1
|
Mengrani Z, Hong W, Palma M. DNA-Mediated Carbon Nanotubes Heterojunction Assembly. ACS NANOSCIENCE AU 2024; 4:391-398. [PMID: 39713723 PMCID: PMC11659895 DOI: 10.1021/acsnanoscienceau.4c00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 12/24/2024]
Abstract
Herein, we present a strategy for the controlled assembly of single-walled carbon nanotube (SWCNT) linear junctions mediated by DNA as a functional linker. We demonstrate this by employing SWCNTs of two different chiralities via the specific design of DNA sequences and chiral selection. Streptavidin and AuNP labeling of the SWCNT sidewalls demonstrate the presence of two different chirality within each individual CNT-DNA-CNT junction. These one-dimensional nanohybrids were further organized from solution to devices. The approach we developed is of general applicability for the assembly of functional nanohybrids based on carbon nanotubes toward functional applications.
Collapse
Affiliation(s)
| | | | - Matteo Palma
- Department of Chemistry, Queen Mary University of London, London E1 4NS, U.K.
| |
Collapse
|
2
|
Hao T, Zhou H, Gai P, Wang Z, Guo Y, Lin H, Wei W, Guo Z. Deep learning-assisted single-atom detection of copper ions by combining click chemistry and fast scan voltammetry. Nat Commun 2024; 15:10292. [PMID: 39604355 PMCID: PMC11603177 DOI: 10.1038/s41467-024-54743-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/20/2024] [Indexed: 11/29/2024] Open
Abstract
Cell ion channels, cell proliferation and metastasis, and many other life activities are inseparable from the regulation of trace or even single copper ion (Cu+ and/or Cu2+). In this work, an electrochemical sensor for sensitive quantitative detection of 0.4-4 amol L-1 copper ions is developed by adopting: (1) copper ions catalyzing the click-chemistry reaction to capture numerous signal units; (2) special adsorption assembly method of signal units to ensure signal generation efficiency; and (3) fast scan voltammetry at 400 V s-1 to enhance signal intensity. And then, the single-atom detection of copper ions is realized by constructing a multi-layer deep convolutional neural network model FSVNet to extract hidden features and signal information of fast scan voltammograms for 0.2 amol L-1 of copper ions. Here, we show a multiple signal amplification strategy based on functionalized nanomaterials and fast scan voltammetry, together with a deep learning method, which realizes the sensitive detection and even single-atom detection of copper ions.
Collapse
Affiliation(s)
- Tingting Hao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Huiqian Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Panpan Gai
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, PR China.
| | - Zhaoliang Wang
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, PR China
| | - Yuxin Guo
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, PR China
| | - Han Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Wenting Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Zhiyong Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|
3
|
Wang C, Wang T, Gao Y, Tao Q, Ye W, Jia Y, Zhao X, Zhang B, Zhang Z. Multiplexed immunosensing of cancer biomarkers on a split-float-gate graphene transistor microfluidic biochip. LAB ON A CHIP 2024; 24:317-326. [PMID: 38087953 DOI: 10.1039/d3lc00709j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
This work reports the development of a novel microfluidic biosensor using a graphene field-effect transistor (GFET) design for the parallel label-free analysis of multiple biomarkers. Overcoming the persistent challenge of constructing μm2-sized FET sensitive interfaces that incorporate multiple receptors, we implement a split-float-gate structure that enables the manipulation of multiplexed biochemical functionalization using microfluidic channels. Immunoaffinity biosensing experiments are conducted using the mixture samples containing three liver cancer biomarkers, carcinoembryonic antigen (CEA), α-fetoprotein (AFP), and parathyroid hormone (PTH). The results demonstrate the capability of our label-free biochip to quantitatively detect multiple target biomarkers simultaneously by observing the kinetics in 10 minutes, with the detection limit levels in the nanomolar range. This microfluidic biosensor provides a valuable analytical tool for rapid multi-target biosensing, which can be potentially utilized for domiciliary tests of cancer screening and prognosis, obviating the need for sophisticated instruments and professional operations in hospitals.
Collapse
Affiliation(s)
- Cheng Wang
- Tianjin Key Laboratory of Wireless Mobile Communications and Power Transmission, College of Electronic and Communication Engineering, Tianjin Normal University, Tianjin 300387, China.
- Department of Intelligence Science and Technology, College of Artificial Intelligence, Tianjin Normal University, Tianjin 300387, China
| | - Tao Wang
- Tianjin Key Laboratory of Wireless Mobile Communications and Power Transmission, College of Electronic and Communication Engineering, Tianjin Normal University, Tianjin 300387, China.
- Department of Communication Engineering, College of Electronic and Communication Engineering, Tianjin Normal University, Tianjin 300387, China
| | - Yujing Gao
- Tianjin Key Laboratory of Wireless Mobile Communications and Power Transmission, College of Electronic and Communication Engineering, Tianjin Normal University, Tianjin 300387, China.
- Department of Intelligence Science and Technology, College of Artificial Intelligence, Tianjin Normal University, Tianjin 300387, China
| | - Qiya Tao
- Tianjin Key Laboratory of Wireless Mobile Communications and Power Transmission, College of Electronic and Communication Engineering, Tianjin Normal University, Tianjin 300387, China.
- Department of Communication Engineering, College of Electronic and Communication Engineering, Tianjin Normal University, Tianjin 300387, China
| | - Weixiang Ye
- Center for Theoretical Physics, Hainan University, Haikou 570228, China.
