1
|
Poe TN, Molinari SE, Wineinger HB, Albrecht TE. Isolation of Inner-Sphere Aquo Complexes of Samarium(II). J Am Chem Soc 2025; 147:2323-2334. [PMID: 39772494 DOI: 10.1021/jacs.4c10287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The cis-anti-cis and cis-syn-cis isomers of [Sm(dicyclohexano-18-crown-6)(H2O)2]I2 exhibiting trans water molecules bound to the Sm2+ ion have been isolated and characterized. Sm2+ possesses an electrochemical potential sufficient for water reduction, and thus these complexes add to the recent body of evidence that the oxidation of Sm2+ by water can operate by a mechanism that is not straightforward. These complexes are obtained by the direct addition of stoichiometric amounts of water to solutions of the respective Sm(dicyclohexano-18-crown-6)I2 isomers under an inert atmosphere. The parent complex, Sm(dicyclohexano-18-crown-6)I2, lacking coordinating water molecules can be obtained through rigorous exclusion of water. It was determined that the bulky cyclohexano-substituents deter intramolecular interactions between [Sm(dicyclohexano-18-crown-6)(H2O)2]I2 complexes and slow the oxidization of the metal centers. The extent of the stability of these complexes to the presence of water has been further probed through cyclic voltammetry, where it was found that the redox potential of both isomers of [Sm(dicyclohexano-18-crown-6)(H2O)2]I2 maintains quasi-reversible behavior with a 50,000-fold excess of water to Sm2+ in solution with the cis-syn-cis complex being quasi-reversible at even higher concentrations of water. Solution-phase spectroscopy of these complexes in acetonitrile shows a corresponding hypsochromic shift of the Sm2+ 4f → 5d transition typically observed in the visible region from Sm2+ complexes. The crystalline compounds obtained in this study support solid-state spectroscopic trends observed from other Sm2+ crown-ether complexes containing iodide counterions, wherein the proximity of the iodide ions to the metal center determines whether the complex can exhibit 4f → 4f photoluminescence.
Collapse
Affiliation(s)
- Todd N Poe
- Isotope Production Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Sarah E Molinari
- Department of Chemistry and Nuclear Science & Engineering Center, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Hannah B Wineinger
- Department of Chemistry and Nuclear Science & Engineering Center, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Thomas E Albrecht
- Department of Chemistry and Nuclear Science & Engineering Center, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
2
|
Tomar M, Thapper A, Orthaber A, Borbas KE. Divalent Intermediates in Lanthanide-Based Photocatalysts: Spectroscopic Characterization and Reactivity. Inorg Chem 2025; 64:594-605. [PMID: 39715446 PMCID: PMC11734113 DOI: 10.1021/acs.inorgchem.4c03926] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 12/25/2024]
Abstract
The reduction of stable trivalent lanthanide species (Ln(III)) by the excited states of organic chromophores is the basis of photocatalytic divalent lanthanide-mediated reduction reactions. While indirect evidence of the photochemical formation of the reactive Ln(II) species is abundant, direct spectroscopic evidence of their presence is scarce. Here, nine chromophores with absorptions covering the near UV and visible ranges were systematically investigated in the presence of Ln(III) ions to evaluate their ability to reduce Eu(III) upon excitation with visible light to the catalytically active Eu(II) species. Irradiated mixtures of Eu(III) and the chromophores were characterized using UV-vis absorption and emission and EPR spectroscopy. Several of the chromophore-Eu(III) combinations were competent photocatalysts in the presence of N,N-diisopropylethylamine or Zn terminal reductants. These results demonstrate that a variety of visible-absorbing chromophores can efficiently generate reactive Eu(II) from Eu(III) to catalyze Ln(II)-mediated reduction reactions.
Collapse
Affiliation(s)
- Monika Tomar
- Department of Chemistry,
Ångström Laboratory, Uppsala
University, 75120 Uppsala, Sweden
| | - Anders Thapper
- Department of Chemistry,
Ångström Laboratory, Uppsala
University, 75120 Uppsala, Sweden
| | - Andreas Orthaber
- Department of Chemistry,
Ångström Laboratory, Uppsala
University, 75120 Uppsala, Sweden
| | - K. Eszter Borbas
- Department of Chemistry,
Ångström Laboratory, Uppsala
University, 75120 Uppsala, Sweden
| |
Collapse
|
3
|
Diaz-Rodriguez RM, Gálico DA, Chartrand D, Murugesu M. Ligand Effects on the Emission Characteristics of Molecular Eu(II) Luminescence Thermometers. J Am Chem Soc 2024; 146:34118-34129. [PMID: 39610301 DOI: 10.1021/jacs.4c13805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Discrete molecular organometallic europium(II) complexes are promising functional materials due to their ability to behave as highly sensitive band-shift luminescence thermometers. Furthering our understanding of the design principles salient to the emission behavior of such systems is important for developing them in this emerging application. To this end, a series of pseudo-C4v-symmetric organometallic europium(II) complexes bearing systematically varying ligand sets were synthesized and characterized to probe the influence of subtle structural modification on their optical properties. Opto-structural correlation analyses via variable-temperature single-crystal X-ray diffraction and photoluminescence spectroscopy reveal a remarkable variability in properties among structurally similar complexes and a convoluted dependence of the emission characteristics on the stereoelectronic properties of the ligands. A few factors of particular influence are nevertheless identified, including the distance between the europium(II) ion and the basal plane of the square-pyramidal coordination polyhedron, the presence of pendant electron density that might further interact with the excited-state 5d orbitals, and, qualitatively, the metal-ligand flexibility of the construct. These results help to elucidate principles that govern the luminescence properties of organometallic europium(II) complexes with an eye to enabling the rational design of high-performance luminescence thermometers of this genre.
Collapse
Affiliation(s)
- Roberto M Diaz-Rodriguez
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Diogo A Gálico
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Daniel Chartrand
- Department of Chemistry, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Muralee Murugesu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
4
|
Ha J, Yeon S, Lee J, Lee H, Cho H. Revealing the Role of Organic Ligands in Deep-Blue-Emitting Colloidal Europium Bromide Perovskite Nanocrystals. ACS NANO 2024; 18:31891-31902. [PMID: 39417673 DOI: 10.1021/acsnano.4c09018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Europium halide perovskites are promising candidates for environmentally benign blue-light emitters with their narrow emission line width. However, the development of high-photoluminescence quantum yield (PLQY) colloidal europium halide perovskite nanocrystals (PNCs) is hindered by limited synthetic methods and elusive reaction mechanisms. Here, we provide an effective synthetic route for achieving high-PLQY deep-blue-emitting colloidal CsEuBr3 PNCs. Using two Br-organic ligand precursors, oleylammonium bromide (OLAMHBr) and trioctylphosphine dibromide (TOPBr2), we identified distinct phase evolution routes involving Eu2+:CsBr, Cs4EuBr6, and CsEuBr3. The OLAMHBr precursor initially promotes the formation of the Eu2+:CsBr phase, which reorganizes into the CsEuBr3 perovskite phase via proton transfer. In contrast, the TOPBr2 precursor induces the formation of core/shell Cs4EuBr6/CsBr PNCs, which subsequently transform into CsEuBr3 through nucleophilic addition. The TOPBr2 route exhibited enhanced CsEuBr3 phase homogeneity, resulting in a significantly higher PLQY (40.5%; full width at half-maximum (fwhm) = 24 at 430 nm), compared to the OLAMHBr route (16.5% at 418 nm). Notably, the phase-pure CsEuBr3 PNCs demonstrated a world-record PLQY among the reported blue-emitting lead-free PNCs that exhibit a narrow emission line width (fwhm <25 nm). This work highlights the significant role of organic ligands in the colloidal synthesis of CsEuBr3 PNCs and their potential as nontoxic, solution-processable blue-light emitters.
