we show that photoexcitation gives rise to the formation of spin-0 correlated triplet pair 1(TT) from the lower Frenkel exciton state. The existence of 1(TT) is proved through faint Herzberg-Teller emission that is enabled by vibronic coupling and correlated with an artifact-free triplet-state photoinduced absorption in the near-infrared. Surprisingly, transient electron paramagnetic resonance reveals that long-lived triplets are produced through classical intersystem crossing instead of 1(TT) dissociation, with the two pathways in competition. Moreover, comparison of the triplet-formation dynamics in J-like and H-like thin films with the same energetics reveals that spin-orbit coupling mediated intersystem crossing persists in both. However, 1(TT) only forms in the J-like film, pinpointing the huge impact of intermolecular coupling geometry on singlet fission dynamics.
Collapse
|
30
|
Santra S, Ray J, Ghosh D. Mechanism of Singlet Fission in Carotenoids from a Polyene Model System. J Phys Chem Lett 2022; 13:6800-6805. [PMID: 35856845 DOI: 10.1021/acs.jpclett.2c02000] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Singlet fission (SF) is the process of formation of multiple excitons (triplet) from a locally excited singlet state. The mechanism of SF in polyacenes has been shown to proceed via a charge transfer intermediate state. However, carotenoids are not understood in the context of SF. This is possibly due to the complicated multireference nature of the low-lying excited states of carotenoids and the presence of a dark 21Ag state below the optically bright 1Bu state. In this work, we show that the dark Ag state in polyenes and/or carotenoids, along with the charge transfer states, plays a pivotal role in the SF process. We notice that the relative importance of these states varies with a change in geometry and the overall presence of multiple pathways is crucial to the success of the SF process in carotenoid aggregates and disordered geometries.
Collapse
Affiliation(s)
- Supriyo Santra
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Jyotirmoy Ray
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Debashree Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
31
|
Orlef A, Stanek E, Czamara K, Wajda A, Kaczor A. Formation of carotenoid supramolecular aggregates in nanocarriers monitored via aggregation-sensitive chiroptical output of enantiopure (3 S,3' S)-astaxanthin. Chem Commun (Camb) 2022; 58:9022-9025. [PMID: 35875940 DOI: 10.1039/d2cc02649j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aggregation-sensitive chiroptical (ECD and RROA) output, provided by enantiopure (3S,3'S)-astaxanthin, was used to investigate and control the assembling processes of the carotenoid in Pluronic F-127 nanoparticles. The process of carotenoid J-aggregation inside nanocarriers is interfered with by the formation of kinetically stabilized H1 self-assemblies outside the micelles. Nanocarriers with encapsulated stable J-aggregates provide controlled release of carotenoid molecules to primary murine adipocytes.
Collapse
Affiliation(s)
- Aleksandra Orlef
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland.
| | - Ewa Stanek
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Krzysztof Czamara
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Aleksandra Wajda
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland.
| | - Agnieszka Kaczor
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland. .,Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, 30-348, Krakow, Poland
| |
Collapse
|
32
|
Silori Y, Yadav A, Chawla S, De AK. Effect of nanoscale confinement on ultrafast dynamics of singlet fission in TIPS-pentacene. Chemphyschem 2022; 23:e202200454. [PMID: 35830606 DOI: 10.1002/cphc.202200454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/12/2022] [Indexed: 11/06/2022]
Abstract
Singlet fission (SF) is a phenomenon for the generation of a pair of triplet excitons from a singlet excited molecule interacting with another adjacent molecule in its ground electronic state. By increasing the effective number of charge carriers and reducing thermal dissipation of excess energy, SF is promised to enhance light-harvesting efficiency for photovoltaic applications. While SF has been extensively studied in thin films and crystals, the same has not been explored much within a confined medium. Here, we report the ultrafast SF dynamics of triisopropylsilylethynyl pentacene (TIPS-Pn) in micellar nanocavity of varying sizes (prepared from TX-100, CTAB, and SDS surfactants). The nanoparticle with a smaller size contains weakly coupled chromophores and is shown to be more efficient for SF followed by triplet generation as compared to the nanoparticles of larger size which contain strongly coupled chromophores and are less efficient due to the presence of singlet exciton traps. Through these studies, we delineate how a subtle interplay between short-range and long-range interaction among chromophores confined within nanoparticles, fine-tuned by the curvature of the micellar interface but irrespective of the nature of the micelle (cationic or anionic or neutral), play a crucial role in SF through and generation of triplets.
