1
|
Zhao L, Cai W, Yuan S, Wang L, Zhang R, Li J, Wu D, Kong Y. Optically Pure Co(III) Complex Absorbed by Electrochemiluminescence-Active Covalent Organic Framework as an Enantioselective Recognition Platform to Give Opposite Responses Toward Amino Alcohol Enantiomers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:57649-57658. [PMID: 39382309 DOI: 10.1021/acsami.4c11835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Although covalent organic frameworks (COFs) accompanied by electrochemiluminescence (ECL) behavior have been introduced in recent years, they are still rarely applied for ECL-based enantioselective sensing, especially giving high recognition efficiency. In the current study, an achiral ionic COF comprised of the pyridinium unit is synthesized in the linkage of the carbon-nitrogen cation bond through the Zincke reaction. Interestingly, the synthesized ionic COF can generate clear ECL owing to the presence of electroactive species. Then, the ECL-active achiral COF is employed to absorb the chiral Co(III) complex for enantioselective sensing. As a result, the developed ECL sensor displays discriminative responses toward amino alcohol enantiomers. When the chiral Co(III) complex with (R)-configuration is used, the examined (S)-amino alcohols result in ECL enhancement, whereas (R)-amino alcohols lead to ECL quenching. The maximum ECL intensity ratio between (S)- and (R)-amino alcohols is up to 47.7. In addition, the recognition mechanism is investigated in detail. Finally, a good linear relation between enantiomeric composition and ECL intensity is developed and appropriate for the accurate analysis of the enantiomeric purities of unknown samples. In short, we believe that this study constructs an effective strategy to combine the respective advantages of COFs and ECL for high-efficiency enantioselective sensing.
Collapse
Affiliation(s)
- Lei Zhao
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Wenrong Cai
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Shuyi Yuan
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Lewei Wang
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Ru Zhang
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Junyao Li
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Datong Wu
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yong Kong
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
2
|
Yao Y, Lu Y, Xu J, Yu J, Guo L, Ding H, Li J, Liao J, Ang EH, Shen Z, Shen J. Rational regulation of post-electrodialysis electrochromic anion exchange membranes via TiO 2@Ag synergistically strengthens visible-light photocatalytic anti-contamination activity. WATER RESEARCH 2024; 263:122178. [PMID: 39096806 DOI: 10.1016/j.watres.2024.122178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/24/2024] [Accepted: 07/28/2024] [Indexed: 08/05/2024]
Abstract
Membrane-contamination during electrodialysis (ED) process is still a non-negligible challenge, while irreversible consumption and unsustainability have become the main bottlenecks limiting the improvement of anion exchange membranes (AEMs) anti-contamination activity. Here, we introduce a novel approach to design AEMs by chemically assembling 4-pyndinepropanol with bromomethylated poly(2,6-dimethyl-1,4-phenylene oxide) (BPPO) in an electrochromic-inspired process. Subsequently, the co-mingled TiO2@Ag nanosheet with the casting-solution were sprayed onto the surface of the substrate membrane to create a micrometer-thick interfacial layer. The addition of Ag nanoparticles (NPs) enhances the active sites of TiO2, resulting in stronger local surface plasmon resonance (LSPR) effects and reducing its energy band gap limitation (From 3.11 to 2.63 eV). Post-electrodialysis electrochromic AEMs incorporating TiO2@Ag exhibit synergistic enhancement of sunlight absorption, effectively suppressing photogenerated carrier binding and promoting migration. These resultant-membranes demonstrate significantly improved bacterial inhibition properties (42.0-fold increase for E. coli) and degradation activity (7.59-fold increase for rhodamine B) compared to pure TiO2 membranes. Importantly, they maintain photocatalytic activity without compromising salt-separation performance or stability, as the spraying process utilizes the same substrate materials. This approach to rational design and regulation of anti-contamination AEMs offers new insights into the collaborative synergy of color-changing and photocatalytic materials.
Collapse
Affiliation(s)
- Yuyang Yao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore
| | - Yueyue Lu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jingwen Xu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiacheng Yu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China
| | - Liang Guo
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Heda Ding
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jian Li
- Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Junbin Liao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Edison Huixiang Ang
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore.
| | - Zhenlu Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Jiangnan Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
3
|
He X, Chen L, Baumgartner T. Modified Viologen- and Carbonylpyridinium-Based Electrodes for Organic Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48689-48705. [PMID: 37584306 DOI: 10.1021/acsami.3c09856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Efficient electrochemical energy storage has been identified as one of the most pressing needs for a sustainable energy economy. Inorganic battery materials have traditionally been the center of attention, with the current state-of-the-art device being the lithium-ion battery. Recent pursuits have led to organic materials for their beneficial chemistry and properties, but suitable materials for organic batteries are still few and far between. This Spotlight on Applications highlights two intriguing pyridinium-based organic materials, modified viologens and carbonylpyridiniums, that have both been successfully employed in electrode materials for solid-state Li-ion-type organic batteries (LOBs). We first provide an overview of the inherent electronic properties of each building block and how they can effectively be modified while maintaining or enhancing their desirable electrochemical properties for practical applications. We then describe a range of different material designs for a battery context and their application in various organic device settings, with some examples showing competitive performance with traditional Li-ion batteries.
Collapse
Affiliation(s)
- Xiaoming He
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P.R. China
| | - Ling Chen
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P.R. China
| | - Thomas Baumgartner
- Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
4
|
Zhang X, Peng C, Jiang J. pH-Controllable Redox Responsive Amphiphilic Viologens for Switchable Emulsions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401651. [PMID: 38660702 DOI: 10.1002/smll.202401651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/12/2024] [Indexed: 04/26/2024]
Abstract
A pH and redox dual responsive amphiphilic viologen is synthesized, which can be reversibly transformed among the zwitterionic (SVa), monovalent anionic (SV+), and divalent anionic (SVH2+) forms upon pH variation, exhibiting pH-controllable redox responsive properties. Switchable Pickering emulsions with different droplet size and viscosity are prepared by the mixture of hydrophilic silica nanoparticles and the viologens (SV+ or SVH2+) at acidic conditions, while such combination yielded an oil-in-dispersion emulsion at neutral pH value. Not only can rapid reversible demulsification/stabilization of the Pickering emulsions be achieved by redox reactions, but the rate of redox-demulsification can also be controlled by pH trigger. The dual-responsive amphiphilic viologens have potential applications in developing intelligent colloid materials and molecular logic systems.
Collapse
Affiliation(s)
- Xinyue Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Chifang Peng
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Jianzhong Jiang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| |
Collapse
|
5
|
Nascimento MA, LaPierre EA, Patrick BO, Watson JET, Watanabe L, Rawson J, Hering-Junghans C, Manners I. 1,3-Dipolar cyclisation reactions of nitriles with sterically encumbered cyclic triphosphanes: synthesis and electronic structure of phosphorus-rich heterocycles with tunable colour. Chem Sci 2024; 15:12006-12016. [PMID: 39092099 PMCID: PMC11290424 DOI: 10.1039/d4sc02497d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/10/2024] [Indexed: 08/04/2024] Open
Abstract
We describe the synthesis, solid state and electronic structures of a series of tunable five-membered cationic and charge-neutral inorganic heterocycles featuring a P3CN core. 1-Aza-2,3,4-triphospholenium cations [(PR)3N(H)CR']+, [1R]+ (R' = Me, Ph, 4-MeOC6H4, 4-CF3C6H4) were formed as triflate salts by the formal [3 + 2]-cyclisation reactions of strained cyclic triphosphanes (PR)3 (R = t Bu, 2,4,6-Me3C6H2 (Mes), 2,6- i Pr2C6H3 (Dipp), 2,4,6- i Pr3C6H2 (Tipp)) with nitriles R'CN in the presence of triflic acid. The corresponding neutral free bases (PR)3NCR' (2R) were readily obtained by subsequent deprotonation with NEt3. The P3CN cores in 2R show an envelope conformation typical for cyclopentenes and present as yellow to orange compounds in the solid state as well as in solution depending on both substituents R and R' in (PR)3NCR'. The P3CN cores in [1R]+ show a significant deviation from planarity with increasing steric bulk of the R groups at phosphorus, which results in a decrease in the HOMO-LUMO gap and distinct low-energy UV-Visible absorption bands. This allows access to colours spanning red, blue, indigo, and magenta. TD-DFT calculations provide valuable insight into this phenomenon and indicate an intramolecular charge-transfer from the HOMO located on the P3 framework to the N[double bond, length as m-dash]C-R'-based LUMO in the cationic species. The cations [1R]+ represent rare examples of phosphorus-rich heterocycles with tunable colour, which can be incorporated into polymers by post-polymerization modification to afford coloured polymers, which demonstrate utility as both proton and ammonia sensors.