Collapse
Affiliation(s)
- Jaeyeong Ha
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Seongbeom Yeon
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jaehwan Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hyungdoh Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Himchan Cho
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- School of Electrical Engineering, Graduate School of Semiconductor Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
5
|
Baldwin J, Brookfield A, Whitehead GFS, Natrajan LS, McInnes EJL, Oakley MS, Mills DP. Synthesis and Characterization of Solvated Lanthanide(II) Bis(triisopropylsilyl)phosphide Complexes. Inorg Chem 2024; 63:20295-20306. [PMID: 39422642 PMCID: PMC11523230 DOI: 10.1021/acs.inorgchem.4c03135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
Lanthanide (Ln) silylamide chemistry is well-developed, but the corresponding silylphosphide chemistry is immature; there are only ten structurally characterized examples of Ln(II) bis(trimethylsilyl)phosphide complexes to date and no reported derivatives with bulkier R-groups. Here, we report the synthesis of the first f-block bis(triisopropylsilyl)phosphide complexes, [Ln{P(SiiPr3)2}2(THF)x] (1-Ln; Ln = Sm, Eu, x = 3; Ln = Yb, x = 2), by the respective salt metathesis reactions of parent [LnI2(THF)2] with 2 equiv of [Na{P(SiiPr3)2}]n in toluene. Complexes 1-Ln were characterized by a combination of NMR, EPR, ATR-IR, electronic absorption and emission spectroscopies, elemental analysis, SQUID magnetometry, and single crystal X-ray diffraction. These data contrast with those obtained for related Ln(II) bis(trimethylsilyl)phosphide complexes due to the bulkier ligands in 1-Ln and also with Ln(II) bis(triisopropylsilyl)amide complexes due to a combination of longer Ln-P vs. Ln-N bonds and the softer nature of P- vs. N-donor ligands.
Collapse
Affiliation(s)
- Jack Baldwin
- Department of Chemistry, The
University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Adam Brookfield
- Department of Chemistry, The
University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - George F. S. Whitehead
- Department of Chemistry, The
University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Louise S. Natrajan
- Department of Chemistry, The
University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Eric J. L. McInnes
- Department of Chemistry, The
University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Meagan S. Oakley
- Department of Chemistry, The
University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - David P. Mills
- Department of Chemistry, The
University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
6
|
Baldwin J, Brookfield A, Whitehead GFS, Natrajan LS, McInnes EJL, Oakley MS, Mills DP. Isolation and Electronic Structures of Lanthanide(II) Bis(trimethylsilyl)phosphide Complexes. Inorg Chem 2024; 63:18120-18136. [PMID: 39279716 PMCID: PMC11445725 DOI: 10.1021/acs.inorgchem.4c02888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
While lanthanide (Ln) silylamide chemistry is mature, the corresponding silylphosphide chemistry is underdeveloped, with [Sm{P(SiMe3)2}{μ-P(SiMe3)2}3Sm(THF)3] being the sole example of a structurally authenticated Ln(II) silylphosphide complex. Here, we expand the Ln(II) {P(SiMe3)2} chemistry through the synthesis and characterization of nine complexes. The dinuclear "ate" salt-occluded complexes [{Ln[P(SiMe3)2]3(THF)}2(μ-I)K3(THF)] (1-Ln; Ln = Sm, Eu) and polymeric "ate" complex [KYb{P(SiMe3)2}3{μ-K[P(SiMe3)2]}2]∞ (2-Yb) were prepared by the respective salt metathesis reactions of parent [LnI2(THF)2] (Ln = Sm, Eu, Yb) with 2 or 3 equiv of K{P(SiMe3)2} in diethyl ether. The separate treatment of these complexes with either pyridine or 18-crown-6 led to the formation of the mononuclear solvated adducts trans-[Ln{P(SiMe3)2}2(py)4] (3-Ln; Ln = Sm, Eu, Yb) and [Ln{P(SiMe3)2}2(18-crown-6)] (4-Ln; Ln = Sm, Eu, Yb), with concomitant loss of K{P(SiMe3)2}. The complexes were characterized by a combination of NMR, electron paramagnetic resonance (EPR), attenuated total reflectance infrared (ATR-IR), electronic absorption and emission spectroscopies, elemental analysis, SQUID magnetometry, and single crystal X-ray diffraction. We find that these complexes contrast with those of related Ln(II) bis(silyl)amide complexes due to differences in ligand donor atom hardness and ligand steric requirements from Ln-P bonds being longer than Ln-N bonds. This leads to higher coordination numbers, shorter luminescence lifetimes, and smaller easy-axis magnetic anisotropy parameters.
Collapse
Affiliation(s)
- Jack Baldwin
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| | - Adam Brookfield
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| | - George F S Whitehead
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| | - Louise S Natrajan
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| | - Eric J L McInnes
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| | - Meagan S Oakley
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| | - David P Mills
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| |
Collapse
|
7
|
Lewandowski EC, Arban CB, Deal MP, Batchev AL, Allen MJ. Europium(II/III) coordination chemistry toward applications. Chem Commun (Camb) 2024; 60:10655-10671. [PMID: 39230388 PMCID: PMC11373536 DOI: 10.1039/d4cc03080j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
Europium is an f-block metal with two easily accessible oxidation states (+2 and +3) that have vastly different magnetic and optical properties from each other. These properties are tunable using coordination chemistry and are useful in a variety of applications, including magnetic resonance imaging, luminescence, and catalysis. This review describes important aspects of coordination chemistry of Eu from the Allen Research Group and others, how ligand design has tuned the properties of Eu ions, and how those properties are relevant to specific applications. The review begins with an introduction to the coordination chemistry of divalent and trivalent Eu followed by examples of how the coordination chemistry of Eu has made contributions to magnetic resonance imaging, luminescence, catalysis, and separations. The article concludes with a brief outlook on future opportunities in the field.
Collapse
Affiliation(s)
- Elizabeth C Lewandowski
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan, 48202, USA.
| | - Colin B Arban
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan, 48202, USA.
| | - Morgan P Deal
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan, 48202, USA.
| | - Andrea L Batchev
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan, 48202, USA.
| | - Matthew J Allen
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan, 48202, USA.
| |
Collapse
|
8
|
Bokouende SS, Ward CL, Allen MJ. Understanding the Coordination Chemistry and Structural and Photophysical Properties of Eu II- and Sm II-Containing Complexes of Hexamethylhexacyclen and Noncyclic Tetradentate Amines. Inorg Chem 2024; 63:16991-17004. [PMID: 39238155 DOI: 10.1021/acs.inorgchem.4c02590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Ligands play a crucial role in supporting or stabilizing the divalent oxidation state of lanthanide metals. To expand the range of ligands used to chelate divalent lanthanide ions, we synthesized and studied the structural and photophysical properties of complexes of EuII and SmII with hexamethylhexacyclen, 1,1,4,7,10,10-hexamethyltriethylenetetramine, tris[2-(dimethylamino)ethyl]amine, and tris[2-(isopropylamino)ethyl]amine as supporting ligands. Coordination of hexamethylhexacyclen, an analogue of 18-crown-6, generates sterically crowded complexes of EuII and SmII that are either seven or eight coordinate and adopt a range of geometries that differ from those of their 18-crown-6 counterparts and from those of lanthanide-containing complexes with the acyclic tetradente tertiary amine ligands included in this report. The emission spectra of EuII(hexamethylhexacyclen) show a moderate sensitivity to counterion identity and are more red-shifted compared to those of complexes of EuII with 18-crown-6 and the hexamethylated aza derivative of 2.2.2-cryptand. In addition, the morphology of hexamethylhexacyclen in [LnI(hexamethylhexacyclen)]I was found to resemble that of thermally stable alkalides of the form [M(hexamethylhexacyclen)]Na- (M = K+ or Cs+), suggesting that hexamethylhexacyclen could be an interesting ligand for strongly reducing lanthanide ions.
Collapse
Affiliation(s)
| | - Cassandra L Ward
- Lumigen Instrument Center, Wayne State University, 5101 Cass Ave., Detroit, Michigan 48202, United States
| | - Matthew J Allen
- Department of Chemistry, Wayne State University, 5101 Cass Ave., Detroit, Michigan 48202, United States
| |
Collapse
|
9
|
Bokouende SS, Kulasekara DN, Worku SA, Ward CL, Kajjam AB, Lutter JC, Allen MJ. Expanding the Coordination of f-Block Metals with Tris[2-(2-methoxyethoxy)ethyl]amine: From Molecular Complexes to Cage-like Structures. Inorg Chem 2024; 63:9434-9450. [PMID: 38016147 PMCID: PMC11129929 DOI: 10.1021/acs.inorgchem.3c02752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Low-valent f-block metals have intrinsic luminescence, electrochemical, and magnetic properties that are modulated with ligands, causing the coordination chemistry of these metals to be imperative to generating critical insights needed to impact modern applications. To this end, we synthesized and characterized a series of twenty-seven complexes of f-metal ions including EuII, YbII, SmII, and UIII and hexanuclear clusters of LaIII and CeIII to study the impact of tris[2-(2-methoxyethoxy)ethyl]amine, a flexible acyclic analogue of the extensively studied 2.2.2-cryptand, on the coordination chemistry and photophysical properties of low-valent f-block metals. We demonstrate that the flexibility of the ligand enables luminescence tunability over a greater range than analogous cryptates of EuII in solution. Furthermore, the ligand also displays a variety of binding modes to f-block metals in the solid state that are inaccessible to cryptates of low-valent f-block metals. In addition to serving as a ligand for f-block metals of various sizes and oxidation states, tris[2-(2-methoxyethoxy)ethyl]amine also deprotonates water molecules coordinated to trivalent triflate salts of f-block metal ions, enabling the isolation of hexanuclear clusters containing either LaIII or CeIII. The ligand was also found to bind more tightly to YbII and UIII in the solid state compared to 2.2.2-cryptand, suggesting that it can play a role in the isolation of other low-valent f-block metals such CfII, NpIII, and PuIII. We expect that our findings will inspire applications of tris[2-(2-methoxyethoxy)ethyl]amine in the design of light-emitting diodes and the synthesis of extremely reducing divalent f-block metal complexes that are of interest for a wide range of applications.