Collapse
Affiliation(s)
- Yogita Silori
- IISER Mohali: Indian Institute of Science Education and Research Mohali, Chemical Sciences, INDIA
| | - Anita Yadav
- IISER Mohali: Indian Institute of Science Education and Research Mohali, Chemical Sciences, INDIA
| | - Sakshi Chawla
- IISER Mohali: Indian Institute of Science Education and Research Mohali, Chemical Sciences, INDIA
| | - Arijit Kumar De
- Indian Institute of Science Education and Research Mohali, Chemical Sciences, Knowledge City, Sector 81, 140306, SAS Nagar,, INDIA
| |
Collapse
|
33
|
Xu X, Gunasekaran S, Renken S, Ripani L, Schollmeyer D, Kim W, Marcaccio M, Musser A, Narita A. Synthesis and Characterizations of 5,5'-Bibenzo[rst]pentaphene with Axial Chirality and Symmetry-Breaking Charge Transfer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200004. [PMID: 35156332 PMCID: PMC9259715 DOI: 10.1002/advs.202200004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/23/2022] [Indexed: 05/31/2023]
Abstract
Exploration of novel biaryls consisting of two polycyclic aromatic hydrocarbon (PAH) units can be an important strategy toward further developments of organic materials with unique properties. In this study, 5,5'-bibenzo[rst]pentaphene (BBPP) with two benzo[rst]pentaphene (BPP) units is synthesized in an efficient and versatile approach, and its structure is unambiguously elucidated by X-ray crystallography. BBPP exhibits axial chirality, and the (M)- and (P)-enantiomers are resolved by chiral high-performance liquid chromatography and studied by circular dichroism spectroscopy. These enantiomers have a relatively high isomerization barrier of 43.6 kcal mol-1 calculated by density functional theory. The monomer BPP and dimer BBPP are characterized by UV-vis absorption and fluorescence spectroscopy, cyclic voltammetry, and femtosecond transient absorption spectroscopy. The results indicate that both BPP and BBPP fluoresce from a formally dark S1 electronic state that is enabled by Herzberg-Teller intensity borrowing from a neighboring bright S2 state. While BPP exhibits a relatively low photoluminescence quantum yield (PLQY), BBPP exhibits a significantly enhanced PLQY due to a greater S2 intensity borrowing. Moreover, symmetry-breaking charge transfer in BBPP is demonstrated by spectroscopic investigations in solvents of different polarity. This suggests high potential for singlet fission in such π-extended biaryls through appropriate molecular design.
