1
|
Chen W, Xu N, Qin L, Deng YF, Zhuang GL, Zhang Z, Xie TZ, Wang P, Zheng Z. A Hollowed-Out Heterometallic Cluster for Catalytic Knoevenagel Condensation. Angew Chem Int Ed Engl 2024:e202420770. [PMID: 39531240 DOI: 10.1002/anie.202420770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024]
Abstract
Lanthanide-containing clusters are synthetically challenging and with significant chemical and materials applications. Herein, two isostructural heterometallic clusters of the formula (NO3)12@[Ln132Ni78(OH)292(IDA)48(CH3COO)96(NO3)12(H2O)78]Cl44⋅xH2O⋅yCH3OH (IDA=iminodiacetate; Ln=Gd 1, x=110, y=0; Ln=Eu 2, x=95, y=40) were obtained via co-hydrolysis of Ln3+ (Gd3+ or Eu3+) and Ni2+ in the presence of iminodiacetate (IDA). Crystallographic studies show that each features a truncated tetrahedral core of Ln132Ni78 within which a void of 1.1 nm in diameter; connecting the central cage and its exterior are four trumpet-like passageways surface-decorated with dinuclear units of [Gd(μ3-OH)2Gd]. Mass spectroscopic analyses indicate that both clusters maintained their structural integrity in aqueous solution, with cryo-electron microscopy providing the most convincing visual evidence in support of the cluster's solution stability. Size-selective Knoevenagel condensation, believed to occur in the passageways on the basis of experimental and molecular modeling results, was achieved in the presence of 1. The application of 1 as a uniquely structured molecular reactor and a recyclable heterogeneous catalyst was further illustrated by the one-pot three-component synthesis of biologically and pharmaceutically significant 4H-pyran derivatives.
Collapse
Affiliation(s)
- Wanmin Chen
- Department of Chemistry and Key University Laboratory of Rare Earth Chemistry of Guangdong, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Na Xu
- Department of Chemistry and Key University Laboratory of Rare Earth Chemistry of Guangdong, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lei Qin
- Department of Chemistry and Key University Laboratory of Rare Earth Chemistry of Guangdong, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yi-Fei Deng
- Department of Chemistry and Key University Laboratory of Rare Earth Chemistry of Guangdong, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Gui-Lin Zhuang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Zhe Zhang
- Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou, 510006, China
| | - Ting-Zheng Xie
- Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou, 510006, China
| | - Pingshan Wang
- Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou, 510006, China
| | - Zhiping Zheng
- Department of Chemistry and Key University Laboratory of Rare Earth Chemistry of Guangdong, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
2
|
Zhao ZH, Han BL, Su HF, Guo QL, Wang WX, Zhuo JQ, Guo YN, Liu JL, Luo GG, Cui P, Sun D. Buckling cluster-based H-bonded icosahedral capsules and their propagation to a robust zeolite-like supramolecular framework. Nat Commun 2024; 15:9401. [PMID: 39477935 PMCID: PMC11525653 DOI: 10.1038/s41467-024-53640-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/16/2024] [Indexed: 11/02/2024] Open
Abstract
Hydrogen-bonded assembly of multiple components into well-defined icosahedral capsules akin to virus capsids has been elusive. In parallel, constructing robust zeolitic-like cluster-based supramolecular frameworks (CSFs) without any coordination covalent bonding linkages remains challenging. Herein, we report a cluster-based pseudoicosahedral H-bonded capsule Cu60, which is buckled by the self-organization of judiciously designed constituent copper clusters and anions. The spontaneous formation of the icosahedron in the solid state takes advantage of 48 charge-assisted CH···F hydrogen bonds between cationic clusters and anions (PF6-), and is highly sensitive to the surface protective ligands on the clusters with minor structural modification inhibiting its formation. Most excitingly, an extended three-periodic robust zeolitic-like CSF, is constructed by edge-sharing the resultant icosahedrons. The perpendicular channels of the CSF feature unusual 3D orthogonal double-helical patterns. The CSF material not only keeps its single-crystal character in the desolvated phase, but also exhibits excellent chemical and thermal stabilities as well as long-lived phosphorescence emission.
Collapse
Affiliation(s)
- Zhan-Hua Zhao
- College of Materials Science and Engineering, Huaqiao University, Xiamen, PR China
| | - Bao-Liang Han
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, PR China
| | - Hai-Feng Su
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, PR China
| | - Qi-Lin Guo
- College of Materials Science and Engineering, Huaqiao University, Xiamen, PR China
| | - Wen-Xin Wang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, PR China
| | - Jing-Qiu Zhuo
- College of Materials Science and Engineering, Huaqiao University, Xiamen, PR China
| | - Yong-Nan Guo
- College of Materials Science and Engineering, Huaqiao University, Xiamen, PR China
| | - Jia-Long Liu
- College of Materials Science and Engineering, Huaqiao University, Xiamen, PR China
| | - Geng-Geng Luo
- College of Materials Science and Engineering, Huaqiao University, Xiamen, PR China.
| | - Ping Cui
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, PR China
| | - Di Sun
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, PR China.
| |
Collapse
|
3
|
Bai X, Wang J, Wang Q, Yu YT, Li JN, Mei H, Xu Y. Cl --templated coordination polymers constructed from dragonfly-like Ln 4 clusters exhibiting excellent magnetothermal properties. Dalton Trans 2024; 53:15602-15607. [PMID: 39230470 DOI: 10.1039/d4dt01905a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Lanthanide clusters with high magnetic entropy and an exquisite structure have always been a hot research direction. Herein, two delicately structured lanthanide clusters were synthesized using isonicotinic acid (HIN) as a ligand by the solvothermal method, namely {[Gd4(IN)4(μ3-OH)4(OAc)2(H2O)6]·Cl2·7H2O}n (1) and {[Dy4(IN)4(μ3-OH)4(OAc)2(H2O)6]·Cl2·8H2O}n (2). Structural analysis indicates that the two compounds exhibit comparable structures, and both have the same cubane-like Ln4 metal skeleton and form an interesting dragonfly molecular configuration by connecting to HIN. Moreover, {Ln4} serves as the fundamental structural unit for the construction of a 1D channel of 1, with a diameter of approximately 10.08 Å, which is connected to each other by extra {Ln4} units to form an exquisite porous 3D structure of 1. Cl- exists as an anion-template in its 3D structure, balancing the charge and maintaining its structural stability. Magnetic measurements indicate that 1 exhibits a rather satisfactory magnetic entropy change, reaching a maximum value of -ΔSmaxm = 31.59 J kg-1 K-1 at 2 K for ΔH = 7 T.
Collapse
Affiliation(s)
- Xu Bai
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China.
| | - Jian Wang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China.
| | - Qin Wang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China.
| | - Ya-Ting Yu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China.
| | - Jia-Nian Li
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China.
| | - Hua Mei
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China.
| | - Yan Xu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China.
| |
Collapse
|
4
|
Qin WW, Li YL, Zhu ZH, Wang HL, Cheng L, Zou HH. One-Pot In Situ Construction of a Highly Stable Acylhydrazone-Derived Dy 9 Cluster with Photodynamic Sterilization Property. Inorg Chem 2024; 63:16740-16749. [PMID: 39177239 DOI: 10.1021/acs.inorgchem.4c02250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The extremely low stability of lanthanide clusters with precise structures and nanometer dimensions in aqueous solutions limits their application in the field of photodynamic sterilization. In this study, an hourglass-shaped nine-nucleated Dy9 cluster (1) with excellent light-driven reactive oxygen species (ROS) generation ability and photodynamic sterilization property was constructed using acylhydrazone multidentate chelating ligands obtained via an in situ reaction. The eight chelating ligands were distributed outside cluster 1, tightly wrapping the cluster core, thus preventing solvent molecules from attacking the cluster nucleus and ensuring the stability of cluster 1 in solution, which was demonstrated via X-ray diffraction and high-resolution electrospray ionization mass spectrometry (HRESI-MS). Time-dependent HRESI-MS monitoring of the self-assembly process of cluster 1 allowed two possible self-assembly mechanisms. The heavy atom effect of multiple Dy(III) ions in the Dy9 cluster enhanced the ISC pathway through spin-orbit coupling, promoting energy transfer from the excited singlet state (S1) to the triplet state (T1), which was stabilized, inducing the generation of more ROS. Cluster 1 showed a remarkable sterilization effect due to the generation of abundant ROS under light irradiation conditions. To our knowledge, this is a rare instance of lanthanide clusters with photodynamic sterilization, providing new horizons for the construction of fast and efficient sterilizers.