Collapse
Affiliation(s)
- Sergely Steephen Bokouende
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - D Nuwangi Kulasekara
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Sara A Worku
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Cassandra L Ward
- Lumigen Instrument Center, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Aravind B Kajjam
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Jacob C Lutter
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Matthew J Allen
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| |
Collapse
|
10
|
Carpenter SH, Mengell J, Chen J, Jones MR, Kirk ML, Tondreau AM. Determining the Effects of Zero-Field Splitting and Magnetic Exchange in Dimeric Europium(II) Complexes. Inorg Chem 2024; 63:8516-8520. [PMID: 38667056 DOI: 10.1021/acs.inorgchem.4c00694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Related BAP [BAP = bis(acyl)phosphide] and Acac (Acac = β-diketonate) molecules perform as robust supports for both lanthanide and actinide metals. Here, a molecular bimetallic Eu2+ complex was successfully targeted and isolated by employing sodium bis(mesitoyl)phosphide [Na(mesBAP)] in a salt metathesis with EuI2, producing [Eu(mesBAP)2(et2o)]2 (et2o = metal-coordinated diethyl ether). The corresponding Acac-Eu2+ complex was targeted using mesAcac- (1,3-dimesityl-1,3-propanedione), generating [Eu(mesAcac)2(et2o)]2. Both complexes were characterized by single-crystal X-ray diffraction, UV-vis, IR, and NMR spectroscopies, and variable-temperature magnetic susceptibility. [Eu(mesBAP)2(et2o)]2 was persistent under anaerobic, anhydrous conditions, whereas the analogous [Eu(mesAcac)2(et2o)]2 showed evidence of decomposition under identical conditions. Variable-temperature magnetic susceptibility and magnetization studies of [Eu(mesBAP)2(et2o)]2 and [Eu(mesAcac)2(et2o)]2 were performed, resulting in similar magnetic exchange coupling values of Jex = -0.018 and -0.023 cm-1 and axial zero-field-splitting D values of -0.38 and -0.51 cm-1, respectively.
Collapse
Affiliation(s)
- Stephanie H Carpenter
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Joshua Mengell
- Department of Chemistry and Chemical Biology, The University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Ju Chen
- Department of Chemistry and Chemical Biology, The University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Margaret R Jones
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Martin L Kirk
- Department of Chemistry and Chemical Biology, The University of New Mexico, Albuquerque, New Mexico 87131, United States
- The Center for High Technology Materials, The University of New Mexico, Albuquerque, New Mexico 87106, United States
- The Center for Quantum Information and Control, The University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Aaron M Tondreau
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
11
|
Hilpmann S, Moll H, Drobot B, Vogel M, Hübner R, Stumpf T, Cherkouk A. Europium(III) as luminescence probe for interactions of a sulfate-reducing microorganism with potentially toxic metals. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115474. [PMID: 37716067 DOI: 10.1016/j.ecoenv.2023.115474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Microorganisms show a high affinity for trivalent actinides and lanthanides, which play an important role in the safe disposal of high-level radioactive waste as well as in the mining of various rare earth elements. The interaction of the lanthanide Eu(III) with the sulfate-reducing microorganism Desulfosporosinus hippei DSM 8344T, a representative of the genus Desulfosporosinus that naturally occurs in clay rock and bentonite, was investigated. Eu(III) is often used as a non-radioactive analogue for the trivalent actinides Pu(III), Am(III), and Cm(III), which contribute to a major part of the radiotoxicity of the nuclear waste. D. hippei DSM 8344T showed a weak interaction with Eu(III), most likely due to a complexation with lactate in artificial Opalinus Clay pore water. Hence, a low removal of the lanthanide from the supernatant was observed. Scanning transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy revealed a bioprecipitation of Eu(III) with phosphates potentially excreted from the cells. This demonstrates that the ongoing interaction mechanisms are more complex than a simple biosorption process. The bioprecipitation was also verified by luminescence spectroscopy, which showed that the formation of the Eu(III) phosphate compounds starts almost immediately after the addition of the cells. Moreover, chemical microscopy provided information on the local distribution of the different Eu(III) species in the formed cell aggregates. These results provide first insights into the interaction mechanisms of Eu(III) with sulfate-reducing bacteria and contribute to a comprehensive safety concept for a high-level radioactive waste repository, as well as to a better understanding of the fate of heavy metals (especially rare earth elements) in the environment.
Collapse
Affiliation(s)
- Stephan Hilpmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Henry Moll
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Björn Drobot
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Manja Vogel
- VKTA - Strahlenschutz, Analytik & Entsorgung Rossendorf e. V., Dresden, Germany
| | - René Hübner
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Dresden, Germany
| | - Thorsten Stumpf
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Andrea Cherkouk
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany.
| |
Collapse
|
12
|
Yu G, Liu H, Yan W, Guo R, Wu A, Zhao Z, Liu Z, Bian Z. 4f → 3d sensitization: a luminescent Eu II-Mn II heteronuclear complex with a near-unity quantum yield. MATERIALS HORIZONS 2023; 10:625-631. [PMID: 36515011 DOI: 10.1039/d2mh01123a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A new heteronuclear EuII-MnII complex [Eu(N2O6)]MnBr4 (N2O6 = 4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane) is designed and synthesized, which shows an intense green emission from MnII with a near-unity photoluminescence quantum yield. Measurement of excited-state dynamics demonstrated the sensitization process from EuII to MnII, which represents the first example of f → d molecular sensitization. Due to the large optical absorption cross-section of the EuII center, [Eu(N2O6)]MnBr4 shows an emission intensity 7 to 2500 times stronger than that of the SrII-MnII control complex [Sr(N2O6)]MnBr4 upon the excitation of near ultraviolet to blue light.
Collapse
Affiliation(s)
- Gang Yu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Huanyu Liu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Wenchao Yan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Ruoyao Guo
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Aoben Wu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Zifeng Zhao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Zhiwei Liu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Zuqiang Bian
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
13
|
Synthesis and luminescent properties of new molecular compounds of divalent lanthanides LnCl2∙0.5H2O (Ln = Yb, Sm, Tm, and Eu). J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
14
|
Rare Earth Complexes of Europium(II) and Substituted Bis(pyrazolyl)borates with High Photoluminescence Efficiency. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228053. [PMID: 36432156 PMCID: PMC9694868 DOI: 10.3390/molecules27228053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022]
Abstract
Rare earth europium(II) complexes based on d-f transition luminescence have characteristics of broad emission spectra, tunable emission colors and short excited state lifetimes, showing great potential in display, lighting and other fields. In this work, four complexes of Eu(II) and bis(pyrazolyl)borate ligands, where pyrazolyl stands for pyrazolyl, 3-methylpyrazolyl, 3,5-dimethylpyrazolyl or 3-trifluoromethylpyrazole, were designed and synthesized. Due to the varied steric hindrance of the ligands, different numbers of solvent molecules (tetrahydrofuran) are participated to saturate the coordination structure. These complexes showed blue-green to yellow emissions with maximum wavelength in the range of 490-560 nm, and short excited state lifetimes of 30-540 ns. Among them, the highest photoluminescence quantum yield can reach 100%. In addition, when the complexes were heated under vacuum or nitrogen atmosphere, they finally transformed into the complexes of Eu(II) and corresponding tri(pyrazolyl)borate ligands and sublimated away.
