1
|
Mollik P, Drees M, Frantz AM, Halter DP. Electrocatalytic Transfer Hydrogenation of 1-Octene with [( tBuPCP)Ir(H)(Cl)] and Water. Angew Chem Int Ed Engl 2024; 63:e202317844. [PMID: 38757787 DOI: 10.1002/anie.202317844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 05/18/2024]
Abstract
Electrocatalytic hydrogenation of 1-octene as non-activated model substrate with neutral water as H-donor is reported, using [(tBuPCP)Ir(H)(Cl)] (1) as the catalyst, to form octane with high faradaic efficiency (FE) of 96 % and a kobs of 87 s-1. Cyclic voltammetry with 1 revealed that two subsequent reductions trigger the elimination of Cl- and afford the highly reactive anionic Ir(I) hydride complex [(tBuPCP)Ir(H)]- (2), a previously merely proposed intermediate for which we now report first experimental data by mass spectrometry. In absence of alkene, the stoichiometric electrolysis of 1 in THF with water selectively affords the Ir(III) dihydride complex [(tBuPCP)Ir(H)2] (3) in 88 % FE from the reaction of 2 with H2O. Complex 3 then hydrogenates the alkene in classical fashion. The presented electro-hydrogenation works with extremely high FE, because the iridium hydrides are water stable, which prevents H2 formation. Even in strongly alkaline conditions (Bu4NOH added), the electro-hydrogenation of 1-octene with 1 also proceeds cleanly (89 % FE), suggesting a highly robust process that may rely on H2O activation, reminiscent to transfer hydrogenation pathways, instead of classical H+ reduction. DFT calculations confirmed oxidative addition of H2O as a key step in this context.
Collapse
Affiliation(s)
- Patrick Mollik
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Chair of Inorganic and Metal-Organic Chemistry, Lichtenbergstr. 4, 85748, Garching, Germany
| | - Markus Drees
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Chair of Inorganic and Metal-Organic Chemistry, Lichtenbergstr. 4, 85748, Garching, Germany
| | - Alexander M Frantz
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Chair of Inorganic and Metal-Organic Chemistry, Lichtenbergstr. 4, 85748, Garching, Germany
| | - Dominik P Halter
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Chair of Inorganic and Metal-Organic Chemistry, Lichtenbergstr. 4, 85748, Garching, Germany
| |
Collapse
|
2
|
Vinicius Alves T, Peris E, Fernández I. A Deeper Insight into the Supramolecular Activation of Oxidative Addition Reactions Involving Pincer-Rhodium(I) Complexes. Chemphyschem 2024; 25:e202400022. [PMID: 38269625 DOI: 10.1002/cphc.202400022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 01/26/2024]
Abstract
The factors governing the acceleration of the oxidative addition of methyl iodide to pincer rhodium(I)-complexes induced by coronene have been computationally explored in detail using quantum chemical methods. Both the parent reaction and the coronene-mediated process proceed via a stepwise SN2-type mechanism. It is found that the acceleration of the process derives from the formation of an initial supramolecular complex, mainly stabilized by electrostatic and π-π interactions, which significantly increases the electron richness of the complex. The impact of this effect on the reaction barrier has been quantitatively analyzed by applying the activation strain model in combination with the energy decomposition analysis method. In addition, the influence of other polycyclic aromatic hydrocarbons on the oxidative reaction has been also considered.
Collapse
Affiliation(s)
- Tiago Vinicius Alves
- Departamento de Química Orgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universidad, 28040-, Madrid, Spain
- Departamento de Físico-Química, Instituto de Química, Universidade Federal da Bahia, Av. Barão de Jeremoabo, 147, 40170-115-, Salvador, Bahia, Brazil
| | - Eduardo Peris
- Institute of Advanced Materials (INAM) and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Jaume I, Av. Vicente Sos Baynat s/n, 12071-, Castellón, Spain
| | - Israel Fernández
- Departamento de Química Orgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universidad, 28040-, Madrid, Spain
| |
Collapse
|
3
|
Martínez-Vivas S, Poyatos M, Peris E. Supramolecular Control of the Oxidative Addition as a Way To Improve the Catalytic Efficiency of Pincer-Rhodium (I) Complexes. Angew Chem Int Ed Engl 2023; 62:e202307198. [PMID: 37342877 DOI: 10.1002/anie.202307198] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 06/23/2023]
Abstract
1 H NMR studies using a cationic complex with a pyridine-di-imidazolylidene pincer ligand of formula [Rh(CNC)(CO)]+ revealed that this compound showed high binding affinity with coronene in CH2 Cl2 . The interaction between coronene and the planar RhI complex is established by means of π-stacking interactions. This interaction has a strong impact on the electron-donating strength of the pincer CNC ligand, which is increased significantly, as demonstrated by the shifting of the ν(CO) stretching bands to lower frequencies. The addition of coronene increases the reaction rate of the nucleophilic attack of methyl iodide on the rhodium (I) pincer complex, and also has a positive effect on the performance of the complex as a catalyst in the cycloisomerization of 4-pentynoic acid. These findings highlight the importance of supramolecular interactions for tuning the reactivity and catalytic activity of square-planar metal complexes.