Collapse
Affiliation(s)
- Wen-Wen Qin
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Yun-Lan Li
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Zhong-Hong Zhu
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Hai-Ling Wang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Lei Cheng
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Hua-Hong Zou
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| |
Collapse
|
5
|
Li X, Sun X, Wei C, Huang FP, Liu HT, Tian H. Single-Molecule Magnet Rods: Remarkably Elongated Lanthanide Phosphonate Cores with Quasilinear Hydrazones. Inorg Chem 2024; 63:16393-16403. [PMID: 39163558 DOI: 10.1021/acs.inorgchem.4c02336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Large metal-phosphonate clusters typically exhibit regular polyhedral, wheel-shaped, spherical, or capsule-shaped morphologies more effectively than high-aspect ratio topologies. A system of elongated lanthanide core topologies has now been synthesized by the reaction of lanthanide 1-naphthylmethylphosphonates and four differently terminated pyrazinyl hydrazones. Four new rod-shaped dysprosium phosphonate clusters, [Dy6(O3PC11H9)4(L1)4(μ4-O)(DMF)4]·2DMF·3MeCN·3H2O (1), [Dy8(O3PC11H9)4(L2)4(μ3-O)4(CO2)4(H2O)4]·6DMF·4MeCN·3H2O (2), [Dy12Na(O3PC11H9)6(L3)6(μ3-O)2(pyr)6]·DMF·2MeCN·H2O (3), and [Dy14(O3PC11H9)12(L4)8(μ3-O)2(DMF)4(MeOH)2(H2O)4]·5DMF·2MeCN·H2O (4), were obtained. Four single-pyrazinyl hydrazones function as pentadentate bis-chelate terminal co-ligands, coordinating the periphery of dysprosium phosphonate rods. A sodium ion serves as a cation template for constructing heterobimetallic 3 by occupying the void, demonstrating the ability to reliably control cluster length by modifying the hydrazone co-ligand structure and cation template. Additionally, it was observed that the elongation of the rods has a significant directional impact on the magnetic relaxation behavior, transitioning from a one-step process in 1 to a three-step process in 2, a two-step process in 3, and finally a two-step process in 4.
Collapse
Affiliation(s)
- XiaoJuan Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Xiao Sun
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Chaolun Wei
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Fu-Ping Huang
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, P. R. China
| | - Hou-Ting Liu
- Food and Biochemistry Engineering Department, Yantai Vocational College, Yantai 264006, China
| | - Haiquan Tian
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| |
Collapse
|
6
|
López-Vargas M, Pérez JM, Echenique-Errandonea E, Forte-Castro A, Rojas S, Seco JM, Rodríguez-Diéguez A, Vitorica-Yrezabal IJ, Fernández I. Synthesis, Characterization, and Catalytic Performance of a New Heterobimetallic Y/Tb Metal-Organic Framework with High Catalytic Activity. ACS OMEGA 2024; 9:26549-26559. [PMID: 38911723 PMCID: PMC11191568 DOI: 10.1021/acsomega.4c03109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024]
Abstract
A three-dimensional heterobimetallic porous structure with the formula {[Y3.5Tb1.5L6(OH)3(H2O)1.5 (DMF)1.5] n ·1.5H2O·DMF} n (L = 3-amino-4-hydroxybenzoate) (Y/Tb-MOF) has been synthesized and characterized by single crystal and powder X-ray diffraction, scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), inductively coupled plasma mass spectrometry (ICP-MS), electrophoretic mobility, and Fourier transform infrared (FTIR) spectroscopy. The structure presents two metal environments: a bioaugmented isosceles wedge (mm2) MO8 and a tricapped trigonal prism (-6m2) MN3O6. These configurations facilitate the creation of channels with a diameter of 10.7 Å, enabling its utilization as an active catalyst where the heterobimetallic nature of the assembly will be explored. This mixed-metal metal-organic framework has been tested in the cycloaddition of epoxides with carbon dioxide as well as in the cyanosilylation and hydroboration reactions of carbonylic substrates. Additionally, a monometallic Tb-MOF analogue has been synthesized for comparative evaluation of their catalytic performances. Both the mixed metal and monometallic variants exhibit outstanding activity in the cyanosilylation and hydroboration of carbonyls and in the synthesis of carbonates under CO2 pressure. However, only the latter exhibits high recyclability.
Collapse
Affiliation(s)
- Mireya
E. López-Vargas
- Department
of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento s/n, 04120 Almería, Spain
| | - Juana M. Pérez
- Department
of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento s/n, 04120 Almería, Spain
| | - Estitxu Echenique-Errandonea
- Departamento
de Química Aplicada, Universidad
del País Vasco UPV/EHU, Paseo Manuel Lardizabal, N° 3, 20018 Donostia-San Sebastián, Spain
| | - Arantxa Forte-Castro
- Department
of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento s/n, 04120 Almería, Spain
| | - Sara Rojas
- Department
of Inorganic Chemistry, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain
| | - José M. Seco
- Departamento
de Química Aplicada, Universidad
del País Vasco UPV/EHU, Paseo Manuel Lardizabal, N° 3, 20018 Donostia-San Sebastián, Spain
| | | | | | - Ignacio Fernández
- Department
of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento s/n, 04120 Almería, Spain
| |
Collapse
|
7
|
Sinchow M, Sraphaengnoi O, Chuasaard T, Yoshinari N, Rujiwatra A. Polymorphism and Its Influence on Catalytic Activities of Lanthanide-Glutamate-Oxalate Coordination Polymers. Inorg Chem 2024; 63:7735-7745. [PMID: 38636105 DOI: 10.1021/acs.inorgchem.4c00095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
To study the relationship between polymorphism and catalytic activities of lanthanide coordination polymers in the cycloaddition reactions of CO2 with epoxides, the monoclinic and triclinic polymorphs of [LnIII(NH3-Glu)(ox)]·2H2O, where LnIII = LaIII (I), PrIII (II), NdIII (III), SmIII (IV), EuIII (V), GdIII (VI), TbIII (VII), and DyIII (VIII), NH3-Glu- = NH3+ containing glutamate, and ox2- = oxalate, were synthesized and characterized. Factors determining polymorphic preference, the discrepancy between the two polymorphic framework structures, potential acidic and basic sites, thermal and chemical stabilities, active surface areas, void volumes, CO2 sorption/desorption isotherms, and temperature-programmed desorption of NH3 and CO2 are comparatively presented. Based on the cycloaddition of CO2 with epichlorohydrin in the presence of tetrabutylammonium bromide under solvent-free conditions and ambient pressure, catalytic activities of the two polymorphs were evaluated, and the relationship between polymorphism and catalytic performances has been established. Better performances of the monoclinic catalysts have been revealed and rationalized. In addition, the scope of monosubstituted epoxides was experimented and the outstanding performance of the monoclinic catalyst in the cycloaddition reaction of CO2 with allyl glycidyl ether under ambient pressure has been disclosed.
Collapse
Affiliation(s)
- Malee Sinchow
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Oraya Sraphaengnoi
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thammanoon Chuasaard
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nobuto Yoshinari
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| | - Apinpus Rujiwatra
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
8
|
Liang ZL, Zhang ZH, Jiao YE, Xu H, Hu HS, Zhao B. Highly Stable 72-Nuclearity Nanocages for Efficient Synthesis of Aryl Nitriles via Ni/Cu Synergistic Catalysis. J Am Chem Soc 2024; 146:10776-10784. [PMID: 38578219 DOI: 10.1021/jacs.4c00885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Seeking noble-metal-free catalysts for efficient synthesis of aryl nitriles under mild conditions poses a significant challenge due to the use of hypertoxic cyanides or high-pressure/temperature NH3/O2 in conventional synthesis processes. Herein, we developed a novel framework 1 assembled by [Ni72] nanocages with excellent solvents/pH stability. To investigate the structure-activity relationship of catalytic performance, several isostructural MOFs with different molar ratios of Ni/Cu by doping Cu2+ into framework 1 (Ni0.59Cu0.41 (2), Ni0.81Cu0.19 (3), Ni0.88Cu0.12 (4), and Ni0.92Cu0.08 (5)) were prepared. Catalytic studies revealed that catalyst 3 exhibited remarkable performance in the synthesis of aryl nitriles, utilizing a formamide alternative to hypertoxic NaCN/KCN. Notably, catalyst 3 achieved an excellent TOF value of 9.8 h-1. Furthermore, catalyst 3 demonstrated its applicability in a gram-scale experiment and maintained its catalytic performance even after six recycling cycles, owing to its high stability resulting from significant electrostatic and orbital interactions between the Ni center and ligands as well as a large SOMO-LUMO energy gap supported by DFT calculations. Control experiments and DFT calculations further revealed that the excellent catalytic performance of catalyst 3 originated from the synergistic effect of Ni/Cu. Importantly, this work not only provides a highly feasible method to construct highly stable MOFs containing multinuclear nanocages with exceptional catalytic performance but also represents the first example of a heterogeneous catalyst for the synthesis of aryl nitriles using formamide as the cyanide source.