Collapse
Affiliation(s)
- Mitchell A Nascimento
- Department of Chemistry, University of Victoria 3800 Finnerty Rd Victoria British Columbia V8P 5C2 Canada
| | - Etienne A LaPierre
- Department of Chemistry, University of Victoria 3800 Finnerty Rd Victoria British Columbia V8P 5C2 Canada
| | - Brian O Patrick
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver British Columbia V6T 1Z1 Canada
| | - Jade E T Watson
- Department of Chemistry, University of Victoria 3800 Finnerty Rd Victoria British Columbia V8P 5C2 Canada
| | - Lara Watanabe
- Department of Chemistry and Biochemistry, University of Windsor 401 Sunset Avenue Windsor Ontario N9B 3P4 Canada
| | - Jeremy Rawson
- Department of Chemistry and Biochemistry, University of Windsor 401 Sunset Avenue Windsor Ontario N9B 3P4 Canada
| | - Christian Hering-Junghans
- Leibniz Institut für Katalyse e.V. (LIKAT) A.-Einstein-Str.3a 18059 Rostock Germany
- Institut für Chemie, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2 39106 Magdeburg Germany
| | - Ian Manners
- Department of Chemistry, University of Victoria 3800 Finnerty Rd Victoria British Columbia V8P 5C2 Canada
| |
Collapse
|
6
|
Navya PV, Ganesan K, Neyts EC, Sampath S. Heterocycle- and Amine-Free Electrochromic and Electrofluorochromic Molecules for Energy-Saving See-Through Smart Windows and Displays. Chemistry 2024; 30:e202401647. [PMID: 38747442 DOI: 10.1002/chem.202401647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Indexed: 05/31/2024]
Abstract
Electrochromic (EC) smart windows are an elegant alternative to dusty curtains, blinds, and traditional dimming devices. The EC energy storage smart windows and displays received remarkable attention in the optoelectronic industry as they hold promise for high energy efficiency, low power consumption, reversibility, and swift response to stimuli. However, achieving these properties remains challenging. Moreover, most EC molecules do not exhibit electrofluorochromism, which is highly essential for smart displays because its EC property can modulate the solar heat entering the building, and its electrofluorochromic (EFC) aspects can create lighting during the night. In this work, a structure-property relationship is utilized to develop new electrochromes that can store the injected charge, and these molecules indeed exhibit electrofluorochromism. The compounds are synthesized from tetrabenzofluorene with two aromatic acceptor units, and avoids the use of widely studied heterocycles and amine derivatives. The electrochromes switches from yellow to dark hue in solution, solid, and gel state. The compounds display exceptional electrochemical stability and reversibility in 1000 cycles and capacity retention of 93-100 % in 300 charging-discharging cycles. The proof-of-concept device fabrication of the self-dimming EC smart window presented here demonstrates that it can furnish visual comfort, modulate transmitted light and glare, and reduce energy usage.
Collapse
Affiliation(s)
- Panichiyil V Navya
- Soft Functional Hybrid Materials Lab, Department of Materials Science, School of Technology, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, 610005, India
| | - Krithika Ganesan
- MOSAIC Research Group, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610, Belgium
| | - Erik C Neyts
- MOSAIC Research Group, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610, Belgium
| | - Srinivasan Sampath
- Soft Functional Hybrid Materials Lab, Department of Materials Science, School of Technology, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, 610005, India
| |
Collapse
|
7
|
Nakagomi H, Murayama N, Takegami R, Fujii K, Kitakado R, Kimura Y, Minoura M, Nakano H, Matano Y. 2-Aryl-3H-1,3-Benzazaphosphole Oxides: Synthesis, Optical Properties, and Excited State Intramolecular Proton Transfer. Chemistry 2024; 30:e202400807. [PMID: 38590165 DOI: 10.1002/chem.202400807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/28/2024] [Accepted: 04/08/2024] [Indexed: 04/10/2024]
Abstract
Inclusion of a heteroatom to the phosphole ring is a promising strategy to intrinsically modulate the optical properties of phosphole derivatives. We report on a series of 2-aryl-3H-1,3-benzazaphosphole oxides that were efficiently prepared via sequential C-P cross-coupling, dehydrative [3+2] cycloaddition, and ring-oxidation reactions. The inclusion of one nitrogen atom into the benzophosphole framework caused red shifting of the absorption and emission maxima, reflecting the greater stabilization of the LUMO level. 2-(2-Hydroxyphenyl)benzazaphosphole oxide underwent excited state intramolecular proton transfer and emitted a weak fluorescence from the excited state of the N-H tautomer.
Collapse
Affiliation(s)
- Hiroaki Nakagomi
- Department of Fundamental Sciences, Graduate School of Science and Technology, Niigata University, Nishi-ku, Niigata, 950-2181, Japan
| | - Nina Murayama
- Department of Fundamental Sciences, Graduate School of Science and Technology, Niigata University, Nishi-ku, Niigata, 950-2181, Japan
| | - Rika Takegami
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, 610-0321, Japan
| | - Kaori Fujii
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, 610-0321, Japan
| | - Rio Kitakado
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, 610-0321, Japan
| | - Yoshifumi Kimura
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, 610-0321, Japan
| | - Mao Minoura
- Department of Chemistry, College of Science, Rikkyo University, Toshima-ku, Tokyo, 171-8501, Japan
| | - Haruyuki Nakano
- Department of Chemistry, Graduate School of Science, Kyushu University, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yoshihiro Matano
- Department of Chemistry, Faculty of Science, Niigata University, Nishi-ku, Niigata, 950-2181, Japan
| |
Collapse
|
8
|
Miao H, Chen L, Xing F, Li H, Baumgartner T, He X. Viologen-based solution-processable ionic porous polymers for electrochromic applications. Chem Sci 2024; 15:7576-7585. [PMID: 38784736 PMCID: PMC11110146 DOI: 10.1039/d4sc01408a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/07/2024] [Indexed: 05/25/2024] Open
Abstract
Electrochromic porous thin films are promising for applications in smart windows and energy-efficient optical displays. However, their generally poor processing ability and excessive processing times remain grand challenges. Herein, we report the design and convenient synthesis of core-altered N-arylated viologens with aldehyde groups (πV-CHO) as new building blocks to prepare soluble, viologen-embedded ionic porous polymers. We also demonstrate that these polymers can be easily solution-processed by drop-coating to fabricate high-quality electrochromic films with tunable optoelectronic properties in a cost-effective fashion. The prepared films exhibit excellent electrochromic performance, including a low driving voltage (1.2-1.4 V), fast switching times (0.8-1.7 s), great coloration efficiency (73-268 cm2 C-1), remarkably high optical contrast up to 95.6%, long cycling stability, and tunable oxidation and reduction colors. This work sheds important light on a new molecular engineering approach to produce redox-active polymers with combined properties of intrinsic porosity, reversible and tunable redox activity, and solution processability. This provides the materials with an inherently broad utility in a variety of electrochemical devices for energy storage, sensors, and electronic applications.
Collapse
Affiliation(s)
- Hongya Miao
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710119 P. R. China
| | - Ling Chen
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710119 P. R. China
| | - Fangfang Xing
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710119 P. R. China
| | - Huijie Li
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710119 P. R. China
| | - Thomas Baumgartner
- Department of Chemistry, York University 4700 Keele Street Toronto Ontario M3J 1P3 Canada
| | - Xiaoming He
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710119 P. R. China
| |
Collapse
|
9
|
Mathur C, Gupta R, Bansal RK. Organic Donor-Acceptor Complexes As Potential Semiconducting Materials. Chemistry 2024; 30:e202304139. [PMID: 38265160 DOI: 10.1002/chem.202304139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 01/25/2024]
Abstract
In this review article, the synthesis, characterization and physico-chemical properties of the organic donor-acceptor complexes are highlighted and a special emphasis has been placed on developing them as semiconducting materials. The electron-rich molecules, i. e., donors have been broadly grouped in three categories, namely polycyclic aromatic hydrocarbons, nitrogen heterocycles and sulphur containing aromatic donors. The reactions of these classes of the donors with the acceptors, namely tetracyanoquinodimethane (TCNQ), tetracyanoethylene (TCNE), tetracyanobenzene (TCNB), benzoquinone, pyromellitic dianhydride and pyromellitic diimides, fullerenes, phenazine, benzothiadiazole, naphthalimide, DMAD, maleic anhydride, viologens and naphthalene diimide are described. The potential applications of the resulting DA complexes for physico-electronic purposes are also included. The theoretical investigation of many of these products with a view to rationalise their observed physico-chemical properties is also discussed.
Collapse
Affiliation(s)
- Chandani Mathur
- Department of Chemistry, IIS (deemed to be University), Jaipur, Rajasthan, 302020
| | - Raakhi Gupta
- Department of Chemistry, IIS (deemed to be University), Jaipur, Rajasthan, 302020
| | - Raj K Bansal
- Department of Chemistry, IIS (deemed to be University), Jaipur, Rajasthan, 302020
| |
Collapse
|
10
|
Sun Q, Song W, Gao Y, Ding R, Shi S, Han S, Li G, Pei D, Li A, He G. A telluroviologen-anchored tetraphenylporphyrin as sonosensitizer for periodontitis sonodynamic therapy. Biomaterials 2024; 304:122407. [PMID: 38048744 DOI: 10.1016/j.biomaterials.2023.122407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/21/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023]
Abstract
Periodontitis is a chronic disease caused by bacteria (e.g. Porphyromonas gingivalis, P.gingivalis) that currently lacks effective non-invasive treatment options. Sonodynamic therapy (SDT) is an emerging non-invasive antimicrobial therapeutic strategy. Since ultrasonic tooth cleaning is widely used in dental treatments, SDT has significant potential for the facile implementation of treat periodontitis. However, hypoxia in periodontitis severely limits the effectiveness of traditional sonosensitizers. To address this issue, we have developed a new sonosensitizer termed as TPP-TeV, which combines the traditional sonosensitizer tetraphenylporphyrin (TPP) with a new photosensitizer telluroviologen (TeV). Under ultrasound radiation, TPP-TeV can produce numerous cationic free radicals (TPP-TeV•), which subsequently generate ROS free radicals (O2•-, •OH) efficiently via electron transfer mechanism, resulting in the effective killing of anaerobic P.gingivalis both in vivo and in vitro. As a result, the dental environment is improved, and the inhibition rate of alveolar bone loss reaches 80 %. The introduction of tellurium into the viologen molecule induces changes in its reduction potential, resulting in increased rigidity of the molecule. This modification systematically reduces the biotoxicity of our novel sonosensitizer by 75 % at 50 μM based on bacterial experiments. These promising findings could potentially establish new options for sonodynamic therapy (SDT) in periodontitis clinical treatments.