Collapse
Affiliation(s)
- Sebastián Martínez-Vivas
- Institute of Advanced Materials (INAM)., Universitat Jaume I, Av. Vicente Sos Baynat s/n., 12071, Castellón, Spain
| | - Macarena Poyatos
- Institute of Advanced Materials (INAM)., Universitat Jaume I, Av. Vicente Sos Baynat s/n., 12071, Castellón, Spain
| | - Eduardo Peris
- Institute of Advanced Materials (INAM)., Universitat Jaume I, Av. Vicente Sos Baynat s/n., 12071, Castellón, Spain
| |
Collapse
|
4
|
Ma S, Hartwig JF. Progression of Hydroamination Catalyzed by Late Transition-Metal Complexes from Activated to Unactivated Alkenes. Acc Chem Res 2023; 56:1565-1577. [PMID: 37272995 DOI: 10.1021/acs.accounts.3c00141] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
ConspectusCatalytic intermolecular hydroamination of alkenes is an atom- and step-economical method for the synthesis of amines, which have important applications as pharmaceuticals, agrochemicals, catalysts, and materials. However, hydroaminations of alkenes in high yield with high selectivity are challenging to achieve because these reactions often lack a thermodynamic driving force and often are accompanied by side reactions, such as alkene isomerization, telomerization, and oxidative amination. Consequently, early examples of hydroamination were generally limited to the additions of N-H bonds to conjugated alkenes or strained alkenes, and the catalytic hydroamination of unactivated alkenes with late transition metals has only been disclosed recently. Many classes of catalysts, including early transition metals, late transition metals, rare-earth metals, acids, and photocatalysts, have been reported for catalytic hydroamination. Among them, late transition-metal complexes possess several advantages, including their relative ease of handling and their high compatibility of substrates containing polar or sensitive functional groups.This Account describes the progression in our laboratory of hydroaminations catalyzed by late transition-metal complexes from the initial additions of N-H bonds to activated alkenes to the more recent additions to unactivated alkenes. Our developments include the Markovnikov and anti-Markovnikov hydroamination of vinylarenes with palladium, rhodium, and ruthenium, the hydroamination of dienes and trienes with nickel and palladium, the hydroanimation of bicyclic strained alkenes with neutral iridium, and the hydroamination of unactivated terminal and internal alkenes with cationic iridium and ruthenium. Enantioselective hydroaminations of these classes of alkenes to form enantioenriched, chiral amines also have been developed.Mechanistic studies have elucidated the elementary steps and the turnover-limiting steps of these catalytic reactions. The hydroamination of conjugated alkenes catalyzed by palladium, rhodium, nickel, and ruthenium occurs by turnover-limiting nucleophilic attack of the amine on a coordinated benzyl, allyl, alkene, or arene ligand. On the other hand, the hydroamination of unconjugated alkenes catalyzed by ruthenium and iridium occurs by turnover-limiting migratory insertion of the alkene into a metal-nitrogen bond. In addition, pathways for the formation of side products, including isomeric alkenes and enamines, have been identified during our studies. During studies on enantioselective hydroamination, the reversibility of the hydroamination has been shown to erode the enantiopurity of the products. Based on our mechanistic understandings, new generations of catalysts that promote catalytic hydroaminations with higher rates, chemoselectivity, and enantioselectivity have been developed. We hope that our discoveries and mechanistic insights will facilitate the further development of catalysts that promote selective, practical, and efficient hydroamination of alkenes.
Collapse
Affiliation(s)
- Senjie Ma
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - John F Hartwig
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
5
|
Yan M, Kang X, Li S, Xu X, Luo Y, He S, Chen C. Mechanistic Studies on Nickel-Catalyzed Ethylene Polymerization: Ligand Effects and Quantitative Structure–Activity Relationship Model. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Meixue Yan
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiaohui Kang
- College of Pharmacy, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Shuang Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiaowei Xu
- PetroChina Petrochemical Research Institute, Beijing 102206, China
| | - Yi Luo
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- PetroChina Petrochemical Research Institute, Beijing 102206, China
| | - Shengbao He
- PetroChina Petrochemical Research Institute, Beijing 102206, China
| | - Changle Chen
- Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
6
|
Occhipinti G, Nascimento DL, Foscato M, Fogg DE, Jensen VR. The Janus face of high trans-effect carbenes in olefin metathesis: gateway to both productivity and decomposition. Chem Sci 2022; 13:5107-5117. [PMID: 35655574 PMCID: PMC9093171 DOI: 10.1039/d2sc00855f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/19/2022] [Indexed: 11/25/2022] Open
Abstract
Ruthenium–cyclic(alkyl)(amino)carbene (CAAC) catalysts, used at ppm levels, can enable dramatically higher productivities in olefin metathesis than their N-heterocyclic carbene (NHC) predecessors. A key reason is the reduced susceptibility of the metallacyclobutane (MCB) intermediate to decomposition via β-H elimination. The factors responsible for promoting or inhibiting β-H elimination are explored via density functional theory (DFT) calculations, in metathesis of ethylene or styrene (a representative 1-olefin) by Ru–CAAC and Ru–NHC catalysts. Natural bond orbital analysis of the frontier orbitals confirms the greater strength of the orbital interactions for the CAAC species, and the consequent increase in the carbene trans influence and trans effect. The higher trans effect of the CAAC ligands inhibits β-H elimination by destabilizing the transition state (TS) for decomposition, in which an agostic MCB Cβ–H bond is positioned trans to the carbene. Unproductive cycling with ethylene is also curbed, because ethylene is trans to the carbene ligand in the square pyramidal TS for ethylene metathesis. In contrast, metathesis of styrene proceeds via a ‘late’ TS with approximately trigonal bipyramidal geometry, in which carbene trans effects are reduced. Importantly, however, the positive impact of a strong trans-effect ligand in limiting β-H elimination is offset by its potent accelerating effect on bimolecular coupling, a major competing means of catalyst decomposition. These two decomposition pathways, known for decades to limit productivity in olefin metathesis, are revealed as distinct, antinomic, responses to a single underlying phenomenon. Reconciling these opposing effects emerges as a clear priority for design of robust, high-performing catalysts. In ruthenium catalysts for olefin metathesis, carbene ligands of high trans influence/effect suppress decomposition via β-H elimination, but increase susceptibility to bimolecular decomposition.![]()
Collapse
Affiliation(s)
- Giovanni Occhipinti
- Department of Chemistry, University of Bergen Allégaten 41 N-5007 Bergen Norway
| | - Daniel L Nascimento
- Center for Catalysis Research & Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa Ottawa Canada K1N 6N5
| | - Marco Foscato
- Department of Chemistry, University of Bergen Allégaten 41 N-5007 Bergen Norway
| | - Deryn E Fogg
- Department of Chemistry, University of Bergen Allégaten 41 N-5007 Bergen Norway .,Center for Catalysis Research & Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa Ottawa Canada K1N 6N5
| | - Vidar R Jensen
- Department of Chemistry, University of Bergen Allégaten 41 N-5007 Bergen Norway
| |
Collapse
|
7
|
Kuriyama S, Wei S, Tanaka H, Konomi A, Yoshizawa K, Nishibayashi Y. Synthesis and Reactivity of Cobalt-Dinitrogen Complexes Bearing Anionic PCP-Type Pincer Ligands toward Catalytic Silylamine Formation from Dinitrogen. Inorg Chem 2022; 61:5190-5195. [PMID: 35313105 DOI: 10.1021/acs.inorgchem.2c00234] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of cobalt(I)-dinitrogen complexes bearing anionic 4-substituted benzene-based PCP-type pincer ligands are synthesized and characterized. These complexes work as highly efficient catalysts for the formation of silylamine from dinitrogen under ambient reaction conditions to produce up to 371 equiv of silylamine based on the cobalt atom of the catalyst.