Collapse
|
15
|
Bokouende SS, Jenks TC, Ward CL, Allen MJ. Solid-state and solution-phase characterization of Sm II-aza[2.2.2]cryptate and its methylated analogue. Dalton Trans 2022; 51:10852-10855. [PMID: 35781473 PMCID: PMC9650674 DOI: 10.1039/d2dt01823c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two new SmII-azacryptates are reported that differ in steric hindrance and Lewis basicity of donor atoms. The sterically hindered complex has a smaller coordination number and a more negative electrochemical potential than the complex with less steric hindrance.
Collapse
Affiliation(s)
| | - Tyler C Jenks
- Deparptment of Chemistry, Wayne State University, 5101 Cass Ave., Detroit, MI 48202, USA.
| | - Cassandra L Ward
- Lumigen Instrument Center, Wayne State University, 5101 Cass Ave., Detroit, MI 48202, USA
| | - Matthew J Allen
- Deparptment of Chemistry, Wayne State University, 5101 Cass Ave., Detroit, MI 48202, USA.
| |
Collapse
|
16
|
Willauer AR, Fadaei-Tirani F, Zivkovic I, Sienkiewicz A, Mazzanti M. Structure and Reactivity of Polynuclear Divalent Lanthanide Disiloxanediolate Complexes. Inorg Chem 2022; 61:7436-7447. [PMID: 35505299 DOI: 10.1021/acs.inorgchem.2c00479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Trinuclear molecular complexes of europium (II) and ytterbium(II) [Ln3{(Ph2SiO)2O}3(THF)6], 1-Ln3L3 (Ln = Eu and Yb), supported by the dianionic tetraphenyl disiloxanediolate ligand, were synthesized via protonolysis of the [Ln{N(SiMe3)2}2(THF)2] complexes. In contrast, the reaction of [Sm{N(SiMe3)2}2(THF)2] with the (Ph2SiOH)2O ligand led to the isolation of the mixed-valent Sm(II)/Sm(III) complex [Sm3{(Ph2SiO)2O}3{N(SiMe3)2}(THF)4], 2-Sm3L3, which was crystallographically characterized. The Eu(II) complex 1-Eu3L3 displays weak ferromagnetic coupling between the Eu(II) metal centers (J = 0.1035 cm-1). The addition of 3 equiv of (Ph2SiOK)2O to 1-Eu3L3 resulted in the formation of the polynuclear Eu(II) dimer of dimers [K4Eu2{(Ph2SiO)2O}4(Et2O)2]2, 3-Eu2L4. Complexes 1-Ln3L3 (Ln = Eu and Yb) are stable in solution at room temperature, while 3-Eu2L4 shows higher reactivity and rapidly decomposes to give the mixed-valent Eu(II)/Eu(III) species [K3Eu2{(Ph2SiO)2O}4], 4-Eu2L4. Complex 1-Yb3L3 affects the slow reductive disproportionation of carbon dioxide, but 1-Eu3L3 does not display any reactivity toward CO2. However, the presence of one additional (Ph2SiO-)2O per Eu(II) metal center in 3-Eu2L4 increases dramatically the reductive ability of the Eu(II) metal centers, affording the first example of carbon dioxide activation by an isolated divalent europium complex. The reduction of CO2 by 3-Eu2L4 is immediate, and carbonate is formed selectively after the addition of a stoichiometric amount of CO2.
Collapse
Affiliation(s)
- Aurélien R Willauer
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Farzaneh Fadaei-Tirani
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Ivica Zivkovic
- Laboratory for Quantum Magnetism, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Andrzej Sienkiewicz
- Laboratory for Quantum Magnetism, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.,ADSresonances Sàrl; Route de Genève 60B, 1028 Préverenges, Switzerland
| | - Marinella Mazzanti
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
17
|
Wang L, Fang P, Zhao Z, Huang Y, Liu Z, Bian Z. Rare Earth Complexes with 5d-4f Transition: New Emitters in Organic Light-Emitting Diodes. J Phys Chem Lett 2022; 13:2686-2694. [PMID: 35302781 DOI: 10.1021/acs.jpclett.2c00400] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Organic light-emitting diodes (OLEDs) are considered as next-generation displays and lighting technologies. During the past three decades, various luminescent materials such as fluorescence, phosphorescence, and thermally activated delayed fluorescence materials have been subsequently investigated as emitters. To date, blue OLEDs are still the bottleneck as compared to red and green ones because of the lack of efficient emitters with simultaneous high exciton utilization efficiency and long-term stability. Recently, d-f transition rare earth complexes have been reported as new emitters in OLEDs with potential high efficiency and stability. In this Perspective, we present a brief introduction to OLEDs and an overview of the previous electroluminescence study on d-f transition rare earth complexes. This is followed by our recent developments in cerium(III) complex- and europium(II) complex-based OLEDs. We finally discuss the challenges and opportunities for OLED study based on d-f transition rare earth complexes.
Collapse
Affiliation(s)
- Liding Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Peiyu Fang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Zifeng Zhao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Yanyi Huang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Zhiwei Liu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Zuqiang Bian
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, College of Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
18
|
Yan W, Li T, Cai Z, Qi H, Guo R, Huo P, Liu Z, Bian Z. Systematic tuning of the emission colors and redox potential of Eu( ii)-containing cryptates by changing the N/O ratio of cryptands. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01216b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The λmax, excited-state lifetimes, and the anodic peak potential of Eu2+/Eu3+ for Eu(ii)-containing cryptates depend linearly on the number of N atoms.
Collapse
Affiliation(s)
- Wenchao Yan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Tingzhou Li
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zelun Cai
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hao Qi
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ruoyao Guo
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Peihao Huo
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhiwei Liu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zuqiang Bian
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
19
|
Prieto A, Jaroschik F. Recent Applications of Rare Earth Complexes in Photoredox Catalysis for Organic
Synthesis. CURR ORG CHEM 2022. [DOI: 10.2174/1385272825666211126123928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
In recent years, photoredox catalysis has appeared as a new paradigm for forging a
wide range of chemical bonds under mild conditions using abundant reagents. This approach
allows many organic transformations through the generation of various radical species, enabling
the valorization of non-traditional partners. A continuing interest has been devoted to
the discovery of novel radical-generating procedures. Over the last ten years, strategies using
rare-earth complexes as either redox-active centers or as redox-neutral Lewis acids have
emerged. This review provides an overview of the recent accomplishments made in this field.
It especially aims to demonstrate the utility of rare-earth complexes for ensuring photocatalytic
transformations and to inspire future developments.
Collapse
Affiliation(s)
- Alexis Prieto
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | |
Collapse
|
20
|
Ilichev VA, Silantyeva LI, Rogozhin AF, Yablonskiy AN, Andreev BA, Rumyantsev RV, Fukin GK, Bochkarev MN. Luminescence thermochromism in novel mixed Eu(II)-Cu(I) iodide. Dalton Trans 2021; 50:14244-14251. [PMID: 34553198 DOI: 10.1039/d1dt02384e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new mixed Eu(II)-Cu(I) iodide [Eu(DME)4][Cu2I4] (1) was synthesized by the reaction of an organosulphide salt of Eu(II) and CuI in DME media. X-ray analysis revealed that 1 is an ate-complex consisting of Eu(DME)4 dications and tetraiododicuprate dianions. Upon UV light excitation (λ = 365 nm), the compound exhibits intense double-peaked photoluminescence (PL) at 445 and 500 nm. The relative intensity of these peaks changes dramatically when the temperature changes in the range of 180-250 K. To understand the nature of the found PL thermochromism, the structure and time-resolved PL of 1 were studied at various temperatures. The time-resolved PL studies of 1 at various temperatures revealed the presence of two luminescent centers which are excited by the capture of an electron from the conduction band. The ratio of intensities at 445 and 500 nm (R = I445/I500) in the PL spectra of 1 changes by almost two orders of magnitude and the relative sensitivity S (S = (∂R/∂T)/R) exceeds 5% per K in the range of 190-245 K that makes this compound a promising luminescent thermometer for the range where ammonia exists in a liquid state.