Collapse
Affiliation(s)
- Ze-Long Liang
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (Ministry of Education), and Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Zi-He Zhang
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Yue-E Jiao
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (Ministry of Education), and Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hang Xu
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (Ministry of Education), and Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Han-Shi Hu
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Bin Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (Ministry of Education), and Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
9
|
Xu N, Chen W, Ding YS, Zheng Z. A Cubic Tinkertoy-like Heterometallic Cluster with a Record Magnetocaloric Effect. J Am Chem Soc 2024; 146:9506-9511. [PMID: 38557065 DOI: 10.1021/jacs.4c01372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Clusters showing a giant magnetocaloric effect (MCE) are of interest as molecular coolants for magnetic refrigeration. Herein, we report two heterometallic clusters, denoted as Gd152Ni14@Cl24 and Sm152Ni8, just to highlight their inorganic core motifs, obtained by ligand-controlled co-hydrolysis of Ni2+ and Ln3+ (Ln = Gd, Sm) in the presence of N-(2-hydroxyethyl)iminodiacetic acid (H2HEIDA). Both clusters display fascinating cubic Tinkertoy-like structures, with the core motifs being built of multiple metallic shells of Platonic and Archimedean polyhedra. The isothermal magnetic entropy change─a direct measurement of MCE─was determined to be 52.65 J·kg-1·K-1 at 2.5 K and 7.0 T for the Gd-containing cluster; this value is the highest known for any molecular clusters so far reported.
Collapse
Affiliation(s)
- Na Xu
- Department of Chemistry and Key University Laboratory of Rare Earth Chemistry of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wanmin Chen
- Department of Chemistry and Key University Laboratory of Rare Earth Chemistry of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - You-Song Ding
- Department of Chemistry and Key University Laboratory of Rare Earth Chemistry of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhiping Zheng
- Department of Chemistry and Key University Laboratory of Rare Earth Chemistry of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
10
|
Xie JN, Li YL, Wang HL, Xiao ZX, Zhu ZH, Liang FP, Zou HH. Different anion (NO 3- and OAc -)-controlled construction of dysprosium clusters with different shapes. Dalton Trans 2024; 53:5665-5675. [PMID: 38445301 DOI: 10.1039/d3dt03314g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The complex hydrolysis process and strong uncertainty of self-assembly rules have led to the precise synthesis of lanthanide clusters still being in the "blind-box" stage and simplifying the self-assembly process and developing reliable regulation strategies have attracted widespread attention. Herein, different anions are used to induce the construction of a series of dysprosium clusters with different shapes and connections. When the selected anion is NO3-, it blocks the coordination of metal sites around the cluster through the terminal group coordination mode, thereby controlling the growth of the cluster. When NO3- was changed to OAc-, OAc- adopted a bridging mode to induce modular units to build dysprosium clusters through an annular growth mechanism. Specifically, we selected 2-amino-6-methoxybenzoic acid, 2-hydroxybenzaldehyde, and Dy(NO3)3·6H2O to react under solvothermal conditions to obtain a pentanuclear dysprosium cluster (1). The five Dy(III) ions in 1 are distributed in upper and lower planes and are formed by the tight connection of nitrogen and oxygen atoms, and μ3-OH- bridges on the ligand. Next, octa-nuclear dysprosium cluster (2) were obtained by only regulating ligand substituents. The eight Dy(III) ions in 2 are tightly connected through ligand oxygen atoms, μ2-OH-, and μ3-OH- bridges, forming an elliptical {Dy/O} cluster core. Furthermore, only by changing NO3- to OAc-, a wheel-shaped tetradeca-nuclear dysprosium cluster (3) was obtained. Cluster 3 is composed of OAc- bridged multiple template Dy3L3 units and pulling of these template units connected by an annular growth mechanism forms a wheel-shaped cluster. The angle of the coordination site on NO3- is ∠ONO = 115°, which leads to the further extension of the metal sites on the periphery of clusters 1 and 2 through the terminal group coordination mode, thereby regulating the structural connection of the clusters. However, the angle of the coordination site on OAc- is ∠OCO = 128°, and a slightly increased angle leads to the formation of a ring-shaped cluster 3 by connecting the template units through bridging. This is a rare example of the controllable construction of lanthanide clusters with different shapes induced by the regulation of different anions, which provides a new method for the precise construction of lanthanide clusters with special shapes.
Collapse
Affiliation(s)
- Jia-Nan Xie
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Yun-Lan Li
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Hai-Ling Wang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Zi-Xin Xiao
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Zhong-Hong Zhu
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Fu-Pei Liang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Hua-Hong Zou
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China.
| |
Collapse
|
11
|
Jiao Y, Sanz S, van Leusen J, Gracia D, Canaj AB, Evangelisti M, Brechin EK, Dalgarno SJ, Kögerler P. Tandem templating strategies facilitate the assembly of calix[8]arene-supported Ln 18 clusters. Dalton Trans 2024; 53:4624-4630. [PMID: 38351772 DOI: 10.1039/d4dt00280f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Calix[n]arenes offer ideal chemical functionality through the polyphenolic lower rim to construct nano-sized coordination clusters with lanthanide (Ln) metal ions (e.g., NdIII10, GdIII8). However, the number of metal centers they can accommodate is still limited compared to that achievable with smaller ligands (e.g., GdIII140, GdIII104). Here, we exploit a combination of the "anion template strategy" and "templating ligands" to synthesise three highly symmetric (D3h, trigonal planar) LnIII18 (Ln = La, Nd, and Gd) systems, representing the largest calix[n]arene-based coordination clusters yet. The LnIII18 fragment is templated by a chloride anion located at the center of the cluster, wherefrom twelve μ3-OH- ligands bind 'internally' to the eighteen LnIII ions. 'Externally' the metallic skeleton is connected by p-tert-butylcalix[8]arene, oxo, chloro and carbonate ligands. The crystal packing in the lattice reveals large cylindrical channels of ∼26 Å in diameter, whose pore volume corresponds to ∼50% of the unit cell volume (using a 1.2 Å spherical probe radius). Magnetic measurements reveal the predominance of weak antiferromagnetic exchange in the Gd analog. Heat capacity data of GdIII18 reveal a high magnetic entropy with -ΔSm = 23.7 J K-1 kg-1, indicating potential for engineering magnetic refrigerant materials with calix[8]arenes.
Collapse
Affiliation(s)
- Yushu Jiao
- Institute of Inorganic Chemistry, RWTH Aachen University, 52056 Aachen, Germany.
| | - Sergio Sanz
- Peter Grünberg Institute, Electronic Properties (PGI-6), Forschungszentrum Jülich, 52425 Jülich, Germany.
| | - Jan van Leusen
- Institute of Inorganic Chemistry, RWTH Aachen University, 52056 Aachen, Germany.
| | - David Gracia
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC - Universidad de Zaragoza, Departamento de Física de la Materia Condensada, 50009 Zaragoza, Spain.
| | - Angelos B Canaj
- EaStCHEM School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK.
| | - Marco Evangelisti
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC - Universidad de Zaragoza, Departamento de Física de la Materia Condensada, 50009 Zaragoza, Spain.
| | - Euan K Brechin
- EaStCHEM School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK.
| | - Scott J Dalgarno
- Institute of Chemical Sciences, Heriot-Watt University, Riccarton, Edinburgh, EH14 4AS, UK.
| | - Paul Kögerler
- Institute of Inorganic Chemistry, RWTH Aachen University, 52056 Aachen, Germany.
- Peter Grünberg Institute, Electronic Properties (PGI-6), Forschungszentrum Jülich, 52425 Jülich, Germany.
| |
Collapse
|
12
|
Wang WM, Cheng RR, Wu ZL, Cui JZ. Bifunctional Lanthanide-Based Coordination Polymers: Conversion of CO 2 and Highly Selective Luminescence Sensing for Acetylacetone. Inorg Chem 2023; 62:14902-14911. [PMID: 37651103 DOI: 10.1021/acs.inorgchem.3c01626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
A series of bifunctional Ln(III)-based coordination polymers (CPs) {Ln(L)(DMA)2(NO3)}n [Ln(III) = Eu (1), Gd (2), and Dy (3); organic ligand H2L = 2,2'-(1,3,5,7-tetrahydroxyoctahydro-4,8-ethanopyrrolo[3,4-f]isoindole-2,6(1H,3H)-diyl)diacetic acid)] have been successfully synthesized. CPs 1-3 are isostructural and constructed from the dimeric Ln2 unit in which two adjacent LnIII ions are bridged by two μ3-carboxyl oxygens, and the Ln2 dimeric unit is connected by two NO3- ions, four DMA molecules, and four completely protonated L2- ligands forming a 2D layer structure. The magnetic research reveals that CP 2 shows a significant cryogenic magnetocaloric effect (-ΔSm = 22.9 J kg-1 K-1; T = 2.0 K and ΔH = 7.0 T), whereas CP 3 exhibits slow magnetic relaxation property under Hdc = 0 Oe field. Additionally, the luminescence explorations revealed that CP 1 can act as a recyclable luminescent probe for pollutant acetylacetone among various small organic solvent molecules, and the corresponding detection limit is 10-7 mol/L. More importantly, CP 1 also exhibits good catalytic performance in the cycloaddition reaction of CO2 and epoxides or cyanamides under mild conditions. As far as we know, CP 1 represents the first bifunctional lanthanide homogeneous catalyst that can efficiently catalyze the reaction of cyanamides/epoxides with CO2 simultaneously.