Collapse
Affiliation(s)
- Shogo Kuriyama
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shenglan Wei
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiromasa Tanaka
- School of Liberal Arts and Sciences, Daido University, Minami-ku, Nagoya 457-8530, Japan
| | - Asuka Konomi
- Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshiaki Nishibayashi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
8
|
Kuriyama S, Kato T, Tanaka H, Konomi A, Yoshizawa K, Nishibayashi Y. Catalytic Reduction of Dinitrogen to Ammonia and Hydrazine Using Iron–Dinitrogen Complexes Bearing Anionic Benzene-Based PCP-type Pincer Ligands. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220048] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shogo Kuriyama
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656
| | - Takeru Kato
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656
| | - Hiromasa Tanaka
- School of Liberal Arts and Sciences, Daido University, Minami-ku, Nagoya 457-8530
| | - Asuka Konomi
- Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395
| | - Yoshiaki Nishibayashi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656
| |
Collapse
|
9
|
The continuum of carbon-hydrogen (C-H) activation mechanisms and terminology. Commun Chem 2021; 4:173. [PMID: 36697593 PMCID: PMC9814233 DOI: 10.1038/s42004-021-00611-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/22/2021] [Indexed: 01/28/2023] Open
Abstract
As a rapidly growing field across all areas of chemistry, C-H activation/functionalisation is being used to access a wide range of important molecular targets. Of particular interest is the development of a sustainable methodology for alkane functionalisation as a means for reducing hydrocarbon emissions. This Perspective aims to give an outline to the community with respect to commonly used terminology in C-H activation, as well as the mechanisms that are currently understood to operate for (cyclo)alkane activation/functionalisation.
Collapse
|
10
|
Zhou X, Malakar S, Dugan T, Wang K, Sattler A, Marler DO, Emge TJ, Krogh-Jespersen K, Goldman AS. Alkane Dehydrogenation Catalyzed by a Fluorinated Phebox Iridium Complex. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Xiaoguang Zhou
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| | - Santanu Malakar
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| | - Thomas Dugan
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| | - Kun Wang
- ExxonMobil Research and Engineering, Annandale, New Jersey 08801, United States
| | - Aaron Sattler
- ExxonMobil Research and Engineering, Annandale, New Jersey 08801, United States
| | - David O. Marler
- ExxonMobil Research and Engineering, Annandale, New Jersey 08801, United States
| | - Thomas J. Emge
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| | - Karsten Krogh-Jespersen
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| | - Alan S. Goldman
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| |
Collapse
|
11
|
Lu H, Kang X, Luo Y. Structure-Based Relative Energy Prediction Model: A Case Study of Pd(II)-Catalyzed Ethylene Polymerization and the Electronic Effect of Ancillary Ligands. J Phys Chem B 2021; 125:12047-12053. [PMID: 34694809 DOI: 10.1021/acs.jpcb.1c05143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rapidly mapping a reaction energy profile to understand the reaction mechanism is of great importance and highly desired for the discovery of new chemical reactions. Herein, a combination of density functional theory (DFT) calculations and regression analysis has been applied to construct quantitative structures-based energy prediction models, considering Pd(II)-catalyzed ethylene polymerization as an example, for rapid construction of the reaction energy profile. It is inspiring that only geometrical parameters of the reaction center of one species are capable of predicting the whole energy profile with high accuracy. The reaction energies of ethylene insertion and β-H elimination, which directly correlate with polymerization activity and the possibility of branch formation, were studied to elucidate the electronic effects of ancillary ligands. Further analyses of these models from the statistical and chemical points of view afforded useful information on the design of the catalyst ligand. The current work is expected to methodologically shed new light on rapidly mapping the energy profile of chemical reactions and further provide useful information for the development of the reactions.
Collapse
Affiliation(s)
- Han Lu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiaohui Kang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Yi Luo
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.,PetroChina Petrochemical Research Institute, Beijing 102206, China
| |
Collapse
|
12
|
Biswas S, Blessent MJ, Gordon BM, Zhou T, Malakar S, Wang DY, Krogh-Jespersen K, Goldman AS. Origin of Regioselectivity in the Dehydrogenation of Alkanes by Pincer–Iridium Complexes: A Combined Experimental and Computational Study. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Soumik Biswas
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08854, United States
| | - Michael J. Blessent
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08854, United States
| | - Benjamin M. Gordon
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08854, United States
| | - Tian Zhou
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08854, United States
| | - Santanu Malakar
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08854, United States
| | - David Y. Wang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08854, United States
| | - Karsten Krogh-Jespersen
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08854, United States
| | - Alan S. Goldman
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08854, United States
| |
Collapse
|
13
|
Grünwald A, Heinemann FW, Munz D. Oxidative Addition of Water, Alcohols, and Amines in Palladium Catalysis. Angew Chem Int Ed Engl 2020; 59:21088-21095. [PMID: 32745317 PMCID: PMC7692900 DOI: 10.1002/anie.202008350] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/22/2020] [Indexed: 11/25/2022]
Abstract
The homolytic cleavage of O-H and N-H or weak C-H bonds is a key elementary step in redox catalysis, but is thought to be unfeasible for palladium. In stark contrast, reported here is the room temperature and reversible oxidative addition of water, isopropanol, hexafluoroisopropanol, phenol, and aniline to a palladium(0) complex with a cyclic (alkyl)(amino)carbene (CAAC) and a labile pyridino ligand, as is also the case in popular N-heterocyclic carbene (NHC) palladium(II) precatalysts. The oxidative addition of protic solvents or adventitious water switches the chemoselectivity in catalysis with alkynes through activation of the terminal C-H bond. Most salient, the homolytic activation of alcohols and amines allows atom-efficient, additive-free cross-coupling and transfer hydrogenation under mild reaction conditions with usually unreactive, yet desirable reagents, including esters and bis(pinacolato)diboron.