Collapse
Affiliation(s)
- Qi Sun
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Key Laboratory of Electronic Devices and Material Chemistry, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
| | - Weijie Song
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Key Laboratory of Electronic Devices and Material Chemistry, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
| | - Yujing Gao
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Key Laboratory of Electronic Devices and Material Chemistry, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
| | - Rui Ding
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Key Laboratory of Electronic Devices and Material Chemistry, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710049, China
| | - Shuai Shi
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Key Laboratory of Electronic Devices and Material Chemistry, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
| | - Suxia Han
- Department of Radiotherapy, the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Guoping Li
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Key Laboratory of Electronic Devices and Material Chemistry, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
| | - Dandan Pei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710049, China
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710049, China
| | - Gang He
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Key Laboratory of Electronic Devices and Material Chemistry, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710049, China.
| |
Collapse
|
11
|
Zhang NN, Xin LD, Li L, Zhang YN, Wu PP, Han YF, Yan Y, Qu KG. Multifunctional Crystalline Coordination Polymers Constructed from 4,4'-Bipyridine- N, N'-dioxide: Photochromism, White-Light Emission, and Photomagnetism. ACS OMEGA 2023; 8:34017-34021. [PMID: 37744873 PMCID: PMC10515169 DOI: 10.1021/acsomega.3c04892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023]
Abstract
Multifunctional photochromic coordination polymers (CPs) have shown great potential in many areas, like molecular switches, anticounterfeiting, magnetics, and optoelectronics. Although multifunctional photochromic CPs can be obtained by introducing photoresponsive functional units or by exploiting the synergy effect of each component, relatively limited photochromic ligands hinder the development of various multifunctional photochromic CPs. In this work, we reported two multifunctional coordination polymers {[Zn(bpdo)(fum)(H2O)2]}n (1) and {[Mn(bpdo)(fum)(H2O)2]}n (2) based on an easily accessible but underestimated photoactive molecule 4,4'-bipyridine-N,N'-dioxide (bpdo). Compound 1 exhibits photochromism and white-light emission with an ultra-high color rendering index (CRI) of 92.1. Interestingly, compound 1 could emit intrinsic white light in the crystalline state upon UV irradiation both before and after photochromism. Meanwhile, compound 2 displays photochromic and photomagnetic properties, induced by the photogenerated radicals via a photoinduced electron transfer mechanism.
Collapse
Affiliation(s)
- Ning-Ning Zhang
- School
of Chemistry and Chemical Engineering, Liaocheng
University, Liaocheng, Shandong 252059, P. R. China
| | - Liu-Di Xin
- School
of Chemistry and Chemical Engineering, Liaocheng
University, Liaocheng, Shandong 252059, P. R. China
| | - Li Li
- School
of Materials Science and Engineering, Henan
Polytechnic University, Jiaozuo 454000, P. R. China
| | - Ya-Nan Zhang
- School
of Chemistry and Chemical Engineering, Liaocheng
University, Liaocheng, Shandong 252059, P. R. China
| | - Ping-Ping Wu
- School
of Chemistry and Chemical Engineering, Liaocheng
University, Liaocheng, Shandong 252059, P. R. China
| | - Yong-Fang Han
- School
of Chemistry and Chemical Engineering, Liaocheng
University, Liaocheng, Shandong 252059, P. R. China
| | - Yong Yan
- School
of Chemistry and Chemical Engineering, Liaocheng
University, Liaocheng, Shandong 252059, P. R. China
| | - Kong-Gang Qu
- School
of Chemistry and Chemical Engineering, Liaocheng
University, Liaocheng, Shandong 252059, P. R. China
| |
Collapse
|
12
|
Tsurusaki A, Tahara S, Nakamura M, Matsumoto H, Kamikawa K. Synthesis, Structures, and Properties of π-Extended Phosphindolizine Derivatives. Chemistry 2023; 29:e202203321. [PMID: 36539376 DOI: 10.1002/chem.202203321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Dibenzo[b,g]phosphindolizine oxide and three types of benzo[e]naphthophosphindolizine oxides have been synthesized by the ring-closing metathesis of benzo[b]phosphole oxide and naphthophosphole oxides with two olefin tethers. Their molecular structures and properties were revealed by X-ray crystallographic analysis, UV-vis spectroscopy, and electrochemical analysis. The number and position of the benzene rings were found to alter the structural geometry and the HOMO/LUMO energy levels, and their effects were investigated by theoretical calculations. Among the phosphindolizine oxide derivatives investigated, only benzo[e]naphtho[2,3-b]phosphindolizine oxide with the naphthalene ring fused at 2,3-positions showed weak yellow fluorescence with a large Stokes shift.
Collapse
Affiliation(s)
- Akihiro Tsurusaki
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai, Osaka, 599-8531, Japan
| | - Sana Tahara
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai, Osaka, 599-8531, Japan
| | - Makoto Nakamura
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai, Osaka, 599-8531, Japan
| | - Hiroyo Matsumoto
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai, Osaka, 599-8531, Japan
| | - Ken Kamikawa
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai, Osaka, 599-8531, Japan
| |
Collapse
|
13
|
Li C, Huang H, Sun L, Huang M, Ding H, Bai J, Cao BP, Xiao Q. Three-Component Synthesis of Dioxaphosphorane-Fused Diphosphacycles Exhibiting Unique Dynamic Fluorescence "On/Off" Properties. Angew Chem Int Ed Engl 2023; 62:e202215436. [PMID: 36524991 DOI: 10.1002/anie.202215436] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Rigidly planar polycyclic phosphacycles featuring an internal dioxaphosphorane are promising photofunctional materials. However, the lack of efficient synthetic methods resulted in limited structural diversities which significantly hampered extensive study. Herein, we report a straightforward three-component synthesis of novel dioxaphosphorane-fused diphosphacycles with distinctive photophysical properties. Control experiments and theory calculations were performed to account for a plausible reaction mechanism. We also systematically investigated the structure-property relationships of these unprecedented platforms by combining experiments (X-ray analysis, optical and redox properties) and theoretical computations. Based on their unique structure and properties, a novel fluorescent switch for pH sensing was revealed by a dynamic ring-opening/ring-closing process.
Collapse
Affiliation(s)
- Chenchen Li
- Key Laboratory of Organic Chemistry in Jiangxi Province, Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Haiyang Huang
- Key Laboratory of Organic Chemistry in Jiangxi Province, Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Longgen Sun
- Key Laboratory of Organic Chemistry in Jiangxi Province, Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Mingqing Huang
- Key Laboratory of Organic Chemistry in Jiangxi Province, Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Haixin Ding
- Key Laboratory of Organic Chemistry in Jiangxi Province, Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Jiang Bai
- Key Laboratory of Organic Chemistry in Jiangxi Province, Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Ban-Peng Cao
- Key Laboratory of Organic Chemistry in Jiangxi Province, Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Qiang Xiao
- Key Laboratory of Organic Chemistry in Jiangxi Province, Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| |
Collapse
|
14
|
Shaydullin RR, Galushko AS, Pentsak EO, Korshunov VM, Taydakov IV, Gordeev EG, Minyaev ME, Nasyrova DI, Ananikov VP. Yellow to blue switching of fluorescence by the tuning of the pentaphenylphosphole structure: phosphorus electronic state vs. ring conjugation. Phys Chem Chem Phys 2022; 24:25307-25315. [PMID: 36226548 DOI: 10.1039/d2cp03723h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The interaction between diphenylacetylene and dichlorophenylphosphine under various conditions is a simple method for the preparation of pentaphenylphosphole derivatives exhibiting fluorescence properties. Depending on the electronic state of the various centers of the phospholic structure, it was possible to obtain molecules with fluorescence, as in the blue area for 1,2,3,4,5-pentaphenyl-2,5-dihydro-phosphole-1-oxide (H2PPPO), in the yellow area for 1,2,3,4,5-pentaphenylphosphole-1-oxide (PPPO) and in the cyan area for 1,2,3,4,5-pentaphenylphosphole (PPP). The effect of the structure and π-conjugation on the optical properties of these compounds was studied using PPP derivatives as examples. Unusual changes in the optical properties of PPP derivatives in solution and in the crystalline state are explained. In the case of agglomeration of PPPO and PPP molecules, the effect of aggregation-induced emission (AIE) was observed to have weak fluorescence in solution and strong fluorescence in the aggregated state. However, for H2PPPO, the AIE effect remains mild. With the help of experimental studies, supported by theoretical calculations, the main mechanism of the optical properties of pentaphenylphosphole derivatives has been revealed. It was observed that the intramolecular motions of PPPO and PPP are more limited in the solid state than the motions of H2PPPO, which is associated with less conjugation of the phenyl rotors of H2PPPO. The analysis of the structure and distribution of electron density showed why hydrogenation of the phosphole ring leads to a sharp change in the optical properties of pentaphenylphosphole derivatives, while the oxidation of phosphorus does not lead to the disappearance of the AIE effect and to a lesser extent affects the change in the fluorescence wavelength. Thus, it was shown how the regulation of various structural features of the phospholic ring helps to control the optical properties of such compounds.
