1
|
Zhao G, Xue Y, Dai Y, Zhou X, Li H, Sheng G, Xu H, Chen Y. One-step reverse transcriptase-free miRNA detection system and its application for detection of gastrointestinal cancers. Talanta 2024; 278:126457. [PMID: 38917550 DOI: 10.1016/j.talanta.2024.126457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/09/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
MicroRNAs (miRNAs) play pivotal roles in gene regulation and their dysregulation is implicated in various diseases, including cancer. Current methods for miRNA analysis often involve complex procedures and high costs, limiting their clinical utility. Therefore, there is a critical need for the development of simpler and more cost-effective miRNA detection techniques to enable early disease diagnosis. In this study, we introduce a novel one-enzyme for miRNA one-step detection method using Taq DNA polymerase, termed OSMOS-qPCR. We optimized the PCR buffer, PCR program, Taq DNA Polymerase concentrations and reverse PCR primer concentrations, resulted in a wide linear range from 100 fM to 0.001 fM (R2 > 0.98 for each miRNA), the detection limit for OSMOS-qPCR was 0.0025 fM. Furthermore, OSMOS-qPCR demonstrates excellent specificity to differentiation of less than 0.1 % nonspecific signal. Finally, we demonstrated the robust amplification efficiency, enabling the detection of trace amounts of cell-free miRNA in serum samples, and the excellent discrimination ability between gastrointestinal cancers and control subjects (AUC value = 1.0) if combined two miRNAs. The development of OSMOS-qPCR offering a simpler, cost-effective, and efficient detection method, has the potential to be non-invasive strategy for early detection of gastrointestinal cancers.
Collapse
Affiliation(s)
- Guodong Zhao
- Zhejiang University of Technology, Zhejiang, Hangzhou 310014, China; ZJUT Yinhu Research Institute of Innovation and Entrepreneurship, Zhejiang, Hangzhou 311400, China; Department of Spleen and Stomach Diseases, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Jiangsu 215300, China; State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China.
| | - Ying Xue
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou Jiangsu 215000, China.
| | - Yanmiao Dai
- Department of Spleen and Stomach Diseases, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Jiangsu 215300, China
| | - Xiaojin Zhou
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China
| | - Hui Li
- Department of Gastroenterology, The First People's Hospital of Xuzhou, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou Jiangsu 221002, China
| | - Guangsen Sheng
- Clinical Laboratory, Xuzhou New Health Hospital, Xuzhou 221005, China
| | - Hongwei Xu
- Department of Spleen and Stomach Diseases, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Jiangsu 215300, China.
| | - Ying Chen
- School of Medical Technology, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
2
|
Xiang R, Liu GY, Hou Y, Xie LX, Wang QS, Hu SQ. Double domain fusion improves the reverse transcriptase activity and inhibitor tolerance of Bst DNA polymerase. Int J Biol Macromol 2024; 274:133243. [PMID: 38901507 DOI: 10.1016/j.ijbiomac.2024.133243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/09/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
To enhance the DNA/RNA amplification efficiency and inhibitor tolerance of Bst DNA polymerase, four chimeric Bst DNA polymerase by fusing with a DNA-binding protein Sto7d and/or a highly hydrophobic protein Hp47 to Bst DNA polymerase large fragment. One of chimeric protein HpStBL exhibited highest inhibitor tolerance, which retained high active under 0.1 U/μL sodium heparin, 0.8 ng/μL humic acid, 2.5× SYBR Green I, 8 % (v/v) whole blood, 20 % (v/v) tissue, and 2.5 % (v/v) stool. Meanwhile, HpStBL showed highest sensitivity (93.75 %) to crude whole blood infected with the African swine fever virus. Moreover, HpStBL showed excellent reverse transcriptase activity in reverse transcription loop-mediated isothermal amplification, which could successfully detect 0.5 pg/μL severe acute respiratory syndrome coronavirus 2 RNA in the presence of 1 % (v/v) stools. The fusion of two domains with different functions to Bst DNA polymerase would be an effective strategy to improve Bst DNA polymerase performance in direct loop-mediated isothermal amplification and reverse transcription loop-mediated isothermal amplification detection, and HpStBL would be a promising DNA polymerase for direct African swine fever virus/severe acute respiratory syndrome coronavirus 2 detection due to simultaneously increased inhibitor tolerance and reverse transcriptase activity.
Collapse
Affiliation(s)
- Rong Xiang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Guang-Yi Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangzhou Enzyvalley Biotech Co., Ltd., Guangzhou 510555, China
| | - Yi Hou
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Long-Xu Xie
- Guangzhou Hybribio Pharmaceutical Technology Co., Ltd., Guangzhou 510700, China
| | - Qing-Song Wang
- Guangzhou Hybribio Pharmaceutical Technology Co., Ltd., Guangzhou 510700, China
| | - Song-Qing Hu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
3
|
Carvajal-Maldonado D, Li Y, Returan M, Averill AM, Doublié S, Wood RD. Dynamic stem-loop extension by Pol θ and templated insertion during DNA repair. J Biol Chem 2024; 300:107461. [PMID: 38876299 PMCID: PMC11292364 DOI: 10.1016/j.jbc.2024.107461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/16/2024] Open
Abstract
Theta-mediated end joining (TMEJ) is critical for survival of cancer cells when other DNA double-stranded break repair pathways are impaired. Human DNA polymerase theta (Pol θ) can extend ssDNA oligonucleotides, but little is known about preferred substrates and mechanism. We show that Pol θ can extend both ssDNA and RNA substrates by unimolecular stem-loop synthesis initiated by only two 3' terminal base pairs. Given sufficient time, Pol θ uses alternative pairing configurations that greatly expand the repertoire of sequence outcomes. Further primer-template adjustments yield low-fidelity outcomes when the nucleotide pool is imbalanced. Unimolecular stem-loop synthesis competes with bimolecular end joining, even when a longer terminal microhomology for end joining is available. Both reactions are partially suppressed by the ssDNA-binding protein replication protein A. Protein-primer grasp residues that are specific to Pol θ are needed for rapid stem-loop synthesis. The ability to perform stem-loop synthesis from a minimally paired primer is rare among human DNA polymerases, but we show that human DNA polymerases Pol η and Pol λ can catalyze related reactions. Using purified human Pol θ, we reconstituted in vitro TMEJ incorporating an insertion arising from a stem-loop extension. These activities may help explain TMEJ repair events that include inverted repeat sequences.
Collapse
Affiliation(s)
- Denisse Carvajal-Maldonado
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Center, Houston, Texas, USA
| | - Yuzhen Li
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Center, Houston, Texas, USA
| | - Mark Returan
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Center, Houston, Texas, USA
| | - April M Averill
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA
| | - Richard D Wood
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Center, Houston, Texas, USA.
| |
Collapse
|
4
|
Xiong E, Liu P, Deng R, Zhang K, Yang R, Li J. Recent advances in enzyme-free and enzyme-mediated single-nucleotide variation assay in vitro. Natl Sci Rev 2024; 11:nwae118. [PMID: 38742234 PMCID: PMC11089818 DOI: 10.1093/nsr/nwae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 05/16/2024] Open
Abstract
Single-nucleotide variants (SNVs) are the most common type variation of sequence alterations at a specific location in the genome, thus involving significant clinical and biological information. The assay of SNVs has engaged great awareness, because many genome-wide association studies demonstrated that SNVs are highly associated with serious human diseases. Moreover, the investigation of SNV expression levels in single cells are capable of visualizing genetic information and revealing the complexity and heterogeneity of single-nucleotide mutation-related diseases. Thus, developing SNV assay approaches in vitro, particularly in single cells, is becoming increasingly in demand. In this review, we summarized recent progress in the enzyme-free and enzyme-mediated strategies enabling SNV assay transition from sensing interface to the test tube and single cells, which will potentially delve deeper into the knowledge of SNV functions and disease associations, as well as discovering new pathways to diagnose and treat diseases based on individual genetic profiles. The leap of SNV assay achievements will motivate observation and measurement genetic variations in single cells, even within living organisms, delve into the knowledge of SNV functions and disease associations, as well as open up entirely new avenues in the diagnosis and treatment of diseases based on individual genetic profiles.
Collapse
Affiliation(s)
- Erhu Xiong
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Pengfei Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
| | - Ronghua Yang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Jinghong Li
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
- Beijing Institute of Life Science and Technology, Beijing 102206, China
| |
Collapse
|
5
|
Mohr G, Yao J, Park SK, Markham L, Lambowitz AM. Mechanisms used for cDNA synthesis and site-specific integration of RNA into DNA genomes by a reverse transcriptase-Cas1 fusion protein. SCIENCE ADVANCES 2024; 10:eadk8791. [PMID: 38608016 PMCID: PMC11014452 DOI: 10.1126/sciadv.adk8791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 03/08/2024] [Indexed: 04/14/2024]
Abstract
Reverse transcriptase-Cas1 (RT-Cas1) fusion proteins found in some CRISPR systems enable spacer acquisition from both RNA and DNA, but the mechanism of RNA spacer acquisition has remained unclear. Here, we found that Marinomonas mediterranea RT-Cas1/Cas2 adds short 3'-DNA (dN) tails to RNA protospacers, enabling their direct integration into CRISPR arrays as 3'-dN-RNAs or 3'-dN-RNA/cDNA duplexes at rates comparable to similarly configured DNAs. Reverse transcription of RNA protospacers is initiated at 3' proximal sites by multiple mechanisms, including recently described de novo initiation, protein priming with any dNTP, and use of short exogenous or synthesized DNA oligomer primers, enabling synthesis of near full-length cDNAs of diverse RNAs without fixed sequence requirements. The integration of 3'-dN-RNAs or single-stranded DNAs (ssDNAs) is favored over duplexes at higher protospacer concentrations, potentially relevant to spacer acquisition from abundant pathogen RNAs or ssDNA fragments generated by phage defense nucleases. Our findings reveal mechanisms for site-specifically integrating RNA into DNA genomes with potential biotechnological applications.