- Department of Physics, School of Physical Science and Optoelectrical Engineering, Hainan University, Haikou 570228, China
| | - Yuan Jia
- Industrialization Center of Micro/Nano ICs and Devices, Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen 518118, China.
| | - Xiaonan Zhao
- Tianjin Key Laboratory of Wireless Mobile Communications and Power Transmission, College of Electronic and Communication Engineering, Tianjin Normal University, Tianjin 300387, China.
- Department of Communication Engineering, College of Electronic and Communication Engineering, Tianjin Normal University, Tianjin 300387, China
| | - Bo Zhang
- Tianjin Key Laboratory of Wireless Mobile Communications and Power Transmission, College of Electronic and Communication Engineering, Tianjin Normal University, Tianjin 300387, China.
- Department of Communication Engineering, College of Electronic and Communication Engineering, Tianjin Normal University, Tianjin 300387, China
| | - Zhixing Zhang
- Industrialization Center of Micro/Nano ICs and Devices, Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen 518118, China.
| |
Collapse
|
4
|
Yang C, Yang C, Guo Y, Feng J, Guo X. Graphene-molecule-graphene single-molecule junctions to detect electronic reactions at the molecular scale. Nat Protoc 2023:10.1038/s41596-023-00822-x. [PMID: 37045993 DOI: 10.1038/s41596-023-00822-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 02/09/2023] [Indexed: 04/14/2023]
Abstract
The ability to measure the behavior of a single molecule during a reaction implies the detection of inherent dynamic and static disordered states, which may not be represented when measuring ensemble averages. Here, we describe the building of devices with graphene-molecule-graphene single-molecule junctions integrated into an electrical circuit. These devices are simple to build and are stable, showing tolerance to mechanical changes, solution environment and voltage stimulation. The design of a conductive channel based on a single molecule enables single-molecule detection and is sensitive to variations in physical properties and chemical structures of the detected molecules. The on-chip setup of single-molecule junctions further offers complementary metal-oxide-semiconductor (CMOS) compatibility, enabling logic functions in circuit elements, as well as deciphering of reaction intermediates. We detail the experimental procedure to prepare graphene transistor arrays as a basis for single-molecule junctions and the preparation of nanogapped carboxyl-terminal graphene electrodes by using electron-beam lithography and oxygen plasma etching. We describe the basic design of a molecular bridge with desired functions and terminals to form covalent bonds with electrode arrays, via a chemical reaction, to construct stably integrated single-molecule devices with a yield of 30-50% per chip. The immobilization of the single molecules is then characterized by using inelastic electron tunneling spectra, single-molecule imaging and fluorescent spectra. The whole protocol can be implemented within 2 weeks and requires users trained in using ultra-clean laboratory facilities and the aforementioned instrumentation.
Collapse
Affiliation(s)
- Chen Yang
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Centre, College of Chemistry and Molecular Engineering, Peking University, Beijing, People's Republic of China
| | - Caiyao Yang
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Centre, College of Chemistry and Molecular Engineering, Peking University, Beijing, People's Republic of China
| | - Yilin Guo
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Centre, College of Chemistry and Molecular Engineering, Peking University, Beijing, People's Republic of China
| | - Jianfei Feng
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Centre, College of Chemistry and Molecular Engineering, Peking University, Beijing, People's Republic of China
| | - Xuefeng Guo
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Centre, College of Chemistry and Molecular Engineering, Peking University, Beijing, People's Republic of China.
- Centre of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, People's Republic of China.
| |
Collapse
|
5
|
Zhang M, Li Z, Jia Y, Wang F, Tian J, Zhang C, Han T, Xing R, Ye W, Wang C. Observing Mesoscopic Nucleic Acid Capacitance Effect and Mismatch Impact via Graphene Transistors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105890. [PMID: 35072345 DOI: 10.1002/smll.202105890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/05/2021] [Indexed: 06/14/2023]
Abstract
This work reports a molecular-scale capacitance effect of the double helical nucleic acid duplex structure for the first time. By quantitatively conducting large sample measurements of the electrostatic field effect using a type of high-accuracy graphene transistor biosensor, an unusual charge-transport behavior is observed in which the end-immobilized nucleic acid duplexes can store a part of ionization electrons like molecular capacitors, other than electric conductors. To elucidate this discovery, a cascaded capacitive network model is proposed as a novel equivalent circuit of nucleic acid duplexes, expanding the point-charge approximation model, by which the partial charge-transport observation is reasonably attributed to an electron-redistribution behavior within the capacitive network. Furthermore, it is experimentally confirmed that base-pair mismatches hinder the charge transport in double helical duplexes, and lead to directly identifiable alterations in electrostatic field effects. The bioelectronic principle of mismatch impact is also self-consistently explained by the newly proposed capacitive network model. The mesoscopic nucleic acid capacitance effect may enable a new kind of label-free nucleic acid analysis tool based on electronic transistor devices. The in situ and real-time nucleic acid detections for virus biomarkers, somatic mutations, and genome editing off-target may thus be predictable.
