1
|
Bar Ziv N, Chen C, da Camara B, Julian RR, Hooley RJ. Selective aqueous anion recognition in an anionic host. iScience 2024; 27:111348. [PMID: 39640565 PMCID: PMC11617965 DOI: 10.1016/j.isci.2024.111348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/16/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
Water-soluble Fe4L4 4- cages can be synthesized in a multicomponent self-assembly process exploiting functionalized trigonal ligands, FeII salts, and water-soluble sulfonated formylpyridine components. The cages are soluble in purely aqueous solution and display an overall 4- charge, but are capable of binding suitably sized non-coordinating anions in the host cavity despite their anionic nature. Anions such as PF6 - or AsF6 - occupy the internal cavity, whereas anions that are too small (BF4 -) or too large (NTf2 -) are not encapsulated. The external anionic charge and sterically blocked ligand cores limit the exchange rate of bound anions, as no exchange is seen over a period of weeks with the anion-filled cages, and internalization of added PF6 - by an empty cage takes multiple weeks, despite the strong affinity of the cavity for PF6 - ions. In the future, this recognition mechanism could be used to control release of anions for environmental applications.
Collapse
Affiliation(s)
- Noa Bar Ziv
- Department of Chemistry and the UCR Center for Catalysis, University of California - Riverside, Riverside, CA 92521, USA
| | - Chengwei Chen
- Department of Chemistry and the UCR Center for Catalysis, University of California - Riverside, Riverside, CA 92521, USA
| | - Bryce da Camara
- Department of Chemistry and the UCR Center for Catalysis, University of California - Riverside, Riverside, CA 92521, USA
| | - Ryan R. Julian
- Department of Chemistry and the UCR Center for Catalysis, University of California - Riverside, Riverside, CA 92521, USA
| | - Richard J. Hooley
- Department of Chemistry and the UCR Center for Catalysis, University of California - Riverside, Riverside, CA 92521, USA
| |
Collapse
|
2
|
Matthys G, Laemont A, De Geyter N, Morent R, Lavendomme R, Van Der Voort P. Robust Imidazopyridinium Covalent Organic Framework as Efficient Iodine Capturing Materials in Gaseous and Aqueous Environment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404994. [PMID: 39169707 DOI: 10.1002/smll.202404994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/01/2024] [Indexed: 08/23/2024]
Abstract
The development of a high-performing adsorbent that can capture both iodine vapor from volatile nuclear waste and traces of iodine species from water is an important challenge, especially in industrially relevant process conditions. This study introduces novel imidazopyridinium-based covalent organic frameworks (COFs) through post-modification of a picolinaldehyde-based imine COF. These COFs demonstrate excellent iodine adsorption capacity, adsorption kinetics, and a high stability/recyclability in both vapor and water phases. Notably, one imidazopyridinium COF exhibits gaseous iodine uptake of 21 wt.% under dynamic adsorption conditions at 150 °C and a relative humidity of 50%, surpassing the performance of the currently used silver-based zeolite adsorbents (Ag@MOR (17wt.%)). Additionally, the same imidazopyridinium COFs can efficiently remove iodine species at a low concentration from aqueous solution. Seawater containing triiodide ions treated under dynamic flow-through conditions resulted in decreased concentrations down to the ppb level. The adsorption mechanisms for iodine and polyiodide species are elucidated for the imine COF and imidazopyridinium COFs; involving halogen bonding, hydrogen bonding, and charge-transfer complexes.
Collapse
Affiliation(s)
- Gilles Matthys
- Center for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281- S3, Ghent, 9000, Belgium
| | - Andreas Laemont
- Center for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281- S3, Ghent, 9000, Belgium
| | - Nathalie De Geyter
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, B4, Ghent, 9000, Belgium
| | - Rino Morent
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, B4, Ghent, 9000, Belgium
| | - Roy Lavendomme
- Center for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281- S3, Ghent, 9000, Belgium
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06, Brussels, B-1050, Belgium
| | - Pascal Van Der Voort
- Center for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281- S3, Ghent, 9000, Belgium
| |
Collapse
|
3
|
Yang Y, Ronson TK, Hou D, Zheng J, Jahović I, Luo KH, Nitschke JR. Hetero-Diels-Alder Reaction between Singlet Oxygen and Anthracene Drives Integrative Cage Self-Sorting. J Am Chem Soc 2023; 145:19164-19170. [PMID: 37610128 PMCID: PMC10485901 DOI: 10.1021/jacs.3c04228] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Indexed: 08/24/2023]
Abstract
A ZnII8L6 pseudocube containing anthracene-centered ligands, a ZnII4L'4 tetrahedron with a similar side length as the cube, and a trigonal prism ZnII6L3L'2 were formed in equilibrium from a common set of subcomponents. Hetero-Diels-Alder reaction with photogenerated singlet oxygen transformed the anthracene-containing "L" ligands into endoperoxide "LO" ones and ultimately drove the integrative self-sorting to form the trigonal prismatic cage ZnII6LO3L'2 exclusively. This ZnII6LO3L'2 structure lost dioxygen in a retro-Diels-Alder reaction after heating, which resulted in reversion to the initial ZnII8L6 + ZnII4L'4 ⇌ 2 × ZnII6L3L'2 equilibrating system. Whereas the ZnII8L6 pseudocube had a cavity too small for guest encapsulation, the ZnII6L3L'2 and ZnII6LO3L'2 trigonal prisms possessed peanut-shaped internal cavities with two isolated compartments divided by bulky anthracene panels. Guest binding was also observed to drive the equilibrating system toward exclusive formation of the ZnII6L3L'2 structure, even in the absence of reaction with singlet oxygen.
Collapse
Affiliation(s)
- Yuchong Yang
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, United
Kingdom
| | - Tanya K. Ronson
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, United
Kingdom
| | - Dingyu Hou
- Department
of Mechanical Engineering, University College
London, London WC1E 7JE, United
Kingdom
| | - Jieyu Zheng
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, United
Kingdom
| | - Ilma Jahović
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, United
Kingdom
| | - Kai Hong Luo
- Department
of Mechanical Engineering, University College
London, London WC1E 7JE, United
Kingdom
| | - Jonathan R. Nitschke
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, United
Kingdom
| |
Collapse
|
4
|
Sarkar M, Hey-Hawkins E, Boomishankar R. Encapsulation Studies on closo-Dicarbadodecaborane Isomers in Neutral Tetrahedral Palladium(II) Cages. Inorg Chem 2023; 62:4035-4042. [PMID: 36857772 DOI: 10.1021/acs.inorgchem.2c04207] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
The encapsulation of icosahedral closo-dicarbadodecaborane (o-, m-, and p-carboranes, Cb) as guest molecules at the intrinsic cavities of the three isostructural tetrahedral cages [{Pd3(NiPr)3PO}4(Cl-AN)6] (1), [{Pd3(NiPr)3PO}4(Br-AN)6] (2), and [{Pd3(NiPr)3PO}4(H-AN)6] (3) was studied. The formation of definite host-guest assemblies was probed with mass spectrometry, IR, and NMR spectral analysis. 2D DOSY 1H NMR of the Cb⊂Cage systems showed similar diffusion coefficient (D) values for the host and guest species, signifying the encapsulation of these guests inside the cage assemblies. The hydrodynamic radius (RH) derived from the D values of the host and guest species further confirmed the encapsulation of the Cb isomers at the cage pockets. The single-molecule energy optimization of the host-guest assemblies indicated the preferential binding of o-Cb as a guest inside the cages (1-3). The stabilization of these Cb guests inside these cages was further attributed to various possible nonclassical C-H···X-type interactions.