Collapse
Affiliation(s)
- Ruslan R Shaydullin
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia.
| | - Alexey S Galushko
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia.
| | - Evgeniy O Pentsak
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia.
| | - Vladislav M Korshunov
- Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991, Russia
| | - Ilya V Taydakov
- Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991, Russia
| | - Evgeniy G Gordeev
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia.
| | - Mikhail E Minyaev
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia.
| | - Darina I Nasyrova
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia.
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia.
| |
Collapse
|
15
|
Abstract
![]()
With the rapid development of optoelectronic fields,
electrochromic
(EC) materials and devices have received remarkable attention and
have shown attractive potential for use in emerging wearable and portable
electronics, electronic papers/billboards, see-through displays, and
other new-generation displays, due to the advantages of low power
consumption, easy viewing, flexibility, stretchability, etc. Despite
continuous progress in related fields, determining how to make electrochromics
truly meet the requirements of mature displays (e.g., ideal overall
performance) has been a long-term problem. Therefore, the commercialization
of relevant high-quality products is still in its infancy. In this
review, we will focus on the progress in emerging EC materials and
devices for potential displays, including two mainstream EC display
prototypes (segmented displays and pixel displays) and their commercial
applications. Among these topics, the related materials/devices, EC
performance, construction approaches, and processing techniques are
comprehensively disscussed and reviewed. We also outline the current
barriers with possible solutions and discuss the future of this field.
Collapse
Affiliation(s)
- Chang Gu
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Ai-Bo Jia
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Yu-Mo Zhang
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Sean Xiao-An Zhang
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
16
|
Zhu X, Miao H, Shan Y, Gao G, Gu Q, Xiao Q, He X. Two-Dimensional Janus Film with Au Nanoparticles Assembled on Trinuclear Gold(I) Pyrazolate Coordination Nanosheets for Photocatalytic H 2 Evolution. Inorg Chem 2022; 61:13591-13599. [PMID: 35976691 DOI: 10.1021/acs.inorgchem.2c02359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A two-dimensional (2D) Janus film with self-assembled gold nanoparticles (AuNPs) is a class of fascinating materials that may offer unprecedented opportunities to realize diverse applications due to their two distinct faces with anisotropic properties. In this work, we report a novel, straightforward strategy for the preparation of a bilayer coordination nanosheet (CONASH)/AuNP Janus film, where the CONASH features infinite trinuclear gold(I) pyrazolate cyclic complexes with electron-accepting viologen as bridges. The bilayer film has visible light absorption and redox properties and showcased promising photocatalytic H2 evolution activity by virtue of the formed unique heterojunction structure between AuNPs and CONASH. The current study opens a novel pathway for controlled fabrication of the 2D Janus film with assembled AuNPs for photocatalytic applications.
Collapse
Affiliation(s)
- Xiaolin Zhu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Hongya Miao
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Yong Shan
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Guangyuan Gao
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Quan Gu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Qi Xiao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Xiaoming He
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| |
Collapse
|
17
|
Regulating the dimensionality of diphosphaperylenediimide-based polymers by coordinating the out-of-plane anisotropic π-framework toward Ag+. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1325-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
18
|
Zhang S, Ma L, Ma W, Chen L, Gao K, Yu S, Zhang M, Zhang L, He G. Selenoviologen‐Appendant Metallacycles with Highly Stable Radical Cations and Long‐Lived Charge Separation States for Electrochromism and Photocatalysis. Angew Chem Int Ed Engl 2022; 61:e202209054. [DOI: 10.1002/anie.202209054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Sikun Zhang
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an Shaanxi 710054 China
| | - Lingzhi Ma
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Wenqiang Ma
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an Shaanxi 710054 China
| | - Long Chen
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Kai Gao
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Shi Yu
- School of Materials Science & Engineering Chang'an University Xi'an Shaanxi 710064 China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Lei Zhang
- School of Optoelectronic Engineering Xidian University Xi'an Shaanxi 710126 China
| | - Gang He
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an Shaanxi 710054 China
| |
Collapse
|
19
|
Ding Z, Chen H, Han Y, Liu J. Molecular engineering of π-extended viologens consisting of quinoxaline-based bridges for tunable electrochromic devices. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133073] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
20
|
Zhang S, Ma L, Ma W, Chen L, Gao K, Yu S, Zhang M, Zhang L, He G. Selenoviologen‐Appendant Metallacycles with Highly Stable Radical Cations and Long‐Lived Charge Separation States for Electrochromism and Photocatalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sikun Zhang
- Xi'an Jiaotong University Frontier Institute of Science and Technology Xi'an CHINA
| | - Lingzhi Ma
- Xi'an Jiaotong University School of Materials Science and Engineering CHINA
| | - Wenqiang Ma
- Xi'an Jiaotong University Frontier Institute of Science and Technology CHINA
| | - Long Chen
- Xi'an Jiaotong University School of Materials Science and Engineering CHINA
| | - Kai Gao
- Xi'an Jiaotong University School of Materials Science and Engineering CHINA
| | - Shi Yu
- Chang'an University School of Materials Science & Engineering CHINA
| | - Mingming Zhang
- Xi'an Jiaotong University School of Materials Science and Engineering CHINA
| | - Lei Zhang
- Xidian University School of Optoelectronic Engineering CHINA
| | - Gang He
- Xi'an Jiaotong University Frontier Institute of Science and Technology No 99, Yanxiang Road 710054 Xi'an CHINA
| |
Collapse
|
21
|
Kudoh Y, Fujii K, Kimura Y, Minoura M, Matano Y. Synthesis and Optical Properties of 1,2,5,10-Tetraphenylanthra[2,3- b]phosphole Derivatives. J Org Chem 2022; 87:10493-10500. [PMID: 35819165 DOI: 10.1021/acs.joc.2c01107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1,2,5,10-Tetraphenylanthra[2,3-b]phosphole oxides and 1-methyl-1,2,5,10-tetraphenylanthra[2,3-b]phospholium salts were prepared, and their optical properties were investigated. The substituent at the para position and the fused anthracene moiety were found to exert significant impacts on the fluorescence properties of the P-bridged 2-styrylanthracene skeleton.
Collapse
Affiliation(s)
- Yuta Kudoh
- Department of Fundamental Sciences, Graduate School of Science and Technology, Niigata University, Nishi-ku, Niigata 950-2181, Japan
| | - Kaori Fujii
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe 610-0321, Japan
| | - Yoshifumi Kimura
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe 610-0321, Japan
| | - Mao Minoura
- Department of Chemistry, College of Science, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan
| | - Yoshihiro Matano
- Department of Chemistry, Faculty of Science, Niigata University, Nishi-ku, Niigata 950-2181, Japan
| |
Collapse
|
22
|
Antoni PW, Golz C, Hansmann MM. Organic Four-Electron Redox Systems Based on Bipyridine and Phenanthroline Carbene Architectures. Angew Chem Int Ed Engl 2022; 61:e202203064. [PMID: 35298870 PMCID: PMC9325510 DOI: 10.1002/anie.202203064] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Indexed: 12/14/2022]
Abstract
Novel organic redox systems that display multistage redox behaviour are highly sought-after for a series of applications such as organic batteries or electrochromic materials. Here we describe a simple strategy to transfer well-known two-electron redox active bipyridine and phenanthroline architectures into novel strongly reducing four-electron redox systems featuring fully reversible redox events with up to five stable oxidation states. We give spectroscopic and structural insight into the changes involved in the redox-events and present characterization data on all isolated oxidation states. The redox-systems feature strong UV/Vis/NIR polyelectrochromic properties such as distinct strong NIR absorptions in the mixed valence states. Two-electron charge-discharge cycling studies indicate high electrochemical stability at strongly negative potentials, rendering the new redox architectures promising lead structures for multi-electron anolyte materials.
