1
|
Sengupta K, Joyce JP, Decamps L, Kang L, Bjornsson R, Rüdiger O, DeBeer S. Investigating the Molybdenum Nitrogenase Mechanistic Cycle Using Spectroelectrochemistry. J Am Chem Soc 2025; 147:2099-2114. [PMID: 39746667 PMCID: PMC11744760 DOI: 10.1021/jacs.4c16047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025]
Abstract
Molybdenum nitrogenase plays a crucial role in the biological nitrogen cycle by catalyzing the reduction of dinitrogen (N2) to ammonia (NH3) under ambient conditions. However, the underlying mechanisms of nitrogenase catalysis, including electron and proton transfer dynamics, remain only partially understood. In this study, we covalently attached molybdenum nitrogenase (MoFe) to gold electrodes and utilized surface-enhanced infrared absorption spectroscopy (SEIRA) coupled with electrochemistry techniques to investigate its catalytic mechanism. Our biohybrid system enabled electron transfer via a mild mediator, likely mimicking the natural electron flow through the P-cluster to FeMoco, the enzyme's active site. For the first time, we experimentally observed both terminal and bridging S-H stretching frequencies, resulting from the protonation of bridging sulfides in FeMoco during turnover conditions providing direct evidence of their role in catalysis. These experimental observations are further supported by QM/MM calculations. Additionally, we investigated CO inhibition, demonstrating both CO binding and unbinding dynamics under electrochemical conditions. These insights not only advance our understanding of the mechanistic cycle of molybdenum nitrogenase but also establish a foundation for studying alternative nitrogenases, including vanadium and iron nitrogenases.
Collapse
Affiliation(s)
- Kushal Sengupta
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany, 45470
| | - Justin P. Joyce
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany, 45470
| | - Laure Decamps
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany, 45470
| | - Liqun Kang
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany, 45470
| | | | - Olaf Rüdiger
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany, 45470
| | - Serena DeBeer
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany, 45470
| |
Collapse
|
2
|
Rosenzweig AC. How a small but mighty protein protects a life-sustaining enzyme. Nature 2025; 637:796-798. [PMID: 39779984 DOI: 10.1038/d41586-024-04108-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
3
|
Narehood SM, Cook BD, Srisantitham S, Eng VH, Shiau AA, McGuire KL, Britt RD, Herzik MA, Tezcan FA. Structural basis for the conformational protection of nitrogenase from O 2. Nature 2025; 637:991-997. [PMID: 39779844 PMCID: PMC11812610 DOI: 10.1038/s41586-024-08311-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/30/2024] [Indexed: 01/11/2025]
Abstract
The low reduction potentials required for the reduction of dinitrogen (N2) render metal-based nitrogen-fixation catalysts vulnerable to irreversible damage by dioxygen (O2)1-3. Such O2 sensitivity represents a major conundrum for the enzyme nitrogenase, as a large fraction of nitrogen-fixing organisms are either obligate aerobes or closely associated with O2-respiring organisms to support the high energy demand of catalytic N2 reduction4. To counter O2 damage to nitrogenase, diazotrophs use O2 scavengers, exploit compartmentalization or maintain high respiration rates to minimize intracellular O2 concentrations4-8. A last line of damage control is provided by the 'conformational protection' mechanism9, in which a [2Fe:2S] ferredoxin-family protein termed FeSII (ref. 10) is activated under O2 stress to form an O2-resistant complex with the nitrogenase component proteins11,12. Despite previous insights, the molecular basis for the conformational O2 protection of nitrogenase and the mechanism of FeSII activation are not understood. Here we report the structural characterization of the Azotobacter vinelandii FeSII-nitrogenase complex by cryo-electron microscopy. Our studies reveal a core complex consisting of two molybdenum-iron proteins (MoFePs), two iron proteins (FePs) and one FeSII homodimer, which polymerize into extended filaments. In this three-protein complex, FeSII mediates an extensive network of interactions with MoFeP and FeP to position their iron-sulphur clusters in catalytically inactive but O2-protected states. The architecture of the FeSII-nitrogenase complex is confirmed by solution studies, which further indicate that the activation of FeSII involves an oxidation-induced conformational change.
Collapse
Affiliation(s)
- Sarah M Narehood
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Brian D Cook
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Suppachai Srisantitham
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Vanessa H Eng
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Angela A Shiau
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Kelly L McGuire
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - R David Britt
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Mark A Herzik
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.
| | - F Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
4
|
Franke P, Freiberger S, Zhang L, Einsle O. Conformational protection of molybdenum nitrogenase by Shethna protein II. Nature 2025; 637:998-1004. [PMID: 39779845 PMCID: PMC11754109 DOI: 10.1038/s41586-024-08355-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/06/2024] [Indexed: 01/11/2025]
Abstract
The oxygen-sensitive molybdenum-dependent nitrogenase of Azotobacter vinelandii is protected from oxidative damage by a reversible 'switch-off' mechanism1. It forms a complex with a small ferredoxin, FeSII (ref. 2) or the 'Shethna protein II'3, which acts as an O2 sensor and associates with the two component proteins of nitrogenase when its [2Fe:2S] cluster becomes oxidized4,5. Here we report the three-dimensional structure of the protective ternary complex of the catalytic subunit of Mo-nitrogenase, its cognate reductase and the FeSII protein, determined by single-particle cryo-electron microscopy. The dimeric FeSII protein associates with two copies of each component to assemble a 620 kDa core complex that then polymerizes into large, filamentous structures. This complex is catalytically inactive, but the enzyme components are quickly released and reactivated upon oxygen depletion. The first step in complex formation is the association of FeSII with the more O2-sensitive Fe protein component of nitrogenase during sudden oxidative stress. The action of this small ferredoxin represents a straightforward means of protection from O2 that may be crucial for the maintenance of recombinant nitrogenase in food crops.
Collapse
Affiliation(s)
- Philipp Franke
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany
| | - Simon Freiberger
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany
| | - Lin Zhang
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany
| | - Oliver Einsle
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany.
| |
Collapse
|
5
|
Ratcliff D, Danielle Sedoh GC, Milton RD. Cross-Coupling of Mo- and V-Nitrogenases Permits Protein-Mediated Protection from Oxygen Deactivation. Chembiochem 2024:e202400585. [PMID: 39500732 DOI: 10.1002/cbic.202400585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/30/2024] [Indexed: 11/24/2024]
Abstract
Nitrogenases catalyze dinitrogen (N2) fixation to ammonia (NH3). While these enzymes are highly sensitive to deactivation by molecular oxygen (O2) they can be produced by obligate aerobes for diazotrophy, necessitating a mechanism by which nitrogenase can be protected from deactivation. In the bacterium Azotobacter vinelandii, one mode of such protection involves an O2-responsive ferredoxin-type protein ("Shethna protein II", or "FeSII") which is thought to bind with Mo-dependent nitrogenase's two component proteins (NifH and NifDK) to form a catalytically stalled yet O2-tolerant tripartite protein complex. This protection mechanism has been reported for Mo-nitrogenase, however, in vitro assays with V-nitrogenase suggest that this mechanism is not universal to the three known nitrogenase isoforms. Here we report that the reductase of the V-nitrogenase (VnfH) can engage in this FeSII-mediated protection mechanism when cross-coupled with Mo-nitrogenase NifDK. Interestingly, the cross-coupling of the Mo-nitrogenase reductase NifH with the V-nitrogenase VnfDGK protein does not yield such protection.
Collapse
Affiliation(s)
- Daniel Ratcliff
- Department of Inorganic and Analytical Chemistry, Faculty of Science, University of Geneva, Quai Ernest-Ansermet 30, 1205, Geneva, Switzerland
- National Centre of Competence in Research (NCCR) Catalysis, University of Geneva, Switzerland
| | - G C Danielle Sedoh
- Department of Inorganic and Analytical Chemistry, Faculty of Science, University of Geneva, Quai Ernest-Ansermet 30, 1205, Geneva, Switzerland
- National Centre of Competence in Research (NCCR) Catalysis, University of Geneva, Switzerland
- Present address: Department of Physical Chemistry, Faculty of Sciences, University of Geneva, Quai Ernest-Ansermet 30, 1205, Geneva, Switzerland
| | - Ross D Milton
- Department of Inorganic and Analytical Chemistry, Faculty of Science, University of Geneva, Quai Ernest-Ansermet 30, 1205, Geneva, Switzerland
- National Centre of Competence in Research (NCCR) Catalysis, University of Geneva, Switzerland
| |
Collapse
|
6
|
Mrnjavac N, Degli Esposti M, Mizrahi I, Martin WF, Allen JF. Three enzymes governed the rise of O 2 on Earth. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149495. [PMID: 39004113 PMCID: PMC7616410 DOI: 10.1016/j.bbabio.2024.149495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024]
Abstract
Current views of O2 accumulation in Earth history depict three phases: The onset of O2 production by ∼2.4 billion years ago; 2 billion years of stasis at ∼1 % of modern atmospheric levels; and a rising phase, starting about 500 million years ago, in which oxygen eventually reached modern values. Purely geochemical mechanisms have been proposed to account for this tripartite time course of Earth oxygenation. In particular the second phase, the long period of stasis between the advent of O2 and the late rise to modern levels, has posed a puzzle. Proposed solutions involve Earth processes (geochemical, ecosystem, day length). Here we suggest that Earth oxygenation was not determined by geochemical processes. Rather it resulted from emergent biological innovations associated with photosynthesis and the activity of only three enzymes: 1) The oxygen evolving complex of cyanobacteria that makes O2; 2) Nitrogenase, with its inhibition by O2 causing two billion years of oxygen level stasis; 3) Cellulose synthase of land plants, which caused mass deposition and burial of carbon, thus removing an oxygen sink and therefore increasing atmospheric O2. These three enzymes are endogenously produced by, and contained within, cells that have the capacity for exponential growth. The catalytic properties of these three enzymes paved the path of Earth's atmospheric oxygenation, requiring no help from Earth other than the provision of water, CO2, salts, colonizable habitats, and sunlight.