Collapse
Affiliation(s)
- Meghamala Sarkar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune 411008, India
| | - Evamarie Hey-Hawkins
- Institut für Anorganische Chemie, Fakultät für Chemie und Mineralogie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| | - Ramamoorthy Boomishankar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune 411008, India.,Centre for Energy Science, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune 411008, India
| |
Collapse
|
5
|
da Camara B, Ziv NB, Carta V, Mota Orozco GA, Wu HT, Julian RR, Hooley RJ. Gated, Selective Anion Exchange in Functionalized Self-Assembled Cage Complexes. Chemistry 2023; 29:e202203588. [PMID: 36409525 PMCID: PMC10276534 DOI: 10.1002/chem.202203588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022]
Abstract
Appending functional groups to the exterior of Zn4 L4 self-assembled cages allows gated control of anion binding. While the unfunctionalized cages contain aryl groups in the ligand that can freely rotate, attaching inert functional groups creates a "doorstop", preventing rotation and slowing the guest exchange rate, even though the interiors of the host cavities are identically structured. The effects on anion exchange are subtle and depend on multiple factors, including anion size, the nature of the leaving anion, and the electron-withdrawing ability and steric bulk of the pendant groups. Multiple exchange mechanisms occur, and the nature of the external groups controls associative and dissociative exchange processes: these bulky groups affect both anion egress and ingress, introducing an extra layer of selectivity to the exchange. Small changes can have large effects: affinities for anions as similar as PF6 - and SbF6 - can vary by as much as 400-fold between identically sized cavities.
Collapse
Affiliation(s)
- Bryce da Camara
- Department of Chemistry and the UCR Center for Catalysis, University of California - Riverside, Riverside, CA, 92521, USA
| | - Noa Bar Ziv
- Department of Chemistry and the UCR Center for Catalysis, University of California - Riverside, Riverside, CA, 92521, USA
| | - Veronica Carta
- Department of Chemistry and the UCR Center for Catalysis, University of California - Riverside, Riverside, CA, 92521, USA
| | - Gabriela A Mota Orozco
- Department of Chemistry and the UCR Center for Catalysis, University of California - Riverside, Riverside, CA, 92521, USA
| | - Hoi-Ting Wu
- Department of Chemistry and the UCR Center for Catalysis, University of California - Riverside, Riverside, CA, 92521, USA
| | - Ryan R Julian
- Department of Chemistry and the UCR Center for Catalysis, University of California - Riverside, Riverside, CA, 92521, USA
| | - Richard J Hooley
- Department of Chemistry and the UCR Center for Catalysis, University of California - Riverside, Riverside, CA, 92521, USA
| |
Collapse
|
6
|
Zhang H, Li Y, Zhang YF, Qiao XJ, Sun LY, Li J, Wang YY, Han YF. Solvato-Controlled Assembly and Structural Transformation of Emissive Poly-NHC-Based Organometallic Cages and Their Applications in Amino Acid Sensing and Fluorescence Imaging. Chemistry 2023; 29:e202300209. [PMID: 36762405 DOI: 10.1002/chem.202300209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/11/2023]
Abstract
Stimuli-induced structural transformation of supramolecular cages has drawn increasing attention because of their sensitive feature to external variations as model systems to simulate biological processes. However, combining structural transformation and useful functions has remained a difficult task. This study reports the solvato-controlled self-assembly of two unique topologies with different emission characteristics, a water-soluble Ag8 L4 cage (A) and an Ag4 L2 cage (B), produced from the same sulfonate-pendant tetraphenylethene (TPE) bridged tetrakis-(1,2,4-triazolium) ligand. Both cages show interesting solvent-responsive reversible structural transformation, and the change of fluorescence signals can efficiently track the process. Additionally, water-soluble cage A exhibits unique properties in thermochromism, thiol amino acid sensing, and subcellular imaging in aqueous media.
Collapse
Affiliation(s)
- Heng Zhang
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Yang Li
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Yi-Fan Zhang
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Xiu-Juan Qiao
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Li-Ying Sun
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Jianli Li
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Ying-Feng Han
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| |
Collapse
|
7
|
Capó N, Barrios LA, Cardona J, Ribas-Ariño J, Teat SJ, Roubeau O, Aromí G. The template effect of a SiF 62- guest drives the formation of a heteroleptic Fe(II) coordination helicate. Chem Commun (Camb) 2022; 58:10969-10972. [PMID: 36089837 DOI: 10.1039/d2cc04559a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The anion SiF62- exerts a strong template effect, driving the exclusive assembly of two different bispyridylpyrazolyl ligands into a triple stranded Fe(II) dinuclear heteroleptic helicate, engendering a new class within the large family of coordination helicates.
Collapse
Affiliation(s)
- Nuria Capó
- Departament de Química Inorgànica i Orgànica and IN2UB, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.
| | - Leoní A Barrios
- Departament de Química Inorgànica i Orgànica and IN2UB, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.
| | - Joan Cardona
- Departament de Química Inorgànica i Orgànica and IN2UB, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.
| | - Jordi Ribas-Ariño
- Departament de Química Física and IQTCUB, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Simon J Teat
- Advanced Light Source, Berkeley Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Olivier Roubeau
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC and Universidad de Zaragoza, Plaza San Francisco s/n, 50009, Zaragoza, Spain
| | - Guillem Aromí
- Departament de Química Inorgànica i Orgànica and IN2UB, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.
| |
Collapse
|
8
|
Mozaceanu C, Solea AB, Taylor CGP, Sudittapong B, Ward MD. Disentangling contributions to guest binding inside a coordination cage host: analysis of a set of isomeric guests with differing polarities. Dalton Trans 2022; 51:15263-15272. [PMID: 36129351 PMCID: PMC9578013 DOI: 10.1039/d2dt02623f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Binding of a set of three isomeric guests (1,2-, 1,3- and 1,4-dicyanobenzene, abbreviated DCB) inside an octanuclear cubic coordination cage host H (bearing different external substitutents according to solvent used) has been studied in water/dmso (98 : 2) and CD2Cl2. These guests have essentially identical molecular surfaces, volumes and external functional groups to interact with the cage interior surface; but they differ in polarity with dipole moments of ca. 7, 4 and 0 Debye respectively. In CD2Cl2 guest binding is weak but we observe a clear correlation of binding free energy with guest polarity, with 1,4-DCB showing no detectable binding by NMR spectroscopy but 1,2-DCB having −ΔG = 9 kJ mol−1. In water (containing 2% dmso to solubilise the guests) we see the same trend but all binding free energies are much higher due to an additional hydrophobic contribution to binding, with −ΔG varying from 16 kJ mol−1 for 1,4-DCB to 22 kJ mol−1 for 1,4-DCB: again we see an increase associated with guest polarity but the increase in −ΔG per Debye of dipole moment is around half what we observe in CD2Cl2 which we ascribe to the fact the more polar guests will be better solvated in the aqueous solvent. A van't Hoff analysis by variable-temperature NMR showed that the improvement in guest binding in water/dmso is entropy-driven, which suggests that the key factor is not direct electrostatic interactions between a polar guest and the cage surface, but the variation in guest desolvation across the series, with the more polar (and hence more highly solvated) guests having a greater favourable entropy change on desolvation. The three dicyanobenzene isomers have obvious similarities but differ in their dipole moment: effects on binding in a coordination cage host in different solvents are discussed.![]()
Collapse
Affiliation(s)
| | - Atena B Solea
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| | | | - Burin Sudittapong
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| | - Michael D Ward
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
9
|
Piskorz TK, Martí-Centelles V, Young TA, Lusby PJ, Duarte F. Computational Modeling of Supramolecular Metallo-organic Cages-Challenges and Opportunities. ACS Catal 2022; 12:5806-5826. [PMID: 35633896 PMCID: PMC9127791 DOI: 10.1021/acscatal.2c00837] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/09/2022] [Indexed: 01/18/2023]
Abstract
Self-assembled metallo-organic cages have emerged as promising biomimetic platforms that can encapsulate whole substrates akin to an enzyme active site. Extensive experimental work has enabled access to a variety of structures, with a few notable examples showing catalytic behavior. However, computational investigations of metallo-organic cages are scarce, not least due to the challenges associated with their modeling and the lack of accurate and efficient protocols to evaluate these systems. In this review, we discuss key molecular principles governing the design of functional metallo-organic cages, from the assembly of building blocks through binding and catalysis. For each of these processes, computational protocols will be reviewed, considering their inherent strengths and weaknesses. We will demonstrate that while each approach may have its own specific pitfalls, they can be a powerful tool for rationalizing experimental observables and to guide synthetic efforts. To illustrate this point, we present several examples where modeling has helped to elucidate fundamental principles behind molecular recognition and reactivity. We highlight the importance of combining computational and experimental efforts to speed up supramolecular catalyst design while reducing time and resources.