Collapse
Affiliation(s)
- Georg Mohr
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX 78712, USA
| | - Jun Yao
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX 78712, USA
| | | | - Laura Markham
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX 78712, USA
| | | |
Collapse
|
6
|
Wang Q, Kline EC, Gilligan-Steinberg SD, Lai JJ, Hull IT, Olanrewaju AO, Panpradist N, Lutz BR. Sensitive Pathogen Detection and Drug Resistance Characterization Using Pathogen-Derived Enzyme Activity Amplified by LAMP or CRISPR-Cas. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.29.24305085. [PMID: 38633802 PMCID: PMC11023665 DOI: 10.1101/2024.03.29.24305085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Pathogens encapsulate or encode their own suite of enzymes to facilitate replication in the host. The pathogen-derived enzymes possess specialized activities that are essential for pathogen replication and have naturally been candidates for drug targets. Phenotypic assays detecting the activities of pathogen-derived enzymes and characterizing their inhibition under drugs offer an opportunity for pathogen detection, drug resistance testing for individual patients, and as a research tool for new drug development. Here, we used HIV as an example to develop assays targeting the reverse transcriptase (RT) enzyme encapsulated in HIV for sensitive detection and phenotypic characterization, with the potential for point-of-care (POC) applications. Specifically, we targeted the complementary (cDNA) generation activity of the HIV RT enzyme by adding engineered RNA as substrates for HIV RT enzyme to generate cDNA products, followed by cDNA amplification and detection facilitated by loop-mediated isothermal amplification (LAMP) or CRISPR-Cas systems. To guide the assay design, we first used qPCR to characterize the cDNA generation activity of HIV RT enzyme. In the LAMP-mediated Product-Amplified RT activity assay (LamPART), the cDNA generation and LAMP amplification were combined into one pot with novel assay designs. When coupled with direct immunocapture of HIV RT enzyme for sample preparation and endpoint lateral flow assays for detection, LamPART detected as few as 20 copies of HIV RT enzyme spiked into 25μL plasma (fingerstick volume), equivalent to a single virion. In the Cas-mediated Product-Amplified RT activity assay (CasPART), we tailored the substrate design to achieve a LoD of 2e4 copies (1.67fM) of HIV RT enzyme. Furthermore, with its phenotypic characterization capability, CasPART was used to characterize the inhibition of HIV RT enzyme under antiretroviral drugs and differentiate between wild-type and mutant HIV RT enzyme for potential phenotypic drug resistance testing. Moreover, the CasPART assay can be readily adapted to target the activity of other pathogen-derived enzymes. As a proof-of-concept, we successfully adapted CasPART to detect HIV integrase with a sensitivity of 83nM. We anticipate the developed approach of detecting enzyme activity with product amplification has the potential for a wide range of pathogen detection and phenotypic characterization.
Collapse
Affiliation(s)
- Qin Wang
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Enos C. Kline
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | | | - James J. Lai
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Ian T. Hull
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Ayokunle O. Olanrewaju
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Nuttada Panpradist
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Barry R. Lutz
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
7
|
Ren X, Wu Y, Deng R, Li J. Single-Cell Imaging of mRNA by Target RNA-Initiated RCA. Methods Mol Biol 2024; 2822:65-75. [PMID: 38907912 DOI: 10.1007/978-1-0716-3918-4_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
We present a powerful method for direct mRNA detection based on ligation-based recognition and in situ amplification, capable of single-cell imaging mRNA at single-nucleotide and single-molecule resolution. Attributed to the use of Splint R ligase that can ligate padlock probe with RNA as target template, this method can efficiently detect mRNA in the absence of reverse transcription. This method enables spatial localization and correlation analysis of gene expression in single cells, which helps us to elucidate gene function and regulatory mechanisms.
Collapse
Affiliation(s)
- Xiaojun Ren
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Yifan Wu
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Jinghong Li
- Beijing Life Science Academy, Beijing, China.
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, China.
- New Cornerstone Science Laboratory, Shenzhen, China.
- Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
8
|
Zou Y, Mason MG, Botella JR. A low-cost, portable, dual-function readout device for amplification-based point-of-need diagnostics. Appl Environ Microbiol 2023; 89:e0090223. [PMID: 38047632 PMCID: PMC10734478 DOI: 10.1128/aem.00902-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/25/2023] [Indexed: 12/05/2023] Open
Abstract
IMPORTANCE The first critical step in timely disease management is rapid disease identification, which is ideally on-site detection. Of all the technologies available for disease identification, nucleic acid amplification-based diagnostics are often used due to their specificity, sensitivity, adaptability, and speed. However, the modules to interpret amplification results rapidly, reliably, and easily in resource-limited settings at point-of-need (PON) are in high demand. Therefore, we developed a portable, low-cost, and easy-to-perform device that can be used for amplification readout at PON to enable rapid yet reliable disease identification by users with minimal training.
Collapse
Affiliation(s)
- Yiping Zou
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Michael Glenn Mason
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Jose Ramon Botella
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
9
|
Li P, Lin Q, Xiong H, Kong J, Ye X, Fang X. Innovative Highly Specific Nucleic Acid Isothermal Detection Assay Based on the Polymerization-Coupled Endonuclease Activity of Prokaryotic DNA Polymerase I. Anal Chem 2023; 95:15755-15762. [PMID: 37824574 DOI: 10.1021/acs.analchem.3c03261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
In this study, we developed an innovative highly specific nucleic acid isothermal detection assay based on prokaryotic DNA polymerase I with exquisitely designed fluorescent probes, achieving high sensitivity and 100% specificity within 30 min. The fluorescent nucleic acid probe was designed and constructed based on the specific flap cleavage endonuclease activity of prokaryotic DNA polymerase I (including the Bst, Bsu, Bsm, and Klenow DNA polymerases). The flap endonuclease activity depends on the length of the flap DNA and polymerization activity, which greatly reduces the false-positive rate caused by primer dimerization. This robust assay was also validated by the detection of rotavirus with great specificity and sensitivity. It could be a great alternative to qPCR in the field of point-of-care detection of pathogens.
Collapse
Affiliation(s)
- Pintao Li
- Department of Chemistry and Institute of Biomedical Sciences, Fudan University, Shanghai 200433, P. R. China
| | - Qiuyuan Lin
- Department of Chemistry and Institute of Biomedical Sciences, Fudan University, Shanghai 200433, P. R. China
| | - Huiwen Xiong
- Department of Chemistry and Institute of Biomedical Sciences, Fudan University, Shanghai 200433, P. R. China
| | - Jilie Kong
- Department of Chemistry and Institute of Biomedical Sciences, Fudan University, Shanghai 200433, P. R. China
| | - Xin Ye
- Department of Laboratory Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi P. R. China
| | - Xueen Fang
- Department of Chemistry and Institute of Biomedical Sciences, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
10
|
de Souza LR, da Silva IEP, Celis-Silva G, Raddatz BW, Imamura LM, Kim EYS, Valderrama GV, Riedi HDP, Rogal SR, de Almeida BMM, Figueredo MVM, Bengtson MH, Massirer KB. Improved protocol for Bst polymerase and reverse transcriptase production and application to a point-of-care diagnostics system. Exp Biol Med (Maywood) 2023; 248:1671-1683. [PMID: 38088106 PMCID: PMC10723028 DOI: 10.1177/15353702231215815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Abstract
The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has raised awareness in the scientific community about the importance of being prepared for sanitary emergencies. Many measures implemented during the COVID pandemic are now being expanded to other applications. In the field of molecular and immunological diagnostics, the need to massively test the population worldwide resulted in the application of a variety of methods to detect viral infection. Besides gold standard reverse transcription quantitative polymerase chain reaction (RT-qPCR), the use of reverse transcription loop-mediated isothermal amplification (RT-LAMP) arose as an alternative and sensitive method to amplify and detect viral genetic material. We have used openly available protocols and have improved the protein production of RT-LAMP enzymes Bst polymerase and HIV-reverse transcriptase. To optimize enzyme production, we tested different protein tags, and we shortened the protein purification protocol, resulting in reduced processing time and handling of the enzymes and, thus, preserved the protein activity with high purity. The enzymes showed significant stability at 4 °C and 25 °C, over 60 days, and were highly reliable when used as a one-step RT-LAMP reaction in a portable point-of-care device with clinical samples. The enzymes and the reaction setup can be further expanded to detect other infectious diseases agents.
Collapse
Affiliation(s)
- Lucas Rodrigo de Souza
- Center for Molecular Biology and Genetic Engineering (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas/SP 13083-875, Brazil
- Center for Medicinal Chemistry (CQMED), Universidade Estadual de Campinas (UNICAMP), Campinas/SP 13083-886, Brazil
| | - Italo Esposti Poly da Silva
- Center for Molecular Biology and Genetic Engineering (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas/SP 13083-875, Brazil
- Center for Medicinal Chemistry (CQMED), Universidade Estadual de Campinas (UNICAMP), Campinas/SP 13083-886, Brazil
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas/SP 13083-862, Brazil
| | - Gabriele Celis-Silva
- Center for Molecular Biology and Genetic Engineering (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas/SP 13083-875, Brazil
- Center for Medicinal Chemistry (CQMED), Universidade Estadual de Campinas (UNICAMP), Campinas/SP 13083-886, Brazil
| | | | | | | | - Gabriel Vieira Valderrama
- Center for Molecular Biology and Genetic Engineering (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas/SP 13083-875, Brazil
- Center for Medicinal Chemistry (CQMED), Universidade Estadual de Campinas (UNICAMP), Campinas/SP 13083-886, Brazil
| | | | | | | | | | - Mario Henrique Bengtson
- Center for Medicinal Chemistry (CQMED), Universidade Estadual de Campinas (UNICAMP), Campinas/SP 13083-886, Brazil
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas/SP 13083-862, Brazil
| | - Katlin Brauer Massirer
- Center for Molecular Biology and Genetic Engineering (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas/SP 13083-875, Brazil
- Center for Medicinal Chemistry (CQMED), Universidade Estadual de Campinas (UNICAMP), Campinas/SP 13083-886, Brazil
| |
Collapse
|
11
|
Zhao Y, Zhuang L, Tian P, Ma M, Wu G, Zhang Y. Rapid diagnosis of acute myocardial infarction based on reverse transcription-accelerated strand exchange amplification of miR-208a. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4442-4451. [PMID: 37610127 DOI: 10.1039/d3ay01116j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Acute myocardial infarction (AMI) is a prevalent cardiovascular disease associated with high morbidity and mortality, posing a significant threat to human health. Therefore, early diagnosis of AMI has become a focal point of research. MiR-208 is specifically expressed in the heart and is involved in the regulation of cardiomyocyte hypertrophy, cardiac fibrosis, and other myocardial gene expressions. It is expected to be applied in the clinical detection of AMI due to its release by damaged myocardial cells within 3 hours of AMI. In this study, we developed a denatured bubble-mediated reverse transcription-accelerated strand exchange amplification (RT-ASEA) method to detect the early biomarker miR-208a of AMI. The novel approach allowed rapid amplification of miR-208a in 15 minutes, with good performance in terms of repeatability (CV < 6%), determination limit (1 × 100 pmol L-1), and linearity (R2 = 0.9690). Based on the analysis of 42 clinical samples, a strong correlation was observed between the Ct value of miR-208a detected by the RT-ASEA method and the cTnI concentration, considered the gold standard for diagnosis of AMI. The research suggested that the RT-ASEA method could be applied to distinguish between AMI and healthy groups. The area under the receiver operating characteristic curve (AUC) was 0.9976, with a sensitivity of 96% and a specificity of 100%. Optimized RT-ASEA is a reliable and efficient method for miRNA detection. Furthermore, this study provides crucial data support for the development of miR-208a as an early biomarker for AMI, which is of great significance in life and health.