Collapse
Affiliation(s)
- Natalia Mrnjavac
- Department of Biology, Institute for Molecular Evolution, Heinrich Heine University of Duesseldorf, Duesseldorf, Germany
| | | | - Itzhak Mizrahi
- Department of Life Sciences, Ben-Gurion University of the Negev and the National Institute for Biotechnology in the Negev, Marcus Family Campus, Be'er-Sheva, Israel
| | - William F Martin
- Department of Biology, Institute for Molecular Evolution, Heinrich Heine University of Duesseldorf, Duesseldorf, Germany
| | - John F Allen
- Research Department of Genetics, Evolution and Environment, University College London, Gower Street, London, UK.
| |
Collapse
|
7
|
Thomas BO, Lechner SL, Ross HC, Joris BR, Glick BR, Stegelmeier AA. Friends and Foes: Bacteria of the Hydroponic Plant Microbiome. PLANTS (BASEL, SWITZERLAND) 2024; 13:3069. [PMID: 39519984 PMCID: PMC11548230 DOI: 10.3390/plants13213069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/16/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Hydroponic greenhouses and vertical farms provide an alternative crop production strategy in regions that experience low temperatures, suboptimal sunlight, or inadequate soil quality. However, hydroponic systems are soilless and, therefore, have vastly different bacterial microbiota than plants grown in soil. This review highlights some of the most prevalent plant growth-promoting bacteria (PGPB) and destructive phytopathogenic bacteria that dominate hydroponic systems. A complete understanding of which bacteria increase hydroponic crop yields and ways to mitigate crop loss from disease are critical to advancing microbiome research. The section focussing on plant growth-promoting bacteria highlights putative biological pathways for growth promotion and evidence of increased crop productivity in hydroponic systems by these organisms. Seven genera are examined in detail, including Pseudomonas, Bacillus, Azospirillum, Azotobacter, Rhizobium, Paenibacillus, and Paraburkholderia. In contrast, the review of hydroponic phytopathogens explores the mechanisms of disease, studies of disease incidence in greenhouse crops, and disease control strategies. Economically relevant diseases caused by Xanthomonas, Erwinia, Agrobacterium, Ralstonia, Clavibacter, Pectobacterium, and Pseudomonas are discussed. The conditions that make Pseudomonas both a friend and a foe, depending on the species, environment, and gene expression, provide insights into the complexity of plant-bacterial interactions. By amalgamating information on both beneficial and pathogenic bacteria in hydroponics, researchers and greenhouse growers can be better informed on how bacteria impact modern crop production systems.
Collapse
Affiliation(s)
- Brianna O. Thomas
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada (B.R.G.)
| | - Shelby L. Lechner
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada (B.R.G.)
| | - Hannah C. Ross
- Ceragen Inc., 151 Charles St W, Suite 199, Kitchener, ON N2G 1H6, Canada (B.R.J.)
| | - Benjamin R. Joris
- Ceragen Inc., 151 Charles St W, Suite 199, Kitchener, ON N2G 1H6, Canada (B.R.J.)
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada (B.R.G.)
| | | |
Collapse
|
8
|
Kabasakal BV, McFarlane CR, Cotton CAR, Schmidt A, Kung A, Lieber L, Murray JW. The crystal structure of Shethna protein II (FeSII) from Azotobacter vinelandii suggests a domain swap. Acta Crystallogr D Struct Biol 2024; 80:599-604. [PMID: 38984904 PMCID: PMC11301756 DOI: 10.1107/s2059798324005928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/18/2024] [Indexed: 07/11/2024] Open
Abstract
The Azotobacter vinelandii FeSII protein forms an oxygen-resistant complex with the nitrogenase MoFe and Fe proteins. FeSII is an adrenodoxin-type ferredoxin that forms a dimer in solution. Previously, the crystal structure was solved [Schlesier et al. (2016), J. Am. Chem. Soc. 138, 239-247] with five copies in the asymmetric unit. One copy is a normal adrenodoxin domain that forms a dimer with its crystallographic symmetry mate. The other four copies are in an `open' conformation with a loop flipped out exposing the 2Fe-2S cluster. The open and closed conformations were interpreted as oxidized and reduced, respectively, and the large conformational change in the open configuration allowed binding to nitrogenase. Here, the structure of FeSII was independently solved in the same crystal form. The positioning of the atoms in the unit cell is similar to the earlier report. However, the interpretation of the structure is different. The `open' conformation is interpreted as the product of a crystallization-induced domain swap. The 2Fe-2S cluster is not exposed to solvent, but in the crystal its interacting helix is replaced by the same helix residues from a crystal symmetry mate. The domain swap is complicated, as it is unusual in being in the middle of the protein rather than at a terminus, and it creates arrangements of molecules that can be interpreted in multiple ways. It is also cautioned that crystal structures should be interpreted in terms of the contents of the entire crystal rather than of one asymmetric unit.
Collapse
Affiliation(s)
- Burak V. Kabasakal
- Department of Life Sciences, Imperial College, LondonSW7 2AZ, United Kingdom
- Turkish Accelerator and Radiation Laboratory, Gőlbaşı, 06830Ankara, Türkiye
| | - Ciaran R. McFarlane
- Department of Life Sciences, Imperial College, LondonSW7 2AZ, United Kingdom
| | - Charles A. R. Cotton
- Department of Life Sciences, Imperial College, LondonSW7 2AZ, United Kingdom
- Cambrium GmbH, Max-Urich-Strasse 3, 13355Berlin, Germany
| | - Anna Schmidt
- Department of Life Sciences, Imperial College, LondonSW7 2AZ, United Kingdom
| | - Andrea Kung
- Department of Life Sciences, Imperial College, LondonSW7 2AZ, United Kingdom
| | - Lucas Lieber
- Department of Life Sciences, Imperial College, LondonSW7 2AZ, United Kingdom
- Bioheuris Inc., 1100 Corporate Square Drive, St Louis, MO63132, USA
| | - James W. Murray
- Department of Life Sciences, Imperial College, LondonSW7 2AZ, United Kingdom
| |
Collapse
|
9
|
Mrnjavac N, Nagies FSP, Wimmer JLE, Kapust N, Knopp MR, Trost K, Modjewski L, Bremer N, Mentel M, Esposti MD, Mizrahi I, Allen JF, Martin WF. The radical impact of oxygen on prokaryotic evolution-enzyme inhibition first, uninhibited essential biosyntheses second, aerobic respiration third. FEBS Lett 2024; 598:1692-1714. [PMID: 38750628 PMCID: PMC7616280 DOI: 10.1002/1873-3468.14906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 07/15/2024]
Abstract
Molecular oxygen is a stable diradical. All O2-dependent enzymes employ a radical mechanism. Generated by cyanobacteria, O2 started accumulating on Earth 2.4 billion years ago. Its evolutionary impact is traditionally sought in respiration and energy yield. We mapped 365 O2-dependent enzymatic reactions of prokaryotes to phylogenies for the corresponding 792 protein families. The main physiological adaptations imparted by O2-dependent enzymes were not energy conservation, but novel organic substrate oxidations and O2-dependent, hence O2-tolerant, alternative pathways for O2-inhibited reactions. Oxygen-dependent enzymes evolved in ancestrally anaerobic pathways for essential cofactor biosynthesis including NAD+, pyridoxal, thiamine, ubiquinone, cobalamin, heme, and chlorophyll. These innovations allowed prokaryotes to synthesize essential cofactors in O2-containing environments, a prerequisite for the later emergence of aerobic respiratory chains.
Collapse
Affiliation(s)
- Natalia Mrnjavac
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany
| | - Falk S P Nagies
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany
| | - Jessica L E Wimmer
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany
| | - Nils Kapust
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany
| | - Michael R Knopp
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany
| | - Katharina Trost
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany
| | - Luca Modjewski
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany
| | - Nico Bremer
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany
| | - Marek Mentel
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | | | - Itzhak Mizrahi
- Department of Life Sciences, Ben-Gurion University of the Negev and The National Institute for Biotechnology in the Negev, Be'er-Sheva, Israel
| | - John F Allen
- Research Department of Genetics, Evolution and Environment, University College London, UK
| | - William F Martin
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany
| |
Collapse
|
10
|
Gao M, Andrews J, Armin G, Chakraborty S, Zehr JP, Inomura K. Rapid mode switching facilitates the growth of Trichodesmium: A model analysis. iScience 2024; 27:109906. [PMID: 38947530 PMCID: PMC11214483 DOI: 10.1016/j.isci.2024.109906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 02/28/2024] [Accepted: 05/02/2024] [Indexed: 07/02/2024] Open
Abstract
Trichodesmium is one of the dominant dinitrogen (N2) fixers in the ocean, influencing global carbon and nitrogen cycles through biochemical reactions. Although its photosynthetic activity fluctuates rapidly, the physiological or ecological advantage of this fluctuation is unclear. We develop a metabolic model of Trichodesmium that can perform daytime N2 fixation. We examined (1) the effect of the duration of switches between photosynthetic and non-photosynthetic cellular states and (2) the effect of the presence and absence of N2 fixation in photosynthetic states. Results show that a rapid switch between photosynthetic and non-photosynthetic states increases Trichodesmium growth rates by improving metabolic efficiencies due to an improved balance of C and N metabolism. This provides a strategy for previous paradoxical observations that all Trichodesmium cells can contain nitrogenase. This study reveals the importance of fluctuating photosynthetic activity and provides a mechanism for daytime N2 fixation that allows Trichodesmium to fix N2 aerobically in the global ocean.
Collapse
Affiliation(s)
- Meng Gao
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA
| | - Jamal Andrews
- Biological and Environmental Sciences Graduate Program, University of Rhode Island, Kingston, RI, USA
| | - Gabrielle Armin
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA
| | - Subhendu Chakraborty
- Systems Ecology Group, Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany
| | - Jonathan P. Zehr
- Department of Ocean Sciences, University of California, Santa Cruz, CA, USA
| | - Keisuke Inomura
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA
| |
Collapse
|
11
|
He H, Zheng W, Xiao S, Gong L, Li H, Zhou K, Zhang L, Tu Q, Zhu YZ, Zhang Y. Deciphering the Nitrogen Fixation Gene Cluster in Vibrio natriegens: A Study on Optimized Expression and Application of Nitrogenase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12618-12629. [PMID: 38778776 DOI: 10.1021/acs.jafc.4c01232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Microbial nitrogen fixation presents a viable alternative to chemical fertilizers, yet the limited colonization and specificity of naturally occurring nitrogen-fixing microorganisms present significant challenges to their widespread application. In this study, we identified a nitrogen fixation gene cluster (VNnif) in Vibrio natriegens (VN) and tested its nitrogenase activity through the acetylene reduction assay. We investigated the potential utilization of nitrogenase by incorporating the nitrogenase gene cluster from VN into plant growth-promoting rhizosphere bacteria Pseudomonas protegens CHA0 and enhancing its activity to 48.16 nmol C2H2/mg/h through promoter replacement and cluster rearrangement. The engineered strain CHA0-PVNnif was found to positively impact the growth of Arabidopsis thaliana col-0 and Triticum aestivum L. (wheat). This study expanded the role of plant growth-promoting rhizobacteria (PGPR) and provided a research foundation for enhancing nitrogenase activity.