Collapse
Affiliation(s)
- Annette Grünwald
- Department of Chemistry and Pharmacy, General and Inorganic ChemistryFriedrich-Alexander-Universität Erlangen-NürnbergEgerlandstraße 191058ErlangenGermany
| | - Frank W. Heinemann
- Department of Chemistry and Pharmacy, General and Inorganic ChemistryFriedrich-Alexander-Universität Erlangen-NürnbergEgerlandstraße 191058ErlangenGermany
| | - Dominik Munz
- Inorganic Chemistry: Coordination ChemistrySaarland UniversityCampus, Geb. C4.166123SaarbrückenGermany
- Department of Chemistry and Pharmacy, General and Inorganic ChemistryFriedrich-Alexander-Universität Erlangen-NürnbergEgerlandstraße 191058ErlangenGermany
| |
Collapse
|
14
|
Grünwald A, Heinemann FW, Munz D. Oxidative Addition of Water, Alcohols, and Amines in Palladium Catalysis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Annette Grünwald
- Department of Chemistry and Pharmacy, General and Inorganic Chemistry Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstraße 1 91058 Erlangen Germany
| | - Frank W. Heinemann
- Department of Chemistry and Pharmacy, General and Inorganic Chemistry Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstraße 1 91058 Erlangen Germany
| | - Dominik Munz
- Inorganic Chemistry: Coordination Chemistry Saarland University Campus, Geb. C4.1 66123 Saarbrücken Germany
- Department of Chemistry and Pharmacy, General and Inorganic Chemistry Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstraße 1 91058 Erlangen Germany
| |
Collapse
|
15
|
Gu S, Nielsen RJ, Taylor KH, Fortman GC, Chen J, Dickie DA, Goddard WA, Gunnoe TB. Use of Ligand Steric Properties to Control the Thermodynamics and Kinetics of Oxidative Addition and Reductive Elimination with Pincer-Ligated Rh Complexes. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00122] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Shunyan Gu
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Robert J. Nielsen
- Materials and Process Simulation Center, Department of Chemistry, California Institute of Technology, Pasadena, California 91125, United States
| | - Kathleen H. Taylor
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - George C. Fortman
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Junqi Chen
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Diane A. Dickie
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - William A. Goddard
- Materials and Process Simulation Center, Department of Chemistry, California Institute of Technology, Pasadena, California 91125, United States
| | - T. Brent Gunnoe
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
16
|
Whited MT, Taylor BLH. Metal/Organosilicon Complexes: Structure, Reactivity, and Considerations for Catalysis. COMMENT INORG CHEM 2020. [DOI: 10.1080/02603594.2020.1737026] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Matthew T. Whited
- Department of Chemistry, Carleton College, Northfield, Minnesota, USA
| | - Buck L. H. Taylor
- Department of Chemistry, University of Portland, Portland, Oregon, USA
| |
Collapse
|
17
|
Recent advances in the chemistry of group 9—Pincer organometallics. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2020. [DOI: 10.1016/bs.adomc.2019.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
Kalkman ED, Mormino MG, Hartwig JF. Unusual Electronic Effects of Ancillary Ligands on the Perfluoroalkylation of Aryl Iodides and Bromides Mediated by Copper(I) Pentafluoroethyl Complexes of Substituted Bipyridines. J Am Chem Soc 2019; 141:19458-19465. [DOI: 10.1021/jacs.9b10540] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Eric D. Kalkman
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Michael G. Mormino
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - John F. Hartwig
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
19
|
Shiekh BA, Kaur D. Mechanism of atom economical conversion of alcohols and amines to amides using Fe(ii) pincer catalyst. An outer-sphere metal-ligand pathway or an inner-sphere elimination pathway? RSC Adv 2019; 9:17479-17489. [PMID: 35519856 PMCID: PMC9064549 DOI: 10.1039/c9ra03309b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 05/29/2019] [Indexed: 12/29/2022] Open
Abstract
In this present theoretical study, we investigated the reaction mechanism of atom-economical amide formation from alcohols and amines mediated by iron(ii) hydride complex (iPrPNP)Fe(H)(CO) (iPrPNP = N[CH2CH2(PiPr2)]2) using state-of-the-art density functional theory. Two scenarios of mechanistic pathways were considered, the inner-sphere and the outer-sphere pathways. In former case, the reaction of encounter complex of formaldehyde with amine is the rate-determining step with ΔG298 K = 33.75 kcal mol−1 while as in latter case dehydrogenation from trans-hydride is the rate-determining step having ΔG298 K = 21.34 kcal mol−1. Both the mechanistic scenarios operate through stepwise ionic pathways. The assessment of computational results demonstrate that inner-sphere pathway is energetically demanding and thus rendering outer-sphere pathway to be the most plausible mechanism of amide formation. Ligand modifications reveal that electron-withdrawing groups like CF3 near N of PNP ligand reduce the catalytic efficiency of the catalyst. Furthermore, changing the isopropyl moiety of phosphine scaffold with CH3 has a minimal impact on catalytic activity of the catalyst. Overall, our computational results provide new insights for the design and development of new Fe(ii) based pincer catalysts for atom economical amide formation from alcohols and amines. The schematic representation depicting the difference in inner and outer-sphere pathways for amide synthesis from alcohols and amines mediated by Fe(ii) hydride complex.![]()
Collapse
Affiliation(s)
- Bilal Ahmad Shiekh
- Department of Chemistry, UGC Sponsored Centre of Advanced Studies-I, Guru Nanak Dev University Amritsar India-143005
| | - Damanjit Kaur
- Department of Chemistry, UGC Sponsored Centre of Advanced Studies-I, Guru Nanak Dev University Amritsar India-143005
| |
Collapse
|
20
|
Zhou X, Malakar S, Zhou T, Murugesan S, Huang C, Emge TJ, Krogh-Jespersen K, Goldman AS. Catalytic Alkane Transfer Dehydrogenation by PSP-Pincer-Ligated Ruthenium. Deactivation of an Extremely Reactive Fragment by Formation of Allyl Hydride Complexes. ACS Catal 2019. [DOI: 10.1021/acscatal.8b05172] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Xiaoguang Zhou
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| | - Santanu Malakar
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| | - Tian Zhou
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| | - Sathiyamoorthy Murugesan
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| | - Carlos Huang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| | - Thomas J. Emge
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| | - Karsten Krogh-Jespersen
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| | - Alan S. Goldman
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| |
Collapse
|
21
|
Gair JJ, Qiu Y, Khade RL, Chan NH, Filatov AS, Zhang Y, Lewis JC. Synthesis, Characterization, and Theoretical Investigation of a Transition State Analogue for Proton Transfer during C–H Activation by a Rhodium-Pincer Complex. Organometallics 2019. [DOI: 10.1021/acs.organomet.8b00887] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Joseph J. Gair