Collapse
Affiliation(s)
- Patrick W. Antoni
- Fakultät für Chemie und Chemische BiologieTechnische Universität DortmundOtto-Hahn-Str.644227DortmundGermany
| | - Christopher Golz
- Georg-August Universität GöttingenInstitut für Organische und Biomolekulare ChemieTammannstr. 237077GöttingenGermany
| | - Max M. Hansmann
- Fakultät für Chemie und Chemische BiologieTechnische Universität DortmundOtto-Hahn-Str.644227DortmundGermany
| |
Collapse
|
23
|
Antoni PW, Golz C, Hansmann MM. Organic Four‐Electron Redox Systems Based on Bipyridine and Phenanthroline Carbene Architectures. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Patrick W. Antoni
- TU Dortmund: Technische Universitat Dortmund Fakultät für Chemie und Chemische Biologie GERMANY
| | - Christopher Golz
- Georg-August-Universität Göttingen: Georg-August-Universitat Gottingen Institut für Organische und Biomolekulare Chemie GERMANY
| | - Max M. Hansmann
- TU Dortmund: Technische Universitat Dortmund Fakultät für Chemie und Chemische Biologie Otto-Hahn Str.6 44227 Dortmund GERMANY
| |
Collapse
|
24
|
Li G, Zhou K, Sun Q, Ma W, Liu X, Zhang X, Zhang L, Rao B, He YL, He G. Bacteria-Triggered Solar Hydrogen Production via Platinum(II)-Tethered Chalcogenoviologens. Angew Chem Int Ed Engl 2022; 61:e202115298. [PMID: 34982500 DOI: 10.1002/anie.202115298] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Indexed: 12/19/2022]
Abstract
Multifunctional solar energy conversion offers a feasible strategy to solve energy, environmental and water crises. Herein, a series of platinum(II)-tethered chalcogenoviologens (PtL+ -EV2+ , E=S, Se, Te) is reported, which integrate the functions of photosensitizer, electron mediator and catalyst. PtL+ -EV2+ (particularly for PtL+ -SeV2+ )-based one-component solar H2 production could be triggered not only by EDTA, but also by facultative anaerobic and aerobic bacteria relying on a simplified mechanism, along with efficient antibacterial activities. In addition, by using real pool water, PtL+ -SeV2+ achieved multiple functions, including H2 production, antibacterial action and acid removal, which supplied a new strategy to solve various problems in real life via a single system.
Collapse
Affiliation(s)
- Guoping Li
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering, China.,Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
| | - Kun Zhou
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
| | - Qi Sun
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
| | - Wenqiang Ma
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
| | - Xu Liu
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
| | - Xuri Zhang
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
| | - Lei Zhang
- School of Physics and Optoelectronic Engineering, Xidian University, China
| | - Bin Rao
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
| | - Ya-Ling He
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering, China
| | - Gang He
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering, China.,Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
| |
Collapse
|
25
|
He B, Zhang S, Zhang Y, Li G, Zhang B, Ma W, Rao B, Song R, Zhang L, Zhang Y, He G. ortho-Terphenylene Viologens with Through-Space Conjugation for Enhanced Photocatalytic Oxidative Coupling and Hydrogen Evolution. J Am Chem Soc 2022; 144:4422-4430. [PMID: 35143191 DOI: 10.1021/jacs.1c11577] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A series of novel ortho-terphenylene viologen derivatives (o-TPV2+) with through-space conjugation (TSC) via the combination of ortho-terphenylene skeletons with viologen structure is reported. Their optoelectronic properties can be adjusted by N-arylation or N-alkylation reactions. Compared with other viologen derivatives, o-TPV2+ not only exhibits strong photoluminescence but also retards the charge recombination process and stabilizes the diradical state without forming a quinoid structure due to the special TSC effect. Based on their special redox characteristics, o-TPV2+ was applied to the photocatalytic oxidative coupling of benzylamine with 96% yield. In addition, pTA-o-TPV2+ (tethered with p-toluic acid)-modified g-C3N4 was used for visible-light-driven hydrogen production for the first time, exceeding 15 times the rate over unmodified g-C3N4.
Collapse
Affiliation(s)
- Ben He
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, People's Republic of China
| | - Sikun Zhang
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, People's Republic of China
| | - Yueyan Zhang
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, People's Republic of China
| | - Guoping Li
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, People's Republic of China
| | - Bingjie Zhang
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, People's Republic of China
| | - Wenqiang Ma
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, People's Republic of China
| | - Bin Rao
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, People's Republic of China
| | - Ruitong Song
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, People's Republic of China
| | - Lei Zhang
- School of Optoelectronic Engineering, Xidian University, Xi'an, Shaanxi Province 710126, People's Republic of China
| | - Yanfeng Zhang
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, People's Republic of China
| | - Gang He
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, People's Republic of China.,Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, People's Republic of China
| |
Collapse
|
26
|
Li G, Zhou K, Sun Q, Ma W, Liu X, Zhang X, Zhang L, Rao B, He Y, He G. Bacteria‐Triggered Solar Hydrogen Production via Platinum(II)‐Tethered Chalcogenoviologens. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Guoping Li
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education School of Energy and Power Engineering China
- Frontier Institute of Science and Technology State Key Laboratory for Strength and Vibration of Mechanical Structures Xi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Kun Zhou
- Frontier Institute of Science and Technology State Key Laboratory for Strength and Vibration of Mechanical Structures Xi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Qi Sun
- Frontier Institute of Science and Technology State Key Laboratory for Strength and Vibration of Mechanical Structures Xi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Wenqiang Ma
- Frontier Institute of Science and Technology State Key Laboratory for Strength and Vibration of Mechanical Structures Xi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Xu Liu
- Frontier Institute of Science and Technology State Key Laboratory for Strength and Vibration of Mechanical Structures Xi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Xuri Zhang
- Frontier Institute of Science and Technology State Key Laboratory for Strength and Vibration of Mechanical Structures Xi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Lei Zhang
- School of Physics and Optoelectronic Engineering Xidian University China
| | - Bin Rao
- Frontier Institute of Science and Technology State Key Laboratory for Strength and Vibration of Mechanical Structures Xi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Ya‐Ling He
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education School of Energy and Power Engineering China
| | - Gang He
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education School of Energy and Power Engineering China
- Frontier Institute of Science and Technology State Key Laboratory for Strength and Vibration of Mechanical Structures Xi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| |
Collapse
|
27
|
Liu X, Wang L, Han J. ortho-Nitro-substituted diaryliodonium salts enabled regioselective cyclization of arylcarboxylic acids toward 3,4-naphthocoumarins. Org Biomol Chem 2022; 20:8628-8632. [DOI: 10.1039/d2ob01783k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We herein report an efficient regioselective cascade of arylation and cyclization of arylcarboxylic acids via Pd(ii)-activation of both C–I and vicinal C–NO2 bonds of ortho-nitro-substituted diaryliodonium salts.
Collapse
Affiliation(s)
- Xu Liu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Limin Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jianwei Han
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
28
|
Wang Y, Yu Y, Xie R, Tian YN, Huang L, Lv S, Meng X, Kong X, Li S. Cu/Fe-mediated N(sp 2)-arylation/alkenylation of pyridines with aryl-/alkenylboronic acids to yield versatile cationic materials. NEW J CHEM 2022. [DOI: 10.1039/d1nj05240c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cu/Fe-mediated N(sp2)-arylation/alkenylation of pyridines with aryl-/alkenylboronic acids to yield length-controllable and multi-responsive pyridinium salts is disclosed.
Collapse
Affiliation(s)
- Yuzhou Wang
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Yu Yu
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Rongrong Xie
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Ya-Nan Tian
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Lingyu Huang
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Shihai Lv
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Xiaona Meng
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Xiangfei Kong
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Shiqing Li
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
29
|
Serrano-Sterling C, Becerra D, Portilla J, Rojas H, Macías M, Castillo JC. Synthesis, biological evaluation and X-ray crystallographic analysis of novel (E)-2-cyano-3-(het)arylacrylamides as potential anticancer agents. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130944] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Multifunctional Viologen-Derived Supramolecular Network with Photo/Vapochromic and Proton Conduction Properties. Molecules 2021; 26:molecules26206209. [PMID: 34684791 PMCID: PMC8538028 DOI: 10.3390/molecules26206209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 11/17/2022] Open
Abstract
A supramolecular network [H4bdcbpy(NO3)2·H2O] (H4bdcbpy = 1,1′-Bis(3,5-dicarboxybenzyl)-4,4′-bipyridinium) (1) was prepared by a zwitterionic viologen carboxylate ligand in hydrothermal synthesis conditions. The as-synthesized (1) has been well characterized by means of single-crystal/powder X-ray diffraction, elemental analysis, thermogravimetric analysis and infrared and UV-vis spectroscopy. This compound possesses a three-dimensional supramolecular structure, formed by the hydrogen bond and π–π interaction between the organic ligands. This compound shows photochromic properties under UV light, as well as vapochromic behavior upon exposure to volatile amines and ammonia, in which the electron transfer from electron-rich parts to the electron-deficient viologen unit gives rise to colored radicals. Moreover, the intensive intermolecular H-bonding networks in 1 endows it with a proton conductivity of 1.06 × 10−3 S cm−1 in water at 90 °C.
Collapse
|
31
|
Electrochromism of Viologen/Polymer Composite: From Gel to Insulating Bulk for High-Voltage Applications. MATERIALS 2021; 14:ma14195901. [PMID: 34640298 PMCID: PMC8510250 DOI: 10.3390/ma14195901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022]
Abstract
Power equipment operates under high voltages, inducing space charge accumulation on the surface of key insulating structures, which increases the risk of discharge/breakdown and the possibility of maintenance workers experiencing electric shock accidents. Hence, a visualized non-equipment space charge detection method is of great demand in the power industry. Typical electrochromic phenomenon is based on redox of the material, triggered by a voltage smaller than 5 V with a continuous current in μA~mA level, which is not applicable to high electric fields above 106 V/m with pA~nA operation current in power equipment. Until now, no naked-eye observation technique has been realized for space charge detection to ensure the operation of power systems as well as the safety of maintenance workers. In this work, a viologen/poly(vinylidene fluoride-co-hexafluoropropylene)(P(VDF–HFP)) composite is investigated from gel to insulating bulk configurations to achieve high-voltage electrical-insulating electrochromism. The results show that viologen/P(VDF–HFP) composite bulk can withstand high electric fields at the 107 V/m level, and its electrochromism is triggered by space charges. This electrochromism phenomenon can be visually extended by increasing viologen content towards 5 wt.% and shows a positive response to voltage amplitude and application duration. As viologen/P(VDF–HFP) composite bulk exhibits a typical electrical insulating performance, it could be attached to the surface of insulating structures or clamped between metal and insulating materials as a space charge accumulation indicator in high-voltage power equipment.