Collapse
Affiliation(s)
- Haocheng He
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Weijin Zheng
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- College of Life and Geographic Sciences, Kashi University, Kashi 844099, China
| | - Shuai Xiao
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liang Gong
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - He Li
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR 999078, China
| | - Kexuan Zhou
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR 999078, China
| | - Letian Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- State Key Lab of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Qiang Tu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yi Zhun Zhu
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR 999078, China
- State Key Lab of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Youming Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
12
|
Shomar H, Bokinsky G. Harnessing iron‑sulfur enzymes for synthetic biology. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119718. [PMID: 38574823 DOI: 10.1016/j.bbamcr.2024.119718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/13/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
Reactions catalysed by iron-sulfur (Fe-S) enzymes appear in a variety of biosynthetic pathways that produce valuable natural products. Harnessing these biosynthetic pathways by expression in microbial cell factories grown on an industrial scale would yield enormous economic and environmental benefits. However, Fe-S enzymes often become bottlenecks that limits the productivity of engineered pathways. As a consequence, achieving the production metrics required for industrial application remains a distant goal for Fe-S enzyme-dependent pathways. Here, we identify and review three core challenges in harnessing Fe-S enzyme activity, which all stem from the properties of Fe-S clusters: 1) limited Fe-S cluster supply within the host cell, 2) Fe-S cluster instability, and 3) lack of specialized reducing cofactor proteins often required for Fe-S enzyme activity, such as enzyme-specific flavodoxins and ferredoxins. We highlight successful methods developed for a variety of Fe-S enzymes and electron carriers for overcoming these difficulties. We use heterologous nitrogenase expression as a grand case study demonstrating how each of these challenges can be addressed. We predict that recent breakthroughs in protein structure prediction and design will prove well-suited to addressing each of these challenges. A reliable toolkit for harnessing Fe-S enzymes in engineered metabolic pathways will accelerate the development of industry-ready Fe-S enzyme-dependent biosynthesis pathways.
Collapse
Affiliation(s)
- Helena Shomar
- Institut Pasteur, université Paris Cité, Inserm U1284, Diversité moléculaire des microbes (Molecular Diversity of Microbes lab), 75015 Paris, France
| | - Gregory Bokinsky
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands.
| |
Collapse
|
13
|
Kumar A, Ye C, Nkansah A, Decoville T, Fogo GM, Sajjakulnukit P, Reynolds MB, Zhang L, Quaye O, Seo YA, Sanderson TH, Lyssiotis CA, Chang CH. Iron regulates the quiescence of naive CD4 T cells by controlling mitochondria and cellular metabolism. Proc Natl Acad Sci U S A 2024; 121:e2318420121. [PMID: 38621136 PMCID: PMC11047099 DOI: 10.1073/pnas.2318420121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 03/14/2024] [Indexed: 04/17/2024] Open
Abstract
In response to an immune challenge, naive T cells undergo a transition from a quiescent to an activated state acquiring the effector function. Concurrently, these T cells reprogram cellular metabolism, which is regulated by iron. We and others have shown that iron homeostasis controls proliferation and mitochondrial function, but the underlying mechanisms are poorly understood. Given that iron derived from heme makes up a large portion of the cellular iron pool, we investigated iron homeostasis in T cells using mice with a T cell-specific deletion of the heme exporter, FLVCR1 [referred to as knockout (KO)]. Our finding revealed that maintaining heme and iron homeostasis is essential to keep naive T cells in a quiescent state. KO naive CD4 T cells exhibited an iron-overloaded phenotype, with increased spontaneous proliferation and hyperactive mitochondria. This was evidenced by reduced IL-7R and IL-15R levels but increased CD5 and Nur77 expression. Upon activation, however, KO CD4 T cells have defects in proliferation, IL-2 production, and mitochondrial functions. Iron-overloaded CD4 T cells failed to induce mitochondrial iron and exhibited more fragmented mitochondria after activation, making them susceptible to ferroptosis. Iron overload also led to inefficient glycolysis and glutaminolysis but heightened activity in the hexosamine biosynthetic pathway. Overall, these findings highlight the essential role of iron in controlling mitochondrial function and cellular metabolism in naive CD4 T cells, critical for maintaining their quiescent state.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI48109
| | - Chenxian Ye
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI48109
| | - Afia Nkansah
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI48109
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, AccraG4522, Ghana
| | - Thomas Decoville
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI48109
| | - Garrett M. Fogo
- Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, MI48109
| | - Peter Sajjakulnukit
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI48109
| | - Mack B. Reynolds
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI48109
| | - Li Zhang
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI48109
| | - Osbourne Quaye
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, AccraG4522, Ghana
| | - Young-Ah Seo
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI48109
| | - Thomas H. Sanderson
- Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, MI48109
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan Medical School, Ann Arbor, MI48109
| | - Costas A. Lyssiotis
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI48109
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan Medical School, Ann Arbor, MI48109
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI48109
| | - Cheong-Hee Chang
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI48109
| |
Collapse
|
14
|
Grifagni D, Silva JM, Querci L, Lepoivre M, Vallières C, Louro RO, Banci L, Piccioli M, Golinelli-Cohen MP, Cantini F. Biochemical and cellular characterization of the CISD3 protein: Molecular bases of cluster release and destabilizing effects of nitric oxide. J Biol Chem 2024; 300:105745. [PMID: 38354784 PMCID: PMC10937110 DOI: 10.1016/j.jbc.2024.105745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/16/2024] Open
Abstract
The NEET proteins, an important family of iron-sulfur (Fe-S) proteins, have generated a strong interest due to their involvement in diverse diseases such as cancer, diabetes, and neurodegenerative disorders. Among the human NEET proteins, CISD3 has been the least studied, and its functional role is still largely unknown. We have investigated the biochemical features of CISD3 at the atomic and in cellulo levels upon challenge with different stress conditions i.e., iron deficiency, exposure to hydrogen peroxide, and nitric oxide. The redox and cellular stability properties of the protein agree on a predominance of reduced form of CISD3 in the cells. Upon the addition of iron chelators, CISD3 loses its Fe-S clusters and becomes unstructured, and its cellular level drastically decreases. Chemical shift perturbation measurements suggest that, upon cluster oxidation, the protein undergoes a conformational change at the C-terminal CDGSH domain, which determines the instability of the oxidized state. This redox-associated conformational change may be the source of cooperative electron transfer via the two [Fe2S2] clusters in CISD3, which displays a single sharp voltammetric signal at -31 mV versus SHE. Oxidized CISD3 is particularly sensitive to the presence of hydrogen peroxide in vitro, whereas only the reduced form is able to bind nitric oxide. Paramagnetic NMR provides clear evidence that, upon NO binding, the cluster is disassembled but iron ions are still bound to the protein. Accordingly, in cellulo CISD3 is unaffected by oxidative stress induced by hydrogen peroxide but it becomes highly unstable in response to nitric oxide treatment.
Collapse
Affiliation(s)
- Deborah Grifagni
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - José Malanho Silva
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Leonardo Querci
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Michel Lepoivre
- CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Cindy Vallières
- CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Ricardo O Louro
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB-NOVA), Universidade Nova de Lisboa, Oeiras, Portugal
| | - Lucia Banci
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Mario Piccioli
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Sesto Fiorentino, Italy.
| | | | - Francesca Cantini
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Sesto Fiorentino, Italy.
| |
Collapse
|
15
|
Cadoux C, Maslać N, Di Luzio L, Ratcliff D, Gu W, Wagner T, Milton RD. The Mononuclear Metal-Binding Site of Mo-Nitrogenase Is Not Required for Activity. JACS AU 2023; 3:2993-2999. [PMID: 38034976 PMCID: PMC10685413 DOI: 10.1021/jacsau.3c00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023]
Abstract
The biological N2-fixation process is catalyzed exclusively by metallocofactor-containing nitrogenases. Structural and spectroscopic studies highlighted the presence of an additional mononuclear metal-binding (MMB) site, which can coordinate Fe in addition to the two metallocofactors required for the reaction. This MMB site is located 15-Å from the active site, at the interface of two NifK subunits. The enigmatic function of the MMB site and its implications for metallocofactor installation, catalysis, electron transfer, or structural stability are investigated in this work. The axial ligands coordinating the additional Fe are almost universally conserved in Mo-nitrogenases, but a detailed observation of the available structures indicates a variation in occupancy or a metal substitution. A nitrogenase variant in which the MMB is disrupted was generated and characterized by X-ray crystallography, biochemistry, and enzymology. The crystal structure refined to 1.55-Å revealed an unambiguous loss of the metal site, also confirmed by an absence of anomalous signal for Fe. The position of the surrounding side chains and the overall architecture are superposable with the wild-type structure. Accordingly, the biochemical and enzymatic properties of the variant are similar to those of the wild-type nitrogenase, indicating that the MMB does not impact nitrogenase's activity and stability in vitro.
Collapse
Affiliation(s)
- Cécile Cadoux
- Department
of Inorganic and Analytical Chemistry, Faculty of Sciences, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
- National
Centre of Competence in Research (NCCR) Catalysis, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | - Nevena Maslać
- Max Planck
Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
| | - Léa Di Luzio
- Department
of Inorganic and Analytical Chemistry, Faculty of Sciences, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | - Daniel Ratcliff
- Department
of Inorganic and Analytical Chemistry, Faculty of Sciences, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
- National
Centre of Competence in Research (NCCR) Catalysis, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | - Wenyu Gu
- Laboratory
of Microbial Physiology and Resource Biorecovery, School of Architecture,
Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Tristan Wagner
- Max Planck
Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
| | - Ross D. Milton
- Department
of Inorganic and Analytical Chemistry, Faculty of Sciences, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
- National
Centre of Competence in Research (NCCR) Catalysis, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| |
Collapse
|
16
|
Alleman AB, Peters JW. Mechanisms for Generating Low Potential Electrons across the Metabolic Diversity of Nitrogen-Fixing Bacteria. Appl Environ Microbiol 2023; 89:e0037823. [PMID: 37154716 PMCID: PMC10231201 DOI: 10.1128/aem.00378-23] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
The availability of fixed nitrogen is a limiting factor in the net primary production of all ecosystems. Diazotrophs overcome this limit through the conversion of atmospheric dinitrogen to ammonia. Diazotrophs are phylogenetically diverse bacteria and archaea that exhibit a wide range of lifestyles and metabolisms, including obligate anaerobes and aerobes that generate energy through heterotrophic or autotrophic metabolisms. Despite the diversity of metabolisms, all diazotrophs use the same enzyme, nitrogenase, to reduce N2. Nitrogenase is an O2-sensitive enzyme that requires a high amount of energy in the form of ATP and low potential electrons carried by ferredoxin (Fd) or flavodoxin (Fld). This review summarizes how the diverse metabolisms of diazotrophs utilize different enzymes to generate low potential reducing equivalents for nitrogenase catalysis. These enzymes include substrate-level Fd oxidoreductases, hydrogenases, photosystem I or other light-driven reaction centers, electron bifurcating Fix complexes, proton motive force-driven Rnf complexes, and Fd:NAD(P)H oxidoreductases. Each of these enzymes is critical for generating low potential electrons while simultaneously integrating the native metabolism to balance nitrogenase's overall energy needs. Understanding the diversity of electron transport systems to nitrogenase in various diazotrophs will be essential to guide future engineering strategies aimed at expanding the contributions of biological nitrogen fixation in agriculture.