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Yehao Qiu
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Rahul L. Khade
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Natalie H. Chan
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Alexander S. Filatov
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Yong Zhang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Jared C. Lewis
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
22
|
Building molecular complexity through transition-metal-catalyzed oxidative annulations/cyclizations: Harnessing the utility of phenols, naphthols and 1,3-dicarbonyl compounds. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.11.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Das K, Kumar A. Alkane dehydrogenation reactions catalyzed by pincer-metal complexes. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2019. [DOI: 10.1016/bs.adomc.2019.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
24
|
Cook BJ, Johnson SI, Chambers GM, Kaminsky W, Bullock RM. Triple hydrogen atom abstraction from Mn–NH3 complexes results in cyclophosphazenium cations. Chem Commun (Camb) 2019; 55:14058-14061. [DOI: 10.1039/c9cc06915a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
All three H atoms of the NH3 ligand of [Mn(depe)2(CO)(NH3)]+ are abstracted by an organic radical, giving a rare cyclophosphazenium cation; computations suggest that insertion of NHx into a Mn–P bond provides a strong thermodynamic driving force.
Collapse
Affiliation(s)
- Brian J. Cook
- Center for Molecular Electrocatalysis
- Pacific Northwest National Laboratory P.O. Box 999
- Richland
- USA
| | - Samantha I. Johnson
- Center for Molecular Electrocatalysis
- Pacific Northwest National Laboratory P.O. Box 999
- Richland
- USA
| | - Geoffrey M. Chambers
- Center for Molecular Electrocatalysis
- Pacific Northwest National Laboratory P.O. Box 999
- Richland
- USA
| | | | - R. Morris Bullock
- Center for Molecular Electrocatalysis
- Pacific Northwest National Laboratory P.O. Box 999
- Richland
- USA
| |
Collapse
|
25
|
Cabré A, Sciortino G, Ujaque G, Verdaguer X, Lledós A, Riera A. Iridium-Catalyzed Isomerization of N-Sulfonyl Aziridines to Allyl Amines. Org Lett 2018; 20:5747-5751. [PMID: 30188732 DOI: 10.1021/acs.orglett.8b02450] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Crabtree's reagent catalyzes the isomerization of N-sulfonyl 2,2-disubstituted aziridines to allyl amines. The selectivity of allyl amine vs imine is very high (up to 99/1). The unprecedented isomerization takes place in mild conditions without activation of the catalyst by hydrogen. The mechanism has been studied computationally by DFT calculations; instead of the usual hydrogenation of COD, the catalytic species is formed by a loss of the pyridine ligand. Approaching of aziridine to this unsaturated species leads to a carbocation intermediate through a low energy barrier. A metal-mediated tautomerization involving sequentially γ-H elimination and N-H reductive elimination affords selectively the allyl amine. The readiness of the CγH bond to participate in the H elimination step accounts for the selectivity toward the allyl amine product.
Collapse
Affiliation(s)
- Albert Cabré
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology , Baldiri Reixac 10 , Barcelona 08028 , Spain
| | - Giuseppe Sciortino
- Departament de Química, Edifici C.n. , Universitat Autònoma de Barcelona , Cerdanyola del Vallès , Barcelona 08193 , Spain.,Dipartimento di Chimica e Farmacia , Università di Sassari , via Vienna, 2 , I-07017 Sassari , Italy
| | - Gregori Ujaque
- Departament de Química, Edifici C.n. , Universitat Autònoma de Barcelona , Cerdanyola del Vallès , Barcelona 08193 , Spain
| | - Xavier Verdaguer
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology , Baldiri Reixac 10 , Barcelona 08028 , Spain.,Departament de Química Inorgànica i Orgànica, Secció Orgànica , Universitat de Barcelona , Martí i Franquès 1 , Barcelona 08028 , Spain
| | - Agustí Lledós
- Departament de Química, Edifici C.n. , Universitat Autònoma de Barcelona , Cerdanyola del Vallès , Barcelona 08193 , Spain
| | - Antoni Riera
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology , Baldiri Reixac 10 , Barcelona 08028 , Spain.,Departament de Química Inorgànica i Orgànica, Secció Orgànica , Universitat de Barcelona , Martí i Franquès 1 , Barcelona 08028 , Spain
| |
Collapse
|
26
|
Omar BS, Mallah J, Ataya M, Li B, Zhou X, Malakar S, Goldman AS, Hasanayn F. H2 Addition to Pincer Iridium Complexes Yielding trans-Dihydride Products: Unexpected Correlations of Bond Strength with Bond Length and Vibrational Frequencies. Inorg Chem 2018; 57:7516-7523. [DOI: 10.1021/acs.inorgchem.7b03086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Boushra S. Omar
- Department of Chemistry, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Josephina Mallah
- Department of Chemistry, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Mohamad Ataya
- Department of Chemistry, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Bo Li
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| | - Xiaoguang Zhou
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| | - Santanu Malakar
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| | - Alan S. Goldman
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| | - Faraj Hasanayn
- Department of Chemistry, American University of Beirut, Beirut 1107 2020, Lebanon
| |
Collapse
|
27
|
Nakayama S, Morisako S, Yamashita M. Synthesis and Application of Pyrrole-Based PNP–Ir Complexes to Catalytic Transfer Dehydrogenation of Cyclooctane. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00072] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Shin Nakayama
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27, Kasuga, Bunkyo-ku, 112-8551 Tokyo, Japan
| | - Shogo Morisako
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Makoto Yamashita
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| |
Collapse
|
28
|
Munarriz J, Velez E, Casado MA, Polo V. Understanding the reaction mechanism of the oxidative addition of ammonia by (PXP)Ir(i) complexes: the role of the X group. Phys Chem Chem Phys 2018; 20:1105-1113. [PMID: 29238771 DOI: 10.1039/c7cp07453k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
An analysis of the electronic rearrangements for the oxidative addition of ammonia to a set of five representative (PXP)Ir pincer complexes (X = B, CH, O, N, SiH) is performed. We aim to understand the factors controlling the activation and reaction energies of this process by combining different theoretical strategies based on DFT calculations. Interestingly, complexes featuring higher activation barriers yield more exothermic reactions. The analysis of the reaction path using the bonding evolution theory shows that the main chemical events, N-H bond cleavage and Ir-H bond formation, take place before the transition structure is reached. Metal oxidation implies an electron density transfer from non-shared Ir pairs to the Ir-N bond. This decrement in the atomic charge of the metal provokes different effects in the ionic contribution of the Ir-X bonding depending on the nature of the X atom as shown by the interacting quantum atoms methodology.