Collapse
Affiliation(s)
- Mingfeng Zhang
- Tianjin Key Laboratory of Wireless Mobile Communications and Power Transmission, College of Electronic and Communication Engineering, Tianjin Normal University, Tianjin, 300387, China
| | - Zhibo Li
- Tianjin Key Laboratory of Wireless Mobile Communications and Power Transmission, College of Electronic and Communication Engineering, Tianjin Normal University, Tianjin, 300387, China
| | - Yuan Jia
- Industrialization Center of Micro & Nano ICs and Devices Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen, 518118, China
| | - Fuquan Wang
- Tianjin Key Laboratory of Wireless Mobile Communications and Power Transmission, College of Electronic and Communication Engineering, Tianjin Normal University, Tianjin, 300387, China
| | - Jinpeng Tian
- Industrialization Center of Micro & Nano ICs and Devices Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen, 518118, China
| | - Cuiping Zhang
- Tianjin Key Laboratory of Wireless Mobile Communications and Power Transmission, College of Electronic and Communication Engineering, Tianjin Normal University, Tianjin, 300387, China
| | - Tingting Han
- Tianjin Key Laboratory of Wireless Mobile Communications and Power Transmission, College of Electronic and Communication Engineering, Tianjin Normal University, Tianjin, 300387, China
- Department of Intelligence Science and Technology, College of Artificial Intelligence, Tianjin Normal University, Tianjin, 300387, China
| | - Ruiqing Xing
- Tianjin Key Laboratory of Wireless Mobile Communications and Power Transmission, College of Electronic and Communication Engineering, Tianjin Normal University, Tianjin, 300387, China
- Department of Intelligence Science and Technology, College of Artificial Intelligence, Tianjin Normal University, Tianjin, 300387, China
| | - Weixiang Ye
- Department of Physics, School of Science, Hainan University, Haikou, 570228, China
- Key Laboratory of Engineering Modeling and Statistical Computation of Hainan Province, School of Science, Hainan University, Haikou, 570228, China
| | - Cheng Wang
- Tianjin Key Laboratory of Wireless Mobile Communications and Power Transmission, College of Electronic and Communication Engineering, Tianjin Normal University, Tianjin, 300387, China
- Department of Intelligence Science and Technology, College of Artificial Intelligence, Tianjin Normal University, Tianjin, 300387, China
| |
Collapse
|
6
|
Weliwatte NS, Grattieri M, Minteer SD. Rational design of artificial redox-mediating systems toward upgrading photobioelectrocatalysis. Photochem Photobiol Sci 2021; 20:1333-1356. [PMID: 34550560 PMCID: PMC8455808 DOI: 10.1007/s43630-021-00099-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 09/03/2021] [Indexed: 12/23/2022]
Abstract
Photobioelectrocatalysis has recently attracted particular research interest owing to the possibility to achieve sunlight-driven biosynthesis, biosensing, power generation, and other niche applications. However, physiological incompatibilities between biohybrid components lead to poor electrical contact at the biotic-biotic and biotic-abiotic interfaces. Establishing an electrochemical communication between these different interfaces, particularly the biocatalyst-electrode interface, is critical for the performance of the photobioelectrocatalytic system. While different artificial redox mediating approaches spanning across interdisciplinary research fields have been developed in order to electrically wire biohybrid components during bioelectrocatalysis, a systematic understanding on physicochemical modulation of artificial redox mediators is further required. Herein, we review and discuss the use of diffusible redox mediators and redox polymer-based approaches in artificial redox-mediating systems, with a focus on photobioelectrocatalysis. The future possibilities of artificial redox mediator system designs are also discussed within the purview of present needs and existing research breadth.
Collapse
Affiliation(s)
- N Samali Weliwatte
- Department of Chemistry, University of Utah, Salt Lake City, UT, 84112, USA
| | - Matteo Grattieri
- Dipartimento Di Chimica, Università Degli Studi Di Bari "Aldo Moro", Via E. Orabona 4, 70125, Bari, Italy.
- IPCF-CNR Istituto Per I Processi Chimico Fisici, Consiglio Nazionale Delle Ricerche, Via E. Orabona 4, 70125, Bari, Italy.
| | - Shelley D Minteer
- Department of Chemistry, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
7
|
Harris AW, Roy S, Ganguly S, Parameswar AV, Lucas FWS, Holewinski A, Goodwin AP, Cha JN. Investigating the use of conducting oligomers and redox molecules in CdS-MoFeP biohybrids. NANOSCALE ADVANCES 2021; 3:1392-1396. [PMID: 36132854 PMCID: PMC9418983 DOI: 10.1039/d0na00678e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/18/2020] [Indexed: 05/11/2023]
Abstract
In this work we report the effect of incorporating conducting oligophenylenes and a cobaltocene-based redox mediator on photodriven electron transfer between thioglycolic acid (TGA) capped CdS nanorods (NR) and the native nitrogenase MoFe protein (MoFeP) by following the reduction of H+ to H2. First, we demonstrate that the addition of benzidine-a conductive diphenylene- to TGA-CdS and MoFeP increased catalytic activity by up to 3-fold as compared to CdS-MoFeP alone. In addition, in comparing the use of oligophenylenes composed of one (p-phenylenediamine), two (benzidine) or three (4,4''-diamino-p-terphenyl)phenylene groups, the largest gain in H2 was observed with the addition of benzidine and the lowest with phenylenediamine. As a comparison to the conductive oligophenylenes, a cobaltocene-based redox mediator was also tested with the TGA-CdS NRs and MoFeP. However, adding either cobaltocene diacid or diamine caused negligible gains in H2 production and at higher concentrations, caused a significant decrease. Agarose gel electrophoresis revealed little to no detectable interaction between benzidine and TGA-CdS but strong binding between cobaltocene and TGA-CdS. These results suggest that the tight binding of the cobaltocene mediator to CdS may hinder electron transfer between CdS and MoFe and cause the mediator to undergo continuous reduction/oxidation events at the surface of CdS.