Collapse
Affiliation(s)
- Alexander B. Alleman
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - John W. Peters
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
17
|
Cadoux C, Ratcliff D, Maslać N, Gu W, Tsakoumagkos I, Hoogendoorn S, Wagner T, Milton RD. Nitrogen Fixation and Hydrogen Evolution by Sterically Encumbered Mo-Nitrogenase. JACS AU 2023; 3:1521-1533. [PMID: 37234119 PMCID: PMC10207099 DOI: 10.1021/jacsau.3c00165] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023]
Abstract
The substrate-reducing proteins of all nitrogenases (MoFe, VFe, and FeFe) are organized as α2ß2(γ2) multimers with two functional halves. While their dimeric organization could afford improved structural stability of nitrogenases in vivo, previous research has proposed both negative and positive cooperativity contributions with respect to enzymatic activity. Here, a 1.4 kDa peptide was covalently introduced in the proximity of the P cluster, corresponding to the Fe protein docking position. The Strep-tag carried by the added peptide simultaneously sterically inhibits electron delivery to the MoFe protein and allows the isolation of partially inhibited MoFe proteins (where the half-inhibited MoFe protein was targeted). We confirm that the partially functional MoFe protein retains its ability to reduce N2 to NH3, with no significant difference in selectivity over obligatory/parasitic H2 formation. Our experiment concludes that wild-type nitrogenase exhibits negative cooperativity during the steady state regarding H2 and NH3 formation (under Ar or N2), with one-half of the MoFe protein inhibiting turnover in the second half. This emphasizes the presence and importance of long-range (>95 Å) protein-protein communication in biological N2 fixation in Azotobacter vinelandii.
Collapse
Affiliation(s)
- Cécile Cadoux
- Department
of Inorganic and Analytical Chemistry, Faculty of Sciences, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
- National
Centre of Competence in Research (NCCR) Catalysis, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | - Daniel Ratcliff
- Department
of Inorganic and Analytical Chemistry, Faculty of Sciences, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
- National
Centre of Competence in Research (NCCR) Catalysis, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | - Nevena Maslać
- Max
Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
| | - Wenyu Gu
- Department
of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Ioannis Tsakoumagkos
- Department
of Organic Chemistry, National Center of Competence in Research (NCCR)
Chemical Biology, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | - Sascha Hoogendoorn
- Department
of Organic Chemistry, National Center of Competence in Research (NCCR)
Chemical Biology, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | - Tristan Wagner
- Max
Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
| | - Ross D. Milton
- Department
of Inorganic and Analytical Chemistry, Faculty of Sciences, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
- National
Centre of Competence in Research (NCCR) Catalysis, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| |
Collapse
|
18
|
Wang KY, Zhang J, Hsu YC, Lin H, Han Z, Pang J, Yang Z, Liang RR, Shi W, Zhou HC. Bioinspired Framework Catalysts: From Enzyme Immobilization to Biomimetic Catalysis. Chem Rev 2023; 123:5347-5420. [PMID: 37043332 PMCID: PMC10853941 DOI: 10.1021/acs.chemrev.2c00879] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Indexed: 04/13/2023]
Abstract
Enzymatic catalysis has fueled considerable interest from chemists due to its high efficiency and selectivity. However, the structural complexity and vulnerability hamper the application potentials of enzymes. Driven by the practical demand for chemical conversion, there is a long-sought quest for bioinspired catalysts reproducing and even surpassing the functions of natural enzymes. As nanoporous materials with high surface areas and crystallinity, metal-organic frameworks (MOFs) represent an exquisite case of how natural enzymes and their active sites are integrated into porous solids, affording bioinspired heterogeneous catalysts with superior stability and customizable structures. In this review, we comprehensively summarize the advances of bioinspired MOFs for catalysis, discuss the design principle of various MOF-based catalysts, such as MOF-enzyme composites and MOFs embedded with active sites, and explore the utility of these catalysts in different reactions. The advantages of MOFs as enzyme mimetics are also highlighted, including confinement, templating effects, and functionality, in comparison with homogeneous supramolecular catalysts. A perspective is provided to discuss potential solutions addressing current challenges in MOF catalysis.
Collapse
Affiliation(s)
- Kun-Yu Wang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiaqi Zhang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yu-Chuan Hsu
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Hengyu Lin
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Zongsu Han
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiandong Pang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- School
of Materials Science and Engineering, Tianjin Key Laboratory of Metal
and Molecule-Based Material Chemistry, Nankai
University, Tianjin 300350, China
| | - Zhentao Yang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Rong-Ran Liang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Wei Shi
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hong-Cai Zhou
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
19
|
Hania A, López-Adams R, PrášIl O, Eichner M. Protection of nitrogenase from photosynthetic O 2 evolution in Trichodesmium: methodological pitfalls and advances over 30 years of research. PHOTOSYNTHETICA 2023; 61:58-72. [PMID: 39650126 PMCID: PMC11515819 DOI: 10.32615/ps.2023.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/06/2023] [Indexed: 12/11/2024]
Abstract
The Trichodesmium genus comprises some of the most abundant N2-fixing organisms in oligotrophic marine ecosystems. Since nitrogenase, the key enzyme for N2 fixation, is irreversibly inhibited upon O2 exposure, these organisms have to coordinate their N2-fixing ability with simultaneous photosynthetic O2 production. Although being the principal object of many laboratory and field studies, the overall process of how Trichodesmium reconciles these two mutually exclusive processes remains unresolved. This is in part due to contradictory results that fuel the Trichodesmium enigma. In this review, we sift through methodological details that could potentially explain the discrepancy between findings related to Trichodesmium's physiology. In doing so, we exhaustively contrast studies concerning both spatial and temporal nitrogenase protective strategies, with particular attention to more recent insights. Finally, we suggest new experimental approaches for solving the complex orchestration of N2 fixation and photosynthesis in Trichodesmium.
Collapse
Affiliation(s)
- A. Hania
- Laboratory of Photosynthesis, Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Novohradská 237 – Opatovický Mlýn, 37901 Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
| | - R. López-Adams
- Laboratory of Photosynthesis, Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Novohradská 237 – Opatovický Mlýn, 37901 Třeboň, Czech Republic
| | - O. PrášIl
- Laboratory of Photosynthesis, Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Novohradská 237 – Opatovický Mlýn, 37901 Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
| | - M. Eichner
- Laboratory of Photosynthesis, Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Novohradská 237 – Opatovický Mlýn, 37901 Třeboň, Czech Republic
| |
Collapse
|
20
|
Martin Del Campo JS, Rigsbee J, Bueno Batista M, Mus F, Rubio LM, Einsle O, Peters JW, Dixon R, Dean DR, Dos Santos PC. Overview of physiological, biochemical, and regulatory aspects of nitrogen fixation in Azotobacter vinelandii. Crit Rev Biochem Mol Biol 2023; 57:492-538. [PMID: 36877487 DOI: 10.1080/10409238.2023.2181309] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Understanding how Nature accomplishes the reduction of inert nitrogen gas to form metabolically tractable ammonia at ambient temperature and pressure has challenged scientists for more than a century. Such an understanding is a key aspect toward accomplishing the transfer of the genetic determinants of biological nitrogen fixation to crop plants as well as for the development of improved synthetic catalysts based on the biological mechanism. Over the past 30 years, the free-living nitrogen-fixing bacterium Azotobacter vinelandii emerged as a preferred model organism for mechanistic, structural, genetic, and physiological studies aimed at understanding biological nitrogen fixation. This review provides a contemporary overview of these studies and places them within the context of their historical development.
Collapse
Affiliation(s)
| | - Jack Rigsbee
- Department of Chemistry, Wake Forest University, Winston-Salem, NC, USA
| | | | - Florence Mus
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| | - Luis M Rubio
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Pozuelo de Alarcón, Spain
| | - Oliver Einsle
- Department of Biochemistry, University of Freiburg, Freiburg, Germany
| | - John W Peters
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| | - Ray Dixon
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
| | - Dennis R Dean
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
| | | |
Collapse
|
21
|
Tong S, Hong Y, Xu Y, Sun Q, Ye L, Cai J, Ye Z, Chen Q, Tian D. TFR2 regulates ferroptosis and enhances temozolomide chemo-sensitization in gliomas. Exp Cell Res 2023; 424:113474. [PMID: 36702193 DOI: 10.1016/j.yexcr.2023.113474] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/04/2023] [Accepted: 01/08/2023] [Indexed: 01/24/2023]
Abstract
Glioma is a common type of brain tumor with high incidence and mortality rates. Iron plays an important role in various physiological and pathological processes. Iron entry into the cell is promoted by binding the transferrin receptor 2 (TFR2) to the iron-transferrin complex. This study was designed to assess the association between TFR2 and ferroptosis in glioma. Lipid peroxidation levels in glioma cells were assessed by determination of lipid reactive oxygen species (ROS), glutathione content, and mitochondrial membrane potential. The effect of TFR2 on TMZ sensitivity was examined by cell viability assays, flow cytometry, and colony formation assays. We found that Low TFR2 expression predicted a better prognosis for glioma patients. And overexpression of TFR2 promoted the production of reactive oxygen species and lipid peroxidation in glioma cells, thereby further promoting ferroptosis. This could be reversed by the ferroptosis inhibitors Fer-1 and DFO (both inhibitors of ferroptosis). Moreover, TFR2 potentiated the cytotoxic effect of TMZ (temozolomide) via activating ferroptosis. In conclusion, we found that TFR2 induced ferroptosis and enhanced TMZ sensitivity in gliomas. Our findings might provide a new treatment strategy for glioma patients and improve their prognosis.
Collapse
Affiliation(s)
- Shiao Tong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Yu Hong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Yang Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Qian Sun
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Liguo Ye
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Jiayang Cai
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Zhang Ye
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China.
| | - Daofeng Tian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China.
| |
Collapse
|
22
|
Bennett EM, Murray JW, Isalan M. Engineering Nitrogenases for Synthetic Nitrogen Fixation: From Pathway Engineering to Directed Evolution. BIODESIGN RESEARCH 2023; 5:0005. [PMID: 37849466 PMCID: PMC10521693 DOI: 10.34133/bdr.0005] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/24/2022] [Indexed: 10/19/2023] Open
Abstract
Globally, agriculture depends on industrial nitrogen fertilizer to improve crop growth. Fertilizer production consumes fossil fuels and contributes to environmental nitrogen pollution. A potential solution would be to harness nitrogenases-enzymes capable of converting atmospheric nitrogen N2 to NH3 in ambient conditions. It is therefore a major goal of synthetic biology to engineer functional nitrogenases into crop plants, or bacteria that form symbiotic relationships with crops, to support growth and reduce dependence on industrially produced fertilizer. This review paper highlights recent work toward understanding the functional requirements for nitrogenase expression and manipulating nitrogenase gene expression in heterologous hosts to improve activity and oxygen tolerance and potentially to engineer synthetic symbiotic relationships with plants.