Collapse
Affiliation(s)
- Tomasz K. Piskorz
- Chemistry
Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United
Kingdom
| | - Vicente Martí-Centelles
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat
Politècnica de València, Universitat de València, Valencia 46022, Spain
| | - Tom A. Young
- Chemistry
Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United
Kingdom
| | - Paul J. Lusby
- EaStCHEM
School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster
Road, Edinburgh, Scotland EH9 3FJ, United Kingdom
| | - Fernanda Duarte
- Chemistry
Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United
Kingdom
| |
Collapse
|
10
|
Lee H, Tessarolo J, Langbehn D, Baksi A, Herges R, Clever GH. Light-Powered Dissipative Assembly of Diazocine Coordination Cages. J Am Chem Soc 2022; 144:3099-3105. [PMID: 35081312 PMCID: PMC8874908 DOI: 10.1021/jacs.1c12011] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
Stimuli-responsive
coordination cages allow reversible control
over guest binding and release, relevant for adaptive receptors, carriers,
catalysts, and complex systems. Light serves as an advantageous stimulus,
as it can be applied with precise spatial and temporal resolution
without producing chemical waste products. We report the first Pd-mediated
coordination cage based on ligands embedding a diazocine photoswitch.
While the thermodynamically more stable cis-photoisomer
sloppily assembles to a mixture of species with general formula [Pdncis-L2n], the less stable trans-isomer yields a defined [Pd2trans-L4] cage that reversibly converts
back to the cis-system by irradiation at 530 nm or
thermal relaxation. The [Pdncis-L2n]
species do not bind a given guest; however, [Pd2trans-L4] is able to
encapsulate a bis-sulfonate as long as it is kept assembled, requiring
continuous irradiation at 385 nm. In the absence of UV light, thermal
relaxation results in back-switching and guest release. Assembly and
properties of the system were characterized by a combination of NMR,
ion mobility ESI-MS, single-crystal X-ray diffraction, and UV–vis
absorption studies.
Collapse
Affiliation(s)
- Haeri Lee
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto Hahn Straße 6, 44227 Dortmund, Germany.,Department of Chemistry, Hannam University, 1646, Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Jacopo Tessarolo
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto Hahn Straße 6, 44227 Dortmund, Germany
| | - Daniel Langbehn
- Otto Diels Institute of Organic Chemistry, Christian-Albrechts University, Otto Hahn Platz 4, 24118 Kiel, Germany
| | - Ananya Baksi
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto Hahn Straße 6, 44227 Dortmund, Germany
| | - Rainer Herges
- Otto Diels Institute of Organic Chemistry, Christian-Albrechts University, Otto Hahn Platz 4, 24118 Kiel, Germany
| | - Guido H Clever
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto Hahn Straße 6, 44227 Dortmund, Germany
| |
Collapse
|
11
|
Hamashima K, Yuasa J. Entropy Versus Enthalpy Controlled Temperature/Redox Dual‐Triggered Cages for Selective Anion Encapsulation and Release. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kyosuke Hamashima
- Department of Applied Chemistry Tokyo University of Science 1–3 Kagurazaka Shinjuku-ku, Tokyo 162-8601 Japan
| | - Junpei Yuasa
- Department of Applied Chemistry Tokyo University of Science 1–3 Kagurazaka Shinjuku-ku, Tokyo 162-8601 Japan
| |
Collapse
|
12
|
Ganta S, Borter JH, Drechsler C, Holstein JJ, Schwarzer D, Clever GH. Photoinduced host-to-guest electron transfer in a self-assembled coordination cage. Org Chem Front 2022; 9:5485-5493. [DOI: 10.1039/d2qo01339h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022]
Abstract
Light–powered host–guest charge transfer (HGCT) is shown for a coordination cage based on electron-rich phenothiazines, containing an anthraquinone acceptor as guest. Transient absorption spectroscopy and spectroelectrochemistry data is presented.
Collapse
Affiliation(s)
- Sudhakar Ganta
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| | - Jan-Hendrik Borter
- Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Christoph Drechsler
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| | - Julian J. Holstein
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| | - Dirk Schwarzer
- Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Guido H. Clever
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| |
Collapse
|
13
|
Hamashima K, Yuasa J. Entropy Versus Enthalpy Controlled Temperature/Redox Dual-Triggered Cages for Selective Anion Encapsulation and Release. Angew Chem Int Ed Engl 2021; 61:e202113914. [PMID: 34796586 DOI: 10.1002/anie.202113914] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Indexed: 11/08/2022]
Abstract
New C3 -symmetric imidazole ligands were designed with phosphine and phosphine oxide linkers (LP and LPO , respectively) to demonstrate a dual-triggered dynamic closed coordination cage. Both LP and LPO form discrete Zn4 L4 -closed cages (1P and 1PO , respectively) with excellent selectively for BPh4 - , whereas 1P and 1PO encapsulate neither a slightly larger size anion [B(C6 H4 CH3 )4 - ] nor smaller size anions (BF4 - , PF6 - , SbF6 - , and OSO2 CF3 - ). 1PO exhibits more negative enthalpy and entropy changes upon anion encapsulation, thus releasing almost all of the encapsulated anions at high temperature (343 K) (trigger 1: BPh4 - ⊂1PO ← → 1PO +BPh4 - ). In contrast 1P has less negative enthalpy and entropy changes, thus preserving the captured anion over a wide range of temperatures (298 K to 343 K). The 1P cage can be quantitatively oxidized to the 1PO cage by a mild oxidant (Ox.=H2 O2 ), and therefore the captured anion can be released by a redox triggering event (trigger 2: BPh4 - ⊂1P +Ox.→1PO +BPh4 - ).
Collapse
Affiliation(s)
- Kyosuke Hamashima
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Junpei Yuasa
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| |
Collapse
|
14
|
Ludden MD, Taylor CGP, Tipping MB, Train JS, Williams NH, Dorrat JC, Tuck KL, Ward MD. Interaction of anions with the surface of a coordination cage in aqueous solution probed by their effect on a cage-catalysed Kemp elimination. Chem Sci 2021; 12:14781-14791. [PMID: 34820094 PMCID: PMC8597839 DOI: 10.1039/d1sc04887b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/25/2021] [Indexed: 11/21/2022] Open
Abstract
An octanuclear M8L12 coordination cage catalyses the Kemp elimination reaction of 5-nitro-1,2-benzisoxazole (NBI) with hydroxide to give 2-cyano-4-nitrophenolate (CNP) as the product. In contrast to the previously-reported very efficient catalysis of the Kemp elimination reaction of unsubstituted benzisoxazole, which involves the substrate binding inside the cage cavity, the catalysed reaction of NBI with hydroxide is slower and occurs at the external surface of the cage, even though NBI can bind inside the cage cavity. The rate of the catalysed reaction is sensitive to the presence of added anions, which bind to the 16+ cage surface, displacing the hydroxide ions from around the cage which are essential reaction partners in the Kemp elimination. Thus we can observe different binding affinities of anions to the surface of the cationic cage in aqueous solution by the extent to which they displace hydroxide and thereby inhibit the catalysed Kemp elimination and slow down the appearance of CNP. For anions with a -1 charge the observed affinity order for binding to the cage surface is consistent with their ease of desolvation and their ordering in the Hofmeister series. With anions that are significantly basic (fluoride, hydrogen carbonate, carboxylates) the accumulation of the anion around the cage surface accelerates the Kemp elimination compared to the background reaction with hydroxide, which we ascribe to the ability of these anions to participate directly in the Kemp elimination. This work provides valuable mechanistic insights into the role of the cage in co-locating the substrate and the anionic reaction partners in a cage-catalysed reaction.