Collapse
Affiliation(s)
- Ying Zhao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 210096, P. R. China.
| | - Linlin Zhuang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 210096, P. R. China.
| | - Peilong Tian
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 210096, P. R. China.
| | - Ming Ma
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 210096, P. R. China.
| | - Guoqiu Wu
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing 210009, P. R. China.
| | - Yu Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 210096, P. R. China.
| |
Collapse
|
12
|
Oscorbin I, Filipenko M. Bst polymerase - a humble relative of Taq polymerase. Comput Struct Biotechnol J 2023; 21:4519-4535. [PMID: 37767105 PMCID: PMC10520511 DOI: 10.1016/j.csbj.2023.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/31/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
DNA polymerases are a superfamily of enzymes synthesizing DNA using DNA as a template. They are essential for nucleic acid metabolism and for DNA replication and repair. Modern biotechnology and molecular diagnostics rely heavily on DNA polymerases in analyzing nucleic acids. Among a variety of discovered DNA polymerases, Bst polymerase, a large fragment of DNA polymerase I from Geobacillus stearothermophilus, is one of the most commonly used but is not as well studied as Taq polymerase. The ability of Bst polymerase to displace an upstream DNA strand during synthesis, coupled with its moderate thermal stability, has provided the basis for several isothermal DNA amplification methods, including LAMP, WGA, RCA, and many others. Bst polymerase is one of the key components defining the robustness and analytical characteristics of diagnostic test systems based on isothermal amplification. Here, we present an overview of the biochemical and structural features of Bst polymerase and provide information on its mutated analogs.
Collapse
Affiliation(s)
- Igor Oscorbin
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (ICBFM SB RAS), 8 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Maxim Filipenko
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (ICBFM SB RAS), 8 Lavrentiev Avenue, Novosibirsk 630090, Russia
| |
Collapse
|
13
|
Huber LB, Betz K, Marx A. Reverse Transcriptases: From Discovery and Applications to Xenobiology. Chembiochem 2023; 24:e202200521. [PMID: 36354312 DOI: 10.1002/cbic.202200521] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/09/2022] [Indexed: 11/12/2022]
Abstract
Reverse transcriptases are DNA polymerases that can use RNA as a template for DNA synthesis. They thus catalyze the reverse of transcription. Although discovered in 1970, reverse transcriptases are still of great interest and are constantly being further developed for numerous modern research approaches. They are frequently used in biotechnological and molecular diagnostic applications. In this review, we describe the discovery of these fascinating enzymes and summarize research results and applications ranging from molecular cloning, direct virus detection, and modern sequencing methods to xenobiology.
Collapse
Affiliation(s)
- Luisa B Huber
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78464, Konstanz, Germany
| | - Karin Betz
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78464, Konstanz, Germany
| | - Andreas Marx
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78464, Konstanz, Germany
| |
Collapse
|
14
|
Cai D, Wang Y, Zou J, Li Z, Huang E, Ouyang X, Que Z, Luo Y, Chen Z, Jiang Y, Zhang G, Wu H, Liu D. Droplet Encoding-Pairing Enabled Multiplexed Digital Loop-Mediated Isothermal Amplification for Simultaneous Quantitative Detection of Multiple Pathogens. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205863. [PMID: 36646503 PMCID: PMC9982564 DOI: 10.1002/advs.202205863] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/06/2022] [Indexed: 06/01/2023]
Abstract
Despite the advantages of digital nucleic acid analysis (DNAA) in terms of sensitivity, precision, and resolution, current DNAA methods commonly suffer a limitation in multiplexing capacity. To address this issue, a droplet encoding-pairing enabled DNAA multiplexing strategy is developed, wherein unique tricolor combinations are deployed to index individual primer droplets. The template droplets and primer droplets are sequentially introduced into a microfluidic chip with a calabash-shaped microwell array and are pairwise trapped and merged in the microwells. Pre-merging and post-amplification image analysis with a machine learning algorithm is used to identify, enumerate, and address the droplets. By incorporating the amplification signals with droplet encoding information, simultaneous quantitative detection of multiple targets is achieved. This strategy allows for the establishment of flexible multiplexed DNAA by simply adjusting the primer droplet library. Its flexibility is demonstrated by establishing two multiplexed (8-plex) droplet digital loop-mediated isothermal amplification (mddLAMP) assays for individually detecting lower respiratory tract infection and urinary tract infection causative pathogens. Clinical sample analysis shows that the microbial detection outcomes of the mddLAMP assays are consistent with those of the conventional assay. This DNAA multiplexing strategy can achieve flexible high-order multiplexing on demand, making it a desirable tool for high-content pathogen detection.
Collapse
Affiliation(s)
- Dongyang Cai
- Department of Laboratory Medicinethe Second Affiliated HospitalSchool of MedicineSouth China University of TechnologyGuangzhou510180China
| | - Yu Wang
- Department of Laboratory Medicinethe Second Affiliated HospitalSchool of MedicineSouth China University of TechnologyGuangzhou510180China
| | - Jingjing Zou
- College of Food Science and EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Zhujun Li
- Department of Laboratory Medicinethe Second Affiliated HospitalSchool of MedicineSouth China University of TechnologyGuangzhou510180China
| | - Enqi Huang
- Department of Laboratory Medicinethe Second Affiliated HospitalSchool of MedicineSouth China University of TechnologyGuangzhou510180China
| | - Xiuyun Ouyang
- College of Food Science and EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Zhiquan Que
- Department of Laboratory Medicinethe Second Affiliated HospitalSchool of MedicineSouth China University of TechnologyGuangzhou510180China
| | - Yanzhang Luo
- Department of Laboratory Medicinethe Second Affiliated HospitalSchool of MedicineSouth China University of TechnologyGuangzhou510180China
| | - Zhenhua Chen
- Department of Laboratory Medicinethe Second Affiliated HospitalSchool of MedicineSouth China University of TechnologyGuangzhou510180China
| | - Yanqing Jiang
- Beijing Baicare Biotechnology Co., LtdBeijing102206China
| | - Guohao Zhang
- Beijing Baicare Biotechnology Co., LtdBeijing102206China
| | - Hongkai Wu
- Department of ChemistryHong Kong University of Science and TechnologyHong KongChina
| | - Dayu Liu
- Department of Laboratory Medicinethe Second Affiliated HospitalSchool of MedicineSouth China University of TechnologyGuangzhou510180China
- Guangdong Engineering Technology Research Center of Microfluidic Chip Medical DiagnosisGuangzhou510180China
- Clinical Molecular Medicine and Molecular Diagnosis Key Laboratory of Guangdong ProvinceGuangzhou510180China
| |
Collapse
|
15
|
Ondruš M, Sýkorová V, Hocek M. Traceless enzymatic synthesis of monodispersed hypermodified oligodeoxyribonucleotide polymers from RNA templates. Chem Commun (Camb) 2022; 58:11248-11251. [PMID: 36124894 DOI: 10.1039/d2cc03588j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have developed a new alternative for enzymatic synthesis of single-stranded hypermodified oligodeoxyribonucleotides displaying four different hydrophobic groups based on reverse transcription from RNA templates catalyzed by DNA polymerases using a set of base-modified dNTPs followed by digestion of RNA by RNases. Using mixed oligodeoxyribonucleotide primers containing a ribonucleotide at the 3'-end, RNase AT1 simultaneously digested the template and cleaved off the primer to release a fully modified oligonucleotide that can be further 3'-labelled with a fluorescent nucleotide using TdT. The resulting hypermodified oligonucleotides could find applications in selection of aptamers or other functional macromolecules.
Collapse
Affiliation(s)
- Marek Ondruš
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16000 Prague 6, Czech Republic. .,Dept. of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843, Prague 2, Czech Republic
| | - Veronika Sýkorová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16000 Prague 6, Czech Republic.
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16000 Prague 6, Czech Republic. .,Dept. of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843, Prague 2, Czech Republic
| |
Collapse
|
16
|
An all-in-one nucleic acid enrichment and isothermal amplification platform for rapid detection of Listeria monocytogenes. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
17
|
Wang W, Wang X, Liu J, Lin C, Liu J, Wang J. The Integration of Gold Nanoparticles with Polymerase Chain Reaction for Constructing Colorimetric Sensing Platforms for Detection of Health-Related DNA and Proteins. BIOSENSORS 2022; 12:bios12060421. [PMID: 35735568 PMCID: PMC9220820 DOI: 10.3390/bios12060421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 05/02/2023]
Abstract
Polymerase chain reaction (PCR) is the standard tool in genetic information analysis, and the desirable detection merits of PCR have been extended to disease-related protein analysis. Recently, the combination of PCR and gold nanoparticles (AuNPs) to construct colorimetric sensing platforms has received considerable attention due to its high sensitivity, visual detection, capability for on-site detection, and low cost. However, it lacks a related review to summarize and discuss the advances in this area. This perspective gives an overview of established methods based on the combination of PCR and AuNPs for the visual detection of health-related DNA and proteins. Moreover, this work also addresses the future trends and perspectives for PCR-AuNP hybrid biosensors.
Collapse
Affiliation(s)
- Wanhe Wang
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China; (W.W.); (X.W.); (J.L.); (C.L.); (J.L.)
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
- Collaborative Innovation Center of NPU, Shanghai 201100, China
- Innovation Center NPU Chongqing, Northwestern Polytechnical University, Chongqing 400000, China
| | - Xueliang Wang
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China; (W.W.); (X.W.); (J.L.); (C.L.); (J.L.)
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
- Collaborative Innovation Center of NPU, Shanghai 201100, China
- Innovation Center NPU Chongqing, Northwestern Polytechnical University, Chongqing 400000, China
| | - Jingqi Liu
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China; (W.W.); (X.W.); (J.L.); (C.L.); (J.L.)
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
- Collaborative Innovation Center of NPU, Shanghai 201100, China
| | - Chuankai Lin
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China; (W.W.); (X.W.); (J.L.); (C.L.); (J.L.)
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
- Collaborative Innovation Center of NPU, Shanghai 201100, China
| | - Jianhua Liu
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China; (W.W.); (X.W.); (J.L.); (C.L.); (J.L.)
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
- Collaborative Innovation Center of NPU, Shanghai 201100, China
| | - Jing Wang
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China; (W.W.); (X.W.); (J.L.); (C.L.); (J.L.)