Collapse
Affiliation(s)
- Emily M. Bennett
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - James W. Murray
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Mark Isalan
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
23
|
Rutledge HL, Field MJ, Rittle J, Green MT, Akif Tezcan F. Role of Serine Coordination in the Structural and Functional Protection of the Nitrogenase P-Cluster. J Am Chem Soc 2022; 144:22101-22112. [PMID: 36445204 PMCID: PMC9957664 DOI: 10.1021/jacs.2c09480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Nitrogenase catalyzes the multielectron reduction of dinitrogen to ammonia. Electron transfer in the catalytic protein (MoFeP) proceeds through a unique [8Fe-7S] cluster (P-cluster) to the active site (FeMoco). In the reduced, all-ferrous (PN) state, the P-cluster is coordinated by six cysteine residues. Upon two-electron oxidation to the P2+ state, the P-cluster undergoes conformational changes in which a highly conserved oxygen-based residue (a Ser or a Tyr) and a backbone amide additionally ligate the cluster. Previous studies of Azotobacter vinelandii (Av) MoFeP revealed that when the oxygen-based residue, βSer188, was mutated to a noncoordinating residue, Ala, the P-cluster became redox-labile and reversibly lost two of its eight Fe centers. Surprisingly, the Av strain with a MoFeP variant that lacked the serine ligand (Av βSer188Ala MoFeP) displayed the same diazotrophic growth and in vitro enzyme turnover rates as wild-type Av MoFeP, calling into question the necessity of this conserved ligand for nitrogenase function. Based on these observations, we hypothesized that βSer188 plays a role in protecting the P-cluster under nonideal conditions. Here, we investigated the protective role of βSer188 both in vivo and in vitro by characterizing the ability of Av βSer188Ala cells to grow under suboptimal conditions (high oxidative stress or Fe limitation) and by determining the tendency of βSer188Ala MoFeP to be mismetallated in vitro. Our results demonstrate that βSer188 (1) increases Av cell survival upon exposure to oxidative stress in the form of hydrogen peroxide, (2) is necessary for efficient Av diazotrophic growth under Fe-limiting conditions, and (3) may protect the P-cluster from metal exchange in vitro. Taken together, our findings suggest a structural adaptation of nitrogenase to protect the P-cluster via Ser ligation, which is a previously unidentified functional role of the Ser residue in redox proteins and adds to the expanding functional roles of non-Cys ligands to FeS clusters.
Collapse
Affiliation(s)
- Hannah L. Rutledge
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Mackenzie J. Field
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Jonathan Rittle
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Michael T. Green
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California 92697, United States
| | - F. Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| |
Collapse
|
24
|
Koh S, Choi Y, Lee I, Kim GM, Kim J, Park YS, Lee SY, Lee DC. Light-Driven Ammonia Production by Azotobacter vinelandii Cultured in Medium Containing Colloidal Quantum Dots. J Am Chem Soc 2022; 144:10798-10808. [DOI: 10.1021/jacs.2c01886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Sungjun Koh
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for the NanoCentury, KAIST, Daejeon 34141, Republic of Korea
| | - Yoojin Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Metabolic and Biomolecular Engineering National Research Laboratory, BioProcess Engineering Research Center and Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Ilsong Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for the NanoCentury, KAIST, Daejeon 34141, Republic of Korea
| | - Gui-Min Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for the NanoCentury, KAIST, Daejeon 34141, Republic of Korea
| | - Jayeong Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for the NanoCentury, KAIST, Daejeon 34141, Republic of Korea
| | - Young-Shin Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sang Yup Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Metabolic and Biomolecular Engineering National Research Laboratory, BioProcess Engineering Research Center and Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Doh C. Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for the NanoCentury, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
25
|
Takimoto R, Tatemichi Y, Aoki W, Kosaka Y, Minakuchi H, Ueda M, Kuroda K. A critical role of an oxygen-responsive gene for aerobic nitrogenase activity in Azotobacter vinelandii and its application to Escherichia coli. Sci Rep 2022; 12:4182. [PMID: 35264690 PMCID: PMC8907163 DOI: 10.1038/s41598-022-08007-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/28/2022] [Indexed: 12/02/2022] Open
Abstract
Since nitrogenase is irreversibly inactivated within a few minutes after exposure to oxygen, current studies on the heterologous expression of nitrogenase are limited to anaerobic conditions. This study comprehensively identified genes showing oxygen-concentration-dependent expression only under nitrogen-fixing conditions in Azotobacter vinelandii, an aerobic diazotroph. Among the identified genes, nafU, with an unknown function, was greatly upregulated under aerobic nitrogen-fixing conditions. Through replacement and overexpressing experiments, we suggested that nafU is involved in the maintenance of nitrogenase activity under aerobic nitrogenase activity. Furthermore, heterologous expression of nafU in nitrogenase-producing Escherichia coli increased nitrogenase activity under aerobic conditions by 9.7 times. Further analysis of NafU protein strongly suggested its localization in the inner membrane and raised the possibility that this protein may lower the oxygen concentration inside the cells. These findings provide new insights into the mechanisms for maintaining stable nitrogenase activity under aerobic conditions in A. vinelandii and provide a platform to advance the use of nitrogenase under aerobic conditions.
Collapse
Affiliation(s)
- Ren Takimoto
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yuki Tatemichi
- Research and Development Division, Kikkoman Corporation, 338 Noda, Noda, Chiba, 278-0037, Japan
| | - Wataru Aoki
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yuishin Kosaka
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | | | - Mitsuyoshi Ueda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Kouichi Kuroda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan.
| |
Collapse
|
26
|
Wang G, Gao Q, Yang Y, Hobbie SE, Reich PB, Zhou J. Soil enzymes as indicators of soil function: A step toward greater realism in microbial ecological modeling. GLOBAL CHANGE BIOLOGY 2022; 28:1935-1950. [PMID: 34905647 DOI: 10.1111/gcb.16036] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/23/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Soil carbon (C) and nitrogen (N) cycles and their complex responses to environmental changes have received increasing attention. However, large uncertainties in model predictions remain, partially due to the lack of explicit representation and parameterization of microbial processes. One great challenge is to effectively integrate rich microbial functional traits into ecosystem modeling for better predictions. Here, using soil enzymes as indicators of soil function, we developed a competitive dynamic enzyme allocation scheme and detailed enzyme-mediated soil inorganic N processes in the Microbial-ENzyme Decomposition (MEND) model. We conducted a rigorous calibration and validation of MEND with diverse soil C-N fluxes, microbial C:N ratios, and functional gene abundances from a 12-year CO2 × N grassland experiment (BioCON) in Minnesota, USA. In addition to accurately simulating soil CO2 fluxes and multiple N variables, the model correctly predicted microbial C:N ratios and their negative response to enriched N supply. Model validation further showed that, compared to the changes in simulated enzyme concentrations and decomposition rates, the changes in simulated activities of eight C-N-associated enzymes were better explained by the measured gene abundances in responses to elevated atmospheric CO2 concentration. Our results demonstrated that using enzymes as indicators of soil function and validating model predictions with functional gene abundances in ecosystem modeling can provide a basis for testing hypotheses about microbially mediated biogeochemical processes in response to environmental changes. Further development and applications of the modeling framework presented here will enable microbial ecologists to address ecosystem-level questions beyond empirical observations, toward more predictive understanding, an ultimate goal of microbial ecology.
Collapse
Affiliation(s)
- Gangsheng Wang
- Institute for Water-Carbon Cycles and Carbon Neutrality, State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, China
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Qun Gao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Sarah E Hobbie
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St Paul, Minnesota, USA
| | - Peter B Reich
- Department of Forest Resources, University of Minnesota, St Paul, Minnesota, USA
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Jizhong Zhou
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
- School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, Oklahoma, USA
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
27
|
Shomar H, Bokinsky G. Towards a Synthetic Biology Toolset for Metallocluster Enzymes in Biosynthetic Pathways: What We Know and What We Need. Molecules 2021; 26:molecules26226930. [PMID: 34834021 PMCID: PMC8617995 DOI: 10.3390/molecules26226930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022] Open
Abstract
Microbes are routinely engineered to synthesize high-value chemicals from renewable materials through synthetic biology and metabolic engineering. Microbial biosynthesis often relies on expression of heterologous biosynthetic pathways, i.e., enzymes transplanted from foreign organisms. Metallocluster enzymes are one of the most ubiquitous family of enzymes involved in natural product biosynthesis and are of great biotechnological importance. However, the functional expression of recombinant metallocluster enzymes in live cells is often challenging and represents a major bottleneck. The activity of metallocluster enzymes requires essential supporting pathways, involved in protein maturation, electron supply, and/or enzyme stability. Proper function of these supporting pathways involves specific protein-protein interactions that remain poorly characterized and are often overlooked by traditional synthetic biology approaches. Consequently, engineering approaches that focus on enzymatic expression and carbon flux alone often overlook the particular needs of metallocluster enzymes. This review highlights the biotechnological relevance of metallocluster enzymes and discusses novel synthetic biology strategies to advance their industrial application, with a particular focus on iron-sulfur cluster enzymes. Strategies to enable functional heterologous expression and enhance recombinant metallocluster enzyme activity in industrial hosts include: (1) optimizing specific maturation pathways; (2) improving catalytic stability; and (3) enhancing electron transfer. In addition, we suggest future directions for developing microbial cell factories that rely on metallocluster enzyme catalysis.
Collapse
Affiliation(s)
- Helena Shomar
- INSERM U722, Faculté de Médecine, Université de Paris, Site Xavier Bichat, 75018 Paris, France
- Correspondence: (H.S.); (G.B.)
| | - Gregory Bokinsky
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands
- Correspondence: (H.S.); (G.B.)
| |
Collapse
|
28
|
Kabasakal BV, Cotton CAR, Murray JW. Crystal structure of the [2Fe-2S] protein I (Shethna protein I) from Azotobacter vinelandii. Acta Crystallogr F Struct Biol Commun 2021; 77:407-411. [PMID: 34726179 PMCID: PMC8561814 DOI: 10.1107/s2053230x21009936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/23/2021] [Indexed: 11/10/2022] Open
Abstract
Azotobacter vinelandii is a model diazotroph and is the source of most nitrogenase material for structural and biochemical work. Azotobacter can grow in above-atmospheric levels of oxygen, despite the sensitivity of nitrogenase activity to oxygen. Azotobacter has many iron-sulfur proteins in its genome, which were identified as far back as the 1960s and probably play roles in the complex redox chemistry that Azotobacter must maintain when fixing nitrogen. Here, the 2.1 Å resolution crystal structure of the [2Fe-2S] protein I (Shethna protein I) from A. vinelandii is presented, revealing a homodimer with the [2Fe-2S] cluster coordinated by the surrounding conserved cysteine residues. It is similar to the structure of the thioredoxin-like [2Fe-2S] protein from Aquifex aeolicus, including the positions of the [2Fe-2S] clusters and conserved cysteine residues. The structure of Shethna protein I will provide information for understanding its function in relation to nitrogen fixation and its evolutionary relationships to other ferredoxins.