Collapse
Affiliation(s)
- Wen-Min Wang
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong 030619, China
- Department of Chemistry, Tianjin University, Tianjin 300072, China
| | - Rui-Rui Cheng
- Department of Chemistry, Tianjin University, Tianjin 300072, China
| | - Zhi-Lei Wu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Jian-Zhong Cui
- Department of Chemistry, Tianjin University, Tianjin 300072, China
| |
Collapse
|
13
|
Lin X, Yu YH, Chen GH, Li QH, Zhang L, Zhang J. Ligand-dependent structural diversity and optimizable CO 2 chemical fixation activities of Cu-doped polyoxo-titanium clusters. Dalton Trans 2023; 52:11451-11457. [PMID: 37547997 DOI: 10.1039/d3dt01718d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Heterometallic oxo clusters have been attracting intensive interest due to their unique properties originating from the synergistic interactions between different components. Herein, we report the construction and catalytic applications of a family of copper-doped polyoxo-titanium clusters (Cu-PTCs) coordinated with different acetate derivative ligands. The solvothermal reactions of metal salts and trimethylacetic acid or 1,2-phenylenediacetic acid in ethanol produced Ti6Cu3(μ3-O)4(μ2-O)(OEt)16(L1)4 (L1 = trimethyl acetate, PTC-367) and H2Ti8Cu2Br2(μ4-O)2(μ2-O)4(OEt)20(L2)2 (L2 = 1,2-phenylenediacetate, PTC-368), respectively. When smaller acetic acid was introduced as a stabilizing ligand, higher nuclei H2Ti16Cu3(μ4-O)5(μ3-O)15(μ2-O)3(OiPr)18(Ac)8 (Ac = acetate, PTC-369) and H3Ti29Cu3(μ4-O)6(μ3-O)30(μ2-O)8(OiPr)17(Ac)20 (PTC-370) were prepared. The number of metal ions exposed on the surface of the four clusters changes due to variations in the steric hindrance of functionalizing ligands, and theoretically, so does their catalytic activity as Lewis acids. In light of this, we conducted a carbon dioxide cycloaddition reaction in an atmospheric environment and the four obtained compounds displayed increasing catalytic activities from PTC-367 to PTC-370. These results provide a feasible synthetic method for modulating the structures of Cu-doped titanium oxide materials and improving their catalytic activities.
Collapse
Affiliation(s)
- Xin Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ying-Hua Yu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guang-Hui Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Qiao-Hong Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Lei Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| |
Collapse
|
14
|
Qiao N, Xin XY, Wang WM, Wu ZL, Cui JZ. Two novel Ln 8 clusters bridged by CO 32- effectively convert CO 2 into oxazolidinones and cyclic carbonates. Dalton Trans 2023. [PMID: 37466166 DOI: 10.1039/d3dt01465g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
It is difficult and challenging to design and construct high-nuclearity Ln(III)-based clusters due to the high coordination numbers and versatile coordination geometries of Ln(III) ions. Herein, two novel octanuclear Ln(III)-based clusters [Ln8(H2L-)4(HL2-)4(NO3)6 (CO3)2](NO3)2·2CH3CN (Ln = Nd (1) and Sm (2)) have been synthesized under solvothermal conditions. The X-ray single analysis reveals that both 1 and 2 are octanuclear structures and the eight central Ln(III) ions are bridged by two CO32- anions. Catalytic study revealed that 1 and 2 can effectively catalyze the cycloaddition reaction of CO2 and aziridines or epoxides simultaneously under mild conditions. What is more, cluster 1, as a heterogeneous catalyst, can be reused at least three times without obvious loss in catalytic activity for coupling of CO2 and epoxides. To our knowledge, cluster 1 is the first Ln(III)-based cluster catalyst used for the conversion of CO2 with aziridines or epoxides simultaneously. This work provides a successful strategy to integrate high-nuclear Ln(III)-based clusters for CO2 conversion, which may open a new space for the construction of multifunctional high-nuclear Ln(III)-based clusters as efficient catalysts for CO2 conversion.
Collapse
Affiliation(s)
- Na Qiao
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong, 030619, China.
| | - Xiao-Yan Xin
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong, 030619, China.
| | - Wen-Min Wang
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong, 030619, China.
- Department of Chemistry, Tianjin University, Tianjin, 300072, China
| | - Zhi-Lei Wu
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, PR China.
- Department of Chemistry, Tianjin University, Tianjin, 300072, China
| | - Jian-Zhong Cui
- Department of Chemistry, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
15
|
Gálico DA, Santos Calado CM, Murugesu M. Lanthanide molecular cluster-aggregates as the next generation of optical materials. Chem Sci 2023; 14:5827-5841. [PMID: 37293634 PMCID: PMC10246660 DOI: 10.1039/d3sc01088k] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/10/2023] [Indexed: 06/10/2023] Open
Abstract
In this perspective, we provide an overview of the recent achievements in luminescent lanthanide-based molecular cluster-aggregates (MCAs) and illustrate why MCAs can be seen as the next generation of highly efficient optical materials. MCAs are high nuclearity compounds composed of rigid multinuclear metal cores encapsulated by organic ligands. The combination of high nuclearity and molecular structure makes MCAs an ideal class of compounds that can unify the properties of traditional nanoparticles and small molecules. By bridging the gap between both domains, MCAs intrinsically retain unique features with tremendous impacts on their optical properties. Although homometallic luminescent MCAs have been extensively studied since the late 1990s, it was only recently that heterometallic luminescent MCAs were pioneered as tunable luminescent materials. These heterometallic systems have shown tremendous impacts in areas such as anti-counterfeiting materials, luminescent thermometry, and molecular upconversion, thus representing a new generation of lanthanide-based optical materials.
Collapse
Affiliation(s)
- Diogo Alves Gálico
- Department of Chemistry and Biomolecular Sciences, University of Ottawa Ottawa Ontario K1N 6N5 Canada
| | | | - Muralee Murugesu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa Ottawa Ontario K1N 6N5 Canada
| |
Collapse
|
16
|
Wang HL, Liu D, Jia JH, Liu JL, Ruan ZY, Deng W, Yang S, Wu SG, Tong ML. High-stability spherical lanthanide nanoclusters for magnetic resonance imaging. Natl Sci Rev 2023; 10:nwad036. [PMID: 37200676 PMCID: PMC10187785 DOI: 10.1093/nsr/nwad036] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 10/17/2022] [Accepted: 11/09/2022] [Indexed: 11/19/2023] Open
Abstract
High-nuclear lanthanide clusters have shown great potential for the administration of high-dose mononuclear gadolinium chelates in magnetic resonance imaging (MRI). The development of high-nuclear lanthanide clusters with excellent solubility and high stability in water or solution has been challenging and is very important for expanding the performance of MRI. We used N-methylbenzimidazole-2-methanol (HL) and LnCl3·6H2O to synthesize two spherical lanthanide clusters, Ln32 (Ln = Ho, Ho32; and Ln = Gd, Gd32), which are highly stable in solution. The 24 ligands L- are all distributed on the periphery of Ln32 and tightly wrap the cluster core, ensuring that the cluster is stable. Notably, Ho32 can remain highly stable when bombarded with different ion source energies in HRESI-MS or immersed in an aqueous solution of different pH values for 24 h. The possible formation mechanism of Ho32 was proposed to be Ho(III), (L)- and H2O → Ho3(L)3/Ho3(L)4 → Ho4(L)4/Ho4(L)5 → Ho6(L)6/Ho6(L)7 → Ho16(L)19 → Ho28(L)15 → Ho32(L)24/Ho32(L)21/Ho32(L)23. To the best of our knowledge, this is the first study of the assembly mechanism of spherical high-nuclear lanthanide clusters. Spherical cluster Gd32, a form of highly aggregated Gd(III), exhibits a high longitudinal relaxation rate (1 T, r1 = 265.87 mM-1·s-1). More notably, compared with the clinically used commercial material Gd-DTPA, Gd32 has a clearer and higher-contrast T1-weighted MRI effect in mice bearing 4T1 tumors. This is the first time that high-nuclear lanthanide clusters with high water stability have been utilized for MRI. High-nuclear Gd clusters containing highly aggregated Gd(III) at the molecular level have higher imaging contrast than traditional Gd chelates; thus, using large doses of traditional gadolinium contrast agents can be avoided.