Collapse
Affiliation(s)
- Xiushang Xu
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
- Organic and Carbon Nanomaterials UnitOkinawa Institute of Science and Technology Graduate University1919‐1 Tancha, Onna‐sonKunigami‐gunOkinawa904‐0495Japan
| | - Suman Gunasekaran
- Department of Chemistry & Chemical BiologyCornell UniversityIthacaNY14853USA
| | - Scott Renken
- Department of Chemistry & Chemical BiologyCornell UniversityIthacaNY14853USA
| | - Lorenzo Ripani
- Dipartimento di Chimica “Giacomo Ciamician”Università di Bolognavia Selmi 2Bologna40126Italy
| | - Dieter Schollmeyer
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–14Mainz55128Germany
| | - Woojae Kim
- Department of Chemistry & Chemical BiologyCornell UniversityIthacaNY14853USA
| | - Massimo Marcaccio
- Dipartimento di Chimica “Giacomo Ciamician”Università di Bolognavia Selmi 2Bologna40126Italy
| | - Andrew Musser
- Department of Chemistry & Chemical BiologyCornell UniversityIthacaNY14853USA
| | - Akimitsu Narita
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
- Organic and Carbon Nanomaterials UnitOkinawa Institute of Science and Technology Graduate University1919‐1 Tancha, Onna‐sonKunigami‐gunOkinawa904‐0495Japan
| |
Collapse
|
34
|
Fumanal M, Corminboeuf C. Optimizing the Thermodynamics and Kinetics of the Triplet-Pair Dissociation in Donor-Acceptor Copolymers for Intramolecular Singlet Fission. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:4115-4121. [PMID: 35573105 PMCID: PMC9097278 DOI: 10.1021/acs.chemmater.2c00367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/09/2022] [Indexed: 06/15/2023]
Abstract
Singlet fission (SF) is a two-step process in which a singlet splits into two triplets throughout the so-called correlated triplet-pair (1TT) state. Intramolecular SF (iSF) materials, in particular, have attracted growing interest as they can be easily implemented in single-junction solar cells and boost their power conversion efficiency. Still, the potential of iSF materials such as polymers and oligomers for photovoltaic applications has been partially hindered by their ability to go beyond the 1TT intermediate and generate free triplets, whose mechanism remains poorly understood. In this work, the main aspects governing the 1TT dissociation in donor-acceptor copolymers and the key features that optimize this process are exposed. First, we show that both thermodynamics and kinetics play a crucial role in the intramolecular triplet-pair separation and second, we uncover the inherent flexibility of the donor unit as the fundamental ingredient to optimize them simultaneously. Overall, these results provide a better understanding of the intramolecular 1TT dissociation process and establish a new paradigm for the development of novel iSF active materials.
Collapse
Affiliation(s)
- Maria Fumanal
- Laboratory for Computational Molecular
Design, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne
(EPFL), CH-1015 Lausanne, Switzerland
| | - Clémence Corminboeuf
- Laboratory for Computational Molecular
Design, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne
(EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
35
|
Zbyradowski M, Duda M, Wisniewska-Becker A, Heriyanto, Rajwa W, Fiedor J, Cvetkovic D, Pilch M, Fiedor L. Triplet-driven chemical reactivity of β-carotene and its biological implications. Nat Commun 2022; 13:2474. [PMID: 35513374 PMCID: PMC9072317 DOI: 10.1038/s41467-022-30095-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/14/2022] [Indexed: 11/09/2022] Open
Abstract
The endoperoxides of β-carotene (βCar-EPOs) are regarded as main products of the chemical deactivation of 1O2 by β-carotene, one of the most important antioxidants, following a concerted singlet-singlet reaction. Here we challenge this view by showing that βCar-EPOs are formed in the absence of 1O2 in a non-concerted triplet-triplet reaction: 3O2 + 3β-carotene → βCar-EPOs, in which 3β-carotene manifests a strong biradical character. Thus, the reactivity of β-carotene towards oxygen is governed by its excited triplet state. βCar-EPOs, while being stable in the dark, are photochemically labile, and are a rare example of nonaromatic endoperoxides that release 1O2, again not in a concerted reaction. Their light-induced breakdown triggers an avalanche of free radicals, which accounts for the pro-oxidant activity of β-carotene and the puzzling swap from its anti- to pro-oxidant features. Furthermore, we show that βCar-EPOs, and carotenoids in general, weakly sensitize 1O2. These findings underlie the key role of the triplet state in determining the chemical and photophysical features of β-carotene. They shake up the prevailing models of carotenoid photophysics, the anti-oxidant functioning of β-carotene, and the role of 1O2 in chemical signaling in biological photosynthetic systems. βCar-EPOs and their degradation products are not markers of 1O2 and oxidative stress but of the overproduction of extremely hazardous chlorophyll triplets in photosystems. Hence, the chemical signaling of overexcitation of the photosynthetic apparatus is based on a 3chlorophyll-3β-carotene relay, rather than on extremely short-lived 1O2.