Collapse
Affiliation(s)
- Burak V. Kabasakal
- Department of Life Sciences, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
- Turkish Accelerator and Radiation Laboratory, Institute of Accelerator Technologies, Ankara University, Gölbaşı, 06830 Ankara, Turkey
| | - Charles A. R. Cotton
- Department of Life Sciences, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
- Cambrium GmbH, Max-Urich-Strasse 3, 13355 Berlin, Germany
| | - James W. Murray
- Department of Life Sciences, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| |
Collapse
|
29
|
Mitochondrial iron-sulfur clusters: Structure, function, and an emerging role in vascular biology. Redox Biol 2021; 47:102164. [PMID: 34656823 PMCID: PMC8577454 DOI: 10.1016/j.redox.2021.102164] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 12/31/2022] Open
Abstract
Iron-sulfur (Fe-S) clusters are essential cofactors most commonly known for their role mediating electron transfer within the mitochondrial respiratory chain. The Fe-S cluster pathways that function within the respiratory complexes are highly conserved between bacteria and the mitochondria of eukaryotic cells. Within the electron transport chain, Fe-S clusters play a critical role in transporting electrons through Complexes I, II and III to cytochrome c, before subsequent transfer to molecular oxygen. Fe-S clusters are also among the binding sites of classical mitochondrial inhibitors, such as rotenone, and play an important role in the production of mitochondrial reactive oxygen species (ROS). Mitochondrial Fe-S clusters also play a critical role in the pathogenesis of disease. High levels of ROS produced at these sites can cause cell injury or death, however, when produced at low levels can serve as signaling molecules. For example, Ndufs2, a Complex I subunit containing an Fe-S center, N2, has recently been identified as a redox-sensitive oxygen sensor, mediating homeostatic oxygen-sensing in the pulmonary vasculature and carotid body. Fe-S clusters are emerging as transcriptionally-regulated mediators in disease and play a crucial role in normal physiology, offering potential new therapeutic targets for diseases including malaria, diabetes, and cancer.
Collapse
|
30
|
Priyadarshini P, Choudhury S, Tilgam J, Bharati A, Sreeshma N. Nitrogen fixing cereal: A rising hero towards meeting food security. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:912-920. [PMID: 34547550 DOI: 10.1016/j.plaphy.2021.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/05/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Nitrogen serves as one of the primary components of major biomolecules and thus extends a significant contribution to crop growth and yield. But the inability of plants to utilize freely available atmospheric N2 makes the whole agricultural system dependent on chemical fertilizers, which incur significant input cost to supplement required quantities of nitrogen to crops. Only bacteria and archaea have been gifted with the power of drawing free N2 from air to convert them into NH3, which is one of the two utilizable forms of nitrogen taken up by plants. Legumes, the only family of crops, can engage themselves in symbiotic nitrogen fixation where they establish a mutualistic relationship with nitrogen-fixing bacteria and in turn, can waive off the necessity of adding nitrogen fertilizers. Sincere effort, therefore, has been undertaken to incorporate this capability of nitrogen-fixation into non-legume crops, especially cereals which make up a vital portion in the food basket. Biotechnological interventions have also played important role in providing nitrogen fixing trait to non-legumes. This review takes up an effort to look into and accumulate all the important updates to date regarding nitrogen-fixing non-legumes with a special focus on cereals, which is one of the most important future goals in the field of science in the present era.
Collapse
Affiliation(s)
- Parichita Priyadarshini
- ICAR-Crop Improvement Division, Indian Grassland and Fodder Research Institute, Jhansi, U.P., 284003, India
| | - Sharani Choudhury
- ICAR - National Institute for Plant Biotechnology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Jyotsana Tilgam
- ICAR- National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, U.P., 274103, India.
| | - Alka Bharati
- ICAR-Central Agroforestry Research Institute, Jhansi, U.P., 284003, India
| | - N Sreeshma
- ICAR - National Institute for Plant Biotechnology, Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
31
|
Tatemichi Y, Nakahara T, Ueda M, Kuroda K. Construction of recombinant Escherichia coli producing nitrogenase-related proteins from Azotobacter vinelandii. Biosci Biotechnol Biochem 2021; 85:2209-2216. [PMID: 34387317 DOI: 10.1093/bbb/zbab144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/05/2021] [Indexed: 11/12/2022]
Abstract
Biological nitrogen fixation by nitrogenase has attracted attention as an alternative method to chemical nitrogen fixation, which requires large amounts of fossil fuels. Azotobacter vinelandii, which produces an oxygen-sensitive nitrogenase, can fix nitrogen even under aerobic conditions; therefore, the heterologous expression of nif-related genes from A. vinelandii is a promising strategy for developing a biological nitrogen fixation method. We assembled 17 nif-related genes, which are scattered throughout the genome of A. vinelandii, into synthetic gene clusters by overlap-extension-PCR and seamless cloning and expressed them in Escherichia coli. The transcription and translation of the 17 nif-related genes were evaluated by RT-qPCR and LC-MS/MS, respectively. The constructed E. coli showed nitrogenase activity under anaerobic and microaerobic conditions. This strain would be a useful model for examining the effect of other genes from A. vinelandii on nitrogen fixation by expressing them in addition to the minimal set of nif-related genes.
Collapse
Affiliation(s)
- Yuki Tatemichi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-Ku, Kyoto, Japan
- Research and Development Division, Kikkoman Corporation, Noda-City, Chiba, Japan
| | - Takeharu Nakahara
- Research and Development Division, Kikkoman Corporation, Noda-City, Chiba, Japan
| | - Mitsuyoshi Ueda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-Ku, Kyoto, Japan
| | - Kouichi Kuroda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-Ku, Kyoto, Japan
| |
Collapse
|
32
|
Sustainable Biological Ammonia Production towards a Carbon-Free Society. SUSTAINABILITY 2021. [DOI: 10.3390/su13179496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A sustainable society was proposed more than 50 years ago. However, it is yet to be realised. For example, the production of ammonia, an important chemical widely used in the agriculture, steel, chemical, textile, and pharmaceutical industries, still depends on fossil fuels. Recently, biological approaches to achieve sustainable ammonia production have been gaining attention. Moreover, unlike chemical methods, biological approaches have a lesser environmental impact because ammonia can be produced under mild conditions of normal temperature and pressure. Therefore, in previous studies, nitrogen fixation by nitrogenase, including enzymatic ammonia production using food waste, has been attempted. Additionally, the production of crops using nitrogen-fixing bacteria has been implemented in the industry as one of the most promising approaches to achieving a sustainable ammonia economy. Thus, in this review, we described previous studies on biological ammonia production and showed the prospects for realising a sustainable society.
Collapse
|
33
|
Khademian M, Imlay JA. How Microbes Evolved to Tolerate Oxygen. Trends Microbiol 2021; 29:428-440. [PMID: 33109411 PMCID: PMC8043972 DOI: 10.1016/j.tim.2020.10.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 12/24/2022]
Abstract
Ancient microbes invented biochemical mechanisms and assembled core metabolic pathways on an anoxic Earth. Molecular oxygen appeared far later, forcing microbes to devise layers of defensive tactics that fend off the destructive actions of both reactive oxygen species (ROS) and oxygen itself. Recent work has pinpointed the enzymes that ROS attack, plus an array of clever protective strategies that abet the well known scavenging systems. Oxygen also directly damages the low-potential metal centers and radical-based mechanisms that optimize anaerobic metabolism; therefore, committed anaerobes have evolved customized tactics that defend these various enzymes from occasional oxygen exposure. Thus a more comprehensive, detailed, and surprising view of oxygen toxicity is coming into view.
Collapse
Affiliation(s)
- Maryam Khademian
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA.
| | - James A Imlay
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
34
|
Medina MS, Bretzing KO, Aviles RA, Chong KM, Espinoza A, Garcia CNG, Katz BB, Kharwa RN, Hernandez A, Lee JL, Lee TM, Lo Verde C, Strul MW, Wong EY, Owens CP. CowN sustains nitrogenase turnover in the presence of the inhibitor carbon monoxide. J Biol Chem 2021; 296:100501. [PMID: 33667548 PMCID: PMC8047169 DOI: 10.1016/j.jbc.2021.100501] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 01/28/2021] [Accepted: 03/01/2021] [Indexed: 11/28/2022] Open
Abstract
Nitrogenase is the only enzyme capable of catalyzing nitrogen fixation, the reduction of dinitrogen gas (N2) to ammonia (NH3). Nitrogenase is tightly inhibited by the environmental gas carbon monoxide (CO). Nitrogen-fixing bacteria rely on the protein CowN to grow in the presence of CO. However, the mechanism by which CowN operates is unknown. Here, we present the biochemical characterization of CowN and examine how CowN protects nitrogenase from CO. We determine that CowN interacts directly with nitrogenase and that CowN protection observes hyperbolic kinetics with respect to CowN concentration. At a CO concentration of 0.001 atm, CowN restores nearly full nitrogenase activity. Our results further indicate that CowN's protection mechanism involves decreasing the binding affinity of CO to nitrogenase's active site approximately tenfold without interrupting substrate turnover. Taken together, our work suggests CowN is an important auxiliary protein in nitrogen fixation that engenders CO tolerance to nitrogenase.
Collapse
Affiliation(s)
- Michael S Medina
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - Kevin O Bretzing
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - Richard A Aviles
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - Kiersten M Chong
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - Alejandro Espinoza
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - Chloe Nicole G Garcia
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - Benjamin B Katz
- Department of Chemistry, University of California, Irvine, Irvine, California, USA
| | - Ruchita N Kharwa
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - Andrea Hernandez
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - Justin L Lee
- Department of Chemistry, University of California, Irvine, Irvine, California, USA
| | - Terrence M Lee
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - Christine Lo Verde
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - Max W Strul
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - Emily Y Wong
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - Cedric P Owens
- Schmid College of Science and Technology, Chapman University, Orange, California, USA.
| |
Collapse
|
35
|
Van Stappen C, Decamps L, DeBeer S. Preparation and spectroscopic characterization of lyophilized Mo nitrogenase. J Biol Inorg Chem 2021; 26:81-91. [PMID: 33381859 PMCID: PMC8038959 DOI: 10.1007/s00775-020-01838-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/22/2020] [Indexed: 11/30/2022]
Abstract
Mo nitrogenase is the primary source of biologically fixed nitrogen, making this system highly interesting for developing new, energy efficient ways of ammonia production. Although heavily investigated, studies of the active site of this enzyme have generally been limited to spectroscopic methods that are compatible with the presence of water and relatively low protein concentrations. One method of overcoming this limitation is through lyophilization, which allows for measurements to be performed on solvent free, high concentration samples. This method also has the potential for allowing efficient protein storage and solvent exchange. To investigate the viability of this preparatory method with Mo nitrogenase, we employ a combination of electron paramagnetic resonance, Mo and Fe K-edge X-ray absorption spectroscopy, and acetylene reduction assays. Our results show that while some small distortions in the metallocofactors occur, oxidation and spin states are maintained through the lyophilization process and that reconstitution of either lyophilized protein component into buffer restores acetylene reducing activity.