Collapse
Affiliation(s)
- J Munarriz
- Departamento de Química Física and Instituto de Biocomputación y Física de los Sistemas Complejos (BIFI), Universidad de Zaragoza, 50009, Zaragoza, Spain.
| | | | | | | |
Collapse
|
29
|
Affiliation(s)
- Robert W. Baker
- School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
30
|
Lease N, Pelczar EM, Zhou T, Malakar S, Emge TJ, Hasanayn F, Krogh-Jespersen K, Goldman AS. PNP-Pincer Complexes of Osmium: Comparison with Isoelectronic (PCP)Ir and (PNP)Ir+ Units. Organometallics 2018. [DOI: 10.1021/acs.organomet.7b00738] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Nicholas Lease
- Department
of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08855, United States
| | - Elizabeth M. Pelczar
- Department
of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08855, United States
| | - Tian Zhou
- Department
of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08855, United States
| | - Santanu Malakar
- Department
of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08855, United States
| | - Thomas J. Emge
- Department
of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08855, United States
| | - Faraj Hasanayn
- Department
of Chemistry, The American University of Beirut, Beirut 1107 2020, Lebanon
| | - Karsten Krogh-Jespersen
- Department
of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08855, United States
| | - Alan S. Goldman
- Department
of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08855, United States
| |
Collapse
|
31
|
Kumar A, Bhatti TM, Goldman AS. Dehydrogenation of Alkanes and Aliphatic Groups by Pincer-Ligated Metal Complexes. Chem Rev 2017; 117:12357-12384. [DOI: 10.1021/acs.chemrev.7b00247] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Akshai Kumar
- Department
of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Tariq M. Bhatti
- Department
of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| | - Alan S. Goldman
- Department
of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| |
Collapse
|
32
|
Propane CH activation by palladium complexes bearing ligands with Charge-shift bonding characteristics: A DFT study. COMPUT THEOR CHEM 2017. [DOI: 10.1016/j.comptc.2017.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Luo G, Luo Y, Hou Z. E–H (E = N and P) Bond Activation of PhEH2 by a Trinuclear Yttrium Methylidene Complex: Theoretical Insights into Mechanism and Multimetal Cooperation Behavior. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00443] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gen Luo
- State
Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
- RIKEN
Center for Sustainable Resource Science and Organometallic Chemistry
Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yi Luo
- State
Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Zhaomin Hou
- State
Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
- RIKEN
Center for Sustainable Resource Science and Organometallic Chemistry
Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
34
|
Wang Z, Zhou Y, Lam WH, Lin Z. DFT Studies of Ru-Catalyzed C–O versus C–H Bond Functionalization of Aryl Ethers with Organoboronates. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00376] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Zheng Wang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, People’s Republic of China
| | - Yu Zhou
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, People’s Republic of China
| | - Wai Han Lam
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, People’s Republic of China
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, People’s Republic of China
| |
Collapse
|
35
|
Li HF, Zhao YX, Yuan Z, Liu QY, Li ZY, Li XN, Ning CG, He SG. Methane Activation by Tantalum Carbide Cluster Anions Ta 2C 4. J Phys Chem Lett 2017; 8:605-610. [PMID: 28088857 DOI: 10.1021/acs.jpclett.6b02568] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Methane activation by transition metals is of fundamental interest and practical importance, as this process is extensively involved in the natural gas conversion to fuels and value-added chemicals. While single-metal centers have been well recognized as active sites for methane activation, the active center composed of two or more metal atoms is rarely addressed and the detailed reaction mechanism remains unclear. Here, by using state-of-the-art time-of-flight mass spectrometry, cryogenic anion photoelectron imaging spectroscopy, and quantum-chemical calculations, the cooperation of the two Ta atoms in a dinuclear carbide cluster Ta2C4- for methane activation has been identified. The C-H bond activation takes place predominantly around one Ta atom in the initial stage of the reaction and the second Ta atom accepts the delivered H atom from the C-H bond cleavage. The well-resolved vibrational spectra of the cryogenically cooled anions agree well with theoretical simulations, allowing the clear characterization of the structure of Ta2C4- cluster. The reactivity comparison between Ta2C4- cluster and the carbon-less analogues (Ta2C3- and Ta2C2-) demonstrated that the cooperative effect of the two metal atoms can be well tuned by the carbon ligands in terms of methane activation and transformation.