Collapse
Affiliation(s)
- Michael D Ludden
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | | | - Max B Tipping
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | - Jennifer S Train
- Department of Chemistry, University of Sheffield Sheffield S3 7HF UK
| | | | - Jack C Dorrat
- School of Chemistry, Monash University Melbourne VIC3800 Australia
| | - Kellie L Tuck
- School of Chemistry, Monash University Melbourne VIC3800 Australia
| | - Michael D Ward
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| |
Collapse
|
15
|
Mansoor IF, Dutton KG, Rothschild DA, Remsing RC, Lipke MC. Uptake, Trapping, and Release of Organometallic Cations by Redox-Active Cationic Hosts. J Am Chem Soc 2021; 143:16993-17003. [PMID: 34596386 DOI: 10.1021/jacs.1c06121] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The host-guest chemistry of metal-organic nanocages is typically driven by thermodynamically favorable interactions with their guests such that uptake and release of guests can be controlled by switching this affinity on or off. Herein, we achieve this effect by reducing porphyrin-walled cationic nanoprisms 1a12+ and 1b12+ to zwitterionic states that rapidly uptake organometallic cations Cp*2Co+ and Cp2Co+, respectively. Cp*2Co+ binds strongly (Ka = 1.3 × 103 M-1) in the neutral state 1a0 of host 1a12+, which has its three porphyrin walls doubly reduced and its six (bipy)Pt2+ linkers singly reduced (bipy = 2,2'-bipyridine). The less-reduced states of the host 1a3+ and 1a9+ also bind Cp*2Co+, though with lower affinities. The smaller Cp2Co+ cation binds strongly (Ka = 1.7 × 103 M-1) in the 3e- reduced state 1b9+ of the (tmeda)Pt2+-linked host 1b12+ (tmeda = N,N,N',N'-tetramethylethylenediamine). Upon reoxidation of the hosts with Ag+, the guests become trapped to provide unprecedented metastable cation-in-cation complexes Cp*2Co+@1a12+ and Cp2Co+@1b12+ that persist for >1 month. Thus, dramatic kinetic effects reveal a way to confine the guests in thermodynamically unfavorable environments. Experimental and DFT studies indicate that PF6- anions kinetically stabilize Cp*2Co+@1a12+ through electrostatic interactions and by influencing conformational changes of the host that open and close its apertures. However, when Cp*2Co+@1a12+ was prepared using ferrocenium (Fc+) instead of Ag+ to reoxidize the host, dissociation was accelerated >200× even though neither Fc+ nor Fc have any observable affinity for 1a12+. This finding shows that metastable host-guest complexes can respond to subtler stimuli than those required to induce guest release from thermodynamically favorable complexes.
Collapse
Affiliation(s)
- Iram F Mansoor
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Kaitlyn G Dutton
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Daniel A Rothschild
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Richard C Remsing
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Mark C Lipke
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| |
Collapse
|
16
|
Ludden MD, Taylor CGP, Ward MD. Orthogonal binding and displacement of different guest types using a coordination cage host with cavity-based and surface-based binding sites. Chem Sci 2021; 12:12640-12650. [PMID: 34703549 PMCID: PMC8494021 DOI: 10.1039/d1sc04272f] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
The octanuclear Co(ii) cubic coordination cage system H (or HW if it bears external water-solubilising substituents) has two types of binding site for guests. These are (i) the partially-enclosed central cavity where neutral hydrophobic organic species can bind, and (ii) the six 'portals' in the centres of each of the faces of the cubic cage where anions bind via formation of a network of CH⋯X hydrogen bonds between the anion and CH units on the positively-charged cage surface, as demonstrated by a set of crystal structures. The near-orthogonality of these guest binding modes provides the basis for an unusual dual-probe fluorescence displacement assay in which either a cavity-bound fluorophore (4-methyl-7-amino-coumarin, MAC; λem = 440 nm), or a surface-bound anionic fluorophore (fluorescein, FLU; λem = 515 nm), is displaced and has its emission ‘switched on’ according to whether the analyte under investigation is cavity-binding, surface binding, or a combination of both. A completely orthogonal system is demonstrated based using a Hw/MAC/FLU combination: addition of the anionic analyte ascorbate displaced solely FLU from the cage surface, increasing the 515 nm (green) emission component, whereas addition of a neutral hydrophobic guest such as cyclooctanone displaced solely MAC from the cage central cavity, increasing the 440 nm (blue) emission component. Addition of chloride results in some release of both components, and an intermediate colour change, as chloride is a rare example of a guest that shows both surface-binding and cavity-binding behaviour. Thus we have a colourimetric response based on differing contributions from blue and green emission components in which the specific colour change signals the binding mode of the analyte. Addition of a fixed red emission component from the complex [Ru(bipy)3]2+ (Ru) provides a baseline colour shift of the overall colour of the luminescence closer to neutral, meaning that different types of guest binding result in different colour changes which are easily distinguishable by eye. Orthogonal binding of neutral or anionic fluorophores to the cavity or surface, respectively, of a coordination cage host allows a dual-probe displacement assay which gives a different fluorescence colorimetric response according to where analyte species bind.![]()
Collapse
Affiliation(s)
- Michael D Ludden
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | | | - Michael D Ward
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| |
Collapse
|
17
|
Giraldi E, Scopelliti R, Fadaei-Tirani F, Severin K. Metal-Stabilized Boronate Ester Cages. Inorg Chem 2021; 60:10873-10879. [PMID: 34291934 DOI: 10.1021/acs.inorgchem.1c01719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular cages with arylboronate ester caps at the vertices are described. The cages were obtained by metal-templated polycondensation reactions of a tris(2-formylpyridine oxime) ligand with arylboronic acids. Suited templates are triflate or triflimide salts of ZnII, FeII, CoII, or MnII. In the products, the metal ions are coordinated internally to the pyridyl and oximato N atoms adjacent to the boronate ester, resulting in an improved hydrolytic stability of the latter. It is possible to decorate the cages with cyano or aldehyde groups using functionalized arylboronic acids. The aldehyde groups allow for a postsynthetic modification of the cages via an imine bond formation.
Collapse
Affiliation(s)
- Erica Giraldi
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Farzaneh Fadaei-Tirani
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
18
|
Pullen S, Tessarolo J, Clever GH. Increasing structural and functional complexity in self-assembled coordination cages. Chem Sci 2021; 12:7269-7293. [PMID: 34163819 PMCID: PMC8171321 DOI: 10.1039/d1sc01226f] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/26/2021] [Indexed: 12/18/2022] Open
Abstract
Progress in metallo-supramolecular chemistry creates potential to synthesize functional nano systems and intelligent materials of increasing complexity. In the past four decades, metal-mediated self-assembly has produced a wide range of structural motifs such as helicates, grids, links, knots, spheres and cages, with particularly the latter ones catching growing attention, owing to their nano-scale cavities. Assemblies serving as hosts allow application as selective receptors, confined reaction environments and more. Recently, the field has made big steps forward by implementing dedicated functionality, e.g. catalytic centres or photoswitches to allow stimuli control. Besides incorporation in homoleptic systems, composed of one type of ligand, desire arose to include more than one function within the same assembly. Inspiration comes from natural enzymes that congregate, for example, a substrate recognition site, an allosteric regulator element and a reaction centre. Combining several functionalities without creating statistical mixtures, however, requires a toolbox of sophisticated assembly strategies. This review showcases the implementation of function into self-assembled cages and devises strategies to selectively form heteroleptic structures. We discuss first examples resulting from a combination of both principles, namely multicomponent multifunctional host-guest complexes, and their potential in application in areas such as sensing, catalysis, and photo-redox systems.