Collapse
|
32
|
Klintuch D, Höfler MV, Wissel T, Bruhn C, Gutmann T, Pietschnig R. Trifunctional Silyl Groups as Anchoring Units in the Preparation of Luminescent Phosphole-Silica Hybrids. Inorg Chem 2021; 60:14263-14274. [PMID: 34492179 DOI: 10.1021/acs.inorgchem.1c01775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A synthetic strategy to β-silylphospholes with three methoxy, ethoxy, chloro, hydrido, or phenyl substituents at silicon has been developed, starting from trimethoxy, triethoxy, or triphenyl silyl substituted phenyl phosphanides and 1,4-diphenyl-1,3-butadiyne. These trifunctional silylphospholes were attached to the surface of uniform spheric silica particles (15 μm) and, for comparison, to a polyhedral silsesquioxane (POSS)-trisilanol as a molecular model to explore their luminescent properties in comparison with the free phospholes. Density functional theory calculations were performed to investigate any electronic perturbation of the phosphole system by the trifunctional silyl anchoring unit. For the immobilized phospholes, cross-polarization magic-angle-spinning NMR measurements (13C, 29Si, and 31P) were carried out to explore the bonding situation to the silica surface. Thermogravimetric analysis and X-ray photoelectron spectroscopy measurements were performed to approximate the amount of phospholes covering the silica surface. Identity and purity of all novel phospholes have been established with standard techniques (multinuclear NMR, mass spectrometry, and elemental analysis) and X-ray diffraction for the POSS derivative.
Collapse
Affiliation(s)
- Dieter Klintuch
- Institute for Chemistry and CINSaT, Universität Kassel, Heinrich Plett-Straße 40, Kassel 34132, Germany
| | - Mark V Höfler
- Eduard Zintl Institute for Inorganic and Physical Chemistry, Technical Universität (TU) Darmstadt, Alarich-Weiss Straße 8, Darmstadt 64287, Germany
| | - Till Wissel
- Eduard Zintl Institute for Inorganic and Physical Chemistry, Technical Universität (TU) Darmstadt, Alarich-Weiss Straße 8, Darmstadt 64287, Germany
| | - Clemens Bruhn
- Institute for Chemistry and CINSaT, Universität Kassel, Heinrich Plett-Straße 40, Kassel 34132, Germany
| | - Torsten Gutmann
- Institute for Chemistry and CINSaT, Universität Kassel, Heinrich Plett-Straße 40, Kassel 34132, Germany.,Eduard Zintl Institute for Inorganic and Physical Chemistry, Technical Universität (TU) Darmstadt, Alarich-Weiss Straße 8, Darmstadt 64287, Germany
| | - Rudolf Pietschnig
- Institute for Chemistry and CINSaT, Universität Kassel, Heinrich Plett-Straße 40, Kassel 34132, Germany
| |
Collapse
|
33
|
Zhuang Y, Wang Y, Deng Y, Li F, Chen X, Liu S, Tong Y, Zhao Q. Memristors Based on an Iridium(III) Complex Containing Viologen for Advanced Synaptic Bionics. Inorg Chem 2021; 60:13021-13028. [PMID: 34376047 DOI: 10.1021/acs.inorgchem.1c01439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Memristors with nonvolatile memory properties are expected to open the era of neuromorphic computing. However, it remains a huge challenge to develop memristors with high uniformity, high stability, and low power consumption for advanced synaptic bionics. Herein, an electroactive iridium(III) complex Ir-vio was designed and synthesized by incorporating a viologen moiety into its N∧N ligand. Complex Ir-vio showed multiple redox states and high sensitivity to an electrical stimulus. Importantly, two-terminal memristors with Ag/Ir-vio/W structure were successfully fabricated by the solution-processable method, which exhibited multilevel storage characteristics with a low switching threshold voltage of 0.5 V and high ON1/ON2/ON3/OFF current ratio of 105/103/102/1 at a low reading bias of 0.05 V. Moreover, the memristors can mimic synaptic plasticity, indicating that they can act as artificial synapses to construct brain-inspired neural networks. The memristive mechanisms can be ascribed to the interconversion among different charge-transfer and redox states under various electrical stimulus. To the best of our knowledge, this work is the first experimental demonstration of memristors based on iridium(III) complexes, opening a new era for the development of synaptic bionic devices based on organometallic compounds.
Collapse
Affiliation(s)
- Yanling Zhuang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu, P. R. China
| | - Yu Wang
- College of Electronic and Optical Engineering & College of Microelectronics, Institute of Flexible Electronics (Future Technology), Jiangsu Province Engineering Research Center for Fabrication and Application of Special Optical Fiber Materials and Devices, Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu, P. R. China
| | - Yongjing Deng
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu, P. R. China
| | - Feiyang Li
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu, P. R. China
| | - Xintong Chen
- College of Electronic and Optical Engineering & College of Microelectronics, Institute of Flexible Electronics (Future Technology), Jiangsu Province Engineering Research Center for Fabrication and Application of Special Optical Fiber Materials and Devices, Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu, P. R. China
| | - Shujuan Liu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu, P. R. China
| | - Yi Tong
- College of Electronic and Optical Engineering & College of Microelectronics, Institute of Flexible Electronics (Future Technology), Jiangsu Province Engineering Research Center for Fabrication and Application of Special Optical Fiber Materials and Devices, Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu, P. R. China
| | - Qiang Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu, P. R. China.,College of Electronic and Optical Engineering & College of Microelectronics, Institute of Flexible Electronics (Future Technology), Jiangsu Province Engineering Research Center for Fabrication and Application of Special Optical Fiber Materials and Devices, Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu, P. R. China
| |
Collapse
|
34
|
Roesler F, Kovács M, Bruhn C, Kelemen Z, Pietschnig R. Phosphetes via Transition Metal Free Ring Closure - Taking the Proper Turn at a Thermodynamic Crossing. Chemistry 2021; 27:9782-9790. [PMID: 33971050 PMCID: PMC8361766 DOI: 10.1002/chem.202101298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Indexed: 11/24/2022]
Abstract
A transition metal free route to phosphetes featuring an exocyclic alkene unit is presented. In this approach phosphanides are added to a variety of diynes generating phosphaallylic intermediates which depending on the reaction conditions transform either to phosphetes or the corresponding phospholes. Investigation of the reaction mechanism by combined quantum chemical and experimental means identifies phosphole formation as thermodynamically controlled reaction path, whereas kinetic control furnishes the corresponding phosphetes. Structural and luminescence properties of the rare class of phosphetes are explored, as well as for selected key intermediates.
Collapse
Affiliation(s)
- Fabian Roesler
- Institute for Chemistry and CINSaTUniversity of KasselHeinrich Plett-Straße 4034132KasselGermany
| | - Máté Kovács
- Department of Inorganic and Analytical ChemistryBudapest University of Technology and EconomicsSzt. Gellért tér 4H-1111BudapestHungary
| | - Clemens Bruhn
- Institute for Chemistry and CINSaTUniversity of KasselHeinrich Plett-Straße 4034132KasselGermany
| | - Zsolt Kelemen
- Department of Inorganic and Analytical ChemistryBudapest University of Technology and EconomicsSzt. Gellért tér 4H-1111BudapestHungary
| | - Rudolf Pietschnig
- Institute for Chemistry and CINSaTUniversity of KasselHeinrich Plett-Straße 4034132KasselGermany
| |
Collapse
|
35
|
Baykov SV, Geyl KK, Ivanov DM, Gomila RM, Frontera A, Kukushkin VY. Azine Steric Hindrances Switch Halogen Bonding to N-Arylation upon Interplay with σ-Hole Donating Haloarenenitriles. Chem Asian J 2021; 16:1445-1455. [PMID: 33844884 DOI: 10.1002/asia.202100282] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/11/2021] [Indexed: 12/24/2022]
Abstract
An interplay between 4-bromo- and 4-iodo-5-nitrophthalonitriles (XNPN, X=Br or I) and any one of the azines (pyridine 1, 4-dimethylaminopyridine 2, isoquinoline 3, 4-cyanopyridine 4, 2-methylpyridine 5, 2-aminopyridine 6, quinoline 7, 1-methylisoquinoline 8, and 2,2'-bipyridine 9) proceeds differently depending on steric and electronic effects of the heterocycles. Sterically unhindered azines 1-3 underwent N-arylation to give the corresponding azinium salts (characterized by 1 H and 13 C{H} NMR and high-resolution ESI-MS). In contrast, azines 4-9 with sterically hindered N atoms or bearing an electron-withdrawing substituent, form stable co-crystals with XNPN, where two interacting molecules are bound by halogen bonding. In all obtained co-crystals, X⋅⋅⋅N structure-directed halogen bonds were recognized and theoretically evaluated including DFT calculations (PBE0-D3/def2-TZVP level of theory), QTAIM analysis, molecular electrostatic potential surfaces, and noncovalent interaction plot index. Estimated energies of halogen bonding vary from -7.6 kcal/mol (for 6 ⋅ INPN) to -11.4 kcal/mol (5 ⋅ INPN).