Collapse
Affiliation(s)
- Casey Van Stappen
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany.
| | - Laure Decamps
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
36
|
Parison K, Gies-Elterlein J, Trncik C, Einsle O. Expression, Isolation, and Characterization of Vanadium Nitrogenase from Azotobacter vinelandii. Methods Mol Biol 2021; 2353:97-121. [PMID: 34292546 DOI: 10.1007/978-1-0716-1605-5_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nitrogenases are the sole enzymes known to mediate biological nitrogen fixation, an essential process for sustaining life on earth. Among the three known variants, molybdenum nitrogenase is the best-studied to date. Recent work on the alternative vanadium nitrogenase provided important insights into the mechanism of nitrogen fixation since this enzyme differs from its molybdenum counterpart in some important aspects. Here, we present a protocol to obtain unmodified vanadium nitrogenase in high yield and purity from the paradigmatic diazotroph Azotobacter vinelandii, including procedures for cell cultivation, purification, and protein characterization.
Collapse
Affiliation(s)
- Katharina Parison
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | | | - Christian Trncik
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Oliver Einsle
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.
| |
Collapse
|
37
|
Rapson TD, Gregg CM, Allen RS, Ju H, Doherty CM, Mulet X, Giddey S, Wood CC. Insights into Nitrogenase Bioelectrocatalysis for Green Ammonia Production. CHEMSUSCHEM 2020; 13:4856-4865. [PMID: 32696610 DOI: 10.1002/cssc.202001433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/20/2020] [Indexed: 05/26/2023]
Abstract
There is a growing interest in using ammonia as a liquid carrier of hydrogen for energy applications. Currently, ammonia is produced industrially by the Haber-Bosch process, which requires high temperature and high pressure. In contrast, bacteria have naturally evolved an enzyme known as nitrogenase, that is capable of producing ammonia and hydrogen at ambient temperature and pressure. Therefore, nitrogenases are attractive as a potentially more efficient means to produce ammonia via harnessing the unique properties of this enzyme. In recent years, exciting progress has been made in bioelectrocatalysis using nitrogenases to produce ammonia. Here, the prospects for developing biological ammonia production are outlined, key advances in bioelectrocatalysis by nitrogenases are highlighted, and possible solutions to the obstacles faced in realising this goal are discussed.
Collapse
Affiliation(s)
- Trevor D Rapson
- CSIRO Agriculture and Food, Black Mountain, ACT, 2601, Australia
| | | | - Robert S Allen
- CSIRO Agriculture and Food, Black Mountain, ACT, 2601, Australia
| | - HyungKuk Ju
- CSIRO Energy, Private Bag 10, Clayton South, 3169, Victoria, Australia
| | - Cara M Doherty
- CSIRO Manufacturing, Private Bag 10, Clayton South, 3169, Victoria, Australia
| | - Xavier Mulet
- CSIRO Manufacturing, Private Bag 10, Clayton South, 3169, Victoria, Australia
| | - Sarbjit Giddey
- CSIRO Energy, Private Bag 10, Clayton South, 3169, Victoria, Australia
| | - Craig C Wood
- CSIRO Agriculture and Food, Black Mountain, ACT, 2601, Australia
| |
Collapse
|
38
|
Abstract
The enzyme molybdenum nitrogenase converts atmospheric nitrogen gas to ammonia and is of critical importance for the cycling of nitrogen in the biosphere and for the sustainability of life. Alternative vanadium and iron-only nitrogenases that are homologous to molybdenum nitrogenases are also found in archaea and bacteria, but they have a different transition metal, either vanadium or iron, at their active sites. So far alternative nitrogenases have only been found in microbes that also have molybdenum nitrogenase. They are less widespread than molybdenum nitrogenase in bacteria and archaea, and they are less efficient. The presumption has been that alternative nitrogenases are fail-safe enzymes that are used in situations where molybdenum is limiting. Recent work indicates that vanadium nitrogenase may play a role in the global biological nitrogen cycle and iron-only nitrogenase may contribute products that shape microbial community interactions in nature.
Collapse
Affiliation(s)
- Caroline S Harwood
- Department of Microbiology, University of Washington, Seattle, Washington 98195, USA;
| |
Collapse
|
39
|
Abstract
Nitrogenase is the only enzyme capable of reducing N2 to NH3. This challenging reaction requires the coordinated transfer of multiple electrons from the reductase, Fe-protein, to the catalytic component, MoFe-protein, in an ATP-dependent fashion. In the last two decades, there have been significant advances in our understanding of how nitrogenase orchestrates electron transfer (ET) from the Fe-protein to the catalytic site of MoFe-protein and how energy from ATP hydrolysis transduces the ET processes. In this review, we summarize these advances, with focus on the structural and thermodynamic redox properties of nitrogenase component proteins and their complexes, as well as on new insights regarding the mechanism of ET reactions during catalysis and how they are coupled to ATP hydrolysis. We also discuss recently developed chemical, photochemical, and electrochemical methods for uncoupling substrate reduction from ATP hydrolysis, which may provide new avenues for studying the catalytic mechanism of nitrogenase.
Collapse
Affiliation(s)
- Hannah L Rutledge
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - F Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| |
Collapse
|
40
|
Jasper J, Ramos JV, Trncik C, Jahn D, Einsle O, Layer G, Moser J. Chimeric Interaction of Nitrogenase-Like Reductases with the MoFe Protein of Nitrogenase. Chembiochem 2020; 21:1733-1741. [PMID: 31958206 PMCID: PMC7317204 DOI: 10.1002/cbic.201900759] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/17/2020] [Indexed: 11/24/2022]
Abstract
The engineering of transgenic organisms with the ability to fix nitrogen is an attractive possibility. However, oxygen sensitivity of nitrogenase, mainly conferred by the reductase component (NifH)2 , is an imminent problem. Nitrogenase-like enzymes involved in coenzyme F430 and chlorophyll biosynthesis utilize the highly homologous reductases (CfbC)2 and (ChlL)2 , respectively. Chimeric protein-protein interactions of these reductases with the catalytic component of nitrogenase (MoFe protein) did not support nitrogenase activity. Nucleotide-dependent association and dissociation of these complexes was investigated, but (CfbC)2 and wild-type (ChlL)2 showed no modulation of the binding affinity. By contrast, the interaction between the (ChlL)2 mutant Y127S and the MoFe protein was markedly increased in the presence of ATP (or ATP analogues) and reduced in the ADP state. Upon formation of the octameric (ChlL)2 MoFe(ChlL)2 complex, the ATPase activity of this variant is triggered, as seen in the homologous nitrogenase system. Thus, the described reductase(s) might be an attractive tool for further elucidation of the diverse functions of (NifH)2 and the rational design of a more robust reductase.
Collapse
Affiliation(s)
- Jan Jasper
- Institut für MikrobiologieTechnische Universität BraunschweigSpielmannstrasse 738106BraunschweigGermany
| | - José V. Ramos
- Institut für Pharmazeutische WissenschaftenPharmazeutische Biologie und BiotechnologieAlbert-Ludwigs-Universität FreiburgStefan-Meier-Str. 1979104FreiburgGermany
| | - Christian Trncik
- Institut für BiochemieAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2179104FreiburgGermany
| | - Dieter Jahn
- Institut für MikrobiologieTechnische Universität BraunschweigSpielmannstrasse 738106BraunschweigGermany
| | - Oliver Einsle
- Institut für BiochemieAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2179104FreiburgGermany
| | - Gunhild Layer
- Institut für Pharmazeutische WissenschaftenPharmazeutische Biologie und BiotechnologieAlbert-Ludwigs-Universität FreiburgStefan-Meier-Str. 1979104FreiburgGermany
| | - Jürgen Moser
- Institut für MikrobiologieTechnische Universität BraunschweigSpielmannstrasse 738106BraunschweigGermany
| |
Collapse
|
41
|
Zhang X, Ward BB, Sigman DM. Global Nitrogen Cycle: Critical Enzymes, Organisms, and Processes for Nitrogen Budgets and Dynamics. Chem Rev 2020; 120:5308-5351. [DOI: 10.1021/acs.chemrev.9b00613] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xinning Zhang
- Department of Geosciences, Princeton University, Princeton, New Jersey 08544, United States
- Princeton Environmental Institute, Princeton University, Princeton, New Jersey 08544, United States
| | - Bess B. Ward
- Department of Geosciences, Princeton University, Princeton, New Jersey 08544, United States
- Princeton Environmental Institute, Princeton University, Princeton, New Jersey 08544, United States
| | - Daniel M. Sigman
- Department of Geosciences, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
42
|
Ryu MH, Zhang J, Toth T, Khokhani D, Geddes BA, Mus F, Garcia-Costas A, Peters JW, Poole PS, Ané JM, Voigt CA. Control of nitrogen fixation in bacteria that associate with cereals. Nat Microbiol 2019; 5:314-330. [DOI: 10.1038/s41564-019-0631-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 11/04/2019] [Indexed: 12/23/2022]
|
43
|
Pankievicz VCS, Irving TB, Maia LGS, Ané JM. Are we there yet? The long walk towards the development of efficient symbiotic associations between nitrogen-fixing bacteria and non-leguminous crops. BMC Biol 2019; 17:99. [PMID: 31796086 PMCID: PMC6889567 DOI: 10.1186/s12915-019-0710-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 10/18/2019] [Indexed: 01/09/2023] Open
Abstract
Nitrogen is an essential element of life, and nitrogen availability often limits crop yields. Since the Green Revolution, massive amounts of synthetic nitrogen fertilizers have been produced from atmospheric nitrogen and natural gas, threatening the sustainability of global food production and degrading the environment. There is a need for alternative means of bringing nitrogen to crops, and taking greater advantage of biological nitrogen fixation seems a logical option. Legumes are used in most cropping systems around the world because of the nitrogen-fixing symbiosis with rhizobia. However, the world's three major cereal crops-rice, wheat, and maize-do not associate with rhizobia. In this review, we will survey how genetic approaches in rhizobia and their legume hosts allowed tremendous progress in understanding the molecular mechanisms controlling root nodule symbioses, and how this knowledge paves the way for engineering such associations in non-legume crops. We will also discuss challenges in bringing these systems into the field and how they can be surmounted by interdisciplinary collaborations between synthetic biologists, microbiologists, plant biologists, breeders, agronomists, and policymakers.
Collapse
Affiliation(s)
| | - Thomas B Irving
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - Lucas G S Maia
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - Jean-Michel Ané
- Department of Agronomy, University of Wisconsin, Madison, WI, USA.