Collapse
Affiliation(s)
- Alexander W Harris
- Department of Chemical and Biological Engineering, University of Colorado Boulder 3415 Colorado Avenue Boulder CO 80303 USA
| | - Shambojit Roy
- Department of Chemical and Biological Engineering, University of Colorado Boulder 3415 Colorado Avenue Boulder CO 80303 USA
| | - Saheli Ganguly
- Department of Chemical and Biological Engineering, University of Colorado Boulder 3415 Colorado Avenue Boulder CO 80303 USA
| | - Ashray V Parameswar
- Materials Science and Engineering Program, University of Colorado Boulder 3415 Colorado Avenue Boulder CO 80303 USA
| | - Francisco W S Lucas
- Department of Chemical and Biological Engineering, University of Colorado Boulder 3415 Colorado Avenue Boulder CO 80303 USA
| | - Adam Holewinski
- Department of Chemical and Biological Engineering, University of Colorado Boulder 3415 Colorado Avenue Boulder CO 80303 USA
- Renewable and Sustainable Energy Institute, University of Colorado Boulder CO 80303 USA
| | - Andrew P Goodwin
- Department of Chemical and Biological Engineering, University of Colorado Boulder 3415 Colorado Avenue Boulder CO 80303 USA
- Materials Science and Engineering Program, University of Colorado Boulder 3415 Colorado Avenue Boulder CO 80303 USA
| | - Jennifer N Cha
- Department of Chemical and Biological Engineering, University of Colorado Boulder 3415 Colorado Avenue Boulder CO 80303 USA
- Materials Science and Engineering Program, University of Colorado Boulder 3415 Colorado Avenue Boulder CO 80303 USA
| |
Collapse
|
8
|
Ghasemi S, Moth-Poulsen K. Single molecule electronic devices with carbon-based materials: status and opportunity. NANOSCALE 2021; 13:659-671. [PMID: 33406181 DOI: 10.1039/d0nr07844a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The field of single molecule electronics has progressed remarkably in the past decades by allowing for more versatile molecular functions and improving device fabrication techniques. In particular, electrodes made from carbon-based materials such as graphene and carbon nanotubes (CNTs) may enable parallel fabrication of multiple single molecule devices. In this perspective, we review the recent progress in the field of single molecule electronics, with a focus on devices that utilizes carbon-based electrodes. The paper is structured in three main sections: (i) controlling the molecule/graphene electrode interface using covalent and non-covalent approaches, (ii) using CNTs as electrodes for fabricating single molecule devices, and (iii) a discussion of possible future directions employing new or emerging 2D materials.
Collapse
Affiliation(s)
- Shima Ghasemi
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412-96 Göteborg, Sweden.
| | - Kasper Moth-Poulsen
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412-96 Göteborg, Sweden.
| |
Collapse
|
9
|
Cao Q, Shin M, Lavrik NV, Venton BJ. 3D-Printed Carbon Nanoelectrodes for In Vivo Neurotransmitter Sensing. NANO LETTERS 2020; 20:6831-6836. [PMID: 32813535 PMCID: PMC7484348 DOI: 10.1021/acs.nanolett.0c02844] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Direct laser writing, a nano 3D-printing approach, has enabled fabrication of customized carbon microelectrode sensors for neurochemical detection. However, to detect neurotransmitters in tiny biological organisms or synapses, submicrometer nanoelectrodes are required. In this work, we used 3D printing to fabricate carbon nanoelectrode sensors. Customized structures were 3D printed and then pyrolyzed, resulting in free-standing carbon electrodes with nanotips. The nanoelectrodes were insulated with atomic layer deposition of Al2O3 and the nanotips were polished by a focused ion beam to form 600 nm disks. Using fast-scan cyclic voltammetry, the electrodes successfully detected stimulated dopamine in the adult fly brain, demonstrating that they are robust and sensitive enough to use in tiny biological systems. This work is the first demonstration of 3D printing to fabricate free-standing carbon nanoelectrode sensors and will enable batch fabrication of customized nanoelectrode sensors with precise control and excellent reproducibility.
Collapse
Affiliation(s)
- Qun Cao
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Mimi Shin
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Nickolay V. Lavrik
- Center for Nanophase Material Science, Oak Ridge National Lab, Oak Ridge, Tennessee 37831, United States
| | - B. Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
10
|
Chen YR, Lin MK, Chan DH, Lin KB, Kaun CC. Ab Initio and Theoretical Study on Electron Transport through Polyene Junctions in between Carbon Nanotube Leads of Various Cuts. Sci Rep 2020; 10:8033. [PMID: 32415169 PMCID: PMC7229008 DOI: 10.1038/s41598-020-63363-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/30/2020] [Indexed: 11/09/2022] Open
Abstract
In this study we look into the interference effect in multi-thread molecular junctions in between carbon-nanotube (CNT) electrodes of assorted edges. From the tube end into the tube bulk of selected CNTs, we investigate surface Green's function and layer-by-layer local density of states (LDOS), and find that both the cross-cut and the angled-cut armchair CNTs exhibit 3-layer-cycled LDOS oscillations. Moreover, the angled-cut armchair CNTs, which possess a zigzag rim at the cut, exhibit not only the oscillations, but also edge state component that decays into the tube bulk. In the case of cross-cut zigzag CNTs, the LDOS shows no sign of oscillations, but prominent singularity feature due to edge states. With these cut CNTs as leads, we study the single-polyene and two-polyene molecular junctions via both ab initio and tight-binding model approaches. While the interference effect between transport channels is manifested through our results, we also differentiate the contributions towards transmission from the bulk states and the edge states, by understanding the difference in the Green's functions obtained from direct integration method and iterative method, separately.