Collapse
Affiliation(s)
- Sergey V Baykov
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., Saint Petersburg, 199034, Russian Federation
| | - Kirill K Geyl
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., Saint Petersburg, 199034, Russian Federation
| | - Daniil M Ivanov
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., Saint Petersburg, 199034, Russian Federation
| | - Rosa M Gomila
- Serveis Científico-Tècnics, Universitat de les Illes Balears, Crta de Valldemossa km 7.5, 07122, Palma de Mallorca (Baleares), Spain
| | - Antonio Frontera
- Departament de Química, Universitat de les Illes Balears, Crta de Valldemossa km 7.5, 07122, Palma de Mallorca (Baleares), Spain
| | - Vadim Y Kukushkin
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., Saint Petersburg, 199034, Russian Federation.,Laboratory of Crystal Engineering of Functional Materials, South Ural State University, 76 Lenin Av., Chelyabinsk, 454080, Russian Federation
| |
Collapse
|
36
|
Uno K, Sugimoto N, Sato Y. N-aryl pyrido cyanine derivatives are nuclear and organelle DNA markers for two-photon and super-resolution imaging. Nat Commun 2021; 12:2650. [PMID: 33976192 PMCID: PMC8113587 DOI: 10.1038/s41467-021-23019-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 04/08/2021] [Indexed: 11/10/2022] Open
Abstract
Live cell imaging using fluorescent DNA markers are an indispensable molecular tool in various biological and biomedical fields. It is a challenge to develop DNA probes that avoid UV light photo-excitation, have high specificity for DNA, are cell-permeable and are compatible with cutting-edge imaging techniques such as super-resolution microscopy. Herein, we present N-aryl pyrido cyanine (N-aryl-PC) derivatives as a class of long absorption DNA markers with absorption in the wide range of visible light. The high DNA specificity and membrane permeability allow the staining of both organelle DNA as well as nuclear DNA, in various cell types, including plant tissues, without the need for washing post-staining. N-aryl-PC dyes are also highly compatible with a separation of photon by lifetime tuning method in stimulated emission depletion microscopy (SPLIT-STED) for super-resolution imaging as well as two-photon microscopy for deep tissue imaging, making it a powerful tool in the life sciences.
Collapse
Affiliation(s)
- Kakishi Uno
- Graduate School of Science, Nagoya University, Nagoya, Japan
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Nagisa Sugimoto
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo, Chikusa, Nagoya, Japan
| | - Yoshikatsu Sato
- Graduate School of Science, Nagoya University, Nagoya, Japan.
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo, Chikusa, Nagoya, Japan.
| |
Collapse
|
37
|
Shoji T, Yamazaki A, Ariga Y, Uda M, Ando D, Sasahara N, Kai N, Ito S. Azulene-Substituted Donor-Acceptor Polymethines and 1,6'-Bi-, 1,6';3,6''-Ter-, and Quinqueazulenes via Zincke Salts: Synthesis, and Structural, Optical, and Electrochemical Properties. Chempluschem 2021; 86:946-966. [PMID: 33973729 DOI: 10.1002/cplu.202100174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/26/2021] [Indexed: 11/06/2022]
Abstract
Azulene-substituted donor-acceptor polymethines, bi-, ter-, and quinqueazulenes composed of the 1,6'-biazulene unit have been successfully prepared from corresponding Zincke salts. The synthesis of polymethines through the reaction of Zincke salts with several amines, followed by a Knoevenagel reaction with malononitrile, was accomplished in moderate to high yields (40-92 %). Meanwhile, the reaction of Zincke salts with secondary amines and the subsequent sequential condensation-cyclization with cyclopentadienide ions, so-called Ziegler-Hafner method, produced the corresponding 1,6'-biazulenes, 1,6';3,6''-terazulenes, and quinqueazulene, respectively. The structural, optical, and electrochemical properties of the azulene-substituted donor-acceptor polymethines, bi-, ter-, and quinqueazulenes were revealed by single-crystal X-ray structure analysis, UV/vis spectroscopy, voltammetry analysis, spectroelectrochemistry, and theoretical calculations. These results suggested that the substituents on the azulene ring and their substitution positions directly affect their reactivities, optical and electrochemical properties.
Collapse
Affiliation(s)
- Taku Shoji
- Department of Material Science, Graduate School of Science and Technology, Shinshu University, Matsumoto, 390-8621, Nagano, Japan
- Department of Chemistry, Faculty of Science, Shinshu University, Matsumoto, 390-8621, Nagano, Japan
| | - Akari Yamazaki
- Department of Material Science, Graduate School of Science and Technology, Shinshu University, Matsumoto, 390-8621, Nagano, Japan
| | - Yukino Ariga
- Department of Material Science, Graduate School of Science and Technology, Shinshu University, Matsumoto, 390-8621, Nagano, Japan
| | - Mayumi Uda
- Department of Material Science, Graduate School of Science and Technology, Shinshu University, Matsumoto, 390-8621, Nagano, Japan
| | - Daichi Ando
- Department of Chemistry, Faculty of Science, Shinshu University, Matsumoto, 390-8621, Nagano, Japan
| | - Nichika Sasahara
- Department of Chemistry, Faculty of Science, Shinshu University, Matsumoto, 390-8621, Nagano, Japan
| | - Naohito Kai
- Graduate School of Science and Technology, Hirosaki University, Hirosaki, 036-8561, Aomori, Japan
| | - Shunji Ito
- Graduate School of Science and Technology, Hirosaki University, Hirosaki, 036-8561, Aomori, Japan
| |
Collapse
|
38
|
Ma W, Xu L, Zhang S, Li G, Ma T, Rao B, Zhang M, He G. Phosphorescent Bismoviologens for Electrophosphorochromism and Visible Light-Induced Cross-Dehydrogenative Coupling. J Am Chem Soc 2021; 143:1590-1597. [DOI: 10.1021/jacs.0c12015] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Wenqiang Ma
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi 710054, P. R. China
| | - Letian Xu
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi 710054, P. R. China
| | - Sikun Zhang
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi 710054, P. R. China
| | - Guoping Li
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi 710054, P. R. China
| | - Tianyu Ma
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, P. R. China
| | - Bin Rao
- School of Chemistry, Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, P. R. China
| | - Mingming Zhang
- School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, P. R. China
| | - Gang He
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi 710054, P. R. China
| |
Collapse
|
39
|
Miyaji A, Amao Y. Visible-light driven reduction of CO2 to formate by a water-soluble zinc porphyrin and formate dehydrogenase system with electron-mediated amino and carbamoyl group-modified viologen. NEW J CHEM 2021. [DOI: 10.1039/d1nj00889g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Visible-light-driven CO2 reduction to formate with a system consisting of water-soluble zinc porphyrin, formate dehydrogenase from Candida boidinii and 1-amino-1′-carbamoyl-4,4′-bipyridinium salt as an electron mediator in the presence of triethanolamine was developed.
Collapse
Affiliation(s)
- Akimitsu Miyaji
- School of Materials and Chemical Technology
- Tokyo Institute of Technology
- Yokohama 226-8502
- Japan
| | - Yutaka Amao
- Graduate School of Science
- Osaka City University
- Osaka 558-8585
- Japan
- Research Centre of Artificial Photosynthesis (ReCAP)
| |
Collapse
|
40
|
Mansoor IF, Wozniak DI, Wu Y, Lipke MC. A delocalized cobaltoviologen with seven reversibly accessible redox states and highly tunable electrochromic behaviour. Chem Commun (Camb) 2020; 56:13864-13867. [PMID: 33089836 DOI: 10.1039/d0cc05627h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
CoII mediates electronic coupling between two N-Me-pyridinium-terpyridine ligands that are related to redox-active N,N-dialkyl-4,4'-bipyridinium dications (viologens). Borderline Class II/III electronic delocalization imparts the cobaltoviologen complex with distinct electronic properties (e.g., 7 accessible redox states) relative to those of viologens, leading to enhanced electrochromism.
Collapse
Affiliation(s)
- Iram F Mansoor
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, USA.
| | - Derek I Wozniak
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, USA.
| | - Yilei Wu
- Department of Chemical Engineering, Stanford University, Stanford, California 94305-4125, USA
| | - Mark C Lipke
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, USA.
| |
Collapse
|
41
|
Ascherl JDR, Neiß C, Vogel A, Graf J, Rominger F, Oeser T, Hampel F, Görling A, Kivala M. Phosphorus-Containing Dibenzonaphthanthrenes: Electronic Fine Tuning of Polycyclic Aromatic Hydrocarbons through Organophosphorus Chemistry. Chemistry 2020; 26:13157-13162. [PMID: 32558004 PMCID: PMC7693108 DOI: 10.1002/chem.202002872] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Indexed: 02/03/2023]
Abstract
A concise synthetic route towards a new family of phosphorus-containing polycyclic aromatic hydrocarbons starting from the versatile acridophosphine has been established. The structural and optoelectronic properties of these compounds were efficiently modulated through derivatization of the phosphorus center. X-ray crystallographic analysis, UV/Vis spectroscopic, and electrochemical studies supported by DFT calculations identified the considerable potential of these scaffolds for the development of organophosphorus functional materials with tailored properties upon further functionalization.