Collapse
Affiliation(s)
- Hai-Ling Wang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Donglin Liu
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Jian-Hua Jia
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Jun-Liang Liu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Ze-Yu Ruan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Wei Deng
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Shiping Yang
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Si-Guo Wu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Ming-Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
17
|
Wang Q, Yu YT, Wang JL, Li JN, Li NF, Fan X, Xu Y. Two Windmill-Shaped Ln 18 Nanoclusters Exhibiting High Magnetocaloric Effect and Luminescence. Inorg Chem 2023; 62:3162-3169. [PMID: 36734987 DOI: 10.1021/acs.inorgchem.2c04065] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The self-assembly of the high-nuclearity Ln-exclusive nanoclusters is challenging but of significance due to its aesthetically pleasing architectures and far-reaching latent applications in magnetic cooling technologies. Herein, two novel high-nuclearity lanthanide nanoclusters were successfully synthesized under solvothermal conditions, formulated as {[Gd18(IN)20(HCOO)8(μ6-O)(μ3-OH)24(H2O)4]·4H2O}n and {[Eu18(IN)16(HCOO)8(CH3COO)4(μ6-O)(μ3-OH)24(H2O)4]·5H2O}n (abbreviated as Gd18 and Eu18, HIN = isonicotinic acid). Both of them possess novel and exquisite windmill-shaped cationic cores in the family of high-nuclearity Ln-exclusive nanoclusters. Remarkably, the adjacent second building units are interconnected into a three-dimensional (3D) metal-organic framework by IN- ligands. As expected, the abundant existence of GdIII ions endows Gd18 with a favorable magnetic entropy change at 2.0 K for ΔH = 7.0 T (-ΔSmmax = 40.0 J kg-1 K-1), and Eu18 displays the typical luminescence of EuIII ions.
Collapse
Affiliation(s)
- Qin Wang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Ya-Ting Yu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Ji-Lei Wang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Jia-Nian Li
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Ning-Fang Li
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Xinrong Fan
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Yan Xu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China.,Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
18
|
Wang YF, Gao X, Cao CS, Li SM, Wu ZL. Assembly of tetra-nuclear lanthanide compounds: Structures, magnetic refrigeration and slow relaxation of magnetization. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2022.121327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
19
|
Zhou XY, Wang F, Zhang J. Syntheses of new high-symmetric polyoxometalates with Mo4O4 cubane core. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2022.123647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
20
|
Wang HL, Li YL, Zhu ZH, Lu XL, Liang FP, Zou HH. Anion-Manipulated Hydrolysis Process Assembles of Giant High-Nucleation Lanthanide-Oxo Cluster. Inorg Chem 2022; 61:20169-20176. [PMID: 36445983 DOI: 10.1021/acs.inorgchem.2c03924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Widespread concern has been raised over the synthesis of highly nucleated lanthanide clusters with special shapes and/or specific linkages. Construction of lanthanide clusters with specific shapes and/or linkages can be achieved by carefully regulating the hydrolysis of lanthanide metal ions and the resulting hydrolysis products. However, studies on the manipulation of lanthanide-ion hydrolysis to obtain giant lanthanide-oxo clusters have been few. In this study, we obtained a tetraicosa lanthanide cluster (3) by manipulating the hydrolysis of Dy(III) ions using an anion (OAc-). As far as we know, cluster 3 has the highest nucleation among all lanthanide-oxo clusters reported. In 3, two triangular Dy3O4 are oriented in opposite directions to form the central connecting axis Dy6(OH)8, which is in turn connected to six Dy3O4 that are oriented in different directions. Meanwhile, a sample of a chiral trinuclear dysprosium cluster (1) was obtained in a mixed CH3OH and CH3CN solvent and by replacing the anion in the reaction to Cl- ions. In this cluster, 1,3,4-thiadiazole-2,5-diamine (L2) is free on one side through π···π interactions and is parallel to the o-vanillin (L1)- ligand, thus resulting in a triangular arrangement. The arrangement of L2 affects the end group coordination in the cluster 1 structure through hydrogen bonding and induces the cluster to exhibit chirality. When the reaction solvent was changed to CH3OH, a sample of cluster 2, composed of two independent triangular Dy3 that have different end group arrangements, was obtained. Magnetic analysis showed that clusters 1 and 3 both exhibit distinctive single-molecule magnetic properties under zero-magnetic-field conditions. This study thus provides a method for the creation of chiral high-nucleation clusters from achiral ligands and potentially paves the way for the synthesis of high-nucleation lanthanide clusters with unique forms.
Collapse
Affiliation(s)
- Hai-Ling Wang
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Yun-Lan Li
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Zhong-Hong Zhu
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Xing-Lin Lu
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Fu-Pei Liang
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China.,Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China
| | - Hua-Hong Zou
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| |
Collapse
|
21
|
Xu J, Xu H, Dong A, Zhang H, Zhou Y, Dong H, Tang B, Liu Y, Zhang L, Liu X, Luo J, Bie L, Dai S, Wang Y, Sun X, Li Y. Strong Electronic Metal-Support Interaction between Iridium Single Atoms and a WO 3 Support Promotes Highly Efficient and Robust CO 2 Cycloaddition. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206991. [PMID: 36081338 DOI: 10.1002/adma.202206991] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/06/2022] [Indexed: 06/15/2023]
Abstract
The carbon dioxide (CO2 ) cycloaddition of epoxides to cyclic carbonates is of great industrial importance owing to the high economical values of its products. Single-atom catalysts (SACs) have great potential in CO2 cycloaddition by virtue of their high atom utilization efficiency and desired activity, but they generally suffer from poor reaction stability and catalytic activity arising from the weak interaction between the active centers and the supports. In this work, Ir single atoms stably anchored on the WO3 support (Ir1 -WO3 ) are developed with a strong electronic metal-support interaction (EMSI). Superior CO2 cycloaddition is realized in the Ir1 -WO3 catalyst via the EMSI effect: 100% conversion efficiency for the CO2 cycloaddition of styrene oxide to styrene carbonate after 15 h at 40 °C and excellent stability with no degradation even after ten reaction cycles for a total of more than 150 h. Density functional theory calculations reveal that the EMSI effect results in significant charge redistribution between the Ir single atoms and the WO3 support, and consequently lowers the energy barrier associated with epoxide ring opening. This work furnishes new insights into the catalytic mechanism of CO2 cycloaddition and would guide the design of stable SACs for efficient CO2 cycloaddition reactions.
Collapse
Affiliation(s)
- Jie Xu
- School of Materials Science and Engineering, Tianjin Key Lab of Photoelectric Materials & Devices, Tianjin University of Technology, Tianjin, 300384, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Heng Xu
- School of Materials Science and Engineering, Tianjin Key Lab of Photoelectric Materials & Devices, Tianjin University of Technology, Tianjin, 300384, China
| | - Anqi Dong
- School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Hao Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Yitong Zhou
- School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Hao Dong
- School of Materials Science and Engineering, Tianjin Key Lab of Photoelectric Materials & Devices, Tianjin University of Technology, Tianjin, 300384, China
| | - Bo Tang
- School of Materials Science and Engineering, Tianjin Key Lab of Photoelectric Materials & Devices, Tianjin University of Technology, Tianjin, 300384, China
| | - Yifei Liu
- School of Materials Science and Engineering, Tianjin Key Lab of Photoelectric Materials & Devices, Tianjin University of Technology, Tianjin, 300384, China
| | - Lexi Zhang
- School of Materials Science and Engineering, Tianjin Key Lab of Photoelectric Materials & Devices, Tianjin University of Technology, Tianjin, 300384, China
| | - Xijun Liu
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, and Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Resource, Environments and Materials, Guangxi University, Nanning, 530004, China
| | - Jun Luo
- School of Materials Science and Engineering, Tianjin Key Lab of Photoelectric Materials & Devices, Tianjin University of Technology, Tianjin, 300384, China
| | - Lijian Bie
- School of Materials Science and Engineering, Tianjin Key Lab of Photoelectric Materials & Devices, Tianjin University of Technology, Tianjin, 300384, China
| | - Sheng Dai
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuhang Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Xuhui Sun
- School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Yanguang Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| |
Collapse
|
22
|
Hu P, Li S, Cao L, Liu A, Zhuang GL, Ji L, Li B. Construction of a High Nuclear Gadolinium Cluster with Enhanced Magnetocaloric Effect through Structural Transition. ACS OMEGA 2022; 7:38782-38788. [PMID: 36340128 PMCID: PMC9631744 DOI: 10.1021/acsomega.2c04412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/11/2022] [Indexed: 06/10/2023]
Abstract
Starting from a dinuclear complex {Gd2(L)2(NO3)4(H2O)2}·2(CH3CN) (1) based on 2,6-dimethoxyphenol (HL), a nonanuclear cluster {Gd9(L)4(μ4-OH)2(μ3-OH)8(μ2-OCH3)4(NO3)8 (H2O)8}(OH)·2H2O (2) was obtained via modulating the amount of the ligand and base. Both of them have been structurally and magnetically characterized. Complex 1 decorates the Gd2 core bridged by double μ2-phenoxyl oxygen atoms and coordinated neutral CH3CN molecules, while 2 features the Gd9 core with a sandglass-like topology. Magnetic investigations reveal that the weaker antiferromagnetic interactions between adjacent metal ions exist in complex 2 than in 1, which is in agreement with the theoretical results. Meanwhile, the magnetocaloric effect with a maximum -ΔS m value changes from 27.32 to 40.60 J kg-1 K-1 at 2 K and 7 T.