Collapse
Affiliation(s)
- Mateusz Zbyradowski
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Cracow, Poland
| | - Mariusz Duda
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Cracow, Poland
| | - Anna Wisniewska-Becker
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Cracow, Poland
| | - Heriyanto
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Cracow, Poland.,Ma Chung Research Center for Photosynthetic Pigments, Ma Chung University, Villa Puncak Tidar N-01, Malang, 65151, Indonesia
| | - Weronika Rajwa
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Cracow, Poland
| | - Joanna Fiedor
- Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Mickiewicza 30, 30-059, Cracow, Poland
| | - Dragan Cvetkovic
- Faculty of Technology, University of Niš, 16000, Leskovac, Serbia
| | - Mariusz Pilch
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Cracow, Poland.,Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Leszek Fiedor
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Cracow, Poland.
| |
Collapse
|
36
|
Fan S, Li W, Li T, Gao F, Hu W, Liu S, Wang X, Liu H, Liu Z, Li Z, Chen Y, Li X. Singlet fission in colloid nanoparticles of amphipathic 9,10-bis(phenylethynyl)anthracene derivatives. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Zhang Y, Qi CH, Yamano N, Wang P, Yu LJ, Wang-Otomo ZY, Zhang JP. Carotenoid Single-Molecular Singlet Fission and the Photoprotection of a Bacteriochlorophyll b-Type Core Light-Harvesting Antenna. J Phys Chem Lett 2022; 13:3534-3541. [PMID: 35420425 DOI: 10.1021/acs.jpclett.2c00519] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Carotenoid (Car) in photosynthesis plays the major roles of accessary light harvesting and photoprotection, and the underlying structure-function relationship attracts continuing research interests. We have attempted to explore the dynamics of Car triplet excitation (3Car*) in the bacteriochlorophyll b (BChl b)-type light harvesting reaction center complex (LH1-RC) of photosynthetic bacterium Halorhodospira halochloris. We show that the LH1 antenna binds a single Car that was identified as a lycopene derivative. Although the Car is hardly visible in the LH1-RC stationary absorption, it shows up conspicuously in the triplet excitation profile with distinct vibronic features. This and the ultrafast formation of 3Car* on direct photoexcitation of Car unequivocally manifest the unimolecular singlet fission reaction of the Car. Moreover, the Car with even one molecule per complex is found to be rather effective in quenching 3BChl b*. The implications of different 3Car* formation mechanisms are discussed, and the self-photoprotection role of BChl b are proposed for this extremophilic species.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 1000872, P. R. China
| | - Chen-Hui Qi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P. R. China
| | - Nami Yamano
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 1000872, P. R. China
| | - Peng Wang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 1000872, P. R. China
| | - Long-Jiang Yu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P. R. China
| | | | - Jian-Ping Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 1000872, P. R. China
| |
Collapse
|
38
|
|
39
|
Papadopoulos I, Gutiérrez-Moreno D, Bo Y, Casillas R, Greißel PM, Clark T, Fernández-Lázaro F, Guldi DM. Altering singlet fission pathways in perylene-dimers; perylene-diimide versus perylene-monoimide. NANOSCALE 2022; 14:5194-5203. [PMID: 35315470 DOI: 10.1039/d1nr08523a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We used a systematic approach to shed light on the inherent differences in perylenes, namely monoimides versus diimides, including coplanarity and dipole moment, and their impact on singlet fission (SF) by designing, synthesizing, and probing a full fledged series of phenylene- and naphthalene-linked dimers. Next to changing the functionality of the perylene core, we probed the effect of the spacers and their varying degrees of rotational freedom, molecular electrostatic potentials, and intramolecular interactions on the SF-mechanism and -efficiencies. An arsenal of spectroscopic techniques revealed that for perylene-monoimides, a strong charge-transfer mixing with the singlet and triplet excited states restricts SF and yields low triplet quantum yields. This is accompanied by an up-conversion channel that includes geminate triplet-triplet recombination. Using perylene-diimides alters the SF-mechanism by populating a charge-separated-state intermediate, which either favors or shuts-down SF. Napthylene-spacers bring about higher triplet quantum yields and overall better SF-performance for all perylene-monoimides and perylene-diimides. The key to better SF-performance is rotational freedom because it facilitates the overall excited-state polarization and amplifies intramolecular interactions between chromophores.