Collapse
Affiliation(s)
- Hai-Fang Li
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Yan-Xia Zhao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Zhen Yuan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Qing-Yu Liu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Zi-Yu Li
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Xiao-Na Li
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Chuan-Gang Ning
- Department of Physics, State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University , Beijing 100084, P. R. China
| | - Sheng-Gui He
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| |
Collapse
|
36
|
Corona-González MV, Zamora-Moreno J, Cuevas-Chávez CA, Rufino-Felipe E, Mothes-Martin E, Coppel Y, Muñoz-Hernández MA, Vendier L, Flores-Alamo M, Grellier M, Sabo-Etienne S, Montiel-Palma V. A family of rhodium and iridium complexes with semirigid benzylsilyl phosphines: from bidentate to tetradentate coordination modes. Dalton Trans 2017; 46:8827-8838. [DOI: 10.1039/c7dt00727b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rh and Ir coordination of phosphines with 1 to 3 Si–H groups.
Collapse
|
37
|
Ma D, Zhang C, Chen ZN, Xu X. Rational design of model Pd(ii)-catalysts for C–H activation involving ligands with charge-shift bonding characteristics. Phys Chem Chem Phys 2017; 19:2417-2424. [DOI: 10.1039/c6cp06215f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A palladium(ii) complex with a bis-2-borabicyclo[1.1.0]but-1(3)-ene ligand having charge-shift bonding characteristics contributes to better performance for C–H bond activation.
Collapse
Affiliation(s)
- Dongxia Ma
- Key Laboratory of Macromolecular Science of Shaanxi Province
- School of Chemistry & Chemical Engineering
- Shaanxi Normal University
- Xi'an
- China
| | - Congjie Zhang
- Key Laboratory of Macromolecular Science of Shaanxi Province
- School of Chemistry & Chemical Engineering
- Shaanxi Normal University
- Xi'an
- China
| | - Zhe-Ning Chen
- Collaborative Innovation Center of Chemistry for Energy Materials
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- MOE Laboratory for Computational Physical Science
- Department of Chemistry
- Fudan University
| | - Xin Xu
- Collaborative Innovation Center of Chemistry for Energy Materials
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- MOE Laboratory for Computational Physical Science
- Department of Chemistry
- Fudan University
| |
Collapse
|
38
|
Zhang L, Zhang XB, Zhang DD, He SG. Theoretical prediction of the synthesis of 2,3-dihydropyridines through Ir( iii)-catalysed reaction of unsaturated oximes with alkenes. RSC Adv 2017. [DOI: 10.1039/c6ra25501a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The Ir(iii)-catalysed reaction of unsaturated oximes with alkenes was predicted, and the results indicate a more efficient synthesis of 2,3-dihydropyridines.
Collapse
Affiliation(s)
- Lei Zhang
- School of Materials Science and Engineering
- Anhui University of Science and Technology
- Huainan 232001
- People's Republic of China
| | - Xiang-Biao Zhang
- School of Chemical Engineering
- Anhui University of Science and Technology
- Huainan 232001
- People's Republic of China
| | - Dan-Dan Zhang
- School of Chemical Engineering
- Anhui University of Science and Technology
- Huainan 232001
- People's Republic of China
| | - Sheng-Gui He
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| |
Collapse
|
39
|
Hauser SA, Emerson-King J, Habershon S, Chaplin AB. UV-light promoted C–H bond activation of benzene and fluorobenzenes by an iridium(i) pincer complex. Chem Commun (Camb) 2017; 53:3634-3636. [DOI: 10.1039/c6cc09807j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
UV irradiation of [Ir(2,6-(PtBu2CH2)2C6H3)(CO)] generates the transient and reactive 14 VE Ir(i) fragment {Ir(2,6-(PtBu2CH2)2C6H3)}, which subsequently undergoes C–H bond activation of benzene and fluorobenzenes.
Collapse
Affiliation(s)
| | | | - Scott Habershon
- Department of Chemistry
- University of Warwick
- Coventry CV4 7AL
- UK
| | | |
Collapse
|
40
|
Shih WC, Ozerov OV. Synthesis and Characterization of PBP Pincer Iridium Complexes and Their Application in Alkane Transfer Dehydrogenation. Organometallics 2016. [DOI: 10.1021/acs.organomet.6b00762] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wei-Chun Shih
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77842, United States
| | - Oleg V. Ozerov
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77842, United States
| |
Collapse
|
41
|
Zhu F, Li Y, Wang Z, Wu XF. Iridium-Catalyzed Carbonylative Synthesis of Chromenones from Simple Phenols and Internal Alkynes at Atmospheric Pressure. Angew Chem Int Ed Engl 2016; 55:14151-14154. [DOI: 10.1002/anie.201608715] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Fengxiang Zhu
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock; Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Yahui Li
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock; Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Zechao Wang
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock; Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Xiao-Feng Wu
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock; Albert-Einstein-Straße 29a 18059 Rostock Germany
- Department of Chemistry; Zhejiang Sci-Tech University; Xiasha Campus Hangzhou 310018 P. R. China
| |
Collapse
|
42
|
Zhu F, Li Y, Wang Z, Wu XF. Iridium-Catalyzed Carbonylative Synthesis of Chromenones from Simple Phenols and Internal Alkynes at Atmospheric Pressure. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201608715] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Fengxiang Zhu
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock; Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Yahui Li
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock; Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Zechao Wang
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock; Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Xiao-Feng Wu
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock; Albert-Einstein-Straße 29a 18059 Rostock Germany
- Department of Chemistry; Zhejiang Sci-Tech University; Xiasha Campus Hangzhou 310018 P. R. China
| |
Collapse
|
43
|
Park Y, Ahn S, Kang D, Baik MH. Mechanism of Rh-Catalyzed Oxidative Cyclizations: Closed versus Open Shell Pathways. Acc Chem Res 2016; 49:1263-70. [PMID: 27187270 DOI: 10.1021/acs.accounts.6b00111] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A conceptual theory for analyzing and understanding oxidative addition reactions that form the cornerstone of many transition metal mediated catalytic cycles that activate C-C and C-H bonds, for example, was developed. The cleavage of the σ- or π-bond in the organic substrate can be envisioned to follow a closed or an open shell formalism, which is matched by a corresponding electronic structure at the metal center of the catalyst. Whereas the assignment of one or the other mechanistic scenario appears formal and equivalent at first sight, they should be recognized as different classes of reactions, because they lead to different reaction optimization and control strategies. The closed-shell mechanism involves heterolytic bond cleavages, which give rise to highly localized charges to form at the transition state. In the open-shell pathway, bonds are broken homolytically avoiding localized charges to accumulate on molecular fragments at the transition states. As a result, functional groups with inductive effects may exert a substantial influence on the energies of the intermediate and transition states, whereas no such effect is expected if the mechanism proceeds through the open-shell mechanism. If these functional groups are placed in a way that opens an electronic communication pathway to the molecular sites where charges accumulate, for example, using hyperconjugation, electron donating groups may stabilize a positive charge at that site. An instructive example is discussed, where this stereoelectronic effect allowed for rendering the oxidative addition diastereoselective. No such control is possible, however, when the open-shell reaction pathway is followed, because the inductive effects of functional groups have little to no effect on the stabilities of radical-like substrate states that are encountered when the bonds are broken in a homolytic fashion. Whether the closed-shell or open-shell mechanism for oxidative addition is followed is determined by the ordering of the d-orbital dominated frontier orbitals. If the highest occupied molecular orbital (HOMO) is oriented in space in such a way that will give the organic substrate easy access to the valence electron pair, the closed-shell mechanism can be followed. If the shape and orientation of the HOMO is not appropriate, however, an alternative pathway involving singlet excited states of the metal that will invoke the matching radicaloid cleavage of the organic substrate will dominate the oxidative addition. This novel paradigm for formally analyzing and understanding oxidative additions provides a new way of systematically understanding and planning catalytic reactions, as demonstrated by the in silico design of room-temperature Pauson-Khand reactions.