Collapse
Affiliation(s)
- Sonja Pullen
- Department of Chemistry and Chemical Biology, TU Dortmund University Otto-Hahn-Straße 6 44227 Dortmund Germany
- Homogeneous, Supramolecular and Bio-Inspired Catalysis, Van't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Jacopo Tessarolo
- Department of Chemistry and Chemical Biology, TU Dortmund University Otto-Hahn-Straße 6 44227 Dortmund Germany
| | - Guido H Clever
- Department of Chemistry and Chemical Biology, TU Dortmund University Otto-Hahn-Straße 6 44227 Dortmund Germany
| |
Collapse
|
19
|
Ludden MD, Ward MD. Outside the box: quantifying interactions of anions with the exterior surface of a cationic coordination cage. Dalton Trans 2021; 50:2782-2791. [PMID: 33566043 DOI: 10.1039/d0dt04211k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe a study of the binding of anions to the surface of an octanuclear coordination cage HW, which carries a 16+ charge, in aqueous solution. Anionic aromatic fluorophores such as fluorescein (and derivatives) and hydroxypyrene tris-sulfonate (HPTS) bind strongly to an extent depending on their charge and hydrophobicity. Job plots indicated binding of up to six such fluorescent anions to HW, implying that one anion can bind to each face of the cubic cage, as previously demonstrated crystallographically with small anions such as halides. The quenching of these fluorophores on association with the cage provides the basis of a fluorescence displacement assay to investigate binding of other anions: addition of analyte (organic or inorganic) anions in titration experiments to an HW/fluorescein combination results in displacement and restoration of the fluorescence from the bound fluorescein, allowing calculation of 1 : 1 binding constants for the HW/anion combinations. Relative binding affinities of simple anions for the cage surface can be approximately rationalised on the basis of ease of desolvation (e.g. F- < Cl- < Br-), electrostatic factors given the 16+ charge on the cage (monoanions < dianions), and extent of hydrophobic surface. The interaction of a di-anionic pH indicator (bromocresol purple) with HW results in a pKa shift, with the surface-bound di-anionic form stabilised by approximately 1 pKa unit compared to the non-bound neutral form due to the charge on the cage.
Collapse
Affiliation(s)
- Michael D Ludden
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| | - Michael D Ward
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
20
|
Shi J, Li Y, Jiang X, Yu H, Li J, Zhang H, Trainer DJ, Hla SW, Wang H, Wang M, Li X. Self-Assembly of Metallo-Supramolecules with Dissymmetrical Ligands and Characterization by Scanning Tunneling Microscopy. J Am Chem Soc 2021; 143:1224-1234. [PMID: 33395279 DOI: 10.1021/jacs.0c12508] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Asymmetrical and dissymmetrical structures are widespread and play a critical role in nature and life systems. In the field of metallo-supramolecular assemblies, it is still in its infancy for constructing artificial architectures using dissymmetrical building blocks. Herein, we report the self-assembly of supramolecular systems based on two dissymmetrical double-layered ligands. With the aid of ultra-high-vacuum, low-temperature scanning tunneling microscopy (UHV-LT-STM), we were able to investigate four isomeric structures corresponding to four types of binding modes of ligand LA with two major conformations complexes A. The distribution of isomers measured by STM and total binding energy of each isomer obtained by density functional theory (DFT) calculations suggested that the most abundant isomer could be the most stable one with highest total binding energy. Finally, through shortening the linker between inner and outer layers and the length of arms, the arrangement of dissymmetrical ligand LB could be controlled within one binding mode corresponding to the single conformation for complexes B.
Collapse
Affiliation(s)
- Junjuan Shi
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China.,College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Yiming Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518055, China.,Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Xin Jiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Hao Yu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Jiaqi Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Houyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Daniel J Trainer
- Nanoscience and Technology Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Saw Wai Hla
- Nanoscience and Technology Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518055, China.,Shenzhen University General Hospital, Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong 518055, China
| |
Collapse
|
21
|
Ferrer M, Gallen A, Gutiérrez A, Martínez M, Ruiz E, Lorenz Y, Engeser M. Self‐Assembled, Highly Positively Charged, Allyl–Pd Crowns: Cavity‐Pocket‐Driven Interactions of Fluoroanions. Chemistry 2020; 26:7847-7860. [DOI: 10.1002/chem.202000316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Montserrat Ferrer
- Departament de Química Inorgànica i OrgànicaSecció de Química InorgànicaUniversitat de Barcelona c/ Martí i Franquès 1-1 08028 Barcelona Spain
| | - Albert Gallen
- Departament de Química Inorgànica i OrgànicaSecció de Química InorgànicaUniversitat de Barcelona c/ Martí i Franquès 1-1 08028 Barcelona Spain
| | - Albert Gutiérrez
- Departament de Química Inorgànica i OrgànicaSecció de Química InorgànicaUniversitat de Barcelona c/ Martí i Franquès 1-1 08028 Barcelona Spain
| | - Manuel Martínez
- Departament de Química Inorgànica i OrgànicaSecció de Química InorgànicaUniversitat de Barcelona c/ Martí i Franquès 1-1 08028 Barcelona Spain
| | - Eliseo Ruiz
- Departament de Química Inorgànica i OrgànicaSecció de Química InorgànicaUniversitat de Barcelona c/ Martí i Franquès 1-1 08028 Barcelona Spain
- Institut de Química Teòrica i ComputacionalUniversitat de Barcelona c/ Martí i Franquès 1-11 08028 Barcelona Spain
| | - Yvonne Lorenz
- Kekulé-Institute for Organic Chemistry and BiochemistryUniversity of Bonn Gerhard-Domagk-Str. 1 53121 Bonn Germany
| | - Marianne Engeser
- Kekulé-Institute for Organic Chemistry and BiochemistryUniversity of Bonn Gerhard-Domagk-Str. 1 53121 Bonn Germany
| |
Collapse
|
22
|
Takata H, Ono K, Iwasawa N. Controlled release of the guest molecule via borate formation of a fluorinated boronic ester cage. Chem Commun (Camb) 2020; 56:5613-5616. [PMID: 32297611 DOI: 10.1039/d0cc01441a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A boronic ester cage, which exhibits stimuli-responsive guest-release behavior, was constructed by self-assembly of tetrol with the indacene backbone and a fluorine-substituted benzenetriboronic acid derivative. The presence of fluorine substituents made it possible to control the guest release rate using simple amines by forming tetrahedral borates.
Collapse
Affiliation(s)
- Hisatsugu Takata
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8551, Japan.
| | - Kosuke Ono
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8551, Japan.
| | - Nobuharu Iwasawa
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8551, Japan.
| |
Collapse
|
23
|
Zhang D, Ronson TK, Xu L, Nitschke JR. Transformation Network Culminating in a Heteroleptic Cd 6L 6L' 2 Twisted Trigonal Prism. J Am Chem Soc 2020; 142:9152-9157. [PMID: 32357009 PMCID: PMC7243256 DOI: 10.1021/jacs.0c03798] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Indexed: 12/20/2022]
Abstract
Transformations between three-dimensional metallosupramolecular assemblies can enable switching between the different functions of these structures. Here we report a network of such transformations, based upon a subcomponent displacement strategy. The flow through this network is directed by the relative reactivities of different amines, aldehydes, and di(2-pyridyl)ketone. The network provides access to an unprecedented heteroleptic Cd6L6L'2 twisted trigonal prism. The principles underpinning this network thus allow for the design of diverse structural transformations, converting one helicate into another, a helicate into a tetrahedron, a tetrahedron into a different tetrahedron, and a tetrahedron into the new trigonal prismatic structure type. The selective conversion from one host to another also enabled the uptake of a desired guest from a mixture of guests.