Collapse
Affiliation(s)
- Yiing-Rei Chen
- Department of Physics, National Taiwan Normal University, Taipei, 11677, Taiwan.
| | - Ming-Kuan Lin
- Department of Physics, National Taiwan Normal University, Taipei, 11677, Taiwan
| | - Dun-Hao Chan
- Department of Physics, National Taiwan Normal University, Taipei, 11677, Taiwan
| | - Kuan-Bo Lin
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan, 70101, Taiwan.,Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Chao-Cheng Kaun
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan.,Department of Physics, National Tsing-Hua University, Hsinchu, 30013, Taiwan
| |
Collapse
|
11
|
Clément P, Trinchera P, Cervantes-Salguero K, Ye Q, Jones CR, Palma M. A One-Step Chemical Strategy for the Formation of Carbon Nanotube Junctions in Aqueous Solution: Reaction of DNA-Wrapped Carbon Nanotubes with Diazonium Salts. Chempluschem 2019; 84:1235-1238. [PMID: 31944048 DOI: 10.1002/cplu.201900151] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/29/2019] [Indexed: 11/06/2022]
Abstract
A single-step chemical strategy allows the formation of single-walled carbon nanotube (SWCNT) molecular junctions in aqueous solution. SWCNTs were first wrapped with DNA to be water soluble and solution processable. Diazonium salts, which have been shown to react spontaneously with carbon nanotubes in water at room temperature, were then employed to covalently link SWCNT segments. The DNA wrapping of the nanotubes acted as a protective layer that limits the functionalization predominantly to the nanotube terminal ends, therefore allowing the assembly of linear SWCNT junctions. Upon increasing the concentration of the linker, we observed first the formation of side-to-end junctions, and eventually the assembly, through side-to-side interactions, of SWCNTs into bundles. This approach demonstrates the possibility of tuning the formation of linear and branched carbon nanotube junctions that in turn is of importance for the sustainable fabrication of solution-processable CNT-based nanoscale systems and devices.
Collapse
Affiliation(s)
- Pierrick Clément
- School of Biological and Chemical Sciences, and Materials Research Institute, Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdom
| | - Piera Trinchera
- School of Biological and Chemical Sciences, and Materials Research Institute, Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdom
| | - Keitel Cervantes-Salguero
- School of Biological and Chemical Sciences, and Materials Research Institute, Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdom
| | - Qingyu Ye
- School of Biological and Chemical Sciences, and Materials Research Institute, Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdom
| | - Christopher R Jones
- School of Biological and Chemical Sciences, and Materials Research Institute, Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdom
| | - Matteo Palma
- School of Biological and Chemical Sciences, and Materials Research Institute, Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdom
| |
Collapse
|
12
|
Eklöf-Österberg J, Gschneidtner T, Tebikachew B, Lara-Avila S, Moth-Poulsen K. Parallel Fabrication of Self-Assembled Nanogaps for Molecular Electronic Devices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1803471. [PMID: 30358919 DOI: 10.1002/smll.201803471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/04/2018] [Indexed: 06/08/2023]
Abstract
Single molecule electronics might be a way to add additional function to nanoscale devices and continue miniaturization beyond current state of the art. Here, a combined top-down and bottom-up strategy is employed to assemble single molecules onto prefabricated electrodes. Protodevices, which are self-assembled nanogaps composed by two gold nanoparticles linked by a single or a few molecules, are guided onto top-down prefabricated nanosized nickel electrodes with sandwiched palladium layers. It is shown that an optimized geometry of multilayered metallic (top-down) electrodes facilitates the assembly of (bottom-up) nanostructures by surface charge interactions. Moreover, such assembly process results in an electrode-nanoparticle interface free from linking molecules that enable electrical measurements to probe electron transport properties of the nanoparticle-molecule-nanoparticle protodevices.
Collapse
Affiliation(s)
- Johnas Eklöf-Österberg
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, 412 96, Sweden
| | - Tina Gschneidtner
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, 412 96, Sweden
| | - Behabitu Tebikachew
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, 412 96, Sweden
| | - Samuel Lara-Avila
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, Gothenburg, 412 96, Sweden
- National Physical Laboratory, Teddington, TW11 0LW, UK
| | - Kasper Moth-Poulsen
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, 412 96, Sweden
| |
Collapse
|
13
|
Freeley M, Attanzio A, Cecconello A, Amoroso G, Clement P, Fernandez G, Gesuele F, Palma M. Tuning the Coupling in Single-Molecule Heterostructures: DNA-Programmed and Reconfigurable Carbon Nanotube-Based Nanohybrids. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800596. [PMID: 30356926 PMCID: PMC6193148 DOI: 10.1002/advs.201800596] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/27/2018] [Indexed: 06/08/2023]
Abstract
Herein a strategy is presented for the assembly of both static and stimuli-responsive single-molecule heterostructures, where the distance and electronic coupling between an individual functional nanomoiety and a carbon nanostructure are tuned via the use of DNA linkers. As proof of concept, the formation of 1:1 nanohybrids is controlled, where single quantum dots (QDs) are tethered to the ends of individual carbon nanotubes (CNTs) in solution with DNA interconnects of different lengths. Photoluminescence investigations-both in solution and at the single-hybrid level-demonstrate the electronic coupling between the two nanostructures; notably this is observed to progressively scale, with charge transfer becoming the dominant process as the linkers length is reduced. Additionally, stimuli-responsive CNT-QD nanohybrids are assembled, where the distance and hence the electronic coupling between an individual CNT and a single QD are dynamically modulated via the addition and removal of potassium (K+) cations; the system is further found to be sensitive to K+ concentrations from 1 pM to 25 × 10-3 m. The level of control demonstrated here in modulating the electronic coupling of reconfigurable single-molecule heterostructures, comprising an individual functional nanomoiety and a carbon nanoelectrode, is of importance for the development of tunable molecular optoelectronic systems and devices.