Collapse
Affiliation(s)
- Ilias Papadopoulos
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstraße 3, 91058 Erlangen, Germany.
| | - David Gutiérrez-Moreno
- Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad s/n, 03203 Elche, Spain.
| | - Yifan Bo
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstraße 3, 91058 Erlangen, Germany.
- Computer-Chemistry-Center, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuremberg, Nägelsbachstr. 25, 91052 Erlangen, Germany
| | - Rubén Casillas
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstraße 3, 91058 Erlangen, Germany.
- Computer-Chemistry-Center, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuremberg, Nägelsbachstr. 25, 91052 Erlangen, Germany
| | - Phillip M Greißel
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstraße 3, 91058 Erlangen, Germany.
| | - Timothy Clark
- Computer-Chemistry-Center, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuremberg, Nägelsbachstr. 25, 91052 Erlangen, Germany
| | - Fernando Fernández-Lázaro
- Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad s/n, 03203 Elche, Spain.
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstraße 3, 91058 Erlangen, Germany.
| |
Collapse
|
40
|
Manawadu D, Valentine DJ, Marcus M, Barford W. Singlet Triplet-Pair Production and Possible Singlet-Fission in Carotenoids. J Phys Chem Lett 2022; 13:1344-1349. [PMID: 35108016 PMCID: PMC9084603 DOI: 10.1021/acs.jpclett.1c03812] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/01/2022] [Indexed: 05/19/2023]
Abstract
Internal conversion from the photoexcited state to a correlated singlet triplet-pair state is believed to be the precursor of singlet fission in carotenoids. We present numerical simulations of this process using a π-electron model that fully accounts for electron-electron interactions and electron-nuclear coupling. The time-evolution of the electrons is determined rigorously using the time-dependent density matrix renormalization group method, while the nuclei are evolved via the Ehrenfest equations of motion. We apply this to zeaxanthin, a carotenoid chain with 18 fully conjugated carbon atoms. We show that the internal conversion of the primary photoexcited state, S2, to the singlet triplet-pair state occurs adiabatically via an avoided crossing within ∼50 fs with a yield of ∼60%. We further discuss whether this singlet triplet-pair state will undergo exothermic versus endothermic intra- or interchain singlet fission.
Collapse
Affiliation(s)
- Dilhan Manawadu
- Department
of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, United Kingdom
- Linacre College, University of Oxford, Oxford OX1 3JA, United Kingdom
| | - Darren J. Valentine
- Department
of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, United Kingdom
- Balliol College, University of Oxford, Oxford OX1 3BJ, United Kingdom
| | - Max Marcus
- Department
of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - William Barford
- Department
of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
41
|
Vacancy control in acene blends links exothermic singlet fission to coherence. Nat Commun 2021; 12:5149. [PMID: 34446726 PMCID: PMC8390483 DOI: 10.1038/s41467-021-25395-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 07/20/2021] [Indexed: 11/09/2022] Open
Abstract
The fission of singlet excitons into triplet pairs in organic materials holds great technological promise, but the rational application of this phenomenon is hampered by a lack of understanding of its complex photophysics. Here, we use the controlled introduction of vacancies by means of spacer molecules in tetracene and pentacene thin films as a tuning parameter complementing experimental observables to identify the operating principles of different singlet fission pathways. Time-resolved spectroscopic measurements in combination with microscopic modelling enables us to demonstrate distinct scenarios, resulting from different singlet-to-triplet pair energy alignments. For pentacene, where fission is exothermic, coherent mixing between the photoexcited singlet and triplet-pair states is promoted by vibronic resonances, which drives the fission process with little sensitivity to the vacancy concentration. Such vibronic resonances do not occur for endothermic materials such as tetracene, for which we find fission to be fully incoherent; a process that is shown to slow down with increasing vacancy concentration.