Collapse
Affiliation(s)
- Peng Hu
- Hubei
Key Laboratory of Radiation Chemistry and Functional Materials, Non-power
Nuclear Technology Collaborative Innovation Center, Hubei University of Science and Technology, Xianning, Hubei437100, China
| | - Shanghua Li
- Hubei
Key Laboratory of Radiation Chemistry and Functional Materials, Non-power
Nuclear Technology Collaborative Innovation Center, Hubei University of Science and Technology, Xianning, Hubei437100, China
| | - Linghui Cao
- Hubei
Key Laboratory of Bioinorganic Chemistry & Materia Medica, School
of Chemistry and Chemical Engineering, Huazhong
University of Science and Technology, Wuhan, Hubei430074, China
| | - Aogang Liu
- Hubei
Key Laboratory of Bioinorganic Chemistry & Materia Medica, School
of Chemistry and Chemical Engineering, Huazhong
University of Science and Technology, Wuhan, Hubei430074, China
| | - Gui-Lin Zhuang
- Institute
of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang310023, China
| | - Liudi Ji
- Hubei
Key Laboratory of Radiation Chemistry and Functional Materials, Non-power
Nuclear Technology Collaborative Innovation Center, Hubei University of Science and Technology, Xianning, Hubei437100, China
| | - Bao Li
- Hubei
Key Laboratory of Bioinorganic Chemistry & Materia Medica, School
of Chemistry and Chemical Engineering, Huazhong
University of Science and Technology, Wuhan, Hubei430074, China
| |
Collapse
|
23
|
Tapiador J, Leo P, Gándara F, Calleja G, Orcajo G. Robust Cu-URJC-8 with mixed ligands for mild CO2 cycloaddition reaction. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
24
|
Yang C, Lei WT, Xin XY, Qiao N, Hao FF, Zhang QF, Zhou Y, Fang M, Wang WM. Construction of two Ln(III)2 (Ln = Dy and Er) compounds by a polydentate Schiff-based ligand: Structure and remarkable single-molecule magnet behavior. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Miao CQ, Wang N, Ling YN, Ma XQ, Chen YX, Wang RF, Hou LH, Hua YP, Kang MY, Fang M. LnIII2 compounds constructing by polydentate Schiff base ligand and β-diketonate coligand: structures, magnetocaloric effect and SMMs behaviors. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Wang WM, Xin XY, Qiao N, Wu ZL, Li L, Zou JY. Self-assembly of octanuclear Ln(III)-based clusters: their large magnetocaloric effects and highly efficient conversion of CO 2. Dalton Trans 2022; 51:13957-13969. [PMID: 36040689 DOI: 10.1039/d2dt01892f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The design and construction of high-nuclear lanthanide clusters with fascinating topology and functional properties have been an active area of research, however, the development of an effective approach for obtaining high-nuclear lanthanide clusters with multifunctional properties is still extremely difficult. Up to now, a systematic approach for guiding the further expansion of Ln(III)-based clusters showing good functional properties is lacking. Herein, we design and synthesize a polydentate Schiff base ligand (HL), which reacts with β-diketonate salts Ln(acac)3·2H2O, and a series of Ln8 clusters [Ln8(acac)6(L)2(μ3-O)6(μ2-C2H5O)4(μ2-Hacac)2]·2CH3CN (Ln(III) = Gd (1), Dy (2), and Ho (3); HL = pyridine-2-carboxylic acid (5-hydroxymethyl-furan-2-ylmethylene)-hydrazide, Hacac = acetylacetone) have been successfully synthesized. Single-crystal X-ray diffraction studies reveal that clusters 1-3 are isostructural and can be viewed as a Ln8 core bridged by eighteen μ2-O atoms, six μ3-O atoms and two μ4-O atoms. Magnetic studies show that cluster 1-Gd8 displays a large magnetocaloric effect with -ΔSm = 46.14 J kg-1 K-1 (T = 2.0 K and ΔH = 7.0 T); cluster 2-Dy8 exhibits single-molecule magnet behavior under zero-field conditions. It is worth mentioning that the -ΔSm of cluster 1-Gd8 is larger than that of most reported polynuclear Gd(III)-based clusters; the 2-Dy8 cluster is one of the rare polynuclear Lnn SMMs (n ≥ 8) under zero dc field. Importantly, these Ln(III)-based clusters (1-3) can catalyze the cycloaddition of CO2 with epoxides with high efficiency under mild conditions; and cluster 1-Gd8 as a catalyst could be reused at least three times without obvious loss of catalytic performance.
Collapse
Affiliation(s)
- Wen-Min Wang
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong, 030619, China.,Department of Chemistry, Tianjin University, Tianjin, 300072, China.
| | - Xiao-Yan Xin
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong, 030619, China
| | - Na Qiao
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong, 030619, China
| | - Zhi-Lei Wu
- Department of Chemistry, Tianjin University, Tianjin, 300072, China. .,College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China
| | - Ling Li
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, 330096, China.
| | - Ji-Yong Zou
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, 330096, China. .,Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, PR China
| |
Collapse
|
27
|
Wang HT, Niu XY, Zhang GX, Jiao YH, Wu JY, Zhang Y, Hou YL. Two butterfly-shaped LnIII2 compounds constructed by a multidentate Schiff base ligand: Structures, fluorescence properties and SMMs behaviors. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Magnetocaloric Effect of Two Gd-Based Frameworks. INORGANICS 2022. [DOI: 10.3390/inorganics10070091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Magnetic refrigeration material is the key to adiabatic demagnetization refrigeration technology. In this work, two magnetic refrigerants, Gd5(C4O4)(HCOO)3(CO3)2(OH)6·2.5H2O (1) and Gd2(OH)4SO4 (2), were prepared through hydrothermal reaction. Magnetic study reveals that their magnetic entropy changes are 24.8 J kg−1 K−1 for 1 and 15.1 J kg−1 K−1 for 2 at 2 K and 2 T, respectively. The magnetic entropy changes of 1 and 2 at T = 2 K and ∆H = 2 T exceed most gadolinium hydroxyl compounds, indicating that magnetic refrigerants with large magnetic entropy changes at low magnetic fields can be obtained by introducing more weak magnetic exchange ligands to replace hydroxyl groups in gadolinium hydroxyl compounds.
Collapse
|
29
|
Li YL, Wang HL, Zhu ZH, Liang FP, Zou HH. Giant Crown-Shaped Dy 34 Nanocluster with High Acid-Base Stability Assembled by an out-to-in Growth Mechanism. Inorg Chem 2022; 61:10101-10107. [PMID: 35709380 DOI: 10.1021/acs.inorgchem.2c01175] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lanthanoid metal ions have large ionic radii, complex coordination modes, and easy distortion of coordination spheres, but the design and synthesis of high-nucleation lanthanoid clusters with high stability in solution (especially aqueous solution) are challenging. Herein, a diacylhydrazone ligand (H2L1) with multidentate chelating coordination sites was used to react with Dy(OAc)3·4H2O under solvothermal conditions to obtain an example of a 34-nucleus crown-shaped dysprosium cluster [Dy34(L)8(μ2-OH)(μ3-OH)21(μ3-O)14(OAc)31(OCH3)2(H2O)15](OAc)3 (1). Structural analysis showed that the bisacylhydrazone ligand H2L1 with polydentate chelate coordination sites could rapidly capture DyIII ions, thereby forming 34-nucleus crown-shaped dysprosium cluster 1 following the out-to-in growth mechanism. Cluster 1 remained stable after immersion in solutions with different pH values (3-14) for 24 h. To the best of the authors' knowledge, high-nucleation lanthanoid clusters with excellent strong acid and base stability and water stability are very rare. Meanwhile, high-resolution electrospray mass spectrometry molecular ion peaks produced by cluster 1 were captured, which proved to be stable also in organic solvents. Magnetic research showed that cluster 1 exhibited frequency-dependent behavior. This work provides a new idea for designing and synthesizing high-nucleation lanthanoid clusters with high stability.
Collapse
Affiliation(s)
- Yun-Lan Li
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Hai-Ling Wang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Zhong-Hong Zhu
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Fu-Pei Liang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China.,Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China
| | - Hua-Hong Zou
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| |
Collapse
|
30
|
Li Y, You Y, Zhao P, Ding B, Zhang N, Liu ZY, Yang EC, Zhao XJ. Fine tuning the relaxation dynamics of mononuclear Dy(III) complexes by auxiliary ligand. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
31
|
Tian YQ, Cui YS, Yu WD, Xu CQ, Yi XY, Yan J, Li J, Liu C. An ultrastable Ti-based metallocalixarene nanocage cluster with photocatalytic amine oxidation activity. Chem Commun (Camb) 2022; 58:6028-6031. [PMID: 35502757 DOI: 10.1039/d2cc01740g] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Polyhedral metallocalixarene nanocage clusters based on pure Ti(IV) ions are to our knowledge unknown hitherto. Herein we report the first Ti(IV)-based metallocalixarene nanocage cluster by assembling a [Ti13O14] cage with six t-butylcalix[4]arene molecules. Notably, the cluster exhibits extraordinary stability in high-concentration acid/alkali solutions and can act as a stable photocatalyst to catalyze the oxidation of ammonia to imines.