Collapse
Affiliation(s)
- Mark Freeley
- School of Biological and Chemical SciencesMaterials Research Instituteand Institute of BioengineeringQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| | - Antonio Attanzio
- School of Biological and Chemical SciencesMaterials Research Instituteand Institute of BioengineeringQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| | - Alessandro Cecconello
- School of Biological and Chemical SciencesMaterials Research Instituteand Institute of BioengineeringQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| | - Giuseppe Amoroso
- School of Biological and Chemical SciencesMaterials Research Instituteand Institute of BioengineeringQueen Mary University of LondonMile End RoadLondonE1 4NSUK
- Organisch‐Chemisches InstitutWestfälische Wilhelms‐Universität MünsterCorrensstrasse 4048149MünsterGermany
| | - Pierrick Clement
- School of Biological and Chemical SciencesMaterials Research Instituteand Institute of BioengineeringQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| | - Gustavo Fernandez
- Organisch‐Chemisches InstitutWestfälische Wilhelms‐Universität MünsterCorrensstrasse 4048149MünsterGermany
| | - Felice Gesuele
- Department of PhysicsUniversity of Naples “Federico II”Via Cintia, 26 Ed. 680126NapoliItaly
| | - Matteo Palma
- School of Biological and Chemical SciencesMaterials Research Instituteand Institute of BioengineeringQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| |
Collapse
|
14
|
Umemura K, Sato S. Scanning Techniques for Nanobioconjugates of Carbon Nanotubes. SCANNING 2018; 2018:6254692. [PMID: 30008981 PMCID: PMC6020491 DOI: 10.1155/2018/6254692] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/29/2018] [Indexed: 05/17/2023]
Abstract
Nanobioconjugates using carbon nanotubes (CNTs) are attractive and promising hybrid materials. Various biological applications using the CNT nanobioconjugates, for example, drug delivery systems and nanobiosensors, have been proposed by many authors. Scanning techniques such as scanning electron microscopy (SEM) and scanning probe microscopy (SPM) have advantages to characterize the CNT nanobioconjugates under various conditions, for example, isolated conjugates, conjugates in thin films, and conjugates in living cells. In this review article, almost 300 papers are categorized based on types of CNT applications, and various scanning data are introduced to illuminate merits of scanning techniques.
Collapse
Affiliation(s)
- Kazuo Umemura
- Department of Physics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 1628601, Japan
| | - Shizuma Sato
- Department of Physics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 1628601, Japan
| |
Collapse
|
15
|
Oruc B, Celik S, Hayat Soytas S, Unal H. DNA Directed Self-Assembly of Single Walled Carbon Nanotubes into Three-Way Junction Nanostructures. ACS OMEGA 2018; 3:4157-4162. [PMID: 30023887 PMCID: PMC6044768 DOI: 10.1021/acsomega.8b00306] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/05/2018] [Indexed: 05/19/2023]
Abstract
Utilization of a self-assembled two-dimensional DNA nanostructure to arrange single-walled carbon nanotubes (SWNTs) into predetermined structures at controllable angles is presented. A specially designed DNA three-way junction (3WJ) composed of three double-stranded DNA arms containing single-stranded overhang sequences was prepared by annealing of partially complementary ssDNA sequences and ultrasonicated with SWNTs, resulting in DNA-3WJ/SWNT hybrid nanostructures. Utilization of DNA-3WJ not only allowed the precise dispersion of SWNTs but also acted as a rigid template for the self-assembly of SWNTs into three-armed junctions at an angle of approximately 120° to each other as visualized by scanning electron microscopy and atomic force microscopy. Prepared DNA-3WJ/SWNT nanostructures were also demonstrated to have the appropriate binding sites for fluorophores, providing a simple method for the fluorescent labeling of SWNTs. When ssDNA sequences forming the DNA-3WJ are ultrasonicated with SWNTs, followed by annealing of resulting ssDNA wrapped SWNTs, instead of hybrid junctions composed of three SWNT molecules, a web-like structure composed of interconnected SWNT junctions was obtained. The design approaches demonstrated here provide simple methods for the arrangement of SWNTs into desired nanostructures utilizing pre-assembled DNA nanostructures as linkers in aqueous solution through noncovalent interactions which can greatly contribute to efforts along the controlled assembly of SWNTs.