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
- Collaborative Innovation Center of NPU, Shanghai 201100, China
- Innovation Center NPU Chongqing, Northwestern Polytechnical University, Chongqing 400000, China
- Correspondence: ; Tel.: +86-13268283561
| |
Collapse
|
18
|
Liu WW, Zhang XL, Zhu L, Xu S, Chai YQ, Li ZH, Yuan R. Mismatch-fueled catalytic hairpin assembly mediated ultrasensitive biosensor for rapid detection of MicroRNA. Anal Chim Acta 2022; 1204:339663. [PMID: 35397899 DOI: 10.1016/j.aca.2022.339663] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/04/2022] [Accepted: 02/25/2022] [Indexed: 11/18/2022]
Abstract
Herein, a mismatch-fueled catalytic hairpin assembly (MCHA) was rationally engineered, which possessed higher amplification efficiency and faster rate than catalytic hairpin assembly (CHA). Once input target microRNA-21(miRNA-21) triggers the MCHA, the hairpin DNA H1 will be opened to form the duplex H1-miRNA-21, then the mismatched hairpin DNA H2 could easily hybridize with H1-miRNA-21 to generate duplex H1-H2 and the miRNA-21 could be released to enter next cycle, thus generating amounts of output products. Impressively, the MCHA realizes a pretty shorter complete reaction time of 40 min and quite higher amplification efficiency of 9.56 × 106, which dramatically transcended the barrier: low amplification times and long reaction time in traditional CHA. As a proof of the concept, the elaborated MCHA as a hyper-efficiency and high-speed DNA signal-magnifier was successfully applied in ultrasensitive and rapid detection of miRNA-21 with the detection limit of 0.17 fM, which exploited an ingenious nucleic acid signal amplification technique for sensitive and fast detection of biomarkers in biosensing assay and clinic diagnose.
Collapse
Affiliation(s)
- Wei-Wei Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing Southwest University, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Xiao-Long Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing Southwest University, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Liang Zhu
- Key Laboratory of Luminescence Analysis and Molecular Sensing Southwest University, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Sai Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing Southwest University, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Ya-Qin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing Southwest University, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Zhao-Hui Li
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing Southwest University, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
19
|
Kellner MJ, Ross JJ, Schnabl J, Dekens MPS, Matl M, Heinen R, Grishkovskaya I, Bauer B, Stadlmann J, Menéndez-Arias L, Straw AD, Fritsche-Polanz R, Traugott M, Seitz T, Zoufaly A, Födinger M, Wenisch C, Zuber J, Pauli A, Brennecke J. A Rapid, Highly Sensitive and Open-Access SARS-CoV-2 Detection Assay for Laboratory and Home Testing. Front Mol Biosci 2022; 9:801309. [PMID: 35433827 PMCID: PMC9011764 DOI: 10.3389/fmolb.2022.801309] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/01/2022] [Indexed: 11/20/2022] Open
Abstract
RT-qPCR-based diagnostic tests play important roles in combating virus-caused pandemics such as Covid-19. However, their dependence on sophisticated equipment and the associated costs often limits their widespread use. Loop-mediated isothermal amplification after reverse transcription (RT-LAMP) is an alternative nucleic acid detection method that overcomes these limitations. Here, we present a rapid, robust, and sensitive RT-LAMP-based SARS-CoV-2 detection assay. Our 40-min procedure bypasses the RNA isolation step, is insensitive to carryover contamination, and uses a colorimetric readout that enables robust SARS-CoV-2 detection from various sample types. Based on this assay, we have increased sensitivity and scalability by adding a nucleic acid enrichment step (Bead-LAMP), developed a version for home testing (HomeDip-LAMP), and identified open-source RT-LAMP enzymes that can be produced in any molecular biology laboratory. On a dedicated website, rtlamp.org (DOI: 10.5281/zenodo.6033689), we provide detailed protocols and videos. Our optimized, general-purpose RT-LAMP assay is an important step toward population-scale SARS-CoV-2 testing.
Collapse
Affiliation(s)
- Max J. Kellner
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
- *Correspondence: Max J. Kellner, ; Andrea Pauli, ; Julius Brennecke,
| | - James J. Ross
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Jakob Schnabl
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Marcus P. S. Dekens
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Martin Matl
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Robert Heinen
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Irina Grishkovskaya
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Benedikt Bauer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Johannes Stadlmann
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Luis Menéndez-Arias
- Centro de Biología Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid, Spain
| | - Andrew D. Straw
- Institute of Biology I and Bernstein Center Freiburg, Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | | | - Marianna Traugott
- 4th Medical Department with Infectious Diseases and Tropical Medicine, Vienna, Austria
| | - Tamara Seitz
- 4th Medical Department with Infectious Diseases and Tropical Medicine, Vienna, Austria
| | - Alexander Zoufaly
- 4th Medical Department with Infectious Diseases and Tropical Medicine, Vienna, Austria
| | - Manuela Födinger
- Institute of Laboratory Diagnostics, Vienna, Austria
- Sigmund Freud Private University, Vienna, Austria
| | - Christoph Wenisch
- 4th Medical Department with Infectious Diseases and Tropical Medicine, Vienna, Austria
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Medical University of Vienna, Vienna BioCenter (VBC), Vienna, Austria
| | - Andrea Pauli
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- *Correspondence: Max J. Kellner, ; Andrea Pauli, ; Julius Brennecke,
| | - Julius Brennecke
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- *Correspondence: Max J. Kellner, ; Andrea Pauli, ; Julius Brennecke,
| |
Collapse
|
20
|
Zhao X, Zhang J, Duan Y, Wan Q, Zhang X, Chen J, Shi C, Gao Y, Ma C. An ultra-fast, one-step RNA amplification method for the detection of Salmonella in seafood. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1111-1116. [PMID: 35212687 DOI: 10.1039/d1ay02056k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Salmonella is one of the most common pathogens associated with food-borne illness resulting from seafood consumption. Herein, an accelerated strand exchange amplification (ASEA) requiring only a pair of primers and one polymerase was first reported for ultra-fast, one-step RNA amplification detection of Salmonella in seafood. The ASEA method could detect Salmonella typhimurium DNA in dilutions as low as 10 copies per reaction and displayed good specificity for Salmonella under the interference of a variety of food-borne pathogens. In particular, ASEA could detect RNA in one step without additional reverse transcription. The detection limit for Salmonella in artificially contaminated oyster was 1 CFU mL-1 following 12 h of enrichment. Moreover, excellent performance of this assay was observed with 99.02% consistency relative to real-time PCR through actual sample detection. Combined with the rapid nucleic acid extraction method, the entire detection process could be completed within 20 min. Therefore, this assay opens up new prospects for the detection of food-borne pathogens in seafood with its rapidity, which would be very beneficial for food safety supervision and pathogen detection of high-throughput samples.
Collapse
Affiliation(s)
- Xiaoli Zhao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Provincial Key Laboratory of Biochemical Engineering, College of Chemistry, Molecular Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Jian Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Provincial Key Laboratory of Biochemical Engineering, College of Chemistry, Molecular Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Yake Duan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Provincial Key Laboratory of Biochemical Engineering, College of Chemistry, Molecular Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Qianyi Wan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Provincial Key Laboratory of Biochemical Engineering, College of Chemistry, Molecular Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Xin Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Provincial Key Laboratory of Biochemical Engineering, College of Chemistry, Molecular Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Jiao Chen
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Provincial Key Laboratory of Biochemical Engineering, College of Chemistry, Molecular Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Chao Shi
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, The Clinical Laboratory Department of the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, PR China
| | - Yan Gao
- Marine Science Research Institute of Shandong Provice (National Oceanographic Center of Qingdao), Qingdao 266071, China
| | - Cuiping Ma
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Provincial Key Laboratory of Biochemical Engineering, College of Chemistry, Molecular Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
21
|
Carvajal-Maldonado D, Drogalis Beckham L, Wood RD, Doublié S. When DNA Polymerases Multitask: Functions Beyond Nucleotidyl Transfer. Front Mol Biosci 2022; 8:815845. [PMID: 35071329 PMCID: PMC8782244 DOI: 10.3389/fmolb.2021.815845] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
DNA polymerases catalyze nucleotidyl transfer, the central reaction in synthesis of DNA polynucleotide chains. They function not only in DNA replication, but also in diverse aspects of DNA repair and recombination. Some DNA polymerases can perform translesion DNA synthesis, facilitating damage tolerance and leading to mutagenesis. In addition to these functions, many DNA polymerases conduct biochemically distinct reactions. This review presents examples of DNA polymerases that carry out nuclease (3'-5' exonuclease, 5' nuclease, or end-trimming nuclease) or lyase (5' dRP lyase) extracurricular activities. The discussion underscores how DNA polymerases have a remarkable ability to manipulate DNA strands, sometimes involving relatively large intramolecular movement.
Collapse
Affiliation(s)
- Denisse Carvajal-Maldonado
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Center, Houston, TX, United States
| | - Lea Drogalis Beckham
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, United States
| | - Richard D Wood
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Center, Houston, TX, United States
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, United States
| |
Collapse
|
22
|
Zhuang L, Gong J, Ma M, Ji Y, Tian P, Mei X, Gu N, Zhang Y. Tri-primer-enhanced strand exchange amplification combined with rapid lateral flow fluorescence immunoassay to detect SARS-CoV-2. Analyst 2021; 146:6650-6664. [PMID: 34610060 DOI: 10.1039/d1an00858g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The novel coronavirus disease 2019 caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been surging rapidly around the world, which has exposed humanity to unprecedented economic, social and health impacts. To achieve efficient and accurate detection of SARS-CoV-2 on site, we developed and verified a rapid and sensitive fluorescence lateral flow immunoassay based on the innovative enhanced strand exchange amplification (ESEA-LFIA) in this study. With good amplification efficiency for short-sequence targets, ESEA is an ideal choice for the point-of-care testing of SARS-CoV-2 with a high mutation rate. ESEA reaction can be completed in one step and verified by restriction enzyme digestion. The design consisting of three working primers greatly improved the amplification efficiency. Amplification of the target sequences of the RdRP and N genes can be accomplished under the same reaction conditions, and does not require expensive instruments. The sensitivity of the ESEA-LFIA assay targeting the RdRP and N genes was 90 copies per μL and 70 copies per μL, respectively. Specificity tests showed that the novel assay can specifically detect SARS-CoV-2, and had no cross-reactivity with 9 closely-related human pathogenic coronaviruses and other common respiratory pathogens with similar clinical manifestations. The cutoff values of the RdRP and N gene assays are 11 and 12, respectively, and the assays can be completed within 1 h. The novel strategy proposed in this study is a sensitive and specific method for the rapid detection of SARS-CoV-2, and is suitable as an effective potential bioanalytical tool to respond to future regional or global outbreaks of emerging infectious pathogens with high mutation rates.