Collapse
Affiliation(s)
- Yi-Qi Tian
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China.
| | - Yun-Shu Cui
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China.
| | - Wei-Dong Yu
- College of Science, Hunan University of Technology and Business, Changsha 410000, P. R. China
| | - Cong-Qiao Xu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China.
| | - Xiao-Yi Yi
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China.
| | - Jun Yan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China.
| | - Jun Li
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China.
| | - Chao Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China.
| |
Collapse
|
32
|
Tapiador J, Leo P, Rodríguez-Diéguez A, Choquesillo-Lazarte D, Calleja G, Orcajo G. A novel Zn-based-MOF for efficient CO2 adsorption and conversion under mild conditions. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.11.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
33
|
|
34
|
Ding QR, Yu Y, Cao C, Zhang J, Zhang L. Stepwise assembly and reversible structural transformation of ligated titanium coated bismuth-oxo cores: shell morphology engineering for enhanced chemical fixation of CO 2. Chem Sci 2022; 13:3395-3401. [PMID: 35432876 PMCID: PMC8943896 DOI: 10.1039/d1sc06847d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/01/2022] [Indexed: 12/03/2022] Open
Abstract
Herein, we report the stepwise assembly and reversible transformation of atomically precise ligated titanium coated bismuth-oxide core nanostructures. The soluble and stable Bi38O45@Ti6-oxo clusters with weakly coordinated surface salicylate ligands were first prepared as precursors. Owing to the high surface reactivity of the Bi38O45 inner core, its shell composition and morphology could be systemically modified by assembly with various Ti ions and auxiliary ligands (L), especially those with different flexibility, bridging ability and steric hindrance. As a result, a series of new core-shell Bi38O44/45@Ti x L-oxo (x = 14, 16, 18 or 20) clusters containing gradually increasing shell Ti atoms were successfully synthesized. Among them, the Bi38Ti20-oxo cluster is the largest one in the family of heterometallic Bi/Ti-oxo clusters to date. In addition, the sensitized titanium outer shell can effectively improve the photocurrent response under visible light irradiation. More remarkably, the obtained core-shell Bi38O44/45@Ti x L-oxo clusters can serve as stable and efficient catalysts for CO2 cycloaddition with epoxides under ambient conditions, whose activity was significantly influenced by the outer ligated titanium shell structure. This work provides a new insight into the construction of atomically precise heterometallic core-shell nanostructures and also an interesting shell engineering strategy for tuning their physicochemical properties.
Collapse
Affiliation(s)
- Qing-Rong Ding
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yinghua Yu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| | - Changsheng Cao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| | - Lei Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| |
Collapse
|
35
|
Chen X, Wei M, Yang A, Jiang F, Li B, Kholdeeva OA, Wu L. Near-Infrared Photothermal Catalysis for Enhanced Conversion of Carbon Dioxide under Mild Conditions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:5194-5202. [PMID: 35067040 DOI: 10.1021/acsami.1c18889] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Enhanced conversion of carbon dioxide (CO2) for cycloaddition with epoxide derivatives is highly desired in organic synthesis and green chemistry, yet it is still a challenge to obtain satisfactory activity under mild reaction conditions of temperature and pressure. For this purpose, an unexploited strategy is proposed here by incorporating near-infrared (NIR) photothermal properties into multicomponent catalysts. Through the electrostatic adsorption of Co- or Ce-substituted polyoxometalate (POM) clusters on the surface of graphene oxide (GO) with covalently grafted polyethyleneimine (PEI), a series of composite catalysts POMs@GO-PEI are prepared. The structural and property characterizations demonstrate the synergistic advantages of the catalysts bearing Lewis acids and bases and local NIR photothermal heating from the GO matrix for dramatically enhanced CO2 cycloaddition. Noticeably, while the turnover frequency increases up to 2718 h-1, the heterogeneous catalysts exhibit photothermal stability and recyclability. With this method, the onsite NIR photothermal transformation becomes extendable to more green reaction processes.
Collapse
Affiliation(s)
- Xiaofei Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Mingfeng Wei
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Aibing Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Fengrui Jiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Oxana A Kholdeeva
- Boreskov Institute of Catalysis, 5, avenue Academy Lavrentiev, Novosibirsk 630090, Russia
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
36
|
Ye Y, Ge B, Meng X, Liu Y, Wang S, Song X, Liang Z. An yttrium-organic framework based on a hexagonal prism second building unit for luminescent sensing of antibiotics and highly effective CO2 fixation. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01352a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
An yttrium-organic framework based on a hexagonal prism second building unit was constructed from nonanuclear yttrium(iii) and 2,3,5,6-tetrakis(4-carboxyphenyl)pyrazine for the luminescent sensing of antibiotics and highly effective CO2 fixation.
Collapse
Affiliation(s)
- Yu Ye
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Bangdi Ge
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xianyu Meng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yuchuan Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Shun Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xiaowei Song
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Zhiqiang Liang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
37
|
Li F, Chen Y, Gao A, Tong W, Ji C, Cheng Y, Zhou YH. Integration of polypyridyl-based ionic liquids into MIL-101 for promoting CO 2 conversion into cyclic carbonates under cocatalyst-free and solventless conditions. NEW J CHEM 2022. [DOI: 10.1039/d2nj03302j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The polypyridyl-based ionic liquid-functionalized MIL-101(Cr) greatly enhanced the epoxide–CO2 cycloaddition reaction under cocatalyst-free and solventless conditions.
Collapse
Affiliation(s)
- Fangfang Li
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Yan Chen
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Aijia Gao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Wenjing Tong
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Changchun Ji
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Yong Cheng
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Ying-Hua Zhou
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| |
Collapse
|
38
|
Solvent Selective Polyacrylonitrile Fiber as a Recyclable Catalyst for the Knoevenagel-Michael Reaction in Water. Catal Letters 2022. [DOI: 10.1007/s10562-021-03593-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
39
|
Li YL, Wang HL, Zhu ZH, Li J, Zou HH, Peng JM, Liang FP. Truncation reaction regulates the out-to-in growth mechanism to decrypt the formation of brucite-like dysprosium clusters. Dalton Trans 2021; 51:197-202. [PMID: 34878449 DOI: 10.1039/d1dt03137f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Specially shaped high-nuclear lanthanide cluster assembly has attracted widespread attention, but the study of their self-assembly mechanism is still stagnant. Herein, we used a polydentate chelating bis-acylhydrazone ligand to construct a rare 16-nuclear dysprosium cluster 1 with a brucite-like structure. The capture agents, pivalic acid and di(pyridin-2-yl)methanone, were added into the reaction system, and the hexanuclear dysprosium cluster 2 and heptanuclear dysprosium cluster 3 were obtained, respectively. Clusters 2 and 3 support the out-to-in growth mechanism as key evidence. To the best of our knowledge, this study is the first to use truncation reaction to decipher the formation mechanism of high-nuclear lanthanide clusters.
Collapse
Affiliation(s)
- Yun-Lan Li
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Hai-Ling Wang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Zhong-Hong Zhu
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China. .,State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, 510640 Guangzhou, P. R. China
| | - Juan Li
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Hua-Hong Zou
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Jin-Mei Peng
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Fu-Pei Liang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China. .,Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China
| |
Collapse
|
40
|
Abstract
Lanthanide-oxo/hydroxo clusters (LOCs) in this mini-review refer to polynuclear complexes featuring a polyhedral metal-oxo/hydroxo cluster core of lanthanide ions exclusively or with coexisting 3d metal ions. We summarize herein the recent works using this unique family of cluster complexes for catalysis; this aspect of research stands in stark contrast to their extensively studied synthetic and structural chemistry as well as the much-researched magnetic properties. Following a brief introduction of the synthetic strategies for these clusters, pertinent results from available literature reports are surveyed and discussed according to the types of catalyzed reactions. Particular attention was paid to the selection of a cluster catalyst for a specific type of reactions as well as the corresponding reaction mechanism. To the end, the advantages and challenges in utilizing LOCs as multifunctional catalysts are summarized, and possible future research directions are proposed.