Collapse
Affiliation(s)
- Dawei Zhang
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Tanya K. Ronson
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Lin Xu
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, School of
Chemistry and Molecular Engineering, East
China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China
| | - Jonathan R. Nitschke
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| |
Collapse
|
24
|
Ma L, Haynes CJE, Grommet AB, Walczak A, Parkins CC, Doherty CM, Longley L, Tron A, Stefankiewicz AR, Bennett TD, Nitschke JR. Coordination cages as permanently porous ionic liquids. Nat Chem 2020; 12:270-275. [PMID: 32042136 DOI: 10.1038/s41557-020-0419-2] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 01/06/2020] [Indexed: 11/09/2022]
Abstract
Porous materials are widely used in industry for applications that include chemical separations and gas scrubbing. These materials are typically porous solids, although the liquid state can be easier to manipulate in industrial settings. The idea of combining the size and shape selectivity of porous domains with the fluidity of liquids is a promising one and porous liquids composed of functionalized organic cages have recently attracted attention. Here we describe an ionic-liquid, porous, tetrahedral coordination cage. Complementing the gas binding observed in other porous liquids, this material also encapsulates non-gaseous guests-shape and size selectivity was observed for a series of isomeric alcohols. Three gaseous chlorofluorocarbon guests, trichlorofluoromethane, dichlorodifluoromethane and chlorotrifluoromethane, were also shown to be taken up by the liquid coordination cage with an affinity that increased with their size. We hope that these findings will lead to the synthesis of other porous liquids whose guest-uptake properties may be tailored to fulfil specific functions.
Collapse
Affiliation(s)
- Lillian Ma
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Cally J E Haynes
- Department of Chemistry, University of Cambridge, Cambridge, UK.,Department of Chemistry, University College London, London, UK
| | | | - Anna Walczak
- Center for Advanced Technologies, Adam Mickiewicz University, Poznań, Poland.,Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
| | | | - Cara M Doherty
- Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton South, Victoria, Australia
| | - Louis Longley
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
| | - Arnaud Tron
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Artur R Stefankiewicz
- Center for Advanced Technologies, Adam Mickiewicz University, Poznań, Poland.,Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
| | - Thomas D Bennett
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK.
| | | |
Collapse
|
25
|
Wu K, Li K, Chen S, Hou Y, Lu Y, Wang J, Wei M, Pan M, Su C. The Redox Coupling Effect in a Photocatalytic Ru
II
‐Pd
II
Cage with TTF Guest as Electron Relay Mediator for Visible‐Light Hydrogen‐Evolving Promotion. Angew Chem Int Ed Engl 2020; 59:2639-2643. [DOI: 10.1002/anie.201913303] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/19/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Kai Wu
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Kang Li
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Sha Chen
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Ya‐Jun Hou
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Yu‐Lin Lu
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Jing‐Si Wang
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Mei‐Juan Wei
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Mei Pan
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Cheng‐Yong Su
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryChinese Academy of Sciences China
| |
Collapse
|
26
|
Lee H, Kim D, Oh H, Jung OS. Molecular balloon, Pd6L8 cages: recognition of alkyl sulfate surfactants. Chem Commun (Camb) 2020; 56:2841-2844. [DOI: 10.1039/c9cc09742b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significant structural contraction and expansion of flexible Pd6L8 cages by encapsulation of alkyl sulfate were demonstrated. The contact angles on the fine-ground microcrystal layers shift according to the chain length of the alkyl sulfate.
Collapse
Affiliation(s)
- Haeri Lee
- Department of Chemistry
- Pusan National University
- Busan 46241
- Republic of Korea
| | - Dongwon Kim
- Department of Chemistry
- Pusan National University
- Busan 46241
- Republic of Korea
| | - Hyejin Oh
- Department of Chemistry
- Pusan National University
- Busan 46241
- Republic of Korea
| | - Ok-Sang Jung
- Department of Chemistry
- Pusan National University
- Busan 46241
- Republic of Korea
| |
Collapse
|
27
|
Yadav S, Kannan P, Qiu G. Cavity-based applications of metallo-supramolecular coordination cages (MSCCs). Org Chem Front 2020. [DOI: 10.1039/d0qo00681e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This review describes cavity-based applications of cage-like SCCs such as molecular recognition and separation, stabilization of reactive species by encapsulation, as drug delivery systems and as molecular flasks.
Collapse
Affiliation(s)
- Sarita Yadav
- College of Biological
- Chemical Science and Engineering
- Jiaxing University
- Jiaxing 314001
- P. R. China
| | - Palanisamy Kannan
- College of Biological
- Chemical Science and Engineering
- Jiaxing University
- Jiaxing 314001
- P. R. China
| | - Guanyinsheng Qiu
- College of Biological
- Chemical Science and Engineering
- Jiaxing University
- Jiaxing 314001
- P. R. China
| |
Collapse
|
28
|
Wu K, Li K, Chen S, Hou Y, Lu Y, Wang J, Wei M, Pan M, Su C. The Redox Coupling Effect in a Photocatalytic Ru
II
‐Pd
II
Cage with TTF Guest as Electron Relay Mediator for Visible‐Light Hydrogen‐Evolving Promotion. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201913303] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Kai Wu
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Kang Li
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Sha Chen
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Ya‐Jun Hou
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Yu‐Lin Lu
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Jing‐Si Wang
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Mei‐Juan Wei
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Mei Pan
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Cheng‐Yong Su
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryChinese Academy of Sciences China
| |
Collapse
|
29
|
Lu Z, Ronson TK, Nitschke JR. Reversible reduction drives anion ejection and C 60 binding within an Fe II 4L 6 cage. Chem Sci 2019; 11:1097-1101. [PMID: 34084365 PMCID: PMC8146419 DOI: 10.1039/c9sc05728e] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
FeII4L6 tetrahedral cage 1 was prepared from a redox-active dicationic naphthalenediimide (NDI) ligand. The +20 charge of the cage makes it a good host for anionic guests, with no binding observed for neutral aromatic molecules. Following reduction by Cp2Co, the cage released anionic guests; subsequent oxidation by AgNTf2 led to re-uptake of anions. In its reduced form, however, 1 was observed to bind neutral C60. The fullerene guest was subsequently ejected following cage re-oxidation. The guest release process was found to be facilitated by anion-mediated transport from organic to aqueous solution. Cage 1 thus employs electron transfer as a stimulus to control the uptake and release of both neutral and charged guests, through distinct pathways. FeII4L6 cage 1 binds anionic guests but not neutral guests. In its reduced form, the cage can bind neutral C60. Reduction and oxidation of the cage could thus be used as a stimulus to control the uptake and release of both neutral and charged guests.![]()
Collapse
Affiliation(s)
- Zhenpin Lu
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Tanya K Ronson
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Jonathan R Nitschke
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
30
|
Ogata D, Yuasa J. Dynamic Open Coordination Cage from Nonsymmetrical Imidazole-Pyridine Ditopic Ligands for Turn-On/Off Anion Binding. Angew Chem Int Ed Engl 2019; 58:18424-18428. [PMID: 31625649 DOI: 10.1002/anie.201911097] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/30/2019] [Indexed: 12/22/2022]
Abstract
This work demonstrates a new nonconventional ligand design, imidazole/pyridine-based nonsymmetrical ditopic ligands (1 and 1S ), to construct a dynamic open coordination cage from nonsymmetrical building blocks. Upon complex formation with Pd2+ at a 1:4 molar ratio, 1 and 1S initially form mononuclear PdL4 complexes (Pd2+ (1)4 and Pd2+ (1S )4 ) without formation of a cage. The PdL4 complexes undergo a stoichiometrically controlled structural transition to Pd2 L4 open cages ((Pd2+ )2 (1)4 and (Pd2+ )2 (1S )4 ) capable of anion binding, leading to turn-on anion binding. The structural transitions between the Pd2 L4 open cage and the PdL4 complex are reversible. Thus, stoichiometric addition (2 equiv) of free 1S to the (Pd2+ )2 (1S )4 open cage holding a guest anion ((Pd2+ )2 (1S )4 ⋅G- ) enables the structural transition to the Pd2+ (1S )4 complex, which does not have a cage and thus causes the release of the guest anion (Pd2+ (1S )4 +G- ).