Collapse
Affiliation(s)
- Yoonsu Park
- Center for Catalytic Hydrocarbon
Functionalizations, Institute for Basic Science (IBS), Daejeon 305-701, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Seihwan Ahn
- Center for Catalytic Hydrocarbon
Functionalizations, Institute for Basic Science (IBS), Daejeon 305-701, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Dahye Kang
- Center for Catalytic Hydrocarbon
Functionalizations, Institute for Basic Science (IBS), Daejeon 305-701, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Mu-Hyun Baik
- Center for Catalytic Hydrocarbon
Functionalizations, Institute for Basic Science (IBS), Daejeon 305-701, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| |
Collapse
|
44
|
Bézier D, Guan C, Krogh-Jespersen K, Goldman AS, Brookhart M. Experimental and computational study of alkane dehydrogenation catalyzed by a carbazolide-based rhodium PNP pincer complex. Chem Sci 2016; 7:2579-2586. [PMID: 28660029 PMCID: PMC5477040 DOI: 10.1039/c5sc04794c] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 01/20/2016] [Indexed: 11/21/2022] Open
Abstract
A rhodium complex based on the bis-phosphine carbazolide pincer ligand was investigated in the context of alkane dehydrogenation and in comparison with its iridium analogue. (carb-PNP)RhH2 was found to catalyze cyclooctane/t-butylethylene (COA/TBE) transfer dehydrogenation with a turnover frequency up to 10 min-1 and turnover numbers up to 340, in marked contrast with the inactive Ir analogue. TONs were limited by catalyst decomposition. Through a combination of mechanistic, experimental and computational (DFT) studies the difference between the Rh and Ir analogues was found to be attributable to the much greater accessibility of the 14-electron (carb-PNP)M(i) fragment in the case of Rh. In contrast, Ir is more strongly biased toward the M(iii) oxidation state. Thus (carb-PNP)RhH2 but not (carb-PNP)IrH2 can be dehydrogenated by sacrificial hydrogen acceptors, particularly TBE. The rate-limiting segment of the (carb-PNP)Rh-catalyzed COA/TBE transfer dehydrogenation cycle is found to be the dehydrogenation of COA. Within this segment, the rate-determining step is calculated to be (carb-PNP)Rh(cyclooctyl)(H) undergoing formation of a β-H agostic intermediate, while the reverse step (loss of a β-H agostic interaction) is rate-limiting for hydrogenation of the acceptors TBE and ethylene. Such a step has not previously been proposed as rate-limiting in the context of alkane dehydrogenation, nor, to our knowledge, has the reverse step been proposed as rate-limiting for olefin hydrogenation.
Collapse
Affiliation(s)
- David Bézier
- Department of Chemistry , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , USA
| | - Changjian Guan
- Department of Chemistry and Chemical Biology , Rutgers , The State University of New Jersey , New Brunswick , New Jersey 08903 , USA
| | - Karsten Krogh-Jespersen
- Department of Chemistry and Chemical Biology , Rutgers , The State University of New Jersey , New Brunswick , New Jersey 08903 , USA
| | - Alan S Goldman
- Department of Chemistry and Chemical Biology , Rutgers , The State University of New Jersey , New Brunswick , New Jersey 08903 , USA
| | - Maurice Brookhart
- Department of Chemistry , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , USA
| |
Collapse
|
45
|
Zhang Y, Fang H, Yao W, Leng X, Huang Z. Synthesis of Pincer Hydrido Ruthenium Olefin Complexes for Catalytic Alkane Dehydrogenation. Organometallics 2016. [DOI: 10.1021/acs.organomet.5b00912] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Yuxuan Zhang
- The State Key Laboratory
of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Huaquan Fang
- The State Key Laboratory
of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Wubing Yao
- The State Key Laboratory
of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Xuebing Leng
- The State Key Laboratory
of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Zheng Huang
- The State Key Laboratory
of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| |
Collapse
|
46
|
Smith JD, Logan JR, Doyle LE, Burford RJ, Sugawara S, Ohnita C, Yamamoto Y, Piers WE, Spasyuk DM, Borau-Garcia J. Cationic mono and dicarbonyl pincer complexes of rhodium and iridium to assess the donor properties of PCcarbeneP ligands. Dalton Trans 2016; 45:12669-79. [DOI: 10.1039/c6dt02615j] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The donor properties of five different PCcarbeneP ligands are assessed by evaluation of the CO stretching frequencies in iridium(i) and rhodium(i) carbonyl cations.
Collapse
|