Collapse
|
41
|
Larger magnetocaloric effect and single molecule magnet behavior in dinuclear Ln(III)-based compounds constructed from Schiff base ligand. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Guan XF, Zhao HJ, Hao YJ, Guo XR, Yang ZP, Zhang FY, Wang WM. Structures, luminescence properties and single-molecule magnet behavior of four dinuclear lanthanide compounds. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
43
|
Kitamura Y, Terado E, Zhang Z, Yoshikawa H, Inose T, Uji-I H, Tanimizu M, Inokuchi A, Kamakura Y, Tanaka D. Failure-Experiment-Supported Optimization of Poorly Reproducible Synthetic Conditions for Novel Lanthanide Metal-Organic Frameworks with Two-Dimensional Secondary Building Units*. Chemistry 2021; 27:16347-16353. [PMID: 34623003 DOI: 10.1002/chem.202102404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Indexed: 11/12/2022]
Abstract
Novel metal-organic frameworks containing lanthanide double-layer-based secondary building units (KGF-3) were synthesized by using machine learning (ML). Isolating pure KGF-3 was challenging, and the synthesis was not reproducible because impurity phases were frequently obtained under the same synthetic conditions. Thus, dominant factors for the synthesis of KGF-3 were identified, and its synthetic conditions were optimized by using two ML techniques. Cluster analysis was used to classify the obtained powder X-ray diffractometry patterns of the products and thus automatically determine whether the experiments were successful. Decision-tree analysis was used to visualize the experimental results, after extracting factors that mainly affected the synthetic reproducibility. Water-adsorption isotherms revealed that KGF-3 possesses unique hydrophilic pores. Impedance measurements demonstrated good proton conductivities (σ=5.2×10-4 S cm-1 for KGF-3(Y)) at a high temperature (363 K) and relative humidity of 95 % RH.
Collapse
Affiliation(s)
- Yu Kitamura
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Emi Terado
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Zechen Zhang
- Department of Nanotechnology for Sustainable Energy School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Hirofumi Yoshikawa
- Department of Nanotechnology for Sustainable Energy School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Tomoko Inose
- Research Institute for Electronic Science (RIES), Hokkaido University North 20 West 10, Kita Ward Sapporo, Hokkaido, 001-0020, Japan.,Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hiroshi Uji-I
- Research Institute for Electronic Science (RIES), Hokkaido University North 20 West 10, Kita Ward Sapporo, Hokkaido, 001-0020, Japan.,Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan.,Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, Heverlee, 3001, Belgium
| | - Masaharu Tanimizu
- Department of Applied Chemistry for Environment School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Akihiro Inokuchi
- Department of Informatics School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Yoshinobu Kamakura
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Daisuke Tanaka
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan.,JST PRESTO, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| |
Collapse
|
44
|
Li YL, Wang HL, Zhu ZH, Li J, Zou HH, Liang FP. A Series of High-Nuclear Gadolinium Cluster Aggregates with a Magnetocaloric Effect Constructed through Two-Component Manipulation. Inorg Chem 2021; 60:16794-16802. [PMID: 34668696 DOI: 10.1021/acs.inorgchem.1c02667] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The serialized expansion of high-nuclear clusters usually includes the controlled variable method and changes only a single variable. However, changing both variables will greatly increase the complexity of the reaction simultaneously. Therefore, the use of a two-component regulation reaction is rare. Herein, we used a diacylhydrazone ligand (H4L1) with multidentate chelating coordination sites for the reaction with Gd(NO3)3·6H2O under solvothermal conditions to obtain an example of 16-nucleus disc-shaped cluster 1 with a brucite structure. The overall structure of cluster 1 can be regarded as an equilateral triangle, which is formed by three (L1)4- ions that can be regarded as "sides" and wrap the four-layer metal center Gd(III) ions. Notably, upon simultaneous regulation of the substituent of the ligand and the coordination anion, heptanuclear gadolinium cluster 2 was obtained. Cluster 2 can be regarded as a butterfly structure, which was formed by connecting two Gd3L2 molecules that were not in the same plane and through the central Gd(III) ion as an intersection. Moreover, hexanuclear gadolinium cluster 3 was obtained by changing the ligand substituent and adding an auxiliary ligand. Cluster 3 can be regarded as a chair structure, which was composed of two molecules of diacylhydrazone ligand (L2)4- wrapping vacant cubane shared by four vertices. This study was the first to construct a series of high-nuclear gadolinium clusters through two-component regulation manipulation. The study of the magnetocaloric effect showed that the maximum values of -ΔSm for clusters 1-3 were 34.05, 29.04, and 24.32 J kg-1 K-1, respectively, when T = 2 K and ΔH = 7 T.
Collapse
Affiliation(s)
- Yun-Lan Li
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Hai-Ling Wang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Zhong-Hong Zhu
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China.,State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Juan Li
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Hua-Hong Zou
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Fu-Pei Liang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China.,Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China
| |
Collapse
|
45
|
Four novel Z-shaped hexanuclear vanadium oxide clusters as efficient heterogeneous catalysts for cycloaddition of CO2 and oxidative desulfurization reactions. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
46
|
Li JN, Li NF, Wang JL, Liu XM, Ping QD, Zang TT, Mei H, Xu Y. A new family of boat-shaped Ln 8 clusters exhibiting the magnetocaloric effect and slow magnetic relaxation. Dalton Trans 2021; 50:13925-13931. [PMID: 34528636 DOI: 10.1039/d1dt02390j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Designing and synthesizing lanthanide clusters have always been a research hotspot. Herein, three lanthanide clusters with the formula [Ln8(IN)14(μ3-OH)8(μ2-OH)2(H2O)8]·xH2O (Ln = 1-Gd and x = 11; Ln = 2-Dy and x = 8; Ln = 3-Eu and x = 8) have been isolated in the presence of isonicotinic acid under solvothermal conditions. Structural analysis indicates that those three compounds are isostructural, featuring boat-shaped {Ln8} metal frameworks. Magnetic measurements reveal that 1-Gd exhibits a larger MCE with the maximum -ΔSm value of 31.77 J kg-1 K-1 at 2 K for ΔH = 7 T, while 2-Dy displays slow magnetization relaxation. Besides, the photoluminescence properties of 3-Eu were investigated.
Collapse
Affiliation(s)
- Jia-Nian Li
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China.
| | - Ning-Fang Li
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China.
| | - Ji-Lei Wang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China.
| | - Xiao-Mei Liu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China.
| | - Qing-Dong Ping
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China.
| | - Ting-Ting Zang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China.
| | - Hua Mei
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China.
| | - Yan Xu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China. .,State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
47
|
Sabri MA, Al Jitan S, Bahamon D, Vega LF, Palmisano G. Current and future perspectives on catalytic-based integrated carbon capture and utilization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148081. [PMID: 34091328 DOI: 10.1016/j.scitotenv.2021.148081] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/03/2021] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
There exist several well-known methods with varying maturity for capturing carbon dioxide from emission sources of different concentrations, including absorption, adsorption, cryogenics and membrane separation, among others. The capture and separation steps can produce almost pure CO2, but at substantial cost for being conditioned for transport and final utilization, with high economical risks to be considered. A possible way for the elimination of this conditioning and cost is direct CO2 utilization, whether on-site in a further process but within the same plant, or in-situ, coupling both capture and conversion in the same unit. This approach is usually called integrated carbon capture and utilization (ICCU) or integrated carbon capture and conversion (ICCC), and has lately started receiving considerable attention in many circles. As CO2 is already industrially employed in other sectors, such as food preservation, water treatment and conversion to high added-value chemicals and fuels such as methanol, methane, etc., among others, it is of great interest to explore the global ICCC approach. Catalytic-based processes play a key role in CO2 conversion, and different technologies are gaining great attention from both academia and industry. However, the 'big picture of ICCU' and in which technology the efforts should focus on at large scale is still unclear. This review analyzes some promising concepts of ICCU specifically on CO2 catalytic conversion, highlighting their current commercial relevance as well as challenges that have to be faced today and in the next future.
Collapse
Affiliation(s)
- Muhammad Ashraf Sabri
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| | - Samar Al Jitan
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Research and Innovation Center on CO(2) and H(2) (RICH Center), Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| | - Daniel Bahamon
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Research and Innovation Center on CO(2) and H(2) (RICH Center), Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Center for Catalysis and Separation (CeCaS), Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| | - Lourdes F Vega
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Research and Innovation Center on CO(2) and H(2) (RICH Center), Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Center for Catalysis and Separation (CeCaS), Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates.
| | - Giovanni Palmisano
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Research and Innovation Center on CO(2) and H(2) (RICH Center), Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates.
| |
Collapse
|
48
|
Magnetic refrigeration and luminescent sensing properties of two porous heterometallic lanthanide-copper mental-organic frameworks. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Lu XL, Wang HL, Zhu ZH, Liu T, Zou HH, Liang FP. Anion and Solvent Manipulated Out-to-In Growth Mechanism to Assemble a Series of Different Dysprosium Clusters. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xing-Lin Lu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Hai-Ling Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Zhong-Hong Zhu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
- State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, 510640 Guangzhou, P. R. China
| | - Tong Liu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Hua-Hong Zou
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Fu-Pei Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China
| |
Collapse
|
50
|
Moumen E, Assen AH, Adil K, Belmabkhout Y. Versatility vs stability. Are the assets of metal–organic frameworks deployable in aqueous acidic and basic media? Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|