Collapse
Affiliation(s)
- Daiji Ogata
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Junpei Yuasa
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| |
Collapse
|
31
|
Ogata D, Yuasa J. Dynamic Open Coordination Cage from Nonsymmetrical Imidazole–Pyridine Ditopic Ligands for Turn‐On/Off Anion Binding. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911097] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Daiji Ogata
- Department of Applied ChemistryTokyo University of Science 1–3 Kagurazaka, Shinjuku-ku Tokyo 162-8601 Japan
| | - Junpei Yuasa
- Department of Applied ChemistryTokyo University of Science 1–3 Kagurazaka, Shinjuku-ku Tokyo 162-8601 Japan
| |
Collapse
|
32
|
Paul I, Ghosh A, Bolte M, Schmittel M. Remote Control of the Synthesis of a [2]Rotaxane and its Shuttling via Metal-Ion Translocation. ChemistryOpen 2019; 8:1355-1360. [PMID: 31763127 PMCID: PMC6863578 DOI: 10.1002/open.201900293] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/30/2019] [Indexed: 12/25/2022] Open
Abstract
Remote control in an eight-component network commanded both the synthesis and shuttling of a [2]rotaxane via metal-ion translocation, the latter being easily monitored by distinct colorimetric and fluorimetric signals. Addition of zinc(II) ions to the red colored copper-ion relay station rapidly liberated copper(I) ions and afforded the corresponding zinc complex that was visualized by a bright sky blue fluorescence at 460 nm. In a mixture of all eight components of the network, the liberated copper(I) ions were translocated to a macrocycle that catalyzed formation of a rotaxane by a double-click reaction of acetylenic and diazide compounds. The shuttling frequency in the copper-loaded [2]rotaxane was determined to k 298=30 kHz (ΔH ≠=62.3±0.6 kJ mol-1, ΔS ≠=50.1±5.1 J mol-1 K-1, ΔG ≠ 298=47.4 kJ mol-1). Removal of zinc(II) ions from the mixture reversed the system back generating the metal-free rotaxane. Further alternate addition and removal of Zn2+ reversibly controlled the shuttling mode of the rotaxane in this eight-component network where the ion translocation status was monitored by the naked eye.
Collapse
Affiliation(s)
- Indrajit Paul
- Center of Micro and Nanochemistry and Engineering, Organische Chemie IUniversität SiegenAdolf-Reichwein-Str. 2D-57068SiegenGermany
| | - Amit Ghosh
- Center of Micro and Nanochemistry and Engineering, Organische Chemie IUniversität SiegenAdolf-Reichwein-Str. 2D-57068SiegenGermany
| | - Michael Bolte
- Institut für Anorganische und Analytische ChemieGoethe-Universität FrankfurtMax-von-Laue-Strasse 7D-60438Frankfurt (Main)Germany
| | - Michael Schmittel
- Center of Micro and Nanochemistry and Engineering, Organische Chemie IUniversität SiegenAdolf-Reichwein-Str. 2D-57068SiegenGermany
| |
Collapse
|
33
|
Guest Exchange Mechanisms in Mono‐Metallic Pd
II
/Pt
II
‐Cages Based on a Tetra‐Pyridyl Calix[4]pyrrole Ligand. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909685] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
34
|
Escobar L, Escudero‐Adán EC, Ballester P. Guest Exchange Mechanisms in Mono‐Metallic Pd
II
/Pt
II
‐Cages Based on a Tetra‐Pyridyl Calix[4]pyrrole Ligand. Angew Chem Int Ed Engl 2019; 58:16105-16109. [DOI: 10.1002/anie.201909685] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Luis Escobar
- Institute of Chemical Research of Catalonia (ICIQ) The Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16, 43007 Tarragona Spain
- Universitat Rovira i Virgili Departament de Química Analítica i Química Orgánica c/Marcel⋅lí Domingo, 1 43007 Tarragona Spain
| | - Eduardo C. Escudero‐Adán
- Institute of Chemical Research of Catalonia (ICIQ) The Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16, 43007 Tarragona Spain
| | - Pablo Ballester
- Institute of Chemical Research of Catalonia (ICIQ) The Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16, 43007 Tarragona Spain
- ICREA, Passeig Lluís Companys, 23 08010 Barcelona Spain
| |
Collapse
|
35
|
Zhang D, Ronson TK, Güryel S, Thoburn JD, Wales DJ, Nitschke JR. Temperature Controls Guest Uptake and Release from Zn 4L 4 Tetrahedra. J Am Chem Soc 2019; 141:14534-14538. [PMID: 31478658 PMCID: PMC6753657 DOI: 10.1021/jacs.9b07307] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
We report the preparation of triazatruxene-faced
tetrahedral cage 1, which exhibits two diastereomeric
configurations (T1 and T2) that differ in
the handedness of the
ligand faces relative to that of the octahedrally coordinated metal
centers. At lower temperatures, T1 is favored, whereas T2 predominates at higher temperatures. Host–guest
studies show that T1 binds small aliphatic guests, whereas T2 binds larger aromatic molecules, with these changes in
binding preference resulting from differences in cavity size and degree
of enclosure. Thus, by a change in temperature the cage system can
be triggered to eject one bound guest and take up another.
Collapse
Affiliation(s)
- Dawei Zhang
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - Tanya K Ronson
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - Songül Güryel
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - John D Thoburn
- Department of Chemistry , Randolph-Macon College , Ashland , Virginia 23005 , United States
| | - David J Wales
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - Jonathan R Nitschke
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| |
Collapse
|
36
|
Paul I, Mittal N, De S, Bolte M, Schmittel M. Catch–Release System for Dosing and Recycling Silver(I) Catalyst with Status of Catalytic Activity Reported by Fluorescence. J Am Chem Soc 2019; 141:5139-5143. [DOI: 10.1021/jacs.9b01182] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Indrajit Paul
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein Straße 2, D-57068 Siegen, Germany
| | - Nikita Mittal
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein Straße 2, D-57068 Siegen, Germany
| | - Soumen De
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein Straße 2, D-57068 Siegen, Germany
| | - Michael Bolte
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Straße 7, D-60438 Frankfurt (Main), Germany
| | - Michael Schmittel
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein Straße 2, D-57068 Siegen, Germany
| |
Collapse
|
37
|
Bravin C, Licini G, Hunter CA, Zonta C. Supramolecular cage encapsulation as a versatile tool for the experimental quantification of aromatic stacking interactions. Chem Sci 2019; 10:1466-1471. [PMID: 30809364 PMCID: PMC6354842 DOI: 10.1039/c8sc04406f] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 11/22/2018] [Indexed: 01/21/2023] Open
Abstract
The widespread presence of aromatic stacking interactions in chemical and biological systems, combined with their relatively small energetic contribution, have led to a plethora of theoretical and experimental studies for their quantification and rationalization. Typically, π-π aromatic interactions are studied as a function of substituents to gather information about the interaction mechanism. While experiments suggest that aromatic interactions are dominated by local electrostatic contacts between π-electron density and CH groups, theoretical work has raised the possibility that direct electrostatic interactions between local dipoles of the substituents may play a role. We describe a supramolecular cage that binds two aromatic carboxylates in a stacked geometry such that the aromatic substituents are remote in space. Chemical Double Mutant Cycles (DMCs) were used to measure fifteen different aromatic stacking interactions as a function of substituent (NMe2, OMe, Me, Cl and NO2). When both aromatic rings have electron-withdrawing nitro substituents, the interaction is attractive (-2.8 kJ mol-1) due to reduced π-electron repulsion. When both aromatic rings have electron-donating di-methylamino substituents, the interaction is repulsive (+2.0 kJ mol-1) due to increased π-electron repulsion. The results show that aromatic stacking interactions are dominated by short range electrostatic contacts rather than substituent dipole interactions.