Collapse
Affiliation(s)
- Vasily A Ilichev
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina 49, 603950 Nizhny Novgorod, Russian Federation.
| | - Liubov I Silantyeva
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina 49, 603950 Nizhny Novgorod, Russian Federation.
| | - Anton F Rogozhin
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina 49, 603950 Nizhny Novgorod, Russian Federation.
| | - Artem N Yablonskiy
- Institute for Physics of Microstructures of Russian Academy of Sciences, 7 ul. Akademicheskaya, 603950 Nizhny Novgorod, Russian Federation
| | - Boris A Andreev
- Institute for Physics of Microstructures of Russian Academy of Sciences, 7 ul. Akademicheskaya, 603950 Nizhny Novgorod, Russian Federation
| | - Roman V Rumyantsev
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina 49, 603950 Nizhny Novgorod, Russian Federation.
| | - Georgy K Fukin
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina 49, 603950 Nizhny Novgorod, Russian Federation.
| | - Mikhail N Bochkarev
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina 49, 603950 Nizhny Novgorod, Russian Federation.
| |
Collapse
|
21
|
Galimov DI, Yakupova SM, Vasilyuk KS, Bulgakov RG. A novel gas assay for ultra-small amounts of molecular oxygen based on the chemiluminescence of divalent europium. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Poe TN, Beltrán-Leiva MJ, Celis-Barros C, Nelson WL, Sperling JM, Baumbach RE, Ramanantoanina H, Speldrich M, Albrecht-Schönzart TE. Understanding the Stabilization and Tunability of Divalent Europium 2.2.2B Cryptates. Inorg Chem 2021; 60:7815-7826. [PMID: 33990139 DOI: 10.1021/acs.inorgchem.1c00300] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Lanthanides such as europium with more accessible divalent states are useful for studying redox stability afforded by macrocyclic organic ligands. Substituted cryptands, such as 2.2.2B cryptand, that increase the oxidative stability of divalent europium also provide coordination environments that support synthetic alterations of Eu(II) cryptate complexes. Two single crystal structures were obtained containing nine-coordinate Eu(II) 2.2.2B cryptate complexes that differ by a single coordination site, the occupation of which is dictated by changes in reaction conditions. A crystal structure containing a [Eu(2.2.2B)Cl]+ complex is obtained from a methanol-THF solvent mixture, while a methanol-acetonitrile solvent mixture affords a [Eu(2.2.2B)(CH3OH)]2+ complex. While both crystals exhibit the typical blue emission observed in most Eu(II) containing compounds as a result of 4f65d1 to 4f7 transitions, computational results show that the substitution of a Cl- anion in the place of a methanol molecule causes mixing of the 5d excited states in the Eu(II) 2.2.2B cryptate complex. Additionally, magnetism studies reveal the identity of the capping ligand in the Eu(II) 2.2.2B cryptate complex may also lead to exchange between Eu(II) metal centers facilitated by π-stacking interactions within the structure, slightly altering the anticipated magnetic moment. The synthetic control present in these systems makes them interesting candidates for studying less stable divalent lanthanides and the effects of precise modifications of the electronic structures of low valent lanthanide elements.
Collapse
Affiliation(s)
- Todd N Poe
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee 32306, Florida, United States
| | - Maria J Beltrán-Leiva
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee 32306, Florida, United States
| | - Cristian Celis-Barros
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee 32306, Florida, United States
| | - William L Nelson
- National High Magnetic Field Laboratory, 1800 E. Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Joseph M Sperling
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee 32306, Florida, United States
| | - Ryan E Baumbach
- National High Magnetic Field Laboratory, 1800 E. Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Harry Ramanantoanina
- Department of Chemistry, Johannes Gutenberg-University of Mainz, Staudingerweg 18, 55128 Mainz, Germany
| | - Manfred Speldrich
- Institut für Anorganische Chemie, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Thomas E Albrecht-Schönzart
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee 32306, Florida, United States.,National High Magnetic Field Laboratory, 1800 E. Paul Dirac Drive, Tallahassee, Florida 32310, United States
| |
Collapse
|
23
|
Hay MA, Boskovic C. Lanthanoid Complexes as Molecular Materials: The Redox Approach. Chemistry 2021; 27:3608-3637. [PMID: 32965741 DOI: 10.1002/chem.202003761] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Indexed: 11/05/2022]
Abstract
The development of molecular materials with novel functionality offers promise for technological innovation. Switchable molecules that incorporate redox-active components are enticing candidate compounds due to their potential for electronic manipulation. Lanthanoid metals are most prevalent in their trivalent state and usually redox-activity in lanthanoid complexes is restricted to the ligand. The unique electronic and physical properties of lanthanoid ions have been exploited for various applications, including in magnetic and luminescent materials as well as in catalysis. Lanthanoid complexes are also promising for applications reliant on switchability, where the physical properties can be modulated by varying the oxidation state of a coordinated ligand. Lanthanoid-based redox activity is also possible, encompassing both divalent and tetravalent metal oxidation states. Thus, utilization of redox-active lanthanoid metals offers an attractive opportunity to further expand the capabilities of molecular materials. This review surveys both ligand and lanthanoid centered redox-activity in pre-existing molecular systems, including tuning of lanthanoid magnetic and photophysical properties by modulating the redox states of coordinated ligands. Ultimately the combination of redox-activity at both ligands and metal centers in the same molecule can afford novel electronic structures and physical properties, including multiconfigurational electronic states and valence tautomerism. Further targeted exploration of these features is clearly warranted, both to enhance understanding of the underlying fundamental chemistry, and for the generation of a potentially important new class of molecular material.
Collapse
Affiliation(s)
- Moya A Hay
- School of Chemistry, University of Melbourne, Victoria, 3010, Australia
| | - Colette Boskovic
- School of Chemistry, University of Melbourne, Victoria, 3010, Australia
| |
Collapse
|
24
|
Bailey MD, Jin GX, Carniato F, Botta M, Allen MJ. Rational Design of High-Relaxivity Eu II -Based Contrast Agents for Magnetic Resonance Imaging of Low-Oxygen Environments. Chemistry 2021; 27:3114-3118. [PMID: 33226696 PMCID: PMC7902434 DOI: 10.1002/chem.202004450] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/21/2020] [Indexed: 01/01/2023]
Abstract
Metal-based contrast agents for magnetic resonance imaging present a promising avenue to image hypoxia. EuII -based contrast agents have a unique biologically relevant redox couple, EuII/III , that distinguishes this metal for use in hypoxia imaging. To that end, we investigated a strategy to enhance the contrast-enhancing capabilities of EuII -based cryptates in magnetic resonance imaging by controlling the rotational dynamics. Two dimetallic, EuII -containing cryptates were synthesized to test the efficacy of rigid versus flexible coupling strategies. A flexible strategy to dimerization led to a modest (114 %) increase in contrast enhancement per Eu ion (60 MHz, 298 K), but a rigid linking strategy led to an excellent (186 %) increase in contrast enhancement despite this compound's having the smaller molecular mass of the two dimetallic complexes. We envision the rigid linking strategy to be useful in the future design of potent EuII -based contrast agents for magnetic resonance imaging.
Collapse
Affiliation(s)
- Matthew D Bailey
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - Guo-Xia Jin
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P. R. China
| | - Fabio Carniato
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "Amedeo Avogadro", Viale T. Michel 11, 15121, Alessandria, Italy
| | - Mauro Botta
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "Amedeo Avogadro", Viale T. Michel 11, 15121, Alessandria, Italy
| | - Matthew J Allen
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| |
Collapse
|
25
|
Abstract
Structures, electron spectroscopy and theoretical (DFT and TD DFT) analyses of two complexes of Eu(ii) with phosphonate and phosphinate ligands based on cyclen ring are presented.