Collapse
Affiliation(s)
- Johannes D. R. Ascherl
- Institute of Organic ChemistryRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
- Centre for Advanced MaterialsRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 22569120HeidelbergGermany
| | - Christian Neiß
- Department of Chemistry and PharmacyChair of Theoretical ChemistryFriedrich-Alexander-Universität Erlangen-NürnbergEgerlandstrasse 391058ErlangenGermany
| | - Alexander Vogel
- Institute of Organic ChemistryRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
- Centre for Advanced MaterialsRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 22569120HeidelbergGermany
| | - Jürgen Graf
- Institute of Organic ChemistryRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Frank Rominger
- Institute of Organic ChemistryRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Thomas Oeser
- Institute of Organic ChemistryRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Frank Hampel
- Department of Chemistry and PharmacyChair of Organic ChemistryUniversity of Erlangen-NürnbergNikolaus-Fiebiger-Str. 1091058ErlangenGermany
| | - Andreas Görling
- Department of Chemistry and PharmacyChair of Theoretical ChemistryFriedrich-Alexander-Universität Erlangen-NürnbergEgerlandstrasse 391058ErlangenGermany
| | - Milan Kivala
- Institute of Organic ChemistryRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
- Centre for Advanced MaterialsRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 22569120HeidelbergGermany
| |
Collapse
|
42
|
Soluble triarylamine functionalized symmetric viologen for all-solid-state electrochromic supercapacitors. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9789-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
43
|
Zhou XH, Fan Y, Li WX, Zhang X, Liang RR, Lin F, Zhan TG, Cui J, Liu LJ, Zhao X, Zhang KD. Viologen derivatives with extended π-conjugation structures: From supra-/molecular building blocks to organic porous materials. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.12.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
44
|
Stolar M. Organic electrochromic molecules: synthesis, properties, applications and impact. PURE APPL CHEM 2020. [DOI: 10.1515/pac-2018-1208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
AbstractOrganic electronics are at the forefront of modern research, with goals of creating more efficient and environmentally benign devices. Organic molecules can achieve this as they typically result in materials that are solution-processable and less toxic than their transition-metal counterparts. Electrochromic molecules have unique color changing properties upon passing an electrical current making them highly sought after for colored displays, dimming mirrors, and smart windows. Part of my PhD work was devoted to developing a new class of electrochromic molecules, the phosphoryl-bridged viologens, with more favorable redox properties and new color changing modes. In order to understand the necessity and potential of new electrochromes, it is important to assess the history of the field and its future. In addition to designing new molecules for electrochromic devices, it is equally important to design a multifunctional species with a bright, competitive future across various organic electronic applications.
Collapse
Affiliation(s)
- Monika Stolar
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
45
|
Diaryliodoniums Salts as Coupling Partners for Transition-Metal Catalyzed C- and N-Arylation of Heteroarenes. Catalysts 2020. [DOI: 10.3390/catal10050483] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Owing to the pioneering works performed on the metal-catalyzed sp2 C–H arylation of indole and pyrrole by Sanford and Gaunt, N– and C-arylation involving diaryliodonium salts offers an attractive complementary strategy for the late-stage diversification of heteroarenes. The main feature of this expanding methodology is the selective incorporation of structural diversity into complex molecules which usually have several C–H bonds and/or N–H bonds with high tolerance to functional groups and under mild conditions. This review summarizes the main recent achievements reported in transition-metal-catalyzed N– and/or C–H arylation of heteroarenes using acyclic diaryliodonium salts as coupling partners.
Collapse
|
46
|
Hasegawa M, Iyoda M. Self-Assembly of Radially π-Extended Tetrathiafulvalene Tetramers for Visible and Near Infrared Electrochromic Nanofiber. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20190283] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Masashi Hasegawa
- Department of Chemistry, Graduate School of Science, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| | - Masahiko Iyoda
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
47
|
Zhu RY, Chen L, Hu XS, Zhou F, Zhou J. Enantioselective synthesis of P-chiral tertiary phosphine oxides with an ethynyl group via Cu(i)-catalyzed azide-alkyne cycloaddition. Chem Sci 2020; 11:97-106. [PMID: 32110361 PMCID: PMC7012078 DOI: 10.1039/c9sc04938j] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/05/2019] [Indexed: 12/20/2022] Open
Abstract
We report the highly enantioselective synthesis of P-chiral tertiary phosphine oxides featuring an ethynyl group via Cu(i)-catalyzed azide-alkyne cycloaddition. Newly developed chiral pyridinebisoxazolines (PYBOX) bearing a bulky C4 shielding group play an important role in achieving excellent enantioselectivity while suppressing side bis-triazoles formation in desymmetrizing prochiral diethynylphosphine oxides. Notably, by tuning the size of the C4 shielding group, it is possible to achieve excellent remote enantiofacial control in desymmetrizing phosphole oxide-diynes with the prochiral P-center farther from the ethynyl group by four covalent bonds. Time-dependent enantioselectivity is observed for these desymmetric CuAAC reactions, suggesting a synergic combination of a desymmetrization and a kinetic resolution, and our ligands prove to be better than unmodified PYBOX in both steps. This finding contributes to a highly enantioselective kinetic resolution of racemic ethynylphosphine oxides. The resulting chiral ethynylphosphine oxides are versatile P-chiral synthons, which can undergo a number of diversifying reactions to enrich structural diversity.
Collapse
Affiliation(s)
- Ren-Yi Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development , China .
| | - Long Chen
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development , China .
| | - Xiao-Si Hu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development , China .
| | - Feng Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development , China .
- Shanghai Key Laboratory of Green Chemistry and Chemical Process , East China Normal University , Shanghai 200062 , China
| | - Jian Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development , China .
- Shanghai Key Laboratory of Green Chemistry and Chemical Process , East China Normal University , Shanghai 200062 , China
- State Key Laboratory of Organometallic Chemistry , Shanghai Institute of Organic Chemistry , Shanghai 200032 , China
| |
Collapse
|
48
|
Wang S, Li S, Xiong J, Lin Z, Wei W, Xu Y. Near-infrared photothermal conversion of stable radicals photoinduced from a viologen-based coordination polymer. Chem Commun (Camb) 2020; 56:7399-7402. [DOI: 10.1039/d0cc02193h] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A highly stable radical photoinduced from a viologen-based coordination polymer exhibited a remarkable near-infrared photothermal effect with good recyclability.
Collapse
Affiliation(s)
- Shanshan Wang
- Key Laboratory of Cluster Science
- Ministry of Education of China
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
| | - Shuning Li
- Key Laboratory of Cluster Science
- Ministry of Education of China
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
| | - Junyu Xiong
- Key Laboratory of Cluster Science
- Ministry of Education of China
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
| | - Zhengguo Lin
- Key Laboratory of Cluster Science
- Ministry of Education of China
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
| | - Wei Wei
- Department of Chemistry
- Capital Normal University
- Beijing 100048
- China
| | - Yanqing Xu
- Key Laboratory of Cluster Science
- Ministry of Education of China
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
| |
Collapse
|
49
|
Liu JJ, Que QT, Liu D, Suo H, Liu J, Xia SB. A multifunctional photochromic metal–organic framework with Lewis acid sites for selective amine and anion sensing. CrystEngComm 2020. [DOI: 10.1039/d0ce00560f] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A bipyridinium-based MOF was prepared, which exhibits reversible photochromic properties, good luminescence sensing ability for Cr2O72−, and can be considered an excellent colorimetric sensor for the selective detection of amine vapors.
Collapse
Affiliation(s)
- Jian-Jun Liu
- Center for Yunnan-Guizhou Plateau Chemical Functional Materials and Pollution Control
- Qujing Normal University
- Qujing 655011
- China
| | - Qi-Tao Que
- Center for Yunnan-Guizhou Plateau Chemical Functional Materials and Pollution Control
- Qujing Normal University
- Qujing 655011
- China
| | - Dan Liu
- Center for Yunnan-Guizhou Plateau Chemical Functional Materials and Pollution Control
- Qujing Normal University
- Qujing 655011
- China
| | - Hongbo Suo
- School of Pharmacy
- Liaocheng University
- Liaocheng
- China
| | - Jiaming Liu
- School of Metallurgy Engineering
- Jiangxi University of Science and Technology
- Ganzhou 341000
- PR China
| | - Shu-Biao Xia
- Center for Yunnan-Guizhou Plateau Chemical Functional Materials and Pollution Control
- Qujing Normal University
- Qujing 655011
- China
| |
Collapse
|
50
|
Deekamwong K, Usov PM, Ohtsu H, Kawano M. Pyridinium modification of a hexaazaphenalene skeleton: structure and spectroelectrochemical analysis. CrystEngComm 2020. [DOI: 10.1039/d0ce00850h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
N-Alkylation of tris(4-pyridyl) hexaazaphenalene (TPHAP) anions afforded corresponding pyridinium derivatives.
Collapse
Affiliation(s)
- Krittanun Deekamwong
- Department of Chemistry
- School of Science
- Tokyo Institute of Technology
- Meguro-ku
- Japan
| | - Pavel M. Usov
- Department of Chemistry
- School of Science
- Tokyo Institute of Technology
- Meguro-ku
- Japan
| | - Hiroyoshi Ohtsu
- Department of Chemistry
- School of Science
- Tokyo Institute of Technology
- Meguro-ku
- Japan
| | - Masaki Kawano
- Department of Chemistry
- School of Science
- Tokyo Institute of Technology
- Meguro-ku
- Japan
| |
Collapse
|