Collapse
Affiliation(s)
- Linlin Zhuang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering and Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 210096, P. R. China.
| | - Jiansen Gong
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, P. R. China
| | - Ming Ma
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering and Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 210096, P. R. China.
| | - Yongxin Ji
- Nanjing Nanoeast Biotech Co., Ltd, Nanjing 211000, P. R. China
| | - Peilong Tian
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering and Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 210096, P. R. China.
| | - Xiuming Mei
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering and Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 210096, P. R. China. .,Nanjing Product Quality Supervision and Inspection Institute, Nanjing 210019, P. R. China
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering and Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 210096, P. R. China.
| | - Yu Zhang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering and Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 210096, P. R. China.
| |
Collapse
|
23
|
Zyrina NV, Antipova VN. Nonspecific Synthesis in the Reactions of Isothermal Nucleic Acid Amplification. BIOCHEMISTRY (MOSCOW) 2021; 86:887-897. [PMID: 34284713 DOI: 10.1134/s0006297921070099] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The review focuses on the main factors involved in the formation of nonspecific products in isothermal nucleic acid amplification, such as mispriming, ab initio DNA synthesis, and additional activities of DNA polymerases, and discusses approaches to prevent formation of such nonspecific products in LAMP, RPA, NASBA, RCA, SDA, LSDA, NDA, and EXPAR.
Collapse
Affiliation(s)
- Nadezhda V Zyrina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.,Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Valeriya N Antipova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
24
|
Gao Y, Ye Y, Xu J, Wu Q, Yao B, Chen W. Rapid and easy quantitative identification of Cronobacter spp. in infant formula milk powder by isothermal strand-exchange-amplification based molecular capturing lateral flow strip. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
25
|
Chen XS, Pomerantz RT. DNA Polymerase θ: A Cancer Drug Target with Reverse Transcriptase Activity. Genes (Basel) 2021; 12:1146. [PMID: 34440316 PMCID: PMC8391894 DOI: 10.3390/genes12081146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022] Open
Abstract
The emergence of precision medicine from the development of Poly (ADP-ribose) polymerase (PARP) inhibitors that preferentially kill cells defective in homologous recombination has sparked wide interest in identifying and characterizing additional DNA repair enzymes that are synthetic lethal with HR factors. DNA polymerase theta (Polθ) is a validated anti-cancer drug target that is synthetic lethal with HR factors and other DNA repair proteins and confers cellular resistance to various genotoxic cancer therapies. Since its initial characterization as a helicase-polymerase fusion protein in 2003, many exciting and unexpected activities of Polθ in microhomology-mediated end-joining (MMEJ) and translesion synthesis (TLS) have been discovered. Here, we provide a short review of Polθ's DNA repair activities and its potential as a drug target and highlight a recent report that reveals Polθ as a naturally occurring reverse transcriptase (RT) in mammalian cells.
Collapse
Affiliation(s)
- Xiaojiang S. Chen
- Molecular and Computational Biology, USC Dornsife Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA;
| | - Richard T. Pomerantz
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
26
|
Glökler J, Lim TS, Ida J, Frohme M. Isothermal amplifications - a comprehensive review on current methods. Crit Rev Biochem Mol Biol 2021; 56:543-586. [PMID: 34263688 DOI: 10.1080/10409238.2021.1937927] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The introduction of nucleic acid amplification techniques has revolutionized the field of medical diagnostics in the last decade. The advent of PCR catalyzed the increasing application of DNA, not just for molecular cloning but also for molecular based diagnostics. Since the introduction of PCR, a deeper understanding of molecular mechanisms and enzymes involved in DNA/RNA replication has spurred the development of novel methods devoid of temperature cycling. Isothermal amplification methods have since been introduced utilizing different mechanisms, enzymes, and conditions. The ease with which isothermal amplification methods have allowed nucleic acid amplification to be carried out has had a profound impact on the way molecular diagnostics are being designed after the turn of the millennium. With all the advantages isothermal amplification brings, the issues or complications surrounding each method are heterogeneous making it difficult to identify the best approach for an end-user. This review pays special attention to the various isothermal amplification methods by classifying them based on the mechanistic characteristics which include reaction formats, amplification information, promoter, strand break, and refolding mechanisms. We would also compare the efficiencies and usefulness of each method while highlighting the potential applications and detection methods involved. This review will serve as an overall outlook on the journey and development of isothermal amplification methods as a whole.
Collapse
Affiliation(s)
- Jörn Glökler
- Department of Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Wildau, Germany
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia
| | - Jeunice Ida
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia
| | - Marcus Frohme
- Department of Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Wildau, Germany
| |
Collapse
|
27
|
Chandramouly G, Zhao J, McDevitt S, Rusanov T, Hoang T, Borisonnik N, Treddinick T, Lopezcolorado FW, Kent T, Siddique LA, Mallon J, Huhn J, Shoda Z, Kashkina E, Brambati A, Stark JM, Chen XS, Pomerantz RT. Polθ reverse transcribes RNA and promotes RNA-templated DNA repair. SCIENCE ADVANCES 2021; 7:7/24/eabf1771. [PMID: 34117057 PMCID: PMC8195485 DOI: 10.1126/sciadv.abf1771] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 04/23/2021] [Indexed: 05/12/2023]
Abstract
Genome-embedded ribonucleotides arrest replicative DNA polymerases (Pols) and cause DNA breaks. Whether mammalian DNA repair Pols efficiently use template ribonucleotides and promote RNA-templated DNA repair synthesis remains unknown. We find that human Polθ reverse transcribes RNA, similar to retroviral reverse transcriptases (RTs). Polθ exhibits a significantly higher velocity and fidelity of deoxyribonucleotide incorporation on RNA versus DNA. The 3.2-Å crystal structure of Polθ on a DNA/RNA primer-template with bound deoxyribonucleotide reveals that the enzyme undergoes a major structural transformation within the thumb subdomain to accommodate A-form DNA/RNA and forms multiple hydrogen bonds with template ribose 2'-hydroxyl groups like retroviral RTs. Last, we find that Polθ promotes RNA-templated DNA repair in mammalian cells. These findings suggest that Polθ was selected to accommodate template ribonucleotides during DNA repair.
Collapse
Affiliation(s)
- Gurushankar Chandramouly
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jiemin Zhao
- Molecular and Computational Biology, USC Dornsife Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Shane McDevitt
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Timur Rusanov
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Trung Hoang
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Nikita Borisonnik
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Taylor Treddinick
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Tatiana Kent
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Labiba A Siddique
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Joseph Mallon
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jacklyn Huhn
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Zainab Shoda
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ekaterina Kashkina
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Alessandra Brambati
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Jeremy M Stark
- Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Xiaojiang S Chen
- Molecular and Computational Biology, USC Dornsife Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Richard T Pomerantz
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
28
|
Mao S, Chang Z, Ying Zheng Y, Shekhtman A, Sheng J. DNA Functionality with Photoswitchable Hydrazone Cytidine*. Chemistry 2021; 27:8372-8379. [PMID: 33872432 DOI: 10.1002/chem.202100742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Indexed: 12/18/2022]
Abstract
A new family of hydrazone modified cytidine phosphoramidite building block was synthesized and incorporated into oligodeoxynucleotides to construct photoswitchable DNA strands. The E-Z isomerization triggered by the irradiation of blue light with a wavelength of 450 nm was investigated and confirmed by 1 H NMR spectroscopy and HPLC in the contexts of both nucleoside and oligodeoxynucleotide. The light activated Z form isomer of this hydrazone-cytidine with a six-member intramolecular hydrogen bond was found to inhibit DNA synthesis in the primer extension model by using Bst DNA polymerase. In addition, the hydrazone modification caused the misincorporation of dATP together with dGTP into the growing DNA strand with similar selectivity, highlighting a potential G to A mutation. This work provides a novel functional DNA building block and an additional molecular tool that has potential chemical biology and biomedicinal applications to control DNA synthesis and DNA-enzyme interactions using the cell friendly blue light irradiation.
Collapse
Affiliation(s)
- Song Mao
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA.,The RNA Institute, University at Albany State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA
| | - Zhihua Chang
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA.,The RNA Institute, University at Albany State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA
| | - Ya Ying Zheng
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA.,The RNA Institute, University at Albany State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA
| | - Alexander Shekhtman
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA
| | - Jia Sheng
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA.,The RNA Institute, University at Albany State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA
| |
Collapse
|
29
|
Fan Z, Yao B, Ding Y, Zhao J, Xie M, Zhang K. Entropy-driven amplified electrochemiluminescence biosensor for RdRp gene of SARS-CoV-2 detection with self-assembled DNA tetrahedron scaffolds. Biosens Bioelectron 2021; 178:113015. [PMID: 33493896 PMCID: PMC7817442 DOI: 10.1016/j.bios.2021.113015] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/14/2021] [Accepted: 01/17/2021] [Indexed: 12/24/2022]
Abstract
Dependable, specific and rapid diagnostic methods for severe acute respiratory syndrome β-coronavirus (SARS-CoV-2) detection are needed to promote public health interventions for coronavirus disease 2019 (COVID-19). Herein, we have established an entropy-driven amplified electrochemiluminescence (ECL) strategy to detect the RNA-dependent RNA polymerase (RdRp) gene of SARS-CoV-2 known as RdRp-COVID which as the target for SARS-CoV-2 plays an essential role in the diagnosis of COVID-19. For the construction of the sensors, DNA tetrahedron (DT) is modified on the surface of the electrode to furnish robust and programmable scaffolds materials, upon which target DNA-participated entropy-driven amplified reaction is efficiently conducted to link the Ru (bpy)32+ modified S3 to the linear ssDNA at the vertex of the tetrahedron and eventually present an "ECL on" state. The rigid tetrahedral structure of the DT probe enhances the ECL intensity and avoids the cross-reactivity between single-stranded DNA, thus increasing the sensitivity of the assays. The enzyme-free entropy-driven reaction prevents the use of expensive enzyme reagents and facilitates the realization of large-scale screening of SARS-CoV-2 patients. Our DT-based ECL sensor has demonstrated significant specificity and high sensitivity for SARS-CoV-2 with a limit of detection (LOD) down to 2.67 fM. Additionally, our operational method has achieved the detection of RdRp-COVID in human serum samples, which supplies a reliable and feasible sensing platform for the clinical bioanalysis.