Collapse
|
42
|
Yang T, Chettri A, Radwan B, Matuszyk E, Baranska M, Dietzek B. Monitoring excited-state relaxation in a molecular marker in live cells-a case study on astaxanthin. Chem Commun (Camb) 2021; 57:6392-6395. [PMID: 34085079 DOI: 10.1039/d1cc01907d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Small molecules are frequently used as dyes, labels and markers to visualize and probe biophysical processes within cells. However, very little is generally known about the light-driven excited-state reactivity of such systems when placed in cells. Here an experimental approach to study ps time-resolved excited state dynamics of a benchmark molecular marker, astaxanthin, in live human cells is introduced.
Collapse
Affiliation(s)
- Tingxiang Yang
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Strabe 9, Jena 07745, Germany. and Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, Jena 07743, Germany
| | - Avinash Chettri
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Strabe 9, Jena 07745, Germany. and Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, Jena 07743, Germany
| | - Basseem Radwan
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., Krakow 30-348, Poland and Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., Krakow 30-387, Poland
| | - Ewelina Matuszyk
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., Krakow 30-348, Poland
| | - Malgorzata Baranska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., Krakow 30-348, Poland and Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., Krakow 30-387, Poland
| | - Benjamin Dietzek
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Strabe 9, Jena 07745, Germany. and Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, Jena 07743, Germany
| |
Collapse
|
43
|
Stoycheva J, Romanova J, Tadjer A. Women in the Singlet Fission World: Pearls in a Semi-Open Shell. Molecules 2021; 26:molecules26102922. [PMID: 34069036 PMCID: PMC8156465 DOI: 10.3390/molecules26102922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 11/16/2022] Open
Abstract
Singlet fission, a multiple exciton generation process, can revolutionize existing solar cell technologies. Offering the possibility to double photocurrent, the process has become a focal point for physicists, chemists, software developers, and engineers. The following review is dedicated to the female investigators, predominantly theorists, who have contributed to the field of singlet fission. We highlight their most significant advances in the subject, from deciphering the mechanism of the process to designing coveted singlet fission materials.
Collapse
Affiliation(s)
- Joanna Stoycheva
- Correspondence: (J.S.); (J.R.); (A.T.); Tel.: +359-2-8161374 (A.T.)
| | - Julia Romanova
- Correspondence: (J.S.); (J.R.); (A.T.); Tel.: +359-2-8161374 (A.T.)
| | - Alia Tadjer
- Correspondence: (J.S.); (J.R.); (A.T.); Tel.: +359-2-8161374 (A.T.)
| |
Collapse
|
44
|
Manna B, Nandi A, Vats BG. Role of nanosize and defect trapping upon singlet fission yield and singlet fission dynamics of 1,6-Diphenyl-1,3,5-hexatriene nanoaggregates. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
45
|
Manna B, Nandi A. Singlet fission in nanoaggregate of bis(phenylethynyl) derivative of benzene (BPEB): High energy triplet exciton generation with >100 % yield. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
46
|
Wang L, Zhang TS, Fu L, Xie S, Wu Y, Cui G, Fang WH, Yao J, Fu H. High-Lying 3 1A g Dark-State-Mediated Singlet Fission. J Am Chem Soc 2021; 143:5691-5697. [PMID: 33843229 DOI: 10.1021/jacs.0c11681] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Singlet fission (SF), the conversion of one high-energy singlet to two low-energy triplets, provides the potential to increase the efficiency of photovoltaic devices. In the SF chromophores with C2h symmetry, exemplified by polyenes, singlet-to-triplet conversion generally involves a low-lying 21Ag dark state, which serves as either a multiexciton (ME) intermediate to promote the SF process or a parasitic trap state to shunt excited-state populations via internal conversion. This controversial behavior calls for a deep understanding of dark-state-related photophysics involving the higher-lying singlet state. However, the optical "dark" and "transient" nature of these dark states and strong correlation feature of double exciton species make their characterization and interpretation challenging from both experimental and computational perspectives. In the present work combining transient spectroscopy and multireference electronic structure calculations (XDW-CASPT2), we addressed a new photophysical model, i.e., a high-lying 31Ag dark-state-mediated ultrafast SF process in the benzodipyrrolidone (BDPP) skeleton. Such a 31Ag dark state with distinctive double excitation character, described as the ME state, could be populated from the initial 11Bu bright state on an ultrafast time scale given the quasi-degeneracy and intersection of the two electronic states. Furthermore, the suitable optical band gap and triplet energy, high triplet yield, and excellent photostability render BDPP a promising SF candidate for photovoltaic devices. These results not only enrich the arsenal of SF materials but also shed new insights into the understanding of dark-state-related photophysics, which could promote the development of new SF-active materials.