Collapse
Affiliation(s)
- Betul Oruc
- Faculty
of Engineering and Natural Sciences, Sabanci
University, 34956 Istanbul, Turkey
| | - Suleyman Celik
- Sabanci
University SUNUM Nanotechnology Research Center, 34956 Istanbul, Turkey
| | - Serap Hayat Soytas
- Sabanci
University SUNUM Nanotechnology Research Center, 34956 Istanbul, Turkey
| | - Hayriye Unal
- Sabanci
University SUNUM Nanotechnology Research Center, 34956 Istanbul, Turkey
- E-mail: (H.U.)
| |
Collapse
|
16
|
Freeley M, Worthy HL, Ahmed R, Bowen B, Watkins D, Macdonald JE, Zheng M, Jones DD, Palma M. Site-Specific One-to-One Click Coupling of Single Proteins to Individual Carbon Nanotubes: A Single-Molecule Approach. J Am Chem Soc 2017; 139:17834-17840. [PMID: 29148737 DOI: 10.1021/jacs.7b07362] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We report the site-specific coupling of single proteins to individual carbon nanotubes (CNTs) in solution and with single-molecule control. Using an orthogonal Click reaction, Green Fluorescent Protein (GFP) was engineered to contain a genetically encoded azide group and then bound to CNT ends in different configurations: in close proximity or at longer distances from the GFP's functional center. Atomic force microscopy and fluorescence analysis in solution and on surfaces at the single-protein level confirmed the importance of bioengineering optimal protein attachment sites to achieve direct protein-nanotube communication and bridging.
Collapse
Affiliation(s)
- Mark Freeley
- School of Biological and Chemical Sciences, Institute of Bioengineering, and Materials Research Institute, Queen Mary University of London , Mile End Road, London E1 4NS, United Kingdom
| | - Harley L Worthy
- Division of Molecular Biosciences, School of Biosciences, Main Building, Cardiff University , Cardiff, Wales CF10 3AX, United Kingdom
| | - Rochelle Ahmed
- Division of Molecular Biosciences, School of Biosciences, Main Building, Cardiff University , Cardiff, Wales CF10 3AX, United Kingdom
| | - Ben Bowen
- Division of Molecular Biosciences, School of Biosciences, Main Building, Cardiff University , Cardiff, Wales CF10 3AX, United Kingdom
| | - Daniel Watkins
- Division of Molecular Biosciences, School of Biosciences, Main Building, Cardiff University , Cardiff, Wales CF10 3AX, United Kingdom
| | - J Emyr Macdonald
- School of Physics and Astronomy, Cardiff University , Queens's Building, The Parade, Cardiff CF24 3AA, United Kingdom
| | - Ming Zheng
- Materials Science and Engineering Division, National Institute of Standards and Technology , 100 Bureau Drive, Gaithersburg, Maryland 20899-8542, United States
| | - D Dafydd Jones
- Division of Molecular Biosciences, School of Biosciences, Main Building, Cardiff University , Cardiff, Wales CF10 3AX, United Kingdom
| | - Matteo Palma
- School of Biological and Chemical Sciences, Institute of Bioengineering, and Materials Research Institute, Queen Mary University of London , Mile End Road, London E1 4NS, United Kingdom
| |
Collapse
|
17
|
Xu Q, Scuri G, Mathewson C, Kim P, Nuckolls C, Bouilly D. Single Electron Transistor with Single Aromatic Ring Molecule Covalently Connected to Graphene Nanogaps. NANO LETTERS 2017; 17:5335-5341. [PMID: 28792226 DOI: 10.1021/acs.nanolett.7b01745] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report a robust approach to fabricate single-molecule transistors with covalent electrode-molecule-electrode chemical bonds, ultrashort (∼1 nm) molecular channels, and high coupling yield. We obtain nanometer-scale gaps from feedback-controlled electroburning of graphene constrictions and bridge these gaps with molecules using reaction chemistry on the oxidized graphene edges. Using these nanogaps, we are able to optimize the coupling chemistry to achieve high reconnection yield with ultrashort covalent single-molecule bridges. The length of the molecule is found to influence the fraction of covalently reconnected nanogaps. Finally, we discuss the tunneling nature of the covalent contacts using gate-dependent transport measurements, where we observe single electron transport via large energy Coulomb blockade even at room temperature. This study charts a clear path toward the assembling of ultraminiaturized electronics, sensors, and switches.
Collapse
Affiliation(s)
- Qizhi Xu
- Department of Chemistry, Columbia University , New York, New York 10027, United States
| | - Giovanni Scuri
- Department of Physics, Columbia University , New York, New York 10027, United States
| | - Carly Mathewson
- Department of Chemistry, Columbia University , New York, New York 10027, United States
| | - Philip Kim
- Department of Physics, Harvard University , Cambridge, Massachusetts 02138, United States
| | - Colin Nuckolls
- Department of Chemistry, Columbia University , New York, New York 10027, United States
| | - Delphine Bouilly
- Institute for Research on Immunology and Cancer (IRIC) and Department of Physics, Université de Montréal , Montréal, Quebec H3C 3J7, Canada
| |
Collapse
|
18
|
Inkpen MS, Leroux YR, Hapiot P, Campos LM, Venkataraman L. Reversible on-surface wiring of resistive circuits. Chem Sci 2017; 8:4340-4346. [PMID: 28660061 PMCID: PMC5472029 DOI: 10.1039/c7sc00599g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/05/2017] [Indexed: 01/04/2023] Open
Abstract
Whilst most studies in single-molecule electronics involve components first synthesized ex situ, there is also great potential in exploiting chemical transformations to prepare devices in situ. Here, as a first step towards this goal, we conduct reversible reactions on monolayers to make and break covalent bonds between alkanes of different lengths, then measure the conductance of these molecules connected between electrodes using the scanning tunneling microscopy-based break junction (STM-BJ) method. In doing so, we develop the critical methodology required for assembling and disassembling surface-bound single-molecule circuits. We identify effective reaction conditions for surface-bound reagents, and importantly demonstrate that the electronic characteristics of wires created in situ agree with those created ex situ. Finally, we show that the STM-BJ technique is unique in its ability to definitively probe surface reaction yields both on a local (∼50 nm2) and pseudo-global (≥10 mm2) level. This investigation thus highlights a route to the construction and integration of more complex, and ultimately functional, surface-based single-molecule circuitry, as well as advancing a methodology that facilitates studies beyond the reach of traditional ex situ synthetic approaches.