Collapse
Affiliation(s)
- Zhenqiang Fan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, 214063, China
| | - Bo Yao
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, 214063, China; Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, PR China
| | - Yuedi Ding
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, 214063, China
| | - Jing Zhao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Minhao Xie
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, 214063, China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| | - Kai Zhang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, 214063, China.
| |
Collapse
|
30
|
Zhang C, Zheng T, Wang H, Chen W, Huang X, Liang J, Qiu L, Han D, Tan W. Rapid One-Pot Detection of SARS-CoV-2 Based on a Lateral Flow Assay in Clinical Samples. Anal Chem 2021; 93:3325-3330. [PMID: 33570399 PMCID: PMC7885334 DOI: 10.1021/acs.analchem.0c05059] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/05/2021] [Indexed: 01/01/2023]
Abstract
Rapid tests for pathogen identification and spread assessment are critical for infectious disease control and prevention. The control of viral outbreaks requires a nucleic acid diagnostic test that is sensitive and simple and delivers fast and reliable results. Here, we report a one-pot direct reverse transcript loop-mediated isothermal amplification (RT-LAMP) assay of SARS-CoV-2 based on a lateral flow assay in clinical samples. The entire contiguous sample-to-answer workflow takes less than 40 min from a clinical swab sample to a diagnostic result without professional instruments and technicians. The assay achieved an accuracy of 100% in 12 synthetic and 12 clinical samples compared to the data from PCR-based assays. We anticipate that our method will provide a universal platform for rapid and point-of-care detection of emerging infectious diseases.
Collapse
Affiliation(s)
- Chao Zhang
- Institute
of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid
Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and
Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Tingting Zheng
- Institute
of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid
Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and
Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Hua Wang
- Department
of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wei Chen
- Clinical
Laboratory, Central Hospital of Loudi, Loudi, Hunan 417099, China
| | - Xiaoye Huang
- Clinical
Laboratory, Central Hospital of Loudi, Loudi, Hunan 417099, China
| | - Jianqi Liang
- Clinical
Laboratory, Central Hospital of Loudi, Loudi, Hunan 417099, China
| | - Liping Qiu
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Bio- Sensing and Chemometrics, College of Chemistry and Chemical
Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Da Han
- Institute
of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid
Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and
Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Weihong Tan
- Institute
of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid
Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and
Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Bio- Sensing and Chemometrics, College of Chemistry and Chemical
Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Institute
of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy
of Sciences, Hangzhou, Zhejiang 310018, China
| |
Collapse
|
31
|
Wang Y, Zhang Z, Sepich‐Poore C, Zhang L, Xiao Y, He C. LEAD‐m
6
A‐seq for Locus‐Specific Detection of
N
6
‐Methyladenosine and Quantification of Differential Methylation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202007266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yuru Wang
- Department of Biochemistry and Molecular Biology University of Chicago Chicago IL 60637 USA
- Department of Chemistry University of Chicago Chicago IL 60637 USA
| | - Zijie Zhang
- Department of Biochemistry and Molecular Biology University of Chicago Chicago IL 60637 USA
- Department of Chemistry University of Chicago Chicago IL 60637 USA
- Institute for Biophysical Dynamics University of Chicago Chicago IL 60637 USA
- Howard Hughes Medical Institute University of Chicago Chicago IL 60637 USA
| | - Caraline Sepich‐Poore
- Department of Biochemistry and Molecular Biology University of Chicago Chicago IL 60637 USA
- Department of Chemistry University of Chicago Chicago IL 60637 USA
- Institute for Biophysical Dynamics University of Chicago Chicago IL 60637 USA
- University of Chicago Medical Scientist Training Program Chicago IL 60637 USA
| | - Lisheng Zhang
- Department of Chemistry University of Chicago Chicago IL 60637 USA
- Howard Hughes Medical Institute University of Chicago Chicago IL 60637 USA
| | - Yu Xiao
- Department of Chemistry University of Chicago Chicago IL 60637 USA
| | - Chuan He
- Department of Biochemistry and Molecular Biology University of Chicago Chicago IL 60637 USA
- Department of Chemistry University of Chicago Chicago IL 60637 USA
- Institute for Biophysical Dynamics University of Chicago Chicago IL 60637 USA
- Howard Hughes Medical Institute University of Chicago Chicago IL 60637 USA
| |
Collapse
|
32
|
Wang Y, Zhang Z, Sepich-Poore C, Zhang L, Xiao Y, He C. LEAD-m 6 A-seq for Locus-Specific Detection of N 6 -Methyladenosine and Quantification of Differential Methylation. Angew Chem Int Ed Engl 2021; 60:873-880. [PMID: 32970916 PMCID: PMC7902341 DOI: 10.1002/anie.202007266] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/04/2020] [Indexed: 12/21/2022]
Abstract
N6 -methyladenosine (m6 A) is a crucial RNA chemical mark which plays important roles in various biological processes. The development of highly multiplexed, cost-effective, and easy-to-operate methodologies for locus-specific analysis of m6 A is critical for advancing our understanding of the roles of this modification. Herein, we report a method which builds upon the principle of the previously reported SELECT approach by significantly improving its efficiency and coupling it to next generation sequencing technology for high-throughput validation and detection of m6 A modification at selected sites (LEAD-m6 A-seq). Through probing cDNA extension mediated by Bst DNA polymerase at and near target cellular sites by sequencing, we evaluated m6 A modification at these sites, and estimated differential methylation levels (0-84 %) upon in vitro demethylation by the m6 A demethylase FTO with high reproducibility. We envision that this strategy can be readily used for testing a greater number of sites with a broad dynamic range and modified to study other RNA modifications.
Collapse
Affiliation(s)
- Yuru Wang
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Zijie Zhang
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, University of Chicago, Chicago, IL 60637, USA
| | - Caraline Sepich-Poore
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
- University of Chicago Medical Scientist Training Program, Chicago, IL 60637, USA
| | - Lisheng Zhang
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, University of Chicago, Chicago, IL 60637, USA
| | - Yu Xiao
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Chuan He
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
33
|
Hou J, Li Y, Ma C, Shi C. Accelerated denaturation bubble-mediated strand exchange amplification for rapid and accurate detection of canine parvovirus. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:5514-5522. [PMID: 33164005 DOI: 10.1039/d0ay01751e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Canine parvovirus (CPV), a strong infectious canine pathogen, has been recognized as a threat to canine health worldwide since the 1970s. Although convenient detection methods have been developed, such as the colloidal gold test strip, most of these methods are based on antibody detection, which is relatively ineffective for detecting pathogens during the incubation period. For institutions and businesses with many dogs, e.g., dog training centers and kennels, more sensitive detection methods are required to prevent the swift spread of CPV. Thus, we developed accelerated denaturation bubble-mediated strand exchange amplification (ASEA) for CPV detection, and it is a rapid, convenient, and cost-effective method. ASEA was able to distinguish CPV genomic DNA in a mixture that included canine genomic DNA as well as nucleic acids sourced from nine other common pathogens, with detection of target DNA as low as 8.0 × 10-18 M within 16.6 min. Coupled with the thermal lysis method modified by us that only requires 3 min to perform, the entire detection procedure can be completed within approximately 20 min and only requires a simple heating block and an ordinary fluorescence PCR instrument. Moreover, ASEA exhibited greater sensitivity than colloidal gold test strips in actual specimen detection. This technique is rapid, easy to perform, and highly sensitive, and therefore, this approach has the potential to rapidly detect CPV in institutions with large populations of dogs.
Collapse
Affiliation(s)
- Jie Hou
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, PR China.
| | | | | | | |
Collapse
|
34
|
Bhadra S, Maranhao AC, Paik I, Ellington AD. One-Enzyme Reverse Transcription qPCR Using Taq DNA Polymerase. Biochemistry 2020; 59:4638-4645. [PMID: 33275410 DOI: 10.1021/acs.biochem.0c00778] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Taq DNA polymerase, one of the first thermostable DNA polymerases to be discovered, has been typecast as a DNA-dependent DNA polymerase commonly employed for PCR. However, Taq polymerase belongs to the same DNA polymerase superfamily as the Molony murine leukemia virus reverse transcriptase and has in the past been shown to possess reverse transcriptase activity. We report optimized buffer and salt compositions that promote the reverse transcriptase activity of Taq DNA polymerase and thereby allow it to be used as the sole enzyme in TaqMan RT-qPCRs. We demonstrate the utility of Taq-alone RT-qPCRs by executing CDC SARS-CoV-2 N1, N2, and N3 TaqMan RT-qPCR assays that could detect as few as 2 copies/μL of input viral genomic RNA.
Collapse
Affiliation(s)
- Sanchita Bhadra
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Andre C Maranhao
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Inyup Paik
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Andrew D Ellington
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
35
|
Wang K, Wang XY, Gao GJ, Ren XW, Cai XY, Yu QK, Xing S, Zhu B. Multistimuli responsive RNA amphiphilic polymeric assembly constructed by calixpyridinium-based supramolecular interactions. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
36
|
Liu M, Li M, Ma C, Shi C. Detection of canine parvovirus and feline panleukopenia virus in fecal samples by strand exchange amplification. J Vet Diagn Invest 2020; 32:880-886. [PMID: 32996420 DOI: 10.1177/1040638720962067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Canine parvovirus 2 (CPV-2) and feline panleukopenia virus (FPLV) often cause acute enteric disease in their hosts. A simple, rapid, and effective method for the on-site detection of these viruses would be useful. We used a denaturation bubble-mediated strand exchange amplification (SEA) method to successfully detect CPV-2 and FPLV in fecal samples. SEA could detect as little as 3.6 pg/μL of CPV-2 and 6.6 pg/μL of FPLV genomic DNA following a 40-min incubation at an isothermal temperature of 61°C. Unlike PCR, SEA does not require complicated equipment, and positive samples produce a color change that can be visualized by the naked eye. Additionally, SEA is simpler than PCR because no extraction is needed, and heating of the fecal sample at 98°C can be performed with a heating block or water bath. This rapid and effective nucleic acid detection platform could be used as a point-of-care test for the detection of CPV-2 and FPLV.