Collapse
|
26
|
Galimov DI, Yakupova SM, Vasilyuk KS, Sabirov DS, Bulgakov RG. Effect of coordination environment of Eu2+ ion on the 5d-4f luminescence of molecular compounds EuL2(THF) (L = Cl, Br, I, NO3, Ac, fod, tmhd, and acac; x = 0, 2). J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
27
|
Zhan G, Wang L, Zhao Z, Fang P, Bian Z, Liu Z. Highly Efficient and Air‐Stable Lanthanide Eu
II
Complex: New Emitter in Organic Light Emitting Diodes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ge Zhan
- Beijing National Laboratory for Molecular Sciences (BNLMS) State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Liding Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS) State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Zifeng Zhao
- Beijing National Laboratory for Molecular Sciences (BNLMS) State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Peiyu Fang
- Beijing National Laboratory for Molecular Sciences (BNLMS) State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Zuqiang Bian
- Beijing National Laboratory for Molecular Sciences (BNLMS) State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Zhiwei Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS) State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| |
Collapse
|
28
|
Highly efficient and air-stable Eu(II)-containing azacryptates ready for organic light-emitting diodes. Nat Commun 2020; 11:5218. [PMID: 33060573 PMCID: PMC7562750 DOI: 10.1038/s41467-020-19027-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 09/24/2020] [Indexed: 02/02/2023] Open
Abstract
Divalent europium 5d-4f transition has aroused great attention in many fields, in a way of doping Eu2+ ions into inorganic solids. However, molecular Eu2+ complexes with 5d-4f transition are thought to be too air-unstable to explore their applications. In this work, we synthesized four Eu2+-containing azacryptates EuX2-Nn (X = Br, I, n = 4, 8) and systematically studied the photophysical properties in crystalline samples and solutions. Intriguingly, the EuX2-N8 complexes exhibit near-unity photoluminescence quantum yield, good air-/thermal-stability and mechanochromic property (X = I). Furthermore, we proved the application of Eu2+ complexes in organic light-emitting diodes (OLEDs) with high efficiency and luminance. The optimized device employing EuI2-N8 as emitter has the best performance as the maximum luminance, current efficiency, and external quantum efficiency up to 25470 cd m−2, 62.4 cd A−1, and 17.7%, respectively. Our work deepens the understanding of structure-property relationship in molecular Eu2+ complexes and could inspire further research on application in OLEDs. Though divalent-europium-based complexes are promising materials for next-generation light-emitting devices, their poor air stability limits their applicability. Here, the authors report the design of air stable divalent-europium-based complexes for efficient organic light-emitting diodes.
Collapse
|
29
|
Kim Y, Ohmagari H, Saso A, Tamaoki N, Hasegawa M. Electrofluorochromic Device Based on a Redox-Active Europium(III) Complex. ACS APPLIED MATERIALS & INTERFACES 2020; 12:46390-46396. [PMID: 32931242 DOI: 10.1021/acsami.0c13765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Electrofluorochromism owing to redox reactions on the center europium (Eu) ion in ionic liquids is examined for the helicate complexes (abbreviated as EuL) with a hexadentate pyridine derivative. Typical electrofluorochromism requires extra electroactive units complementing intra- or intermolecular energy transfer to quench fluorophores. Herein, an unprecedentedly simplified electrofluorochromic system overcoming such issues is demonstrated by utilizing reversible electrochemistry of EuL between Eu3+ and Eu2+, which accompanies large emission transition. A three-electrode electrochemical switching device is facilely prepared with an ionic liquid [BMIM][PF6] and EuL mixture. Benefiting from the stable helical coordinated structure of the ligand in [BMIM][PF6], highly enhanced red fluorescence of EuL with small quantity (≤1 wt %) is utilized. Rapid response and large contrast of luminescence are achieved: the emission is drastically quenched at the reduced state (Eu2+) and it is successfully restored by subsequent oxidation (Eu3+). The reversible fluctuation of excitation and emission spectra of an electrofluorochromic device is achieved in the potential window within ±2 V. The device affords excellent optoelectric properties in terms of well-controlled luminescence switching depending on the applied potentials and its durability. This work paves an efficient and smart way toward Eu luminescence control in optoelectronic devices.
Collapse
Affiliation(s)
- Yuna Kim
- Research Institute for Electronic Science, Hokkaido University, N-20, W-10, Kita-Ku, Sapporo 001-0020, Japan
| | - Hitomi Ohmagari
- College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Akira Saso
- College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Nobuyuki Tamaoki
- Research Institute for Electronic Science, Hokkaido University, N-20, W-10, Kita-Ku, Sapporo 001-0020, Japan
| | - Miki Hasegawa
- College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| |
Collapse
|
30
|
Barraza R, Allen MJ. Lanthanide Luminescence in Visible-Light-Promoted Photochemical Reactions. Molecules 2020; 25:molecules25173892. [PMID: 32858962 PMCID: PMC7503482 DOI: 10.3390/molecules25173892] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 11/17/2022] Open
Abstract
The excitation of lanthanides with visible light to promote photochemical reactions has garnered interest in recent years. Lanthanides serve as initiators for photochemical reactions because they exhibit visible-light-promoted 4f→5d transitions that lead to emissive states with electrochemical potentials that are more negative than the corresponding ground states. The lanthanides that have shown the most promising characteristics for visible-light promoted photoredox are SmII, EuII, and CeIII. By understanding the effects that ligands have on the 5d orbitals of SmII, EuII, and CeIII, luminescence and reactivity can be rationally modulated using coordination chemistry. This review briefly overviews the photochemical reactivity of SmII, EuII, and CeIII with visible light; the properties that influence the reactivity of these ions; and the research that has been reported towards modulating their photochemical-relevant properties using visible light and coordination chemistry.
Collapse
|
31
|
Zhan G, Wang L, Zhao Z, Fang P, Bian Z, Liu Z. Highly Efficient and Air‐Stable Lanthanide Eu
II
Complex: New Emitter in Organic Light Emitting Diodes. Angew Chem Int Ed Engl 2020; 59:19011-19015. [DOI: 10.1002/anie.202008423] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 06/29/2020] [Indexed: 11/12/2022]
Affiliation(s)
- Ge Zhan
- Beijing National Laboratory for Molecular Sciences (BNLMS) State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Liding Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS) State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Zifeng Zhao
- Beijing National Laboratory for Molecular Sciences (BNLMS) State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Peiyu Fang
- Beijing National Laboratory for Molecular Sciences (BNLMS) State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Zuqiang Bian
- Beijing National Laboratory for Molecular Sciences (BNLMS) State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Zhiwei Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS) State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| |
Collapse
|
32
|
Silantyeva LI, Ilichev VA, Shavyrin AS, Yablonskiy AN, Rumyantcev RV, Fukin GK, Bochkarev MN. Unexpected Findings in a Simple Metathesis Reaction of Europium and Ytterbium Diiodides with Perfluorinated Mercaptobenzothiazolates of Alkali Metals. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Liubov I. Silantyeva
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina 49, 603950 Nizhny Novgorod, Russian Federation
| | - Vasily A. Ilichev
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina 49, 603950 Nizhny Novgorod, Russian Federation
| | - Andrey S. Shavyrin
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina 49, 603950 Nizhny Novgorod, Russian Federation
| | - Artem N. Yablonskiy
- Institute for Physics of Microstructures of Russian Academy of Sciences, 7 ul. Akademicheskaya, 603950 Nizhny Novgorod, Russian Federation
| | - Roman V. Rumyantcev
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina 49, 603950 Nizhny Novgorod, Russian Federation
| | - Georgy K. Fukin
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina 49, 603950 Nizhny Novgorod, Russian Federation
| | - Mikhail N. Bochkarev
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina 49, 603950 Nizhny Novgorod, Russian Federation
| |
Collapse
|
33
|
Basal LA, Kajjam AB, Bailey MD, Allen MJ. Systematic Tuning of the Optical Properties of Discrete Complexes of Eu II in Solution Using Counterions and Solvents. Inorg Chem 2020; 59:9476-9480. [PMID: 32618468 DOI: 10.1021/acs.inorgchem.0c01516] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We describe a systematic study of the influence of halides and solvents on the optical properties of EuII-containing complexes in solution starting from well-defined crystalline precursors. Anionic halides, chloride and bromide, blue-shift the spectroscopic properties of EuII, whereas neutral ligands, methanol and acetonitrile, cause a red shift. This system provides evidence that EuII has a stronger affinity for chloride, and to some extent bromide, relative to acetonitrile but not methanol. We also describe a simple procedure using an ion-exchange resin for the exchange of iodide counterions to hexafluorophosphate. These findings are a step toward designing ligands that can tune the optical properties of EuII-containing complexes for solution-based applications.