Collapse
Affiliation(s)
- Long Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Teng-Shuo Zhang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Liyuan Fu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Shaohua Xie
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Yishi Wu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jiannian Yao
- Beijing National Laboratory for Molecules Science (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hongbing Fu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China
| |
Collapse
|
47
|
Budden PJ, Weiss LR, Müller M, Panjwani NA, Dowland S, Allardice JR, Ganschow M, Freudenberg J, Behrends J, Bunz UHF, Friend RH. Singlet exciton fission in a modified acene with improved stability and high photoluminescence yield. Nat Commun 2021; 12:1527. [PMID: 33750774 PMCID: PMC7943798 DOI: 10.1038/s41467-021-21719-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 01/26/2021] [Indexed: 12/14/2022] Open
Abstract
We report a fully efficient singlet exciton fission material with high ambient chemical stability. 10,21-Bis(triisopropylsilylethynyl)tetrabenzo[a,c,l,n]pentacene (TTBP) combines an acene core with triphenylene wings that protect the formal pentacene from chemical degradation. The electronic energy levels position singlet exciton fission to be endothermic, similar to tetracene despite the triphenylenes. TTBP exhibits rapid early time singlet fission with quantitative yield of triplet pairs within 100 ps followed by thermally activated separation to free triplet excitons over 65 ns. TTBP exhibits high photoluminescence quantum efficiency, close to 100% when dilute and 20% for solid films, arising from triplet-triplet annihilation. In using such a system for exciton multiplication in a solar cell, maximum thermodynamic performance requires radiative decay of the triplet population, observed here as emission from the singlet formed by recombination of triplet pairs. Combining chemical stabilisation with efficient endothermic fission provides a promising avenue towards singlet fission materials for use in photovoltaics. Designing optimised molecules for singlet fission is crucial to improve the efficiency of solar cells beyond its theoretical limit. Here, the authors investigate pentacene derivative TTBP, which exhibits high stability and luminescence yield, and find it highly suitable for exciton multiplication purposes.
Collapse
Affiliation(s)
- Peter J Budden
- Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge, UK
| | - Leah R Weiss
- Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge, UK.,Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Matthias Müller
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, Heidelberg, Germany
| | - Naitik A Panjwani
- Berlin Joint EPR Lab, Fachbereich Physik, Freie Universität Berlin, Berlin, Germany
| | - Simon Dowland
- Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge, UK
| | - Jesse R Allardice
- Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge, UK
| | - Michael Ganschow
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, Heidelberg, Germany
| | - Jan Freudenberg
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, Heidelberg, Germany
| | - Jan Behrends
- Berlin Joint EPR Lab, Fachbereich Physik, Freie Universität Berlin, Berlin, Germany.
| | - Uwe H F Bunz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, Heidelberg, Germany.
| | - Richard H Friend
- Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge, UK.