Collapse
Affiliation(s)
- Michael S Inkpen
- Department of Applied Physics and Applied Mathematics , Columbia University , New York , NY 10027 , USA . ;
- Institut des Sciences Chimiques de Rennes (Equipe MaCSE) , CNRS , Université de Rennes 1 , Campus de Beaulieu, Bat 10C , Rennes Cedex , UMR 6226 , France
| | - Yann R Leroux
- Institut des Sciences Chimiques de Rennes (Equipe MaCSE) , CNRS , Université de Rennes 1 , Campus de Beaulieu, Bat 10C , Rennes Cedex , UMR 6226 , France
| | - Philippe Hapiot
- Institut des Sciences Chimiques de Rennes (Equipe MaCSE) , CNRS , Université de Rennes 1 , Campus de Beaulieu, Bat 10C , Rennes Cedex , UMR 6226 , France
| | - Luis M Campos
- Department of Chemistry , Columbia University , New York , NY 10027 , USA
| | - Latha Venkataraman
- Department of Applied Physics and Applied Mathematics , Columbia University , New York , NY 10027 , USA . ;
- Department of Chemistry , Columbia University , New York , NY 10027 , USA
| |
Collapse
|
19
|
Advance of Mechanically Controllable Break Junction for Molecular Electronics. Top Curr Chem (Cham) 2017; 375:61. [DOI: 10.1007/s41061-017-0149-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 05/16/2017] [Indexed: 10/19/2022]
|
20
|
Affiliation(s)
- Joseph McMorrow
- School of Biological and Chemical Sciences,
Materials Research Institute, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Mark Freeley
- School of Biological and Chemical Sciences,
Materials Research Institute, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Matteo Palma
- School of Biological and Chemical Sciences,
Materials Research Institute, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| |
Collapse
|
21
|
Attanzio A, Sapelkin A, Gesuele F, van der Zande A, Gillin WP, Zheng M, Palma M. Carbon Nanotube-Quantum Dot Nanohybrids: Coupling with Single-Particle Control in Aqueous Solution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1603042. [PMID: 28186366 DOI: 10.1002/smll.201603042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 12/09/2016] [Indexed: 06/06/2023]
Abstract
A strategy is reported for the controlled assembly of organic-inorganic heterostructures consisting of individual single-walled carbon nanotubes (SWCNTs) selectively coupled to single semiconductor quantum dots (QDs). The assembly in aqueous solution was controlled towards the formation of monofunctionalized SWCNT-QD structures. Photoluminescence studies in solution, and on surfaces at the single nanohybrid level, showed evidence of electronic coupling between the two nanostructures. The ability to covalently couple heterostructures with single particle control is crucial for the design of novel QD-based optoelectronic and light-energy conversion devices.
Collapse
Affiliation(s)
- Antonio Attanzio
- Materials Research Institute and School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E14NS, UK
| | - Andrei Sapelkin
- Materials Research Institute and School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London, E14NS, UK
| | - Felice Gesuele
- Department of Physics, University of Naples "Federico II,", Via Cintia, 26 Ed. 6, 80126, Napoli, Italy
| | - Arend van der Zande
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 W. Green St., Urbana, IL, 61801, USA
| | - William P Gillin
- Materials Research Institute and School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London, E14NS, UK
| | - Ming Zheng
- Materials Science and Engineering Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899-8542, USA
| | - Matteo Palma
- Materials Research Institute and School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E14NS, UK
| |
Collapse
|
22
|
|
23
|
Umemura K, Izumi K, Oura S. Probe Microscopic Studies of DNA Molecules on Carbon Nanotubes. NANOMATERIALS 2016; 6:nano6100180. [PMID: 28335308 PMCID: PMC5245195 DOI: 10.3390/nano6100180] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/15/2016] [Accepted: 09/27/2016] [Indexed: 01/21/2023]
Abstract
Hybrids of DNA and carbon nanotubes (CNTs) are promising nanobioconjugates for nanobiosensors, carriers for drug delivery, and other biological applications. In this review, nanoscopic characterization of DNA-CNT hybrids, in particular, characterization by scanning probe microscopy (SPM), is summarized. In many studies, topographical imaging by atomic force microscopy has been performed. However, some researchers have demonstrated advanced SPM operations in order to maximize its unique and valuable functions. Such sophisticated approaches are attractive and will have a significant impact on future studies of DNA-CNT hybrids.
Collapse
Affiliation(s)
- Kazuo Umemura
- Biophysics Section, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan.
| | - Katsuki Izumi
- Biophysics Section, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan.
| | - Shusuke Oura
- Biophysics Section, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan.
| |
Collapse
|