Collapse
Affiliation(s)
- Lina A Basal
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States.,Department of Chemistry and Biochemistry, Colorado College, 1040 North Nevada Avenue, Colorado Springs, Colorado 80903, United States
| | - Aravind B Kajjam
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Matthew D Bailey
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Matthew J Allen
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| |
Collapse
|
34
|
Kovacs D, Mathieu E, Kiraev SR, Wells JAL, Demeyere E, Sipos A, Borbas KE. Coordination Environment-Controlled Photoinduced Electron Transfer Quenching in Luminescent Europium Complexes. J Am Chem Soc 2020; 142:13190-13200. [DOI: 10.1021/jacs.0c05518] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Daniel Kovacs
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Emilie Mathieu
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Salauat R. Kiraev
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Jordann A. L. Wells
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Ellen Demeyere
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Agnès Sipos
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - K. Eszter Borbas
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| |
Collapse
|
35
|
Galimov DI, Yakupova SM, Vasilyuk KS, Bulgakov RG. Bright two-color halogen-dependent chemiluminescence of Eu2+* ions at the oxidation of organoaluminium compounds by oxygen in the presence of europium dihalides. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Jenks TC, Kuda-Wedagedara ANW, Bailey MD, Ward CL, Allen MJ. Spectroscopic and Electrochemical Trends in Divalent Lanthanides through Modulation of Coordination Environment. Inorg Chem 2020; 59:2613-2620. [PMID: 31999439 DOI: 10.1021/acs.inorgchem.0c00136] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Due to the importance of both visible-light luminescence and lanthanides in modern society, the influence of the ligand environment on complexes of YbII were studied and compared with analogous complexes of EuII. Four ligands with systematically varied electronic and steric characteristics were used to probe the coordination environment and electronic and redox properties of the corresponding YbII-containing complexes. Strong-field nitrogenous donors gave rise to bathochromic shifts, leading to visible-light absorption by YbII. Trends in properties across the series of YbII-containing complexes were compared to trends reported for the analogous EuII-containing complexes, revealing the translatability of coordination environment effects across the divalent lanthanide series. These studies provide valuable information regarding the behavior of small and medium-sized divalent lanthanides outside of the solid state.
Collapse
|
37
|
Lenora CU, Staples RJ, Allen MJ. Measurement of the Dissociation of Eu II-Containing Cryptates Using Murexide. Inorg Chem 2020; 59:86-93. [PMID: 30777754 DOI: 10.1021/acs.inorgchem.8b03605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The dissociation rates of five EuII-containing cryptates in water were measured using UV-visible spectroscopy and murexide at pH 6.5, 7, 7.5, 8, and 9. Murexide was used as a coordinating dye for EuII. The results for a known cryptate were within experimental error of the value obtained using other methods and enabled the measurement of other cryptates. This validation of the use of murexide to study the dissociation of EuII-containing cryptates enables its use with other complexes of EuII.
Collapse
Affiliation(s)
- Chamika U Lenora
- Department of Chemistry , Wayne State University , Detroit , Michigan 48202 , United States
| | - Richard J Staples
- Department of Chemistry , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Matthew J Allen
- Department of Chemistry , Wayne State University , Detroit , Michigan 48202 , United States
| |
Collapse
|
38
|
Nielsen LG, Sørensen TJ. Including and Declaring Structural Fluctuations in the Study of Lanthanide(III) Coordination Chemistry in Solution. Inorg Chem 2019; 59:94-105. [DOI: 10.1021/acs.inorgchem.9b01571] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Lea Gundorff Nielsen
- Nano-Science Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark
| | - Thomas Just Sørensen
- Nano-Science Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark
| |
Collapse
|
39
|
Liu X, Du L, Wang Y, Li R, Feng X, Ding Y. Synthesis, crystal structures and properties of two nickel (II) complexes with different nitrogen-heterocyclic polycarboxylate ligand. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.03.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
40
|
White FD, Celis-Barros C, Rankin J, Solís-Céspedes E, Dan D, Gaiser AN, Zhou Y, Colangelo J, Páez-Hernández D, Arratia-Pérez R, Albrecht-Schmitt TE. Molecular and Electronic Structure, and Hydrolytic Reactivity of a Samarium(II) Crown Ether Complex. Inorg Chem 2019; 58:3457-3465. [PMID: 30788962 DOI: 10.1021/acs.inorgchem.8b03566] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The reaction of SmI2 with dibenzo-30-crown-10 (DB30C10), followed by metathesis with [Bu4N][BPh4], allows for the isolation of [SmII(DB30C10)][BPh4]2 as bright-red crystals in good yield. Exposure of [Sm(DB30C10)]2+ to solvents containing trace water results in the conversion to the dinuclear SmIII complex, Sm2(DB30C10)(OH)2I4. Structural analysis of both complexes shows substantial rearrangement of the crown ether from a folded, Pac-Man form with SmII to a twisted conformation with SmIII. The optical properties of [SmII(DB30C10)][BPh4]2 exhibit a strong temperature dependence and change from broad-band absorption features indicative of domination by 5d states to fine features characteristic of 4f → 4f transitions at low temperatures. Examination of the electronic structure of these complexes via ab initio wave function calculations (SO-CASSCF) shows that the ground state of SmII in [SmII(DB30C10)]2+ is a 4f6 state with low-lying 4f55d1 states, where the latter states have been lowered in energy by ∼12 000 cm-1 with respect to the free ion. The decacoordination of the SmII cation by the crown ether is responsible for this alteration in the energies of the excited state and demonstrates the ability to tune the electronic structure of SmII.
Collapse
Affiliation(s)
- Frankie D White
- Department of Chemistry and Biochemistry , Florida State University , Tallahassee , Florida 32306 , United States
| | - Cristian Celis-Barros
- Department of Chemistry and Biochemistry , Florida State University , Tallahassee , Florida 32306 , United States
| | - Jillian Rankin
- Department of Chemistry and Biochemistry , Florida State University , Tallahassee , Florida 32306 , United States
| | - Eduardo Solís-Céspedes
- Relativistic Molecular Physics Group , Universidad Andres Bello , Replubica 275 , Santiago , Chile
| | - David Dan
- Department of Chemistry and Biochemistry , Florida State University , Tallahassee , Florida 32306 , United States
| | - Alyssa N Gaiser
- Department of Chemistry and Biochemistry , Florida State University , Tallahassee , Florida 32306 , United States
| | - Yan Zhou
- Department of Chemistry and Biochemistry , Florida State University , Tallahassee , Florida 32306 , United States
| | - Jasmine Colangelo
- Department of Chemistry and Biochemistry , Florida State University , Tallahassee , Florida 32306 , United States
| | - Dayán Páez-Hernández
- Relativistic Molecular Physics Group , Universidad Andres Bello , Replubica 275 , Santiago , Chile
| | - Ramiro Arratia-Pérez
- Relativistic Molecular Physics Group , Universidad Andres Bello , Replubica 275 , Santiago , Chile
| | - Thomas E Albrecht-Schmitt
- Department of Chemistry and Biochemistry , Florida State University , Tallahassee , Florida 32306 , United States
| |
Collapse
|
41
|
Werner EJ, Biros SM. Supramolecular ligands for the extraction of lanthanide and actinide ions. Org Chem Front 2019. [DOI: 10.1039/c9qo00242a] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A selection of supramolecular ligands designed to extract f-elements.
Collapse
Affiliation(s)
- Eric J. Werner
- Department of Chemistry
- Biochemistry and Physics
- The University of Tampa
- Tampa
- USA
| | - Shannon M. Biros
- Department of Chemistry
- Grand Valley State University
- Allendale
- USA
| |
Collapse
|
42
|
Corbin BA, Basal LA, White SA, Shen Y, Haacke EM, Fishbein KW, Allen MJ. Screening of ligands for redox-active europium using magnetic resonance imaging. Bioorg Med Chem 2018; 26:5274-5279. [PMID: 29653832 DOI: 10.1016/j.bmc.2018.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/27/2018] [Accepted: 04/01/2018] [Indexed: 12/31/2022]
Abstract
We report a screening procedure to predict ligand coordination to EuII and EuIII using magnetic resonance imaging in which bright images indicate complexation and dark images indicate no complexation. Here, paramagnetic GdIII is used as a surrogate for EuIII in the screening procedure to enable detection with magnetic resonance imaging. The screening procedure was tested using a set of eight ligands with known coordination to EuII and EuIII, and results were found to be consistent with expected binding. Validation of the screening procedure with known coordination chemistry enables use with new ligands in the future.