| |
Collapse
|
48
|
Quaranta A, Krieger-Liszkay A, Pascal AA, Perreau F, Robert B, Vengris M, Llansola-Portoles MJ. Singlet fission in naturally-organized carotenoid molecules. Phys Chem Chem Phys 2021; 23:4768-4776. [PMID: 33599225 DOI: 10.1039/d0cp04493h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We have investigated the photophysics of aggregated lutein/violaxanthin in daffodil chromoplasts. We reveal the presence of three carotenoid aggregate species, the main one composed of a mixture of lutein/violaxanthin absorbing at 481 nm, and two secondary populations of aggregated carotenoids absorbing circa 500 and 402 nm. The major population exhibits an efficient singlet fission process, generating μs-lived triplet states on an ultrafast timescale. The structural organization of aggregated lutein/violaxanthin in daffodil chromoplasts produces well-defined electronic levels that permit the energetic pathways to be disentangled unequivocally, allowing us to propose a consistent mechanism for singlet fission in carotenoid aggregates. Transient absorption measurements on this system reveal for the first time an entangled triplet signature for carotenoid aggregates, and its evolution into dissociated triplet states. A clear picture of the carotenoid singlet fission pathway is obtained, which is usually blurred due to the intrinsic disorder of carotenoid aggregates.
Collapse
Affiliation(s)
- Annamaria Quaranta
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| | | | | | | | | | | | | |
Collapse
|
49
|
Kundu A, Dasgupta J. Photogeneration of Long-Lived Triplet States through Singlet Fission in Lycopene H-Aggregates. J Phys Chem Lett 2021; 12:1468-1474. [PMID: 33528257 DOI: 10.1021/acs.jpclett.0c03301] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Molecular triplet excitons produced through singlet fission (SF) usually have shorter triplet lifetimes due to exciton-exciton recombination and relaxation pathways, thereby resulting in complex device architectures for SF-boosted solar cells. Using broadband transient absorption spectroscopy, we here show that the photoexcitation of nanostructured lycopene H-aggregates at room temperature produces free triplets with an unprecedented 35-fold enhancement in the lifetime compared to those localized on the monomer backbone. The observed rise of a spectrally blue-shifted correlated T-T pair state in ∼19 ps with distinct vibronic features provides the basis for SF-induced triplet generation.
Collapse
Affiliation(s)
- Arup Kundu
- Department of Chemical Sciences, Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Mumbai 400005, India
| | - Jyotishman Dasgupta
- Department of Chemical Sciences, Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Mumbai 400005, India
| |
Collapse
|
50
|
Wu T, Ni W, Gurzadyan GG, Sun L. Singlet fission from upper excited singlet states and polaron formation in rubrene film. RSC Adv 2021; 11:4639-4645. [PMID: 35424413 PMCID: PMC8694490 DOI: 10.1039/d0ra10780h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/14/2021] [Indexed: 11/21/2022] Open
Abstract
Femtosecond fluorescence up-conversion and transient absorption pump-probe setups are applied to study the relaxation dynamics of the lower and upper excited singlet electronic states in easy-to-make rubrene films. Upon 250 nm (4.96 eV) excitation, singlet fission was observed directly from S2 state bypassing S1 state within 30 fs i.e. breaking the classical Kasha rule. From the transient absorption measurements, polaron formation was also detected on the same time scale. Both singlet fission and polaron formation are accelerated from upper excited states compared with S1 state. Our work shows that rubrene films with low degree of crystallinity could display efficient singlet fission, notably in the case of excitation to upper lying electronic states. This can strongly expand the applications of rubrene in organic electronics. Moreover, our results will provide a new direction for synthesizing novel materials with optimized excited state properties for organic photovoltaic applications.
Collapse
Affiliation(s)
- Tong Wu
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, Dalian University of Technology 116024 Dalian China
| | - Wenjun Ni
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, Dalian University of Technology 116024 Dalian China
| | - Gagik G Gurzadyan
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, Dalian University of Technology 116024 Dalian China
| | - Licheng Sun
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, Dalian University of Technology 116024 Dalian China
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology 10044 Stockholm Sweden
- Center of Artificial Photosynthesis for Solar Fuels, School of Science, Westlake University 310024 Hangzhou China
| |
Collapse
|