Collapse
Affiliation(s)
- Mengmeng Liu
- Department of Pathogenic Biology, School of Basic Medicine, College of Life Sciences, Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, the Clinical Laboratory Department of the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, P.R. China
| | - Mengzhe Li
- Department of Pathogenic Biology, School of Basic Medicine, College of Life Sciences, Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, the Clinical Laboratory Department of the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, P.R. China
| | - Cuiping Ma
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, P.R. China
| | - Chao Shi
- Department of Pathogenic Biology, School of Basic Medicine, College of Life Sciences, Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, the Clinical Laboratory Department of the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, P.R. China
| |
Collapse
|
37
|
Wang Z, Hu Y, Pan L. Fuzzy DNA Strand Displacement: A Strategy to Decrease the Complexity of DNA Network Design. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhiyu Wang
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China School of Artificial Intelligence and Automation Huazhong University of Science and Technology 1037 Luoyu Road Wuhan 430074 China
| | - Yingxin Hu
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China School of Artificial Intelligence and Automation Huazhong University of Science and Technology 1037 Luoyu Road Wuhan 430074 China
- College of Information Science and Technology Shijiazhuang Tiedao University Shijiazhuang 050043 China
| | - Linqiang Pan
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China School of Artificial Intelligence and Automation Huazhong University of Science and Technology 1037 Luoyu Road Wuhan 430074 China
| |
Collapse
|
38
|
Wang Z, Hu Y, Pan L. Fuzzy DNA Strand Displacement: A Strategy to Decrease the Complexity of DNA Network Design. Angew Chem Int Ed Engl 2020; 59:14979-14985. [PMID: 32396703 DOI: 10.1002/anie.202005193] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/10/2020] [Indexed: 12/22/2022]
Abstract
Toehold-mediated DNA strand displacement endows DNA nanostructures with dynamic response capability. However, the complexity of sequence design dramatically increases as the size of the DNA network increases. We attribute this problem to the mechanism of toehold-mediated strand displacement, termed exact strand displacement (ESD), in which one input strand corresponds to one specific substrate. In this work, we propose an alternative to toehold-mediated DNA strand displacement, termed fuzzy strand displacement (FSD), in which one-to-many and many-to-one relationships are established between the input strand and the substrate, to reduce the complexity. We have constructed four modules, termed converter, reporter, fuzzy detector, and fuzzy trigger, and demonstrated that a sequence pattern recognition network composed of these modules requires less complex sequence design than an equivalent network based on toehold-mediated DNA strand displacement.
Collapse
Affiliation(s)
- Zhiyu Wang
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Yingxin Hu
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China.,College of Information Science and Technology, Shijiazhuang Tiedao University, Shijiazhuang, 050043, China
| | - Linqiang Pan
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| |
Collapse
|
39
|
Thompson AS, Barrett SE, Weiden AG, Venkatesh A, Seto MKC, Gottlieb SZP, Leconte AM. Accurate and Efficient One-Pot Reverse Transcription and Amplification of 2'-Fluoro-Modified Nucleic Acids by Commercial DNA Polymerases. Biochemistry 2020; 59:2833-2841. [PMID: 32659079 DOI: 10.1021/acs.biochem.0c00494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
DNA is a foundational tool in biotechnology and synthetic biology but is limited by sensitivity to DNA-modifying enzymes. Recently, researchers have identified DNA polymerases that can enzymatically synthesize long oligonucleotides of modified DNA (M-DNA) that are resistant to DNA-modifying enzymes. Most applications require M-DNA to be reverse transcribed, typically using a RNA reverse transcriptase, back into natural DNA for sequence analysis or further manipulation. Here, we tested commercially available DNA-dependent DNA polymerases for their ability to reverse transcribe and amplify M-DNA in a one-pot reaction. Three of the six polymerases chosen (Phusion, Q5, and Deep Vent) could reverse transcribe and amplify synthetic 2'F M-DNA in a single reaction with <5 × 10-3 error per base pair. We further used Q5 DNA polymerase to reverse transcribe and amplify M-DNA synthesized by two candidate M-DNA polymerases (SFP1 and SFM4-6), allowing for quantification of the frequency, types, and locations of errors made during M-DNA synthesis. From these studies, we identify SFP1 as one of the most accurate M-DNA polymerases identified to date. Collectively, these studies establish a simple, robust method for the conversion of 2'F M-DNA to DNA in <1 h using commercially available materials, significantly improving the ease of use of M-DNA.
Collapse
Affiliation(s)
- Arianna S Thompson
- W. M. Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California 91711, United States
| | - Susanna E Barrett
- W. M. Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California 91711, United States
| | - Aurora G Weiden
- W. M. Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California 91711, United States
| | - Ananya Venkatesh
- W. M. Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California 91711, United States
| | - Madison K C Seto
- W. M. Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California 91711, United States
| | - Simone Z P Gottlieb
- W. M. Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California 91711, United States
| | - Aaron M Leconte
- W. M. Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California 91711, United States
| |
Collapse
|
40
|
Abstract
DNA polymerases play a central role in biology by transferring genetic information from one generation to the next during cell division. Harnessing the power of these enzymes in the laboratory has fueled an increase in biomedical applications that involve the synthesis, amplification, and sequencing of DNA. However, the high substrate specificity exhibited by most naturally occurring DNA polymerases often precludes their use in practical applications that require modified substrates. Moving beyond natural genetic polymers requires sophisticated enzyme-engineering technologies that can be used to direct the evolution of engineered polymerases that function with tailor-made activities. Such efforts are expected to uniquely drive emerging applications in synthetic biology by enabling the synthesis, replication, and evolution of synthetic genetic polymers with new physicochemical properties.
Collapse
|
41
|
Li M, Liu M, Ma C, Shi C. Rapid DNA detection and one-step RNA detection catalyzed by Bst DNA polymerase and narrow-thermal-cycling. Analyst 2020; 145:5118-5122. [PMID: 32648859 DOI: 10.1039/d0an00975j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We reported a novel detection method named accelerated strand exchange amplification by employing Bst DNA polymerase and narrow-thermal-cycling for the first time, achieving direct detection of 120 copies of DNA within 15 min and 1.2 × 105 copies of RNA within 20 min and sparking the revolution of the use of routine isothermal polymerases for diverse applications.
Collapse
Affiliation(s)
- Mengzhe Li
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, and Department of Clinical Laboratory, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, PR China.
| | | | | | | |
Collapse
|
42
|
Seok Y, Batule BS, Kim MG. Lab-on-paper for all-in-one molecular diagnostics (LAMDA) of zika, dengue, and chikungunya virus from human serum. Biosens Bioelectron 2020; 165:112400. [PMID: 32729520 DOI: 10.1016/j.bios.2020.112400] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/13/2020] [Accepted: 06/17/2020] [Indexed: 01/23/2023]
Abstract
Several tropical fever viruses transmitted by mosquitoes including zika, dengue, and chikungunya, are becoming a serious problem in global public health. Simple diagnostic tools in early stages are strongly required to monitor and prevent these diseases. Paper diagnostic platforms can provide a solution for these needs, with integration of fluidic control techniques and isothermal amplification methods. Here, we demonstrate a Lab-on-paper for all-in-one molecular diagnostics of zika, dengue, and chikungunya virus from human serum. The entire process of nucleic acid testing that involves sampling, extraction, amplification, and detection is simply operated on a single paper chip. Based on the engineered structure of paper materials and dried chemicals on the all-in-one chip, serum samples containing the target virus RNA were simply added by automatic flow from distilled water injection. Target RNA molecules were concentrated on the binding pad with chitosan and then transported to reaction pads following a pH increase for specific reverse transcription loop-mediated isothermal amplification with fluorescence signal generation. Three targets, zika virus, dengue virus, and chikungunya virus, in human serum were simultaneously detected on the all-in-one paper chip within 60 min at 65 °C. The all-in-one paper chip can be used as a real-time quantitative assay for 5-5000 copies of zika virus RNA. This all-in-one device was successfully used with 5 clinical specimens of zika and dengue virus from real patients. We believe that the proposed all-in-one paper chip can provide a portable, low-cost, user-friendly, sensitive, and specific NAT platform with great potential in point-of-care diagnostics.
Collapse
Affiliation(s)
- Youngung Seok
- Department of Mechanical Engineering and Applied Mechanics, School of Engineering and Applied Science, University of Pennsylvania, 233 Towne Building, 220 S. 33rd Street, Philadelphia, PA, 19104, USA
| | - Bhagwan S Batule
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagiro, Gwangju, 500-712, Republic of Korea; Boditech Med Inc., 43, Geodudanji 1-gil, Dongnae-myeon, Chuncheon-si, Gangwon-do, 24398, Republic of Korea
| | - Min-Gon Kim
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagiro, Gwangju, 500-712, Republic of Korea.
| |
Collapse
|
43
|
Li M, Ge A, Liu M, Ma B, Ma C, Shi C. A fully integrated hand-powered centrifugal microfluidic platform for ultra-simple and non-instrumental nucleic acid detection. Talanta 2020; 219:121221. [PMID: 32887122 DOI: 10.1016/j.talanta.2020.121221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/22/2020] [Accepted: 05/24/2020] [Indexed: 12/18/2022]
Abstract
Hand-powered centrifugal microfluidics combined with isothermal nucleic acid amplification testing (NAAT) have been one of the most promising rapid detection platforms in resource-limited settings. However, current hand-powered centrifuges still suffer from customized instrument-based operation and low rotation rate; and most isothermal NAAT were conducted with complicated reaction systems for DNA detection and required an additional step for RNA detection. Herein, we built a fully hand-powered centrifugal miniaturized NAAT platform inspired by buzzer toys, which embedded sample preparation, strand exchange amplification (SEA) and visual fluorescence detection together. The centrifugal disc was easily fabricated, and operated the mixing in 1 min by simply dragging the looped rope through it with a mean input force of 16.5 N, enabling its rotation rate reach 5000 rpm. In addition, SEA was an ultra-simple one-step DNA or RNA detection method initiated by Bst DNA polymerase and a pair of primers, and thus we took all its merits and integrate it into microfluidic systems firstly. Furthermore, taking Vibrio parahemolyticus as an example, the microfluidic platform achieved DNA or RNA detection within 1 h; and the detection limit of the microchip for artificially spiked oysters was 103 CFU/g without cumbersome sample preparation, and reached to 100 CFU/g after enrichment. Therefore, we provided an ultra-simple and non-instrumental microfluidic platform powered merely by hands, performing general potential in sample-to-answer NAAT for versatile pathogens in remote regions.
Collapse
Affiliation(s)
- Mengzhe Li
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, PR China
| | - Anle Ge
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, PR China
| | - Mengmeng Liu
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, PR China
| | - Bo Ma
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, PR China
| | - Cuiping Ma
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Chao Shi
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, PR China.
| |
Collapse
|
44
|
Cao X, Yu H, Xue J, Bai M, Zhao Y, Li Y, Zhao Y, Chen F. RNA-Primed Amplification for Noise-Suppressed Visualization of Single-Cell Splice Variants. Anal Chem 2020; 92:9356-9361. [PMID: 32456418 DOI: 10.1021/acs.analchem.0c01734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Splice variants visualization is pivotal for a deeper understanding of cell growth and development. However, it remains technically challenging due to short lengths, similar sequences, and low abundance. The existing single-cell imaging strategies suffer from nonspecific amplification that causes considerable noise during visualization of the splice variants. Herein we develop a new RNA-primed amplification strategy for noise-suppressed visualization of single-cell splice variants. Block probes were designed to specifically identify the conjugated region of exons in mRNA, which was then digested by endonuclease and provided a hydroxyl group at the 3' terminal. The RNA target can act as primer to trigger rolling circle amplification, achieving visualization of splice variants with noise suppressed to nearly zero. We further explored the expression and distribution of BRCA1 splice variants in three breast cell lines, revealing cell-type specific mapping of this cancer suppressor gene.