Collapse
Affiliation(s)
- Brooke A Corbin
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, United States
| | - Lina A Basal
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, United States
| | - Susan A White
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, United States
| | - Yimin Shen
- Department of Radiology, Wayne State University School of Medicine, Detroit, MI 48201, United States
| | - E Mark Haacke
- Department of Radiology, Wayne State University School of Medicine, Detroit, MI 48201, United States; Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201, United States
| | - Kenneth W Fishbein
- National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States
| | - Matthew J Allen
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, United States; Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201, United States.
| |
Collapse
|
43
|
Huh DN, Windorff CJ, Ziller JW, Evans WJ. Synthesis of uranium-in-cryptand complexes. Chem Commun (Camb) 2018; 54:10272-10275. [PMID: 30140826 DOI: 10.1039/c8cc05341c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The facile encapsulation of U(iii) and La(iii) by 2.2.2-cryptand (crypt) using simple starting materials is described. Addition of crypt to UI3 and LaCl3 forms the crystallographically-characterizable complexes, [U(crypt)I2]I and [La(crypt)Cl2]Cl. In the presence of water, the U(iii)-aquo adducts, [U(crypt)I(OH2)][I]2 and [U(crypt)I(OH2)][I][BPh4], can be isolated.
Collapse
Affiliation(s)
- Daniel N Huh
- Department of Chemistry, University of California-Irvine, Irvine, California 92697, USA.
| | | | | | | |
Collapse
|
44
|
Mathieu E, Sipos A, Demeyere E, Phipps D, Sakaveli D, Borbas KE. Lanthanide-based tools for the investigation of cellular environments. Chem Commun (Camb) 2018; 54:10021-10035. [PMID: 30101249 DOI: 10.1039/c8cc05271a] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Biological probes constructed from lanthanides can provide a variety of readout signals, such as the luminescence of Eu(iii), Tb(iii), Yb(iii), Sm(iii) and Dy(iii), and the proton relaxation enhancement of Gd(iii) and Eu(ii). For numerous applications the intracellular delivery of the lanthanide probe is essential. Here, we review the methods for the intracellular delivery of non-targeted complexes (i.e. where the overall complex structure enhances cellular uptake), as well as complexes attached to a targeting unit (i.e. to a peptide or a small molecule) that facilitates delivery. The cellular applications of lanthanide-based supramolecules (dendrimers, metal organic frameworks) are covered briefly. Throughout, we emphasize the techniques that can confirm the intracellular localization of the lanthanides and those that enable the determination of the fate of the probes once inside the cell. Finally, we highlight methods that have not yet been applied in the context of lanthanide-based probes, but have been successful in the intracellular delivery of other metal-based probes.
Collapse
Affiliation(s)
- Emilie Mathieu
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120, Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
45
|
Tu YJ, Lin Z, Allen MJ, Cisneros GA. Molecular dynamics investigation of water-exchange reactions on lanthanide ions in water/1-ethyl-3-methylimidazolium trifluoromethylsufate ([EMIm][OTf]). J Chem Phys 2018; 148:024503. [PMID: 29331119 DOI: 10.1063/1.4997008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We report a kinetic study of the water exchange on lanthanide ions in water/[1-ethyl-3-methylimidazolium][trifluoromethylsufate] (water/[EMIm][OTf]). The results from 17O-NMR measurements show that the water-exchange rates in water/[EMIm][OTf] increase with decreasing size of the lanthanide ions. This trend for water-exchange is similar to the previously reported trend in water/1-ethyl-3-methylimidazolium ethyl sulfate (water/[EMIm][EtSO4]) but opposite to that in water. To gain atomic-level insight into these water-exchange reactions, molecular dynamics simulations for lanthanide ions in water/[EMIm][OTf] have been performed using the atomic-multipole-optimized-energetics-for-biomolecular-application polarizable force field. Our molecular dynamics simulations reproduce the experimental water-exchange rates in terms of the trend and provide possible explanations for the observed experimental behavior. The smaller lanthanide ions in water/[EMIm][OTf] undergo faster water exchange because the smaller lanthanide ions coordinate to the first shell [OTf]- anions more tightly, resulting in a stronger screening effect for the second-shell water. The screening effect weakens the interaction of the lanthanide ions with the second-shell water molecules, facilitating the dissociation of water from the second-shell and subsequent association of water molecules from the outer solvation shells.
Collapse
Affiliation(s)
- Yi-Jung Tu
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | - Zhijin Lin
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | - Matthew J Allen
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | - G Andrés Cisneros
- Department of Chemistry, University of North Texas, Denton, Texas 76201, USA
| |
Collapse
|
46
|
Jenks TC, Bailey MD, Corbin BA, Kuda-Wedagedara ANW, Martin PD, Schlegel HB, Rabuffetti FA, Allen MJ. Photophysical characterization of a highly luminescent divalent-europium-containing azacryptate. Chem Commun (Camb) 2018; 54:4545-4548. [PMID: 29662990 DOI: 10.1039/c8cc01737a] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We report a new luminescent EuII-containing complex. The complex is excited with visible light, leading to emission centered at 447 nm with a lifetime of 1.25 μs. Computational studies suggest that the steric bulk of the ligand is a major factor influencing the wavelength of emission.
Collapse
Affiliation(s)
- Tyler C Jenks
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Basal LA, Allen MJ. Synthesis, Characterization, and Handling of Eu II-Containing Complexes for Molecular Imaging Applications. Front Chem 2018; 6:65. [PMID: 29616213 PMCID: PMC5867344 DOI: 10.3389/fchem.2018.00065] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/28/2018] [Indexed: 12/20/2022] Open
Abstract
Considerable research effort has focused on the in vivo use of responsive imaging probes that change imaging properties upon reacting with oxygen because hypoxia is relevant to diagnosing, treating, and monitoring diseases. One promising class of compounds for oxygen-responsive imaging is EuII-containing complexes because the EuII/III redox couple enables imaging with multiple modalities including magnetic resonance and photoacoustic imaging. The use of EuII requires care in handling to avoid unintended oxidation during synthesis and characterization. This review describes recent advances in the field of imaging agents based on discrete EuII-containing complexes with specific focus on the synthesis, characterization, and handling of aqueous EuII-containing complexes.
Collapse
Affiliation(s)
- Lina A Basal
- Department of Chemistry, Wayne State University, Detroit, MI, United States
| | - Matthew J Allen
- Department of Chemistry, Wayne State University, Detroit, MI, United States
| |
Collapse
|
48
|
Jenks TC, Bailey MD, Hovey JL, Fernando S, Basnayake G, Cross ME, Li W, Allen MJ. First use of a divalent lanthanide for visible-light-promoted photoredox catalysis. Chem Sci 2018; 9:1273-1278. [PMID: 29675173 PMCID: PMC5890796 DOI: 10.1039/c7sc02479g] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 12/13/2017] [Indexed: 11/21/2022] Open
Abstract
We report the first catalytic use of a divalent lanthanide in visible-light-promoted bond-forming reactions. Our new precatalyst uses europium in the +2 oxidation state and is active in the presence of blue light from light-emitting diodes. The use of low-energy visible light reduces the occurrence of potential side reactions that might be induced by higher-energy UV light. The system described here uses zinc metal as a sacrificial reductant and is tolerant to wet, protic solvents. The catalyst can be made in situ from relatively inexpensive and air-stable EuCl3·6H2O, and the ligand can be synthesized in large quantities in two steps. With 0.5% loading of precatalyst, an average of 120 turnovers was observed in six hours for reductive coupling of benzyl chloride. We expect that the results will initiate the study of visible-light-promoted photoredox catalysis using divalent europium in a variety of reactions.
Collapse
Affiliation(s)
- Tyler C Jenks
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , MI 48202 , USA .
| | - Matthew D Bailey
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , MI 48202 , USA .
| | - Jessica L Hovey
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , MI 48202 , USA .
| | - Shanilke Fernando
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , MI 48202 , USA .
| | - Gihan Basnayake
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , MI 48202 , USA .
| | - Michael E Cross
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , MI 48202 , USA .
| | - Wen Li
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , MI 48202 , USA .
| | - Matthew J Allen
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , MI 48202 , USA .
| |
Collapse
|
49
|
|
50
|
García-Rodríguez R, Kopf S, Wright DS. Modifying the donor properties of tris(pyridyl)aluminates in lanthanide(ii) sandwich compounds. Dalton Trans 2018; 47:2232-2239. [DOI: 10.1039/c7dt04657j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Changing the substituents at the 6-position of the 2-pyridyl groups in the aluminate ligands [EtAl(2-py)3]− has a large electronic and steric effect on their coordination to lanthanide(ii) ions.
Collapse
Affiliation(s)
- Raúl García-Rodríguez
- GIR MIOMeT-IU Cinquima-Química Inorgánica
- Facultad de Ciencias
- Campus Miguel
- Delibes
- Universidad de Valladolid
| | - Sara Kopf
- Chemistry Department. Cambridge University
- Cambridge CB2 1EW
- U.K
| | | |
Collapse
|