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
44
|
Van Stappen C, Thorhallsson AT, Decamps L, Bjornsson R, DeBeer S. Resolving the structure of the E 1 state of Mo nitrogenase through Mo and Fe K-edge EXAFS and QM/MM calculations. Chem Sci 2019; 10:9807-9821. [PMID: 32055350 PMCID: PMC6984330 DOI: 10.1039/c9sc02187f] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/03/2019] [Indexed: 11/21/2022] Open
Abstract
Biological nitrogen fixation is predominately accomplished through Mo nitrogenase, which utilizes a complex MoFe7S9C catalytic cluster to reduce N2 to NH3. This cluster requires the accumulation of three to four reducing equivalents prior to binding N2; however, despite decades of research, the intermediate states formed prior to N2 binding are still poorly understood. Herein, we use Mo and Fe K-edge X-ray absorption spectroscopy and QM/MM calculations to investigate the nature of the E1 state, which is formed following the addition of the first reducing equivalent to Mo nitrogenase. By analyzing the extended X-ray absorption fine structure (EXAFS) region, we provide structural insight into the changes that occur in the metal clusters of the protein when forming the E1 state, and use these metrics to assess a variety of possible models of the E1 state. The combination of our experimental and theoretical results supports that formation of E1 involves an Fe-centered reduction combined with the protonation of a belt-sulfide of the cluster. Hence, these results provide critical experiment and computational insight into the mechanism of this important enzyme.
Collapse
Affiliation(s)
- Casey Van Stappen
- Max-Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36 , 45470 Mülheim an der Ruhr , NRW , Germany . ;
| | - Albert Thor Thorhallsson
- Max-Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36 , 45470 Mülheim an der Ruhr , NRW , Germany . ;
| | - Laure Decamps
- Max-Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36 , 45470 Mülheim an der Ruhr , NRW , Germany . ;
| | - Ragnar Bjornsson
- Max-Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36 , 45470 Mülheim an der Ruhr , NRW , Germany . ;
| | - Serena DeBeer
- Max-Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36 , 45470 Mülheim an der Ruhr , NRW , Germany . ;
| |
Collapse
|
45
|
Zanello P. Structure and electrochemistry of proteins harboring iron-sulfur clusters of different nuclearities. Part V. Nitrogenases. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
46
|
Wu B, Atkinson JT, Kahanda D, Bennett GN, Silberg JJ. Combinatorial design of chemical‐dependent protein switches for controlling intracellular electron transfer. AIChE J 2019. [DOI: 10.1002/aic.16796] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Bingyan Wu
- Biochemistry & Cell Biology Graduate Program Rice University Houston Texas
- Department of Biosciences Rice University Houston Texas
| | - Joshua T. Atkinson
- Department of Biosciences Rice University Houston Texas
- Systems, Synthetic, & Physical Biology Graduate Program Rice University Houston Texas
| | | | - George N. Bennett
- Department of Biosciences Rice University Houston Texas
- Department of Chemical & Biomolecular Engineering Rice University Houston Texas
| | - Jonathan J. Silberg
- Department of Biosciences Rice University Houston Texas
- Department of Chemical & Biomolecular Engineering Rice University Houston Texas
- Department of Bioengineering Rice University Houston Texas
| |
Collapse
|
47
|
The Pseudomonas stutzeri-Specific Regulatory Noncoding RNA NfiS Targets katB mRNA Encoding a Catalase Essential for Optimal Oxidative Resistance and Nitrogenase Activity. J Bacteriol 2019; 201:JB.00334-19. [PMID: 31262840 PMCID: PMC6755748 DOI: 10.1128/jb.00334-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 06/25/2019] [Indexed: 12/18/2022] Open
Abstract
Pseudomonas stutzeri A1501 is a versatile nitrogen-fixing bacterium capable of living in diverse environments and coping with various oxidative stresses. NfiS, a regulatory noncoding RNA (ncRNA) involved in the control of nitrogen fixation in A1501, was previously shown to be required for optimal resistance to H2O2; however, the precise role of NfiS and the target genes involved in the oxidative stress response is entirely unknown. In this work, we systematically investigated the NfiS-based mechanisms underlying the response of this bacterium to H2O2 at the cellular and molecular levels. A mutant strain carrying a deletion of nfiS showed significant downregulation of oxidative stress response genes, especially katB, a catalase gene, and oxyR, an essential regulator for transcription of catalase genes. Secondary structure prediction revealed two binding sites in NfiS for katB mRNA. Complementation experiments using truncated nfiS genes showed that each of two sites is functional, but not sufficient, for NfiS-mediated regulation of oxidative stress resistance and nitrogenase activities. Microscale thermophoresis assays further indicated direct base pairing between katB mRNA and NfiS at both sites 1 and 2, thus enhancing the half-life of the transcript. We also demonstrated that katB expression is dependent on OxyR and that both OxyR and KatB are essential for optimal oxidative stress resistance and nitrogenase activities. H2O2 at low concentrations was detoxified by KatB, leaving O2 as a by-product to support nitrogen fixation under O2-insufficient conditions. Moreover, our data suggest that the direct interaction between NfiS and katB mRNA is a conserved and widespread mechanism among P. stutzeri strains.IMPORTANCE Protection against oxygen damage is crucial for survival of nitrogen-fixing bacteria due to the extreme oxygen sensitivity of nitrogenase. This work exemplifies how the small ncRNA NfiS coordinates oxidative stress response and nitrogen fixation via base pairing with katB mRNA and nifK mRNA. Hence, NfiS acts as a molecular link to coordinate the expression of genes involved in oxidative stress response and nitrogen fixation. Our study provides the first insight into the biological functions of NfiS in oxidative stress regulation and adds a new regulation level to the mechanisms that contribute to the oxygen protection of the MoFe nitrogenase.
Collapse
|
48
|
Imlay JA, Sethu R, Rohaun SK. Evolutionary adaptations that enable enzymes to tolerate oxidative stress. Free Radic Biol Med 2019; 140:4-13. [PMID: 30735836 PMCID: PMC6684875 DOI: 10.1016/j.freeradbiomed.2019.01.048] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 01/31/2019] [Indexed: 10/27/2022]
Abstract
Biochemical mechanisms emerged and were integrated into the metabolic plan of cellular life long before molecular oxygen accumulated in the biosphere. When oxygen levels finaly rose, they threatened specific types of enzymes: those that use organic radicals as catalysts, and those that depend upon iron centers. Nature has found ways to ensure that such enzymes are still used by contemporary organisms. In some cases they are restricted to microbes that reside in anoxic habitats, but in others they manage to function inside aerobic cells. In the latter case, it is frequently true that the ancestral enzyme has been modified to fend off poisoning. In this review we survey a range of protein adaptations that permit radical-based and low-potential iron chemistry to succeed in oxic environments. In many cases, accessory domains shield the vulnerable radical or metal center from oxygen. In others, the structures of iron cofactors evolved to less oxidizable forms, or alternative metals replaced iron altogether. The overarching view is that some classes of biochemical mechanism are intrinsically incompatible with the presence of oxygen. The structural modification of target enzymes is an under-recognized response to this problem.
Collapse
Affiliation(s)
- James A Imlay
- Department of Microbiology, University of Illinois, 601 S. Goodwin Ave, Urbana, IL, 61801, USA.
| | - Ramakrishnan Sethu
- Department of Microbiology, University of Illinois, 601 S. Goodwin Ave, Urbana, IL, 61801, USA
| | - Sanjay Kumar Rohaun
- Department of Microbiology, University of Illinois, 601 S. Goodwin Ave, Urbana, IL, 61801, USA
| |
Collapse
|
49
|
Burén S, Rubio LM. State of the art in eukaryotic nitrogenase engineering. FEMS Microbiol Lett 2019; 365:4733273. [PMID: 29240940 PMCID: PMC5812491 DOI: 10.1093/femsle/fnx274] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/11/2017] [Indexed: 12/27/2022] Open
Abstract
Improving the ability of plants and plant-associated organisms to fix and assimilate atmospheric nitrogen has inspired plant biotechnologists for decades, not only to alleviate negative effects on nature from increased use and availability of reactive nitrogen, but also because of apparent economic benefits and opportunities. The combination of recent advances in synthetic biology and increased knowledge about the biochemistry and biosynthesis of the nitrogenase enzyme has made the seemingly remote and for long unreachable dream more possible. In this review, we will discuss strategies how this could be accomplished using biotechnology, with a special focus on recent progress on engineering plants to express its own nitrogenase.
Collapse
Affiliation(s)
- Stefan Burén
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223-Pozuelo de Alarcón, Madrid, Spain
| | - Luis M Rubio
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223-Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
50
|
Campbell IJ, Bennett GN, Silberg JJ. Evolutionary Relationships Between Low Potential Ferredoxin and Flavodoxin Electron Carriers. FRONTIERS IN ENERGY RESEARCH 2019; 7:10.3389/fenrg.2019.00079. [PMID: 32095484 PMCID: PMC7039249 DOI: 10.3389/fenrg.2019.00079] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Proteins from the ferredoxin (Fd) and flavodoxin (Fld) families function as low potential electrical transfer hubs in cells, at times mediating electron transfer between overlapping sets of oxidoreductases. To better understand protein electron carrier (PEC) use across the domains of life, we evaluated the distribution of genes encoding [4Fe-4S] Fd, [2Fe-2S] Fd, and Fld electron carriers in over 7,000 organisms. Our analysis targeted genes encoding small PEC genes encoding proteins having ≤200 residues. We find that the average number of small PEC genes per Archaea (~13), Bacteria (~8), and Eukarya (~3) genome varies, with some organisms containing as many as 54 total PEC genes. Organisms fall into three groups, including those lacking genes encoding low potential PECs (3%), specialists with a single PEC gene type (20%), and generalists that utilize multiple PEC types (77%). Mapping PEC gene usage onto an evolutionary tree highlights the prevalence of [4Fe-4S] Fds in ancient organisms that are deeply rooted, the expansion of [2Fe-2S] Fds with the advent of photosynthesis and a concomitant decrease in [4Fe-4S] Fds, and the expansion of Flds in organisms that inhabit low-iron host environments. Surprisingly, [4Fe-4S] Fds present a similar abundance in aerobes as [2Fe-2S] Fds. This bioinformatic study highlights understudied PECs whose structure, stability, and partner specificity should be further characterized.
Collapse
Affiliation(s)
- Ian J. Campbell
- Biochemistry and Cell Biology Graduate Program, Rice University, Houston, TX, United States
| | - George N. Bennett
- Department of BioSciences, Rice University, Houston, TX, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, United States
| | - Jonathan J. Silberg
- Department of BioSciences, Rice University, Houston, TX, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, United States
- Department of Bioengineering, Rice University Houston, TX, United States
- Correspondence: Jonathan J. Silberg
| |
Collapse
|