Collapse
Affiliation(s)
- Xiaowen Cao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Huahang Yu
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Jing Xue
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Min Bai
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Yue Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Youjun Li
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Yongxi Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Feng Chen
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| |
Collapse
|
45
|
Jackson LN, Chim N, Shi C, Chaput JC. Crystal structures of a natural DNA polymerase that functions as an XNA reverse transcriptase. Nucleic Acids Res 2020; 47:6973-6983. [PMID: 31170294 PMCID: PMC6649750 DOI: 10.1093/nar/gkz513] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/24/2019] [Accepted: 06/03/2019] [Indexed: 01/05/2023] Open
Abstract
Replicative DNA polymerases are highly efficient enzymes that maintain stringent geometric control over shape and orientation of the template and incoming nucleoside triphosphate. In a surprising twist to this paradigm, a naturally occurring bacterial DNA polymerase I member isolated from Geobacillus stearothermophilus (Bst) exhibits an innate ability to reverse transcribe RNA and other synthetic congeners (XNAs) into DNA. This observation raises the interesting question of how a replicative DNA polymerase is able to recognize templates of diverse chemical composition. Here, we present crystal structures of natural Bst DNA polymerase that capture the post-translocated product of DNA synthesis on templates composed entirely of 2′-deoxy-2′-fluoro-β-d-arabino nucleic acid (FANA) and α-l-threofuranosyl nucleic acid (TNA). Analysis of the enzyme active site reveals the importance of structural plasticity as a possible mechanism for XNA-dependent DNA synthesis and provides insights into the construction of variants with improved activity.
Collapse
Affiliation(s)
- Lynnette N Jackson
- Departments of Pharmaceutical Sciences, University of California, Irvine, CA 92697-3958, USA
| | - Nicholas Chim
- Departments of Pharmaceutical Sciences, University of California, Irvine, CA 92697-3958, USA
| | - Changhua Shi
- Departments of Pharmaceutical Sciences, University of California, Irvine, CA 92697-3958, USA
| | - John C Chaput
- Departments of Pharmaceutical Sciences, University of California, Irvine, CA 92697-3958, USA.,Department of Chemistry, University of California, Irvine, CA 92697-3958, USA.,Department of Molecular Biology and Biochemistry, University of California, CA 92697-3958, USA
| |
Collapse
|
46
|
Yang B, Fan Y, Li Y, Yan J, Fang X, Kong J. Rapid and simultaneous analysis of twelve virulence factor genes by a microfluidic-CFPA chip for identifying diarrheagenic Escherichia coli. Analyst 2020; 145:3814-3821. [DOI: 10.1039/c9an02572c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An integrated microfluidic system based on circular fluorescent probe-mediated isothermal nucleic acid amplification for identification of five diarrheagenic Escherichia coli strains has been developed.
Collapse
Affiliation(s)
- Bin Yang
- Department of Chemistry and Institutes of Biomedical Sciences
- Fudan University
- Shanghai
- PR China
| | - Yiling Fan
- Shanghai Institute for Food and Drug Control
- Shanghai 201203
- PR China
| | - Yang Li
- Shanghai Suxin Biotechnology Co. Ltd
- Shanghai
- PR China
| | - Jun Yan
- Shanghai Suxin Biotechnology Co. Ltd
- Shanghai
- PR China
| | - Xueen Fang
- Department of Chemistry and Institutes of Biomedical Sciences
- Fudan University
- Shanghai
- PR China
| | - Jilie Kong
- Department of Chemistry and Institutes of Biomedical Sciences
- Fudan University
- Shanghai
- PR China
| |
Collapse
|
47
|
Li T, Duan R, Duan Z, Huang F, Xia F. Fluorescence Signal Amplification Strategies Based on DNA Nanotechnology for miRNA Detection. Chem Res Chin Univ 2019. [DOI: 10.1007/s40242-019-0031-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
48
|
Potapov V, Fu X, Dai N, Corrêa IR, Tanner NA, Ong JL. Base modifications affecting RNA polymerase and reverse transcriptase fidelity. Nucleic Acids Res 2019; 46:5753-5763. [PMID: 29750267 PMCID: PMC6009661 DOI: 10.1093/nar/gky341] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 04/18/2018] [Indexed: 01/28/2023] Open
Abstract
Ribonucleic acid (RNA) is capable of hosting a variety of chemically diverse modifications, in both naturally-occurring post-transcriptional modifications and artificial chemical modifications used to expand the functionality of RNA. However, few studies have addressed how base modifications affect RNA polymerase and reverse transcriptase activity and fidelity. Here, we describe the fidelity of RNA synthesis and reverse transcription of modified ribonucleotides using an assay based on Pacific Biosciences Single Molecule Real-Time sequencing. Several modified bases, including methylated (m6A, m5C and m5U), hydroxymethylated (hm5U) and isomeric bases (pseudouridine), were examined. By comparing each modified base to the equivalent unmodified RNA base, we can determine how the modification affected cumulative RNA polymerase and reverse transcriptase fidelity. 5-hydroxymethyluridine and N6-methyladenosine both increased the combined error rate of T7 RNA polymerase and reverse transcriptases, while pseudouridine specifically increased the error rate of RNA synthesis by T7 RNA polymerase. In addition, we examined the frequency, mutational spectrum and sequence context of reverse transcription errors on DNA templates from an analysis of second strand DNA synthesis.
Collapse
Affiliation(s)
| | - Xiaoqing Fu
- New England Biolabs, Inc, Ipswich, Massachusetts, 01938, USA
- Dalian University of Technology, School of Life Science and Biotechnology, Dalian, Liaoning 116021, China
| | - Nan Dai
- New England Biolabs, Inc, Ipswich, Massachusetts, 01938, USA
| | - Ivan R Corrêa
- New England Biolabs, Inc, Ipswich, Massachusetts, 01938, USA
| | - Nathan A Tanner
- New England Biolabs, Inc, Ipswich, Massachusetts, 01938, USA
| | - Jennifer L Ong
- New England Biolabs, Inc, Ipswich, Massachusetts, 01938, USA
- To whom correspondence should be addressed. Tel: +1 978 380 7448; Fax: +1 978 921 1350;
| |
Collapse
|
49
|
Krzywkowski T, Kühnemund M, Wu D, Nilsson M. Limited reverse transcriptase activity of phi29 DNA polymerase. Nucleic Acids Res 2019; 46:3625-3632. [PMID: 29554297 PMCID: PMC5909454 DOI: 10.1093/nar/gky190] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 03/13/2018] [Indexed: 01/28/2023] Open
Abstract
Phi29 (Φ29) DNA polymerase is an enzyme commonly used in DNA amplification methods such as rolling circle amplification (RCA) and multiple strand displacement amplification (MDA), as well as in DNA sequencing methods such as single molecule real time (SMRT) sequencing. Here, we report the ability of phi29 DNA polymerase to amplify RNA-containing circular substrates during RCA. We found that circular substrates with single RNA substitutions are amplified at a similar amplification rate as non-chimeric DNA substrates, and that consecutive RNA pyrimidines were generally preferred over purines. We observed RCA suppression with higher number of ribonucleotide substitutions, which was partially restored by interspacing RNA bases with DNA. We show that supplementing manganese ions as cofactor supports replication of RNAs during RCA. Sequencing of the RCA products demonstrated accurate base incorporation at the RNA base with both Mn2+ and Mg2+ as cofactors during replication, proving reverse transcriptase activity of the phi29 DNA polymerase. In summary, the ability of phi29 DNA polymerase to accept RNA-containing substrates broadens the spectrum of applications for phi29 DNA polymerase-mediated RCA. These include amplification of chimeric circular probes, such as padlock probes and molecular inversion probes.
Collapse
Affiliation(s)
- Tomasz Krzywkowski
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, SE-171 65, Sweden
| | - Malte Kühnemund
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, SE-171 65, Sweden
| | - Di Wu
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, SE-171 65, Sweden
| | - Mats Nilsson
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, SE-171 65, Sweden
| |
Collapse
|
50
|
Ye X, Fang X, Li Y, Wang L, Li X, Kong J. Sequence-Specific Probe-Mediated Isothermal Amplification for the Single-Copy Sensitive Detection of Nucleic Acid. Anal Chem 2019; 91:6738-6745. [PMID: 31046251 DOI: 10.1021/acs.analchem.9b00812] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
There is currently the lack of a method for precisely monitoring the progress of isothermal amplification reactions by means of sequence-specific fluorescent probes like the TaqMan probe used in the PCR system. Here, we created a circular fluorescent probe-mediated isothermal amplification (CFPA) method. This novel method uses two circular fluorescent probes and Bst DNA polymerase to construct an overlapping structure that can be cut off by flap structure-specific endonuclease 1, separating the fluorescence and quenching groups on the probes. The results showed single-copy sensitivity, ultrahigh specificity, stability (C.V. < 0.1), and anti-interference ability in detecting nucleic acid samples. A clinical trial demonstrated the perfect effectiveness of this method in the diagnosis of rotavirus infection and consistency with the gold standard method used in the clinic ( p > 0.05). In summary, we present a new, reliable, and precise isothermal amplification approach for applications in biomedical research and the clinical accurate diagnosis of pathogen infections.
Collapse
Affiliation(s)
- Xin Ye
- Department of Chemistry and Institutes of Biomedical Sciences , Fudan University , Shanghai 200433 , P. R. China
| | - Xueen Fang
- Department of Chemistry and Institutes of Biomedical Sciences , Fudan University , Shanghai 200433 , P. R. China
| | - Yang Li
- Shanghai Suchuang Diagnostic Products Co., Ltd, Shanghai 201318 , P. R. China.,Shanghai Suxin Biotechnology Co. Ltd, Shanghai 201318 , P. R. China
| | - Lijuan Wang
- Shanghai Suchuang Diagnostic Products Co., Ltd, Shanghai 201318 , P. R. China.,Shanghai Suxin Biotechnology Co. Ltd, Shanghai 201318 , P. R. China
| | - Xinxin Li
- Shanghai Suchuang Diagnostic Products Co., Ltd, Shanghai 201318 , P. R. China.,Shanghai Suxin Biotechnology Co. Ltd, Shanghai 201318 , P. R. China
| | - Jilie Kong
- Department of Chemistry and Institutes of Biomedical Sciences , Fudan University , Shanghai 200433 , P. R. China
| |
Collapse
|