Collapse
Affiliation(s)
- Carlo Bravin
- Department of Chemical Sciences , University of Padova , Via Marzolo 1 , 35131 Padova , Italy .
| | - Giulia Licini
- Department of Chemical Sciences , University of Padova , Via Marzolo 1 , 35131 Padova , Italy .
| | - Christopher A Hunter
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , UK
| | - Cristiano Zonta
- Department of Chemical Sciences , University of Padova , Via Marzolo 1 , 35131 Padova , Italy .
| |
Collapse
|
38
|
Gou XX, Peng JX, Das R, Wang YY, Han YF. On/off fluorescence emission induced by encapsulation, exchange and reversible encapsulation of a BODIPY-guest in self-assembled organometallic cages. Dalton Trans 2019; 48:7236-7241. [DOI: 10.1039/c8dt05103h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A reversible fluorescence turn off/on switch induced by the encapsulation and release of a guest molecule within an organometallic cage was presented.
Collapse
Affiliation(s)
- Xing-Xing Gou
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry
- FM & EM International Joint Laboratory
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710127
| | - Jia-Xin Peng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry
- FM & EM International Joint Laboratory
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710127
| | - Rajorshi Das
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry
- FM & EM International Joint Laboratory
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710127
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry
- FM & EM International Joint Laboratory
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710127
| | - Ying-Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry
- FM & EM International Joint Laboratory
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710127
| |
Collapse
|
39
|
Nakamura T, Yonemura S, Nabeshima T. Synthesis of per(5-N-carboxamide-5-dehydroxylmethyl)-β-cyclodextrins and their selective recognition ability utilizing multiple hydrogen bonds. Chem Commun (Camb) 2019; 55:3872-3875. [DOI: 10.1039/c9cc00517j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An amide cyclodextrin with anion recognition ability exhibits unique binding mode in which unsymmetrically arranged functional groups play distinctive roles.
Collapse
Affiliation(s)
- Takashi Nakamura
- Graduate School of Pure and Applied Sciences and Tsukuba Research Center for Energy Materials Science (TREMS)
- University of Tsukuba
- Tsukuba
- Japan
| | - Sota Yonemura
- Graduate School of Pure and Applied Sciences and Tsukuba Research Center for Energy Materials Science (TREMS)
- University of Tsukuba
- Tsukuba
- Japan
| | - Tatsuya Nabeshima
- Graduate School of Pure and Applied Sciences and Tsukuba Research Center for Energy Materials Science (TREMS)
- University of Tsukuba
- Tsukuba
- Japan
| |
Collapse
|
40
|
Horiuchi S, Tanaka H, Sakuda E, Arikawa Y, Umakoshi K. Encapsulation condition dependent photophysical properties of polypyridyl Ru(ii) complexes within a hydrogen-bonded capsule. Dalton Trans 2019; 48:5156-5160. [DOI: 10.1039/c9dt00737g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A simple modulation for encapsulation technique is a facile method to control the luminescent properties of supramolecular complexes.
Collapse
Affiliation(s)
- Shinnosuke Horiuchi
- Division of Chemistry and Materials Science
- Graduate School of Engineering
- Nagasaki University
- Nagasaki 852-8521
- Japan
| | - Hiroto Tanaka
- Division of Chemistry and Materials Science
- Graduate School of Engineering
- Nagasaki University
- Nagasaki 852-8521
- Japan
| | - Eri Sakuda
- Division of Chemistry and Materials Science
- Graduate School of Engineering
- Nagasaki University
- Nagasaki 852-8521
- Japan
| | - Yasuhiro Arikawa
- Division of Chemistry and Materials Science
- Graduate School of Engineering
- Nagasaki University
- Nagasaki 852-8521
- Japan
| | - Keisuke Umakoshi
- Division of Chemistry and Materials Science
- Graduate School of Engineering
- Nagasaki University
- Nagasaki 852-8521
- Japan
| |
Collapse
|
41
|
Percástegui EG, Mosquera J, Ronson TK, Plajer AJ, Kieffer M, Nitschke JR. Waterproof architectures through subcomponent self-assembly. Chem Sci 2018; 10:2006-2018. [PMID: 30881630 PMCID: PMC6385555 DOI: 10.1039/c8sc05085f] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/12/2018] [Indexed: 11/21/2022] Open
Abstract
Construction of metal–organic containers that are soluble and stable in water can be challenging – we present diverse strategies that allow the synthesis of kinetically robust water-soluble architectures via subcomponent self-assembly.
Metal–organic containers are readily prepared through self-assembly, but achieving solubility and stability in water remains challenging due to ligand insolubility and the reversible nature of the self-assembly process. Here we have developed conditions for preparing a broad range of architectures that are both soluble and kinetically stable in water through metal(ii)-templated (MII = CoII, NiII, ZnII, CdII) subcomponent self-assembly. Although these structures are composed of hydrophobic and poorly-soluble subcomponents, sulfate counterions render them water-soluble, and they remain intact indefinitely in aqueous solution. Two strategies are presented. Firstly, stability increased with metal–ligand bond strength, maximising when NiII was used as a template. Architectures that disassembled when CoII, ZnII and CdII templates were employed could be directly prepared from NiSO4 in water. Secondly, a higher density of connections between metals and ligands within a structure, considering both ligand topicity and degree of metal chelation, led to increased stability. When tritopic amines were used to build highly chelating ligands around ZnII and CdII templates, cryptate-like water-soluble structures were formed using these labile ions. Our synthetic platform provides a unified understanding of the elements of aqueous stability, allowing predictions of the stability of metal–organic cages that have not yet been prepared.
Collapse
Affiliation(s)
| | - Jesús Mosquera
- Department of Chemistry , University of Cambridge , Lensfield Road , CB2 1EW , UK .
| | - Tanya K Ronson
- Department of Chemistry , University of Cambridge , Lensfield Road , CB2 1EW , UK .
| | - Alex J Plajer
- Department of Chemistry , University of Cambridge , Lensfield Road , CB2 1EW , UK .
| | - Marion Kieffer
- Department of Chemistry , University of Cambridge , Lensfield Road , CB2 1EW , UK .
| | - Jonathan R Nitschke
- Department of Chemistry , University of Cambridge , Lensfield Road , CB2 1EW , UK .
| |
Collapse
|
42
|
McConnell AJ, Haynes CJE, Grommet AB, Aitchison CM, Guilleme J, Mikutis S, Nitschke JR. Orthogonal Stimuli Trigger Self-Assembly and Phase Transfer of Fe II4L 4 Cages and Cargoes. J Am Chem Soc 2018; 140:16952-16956. [PMID: 30465601 DOI: 10.1021/jacs.8b11324] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Two differently protected aldehydes, A and B, were demonstrated to deprotect selectively through the application of light and heat, respectively. In the presence of iron(II) and a triamine, two distinct FeII4L4 cages, 1 and 2, were thus observed to form from the deprotected A and B, respectively. The alkyl tails of B and 2 render them preferentially soluble in cyclopentane, whereas A and 1 remain in acetonitrile. The stimulus applied (either light or heat) thus determines the outcome of self-assembly and dictates whether the cage and its ferrocene cargo remain in acetonitrile, or transport into cyclopentane. Cage self-assembly and cargo transport between phases can in this fashion be programmed using orthogonal stimuli.
Collapse
Affiliation(s)
- Anna J McConnell
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom.,Otto Diels Institute of Organic Chemistry, Kiel University , Otto-Hahn-Platz 4 , Kiel D-24098 , Germany
| | - Cally J E Haynes
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - Angela B Grommet
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - Catherine M Aitchison
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - Julia Guilleme
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - Sigitas Mikutis
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - Jonathan R Nitschke
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| |
Collapse
|
43
|
Abstract
Coordination-driven self-assembly can produce large, symmetrical, hollow cages that are synthetically easy to access. The functions provided by these aesthetically attractive structures provide a driving force for their development, enabling practical applications. For instance, cages have provided new methods of molecular recognition, chirality sensing, separations, stabilization of reactive species, and catalysis. We have fruitfully employed subcomponent self-assembly to prepare metal-organic capsules from simple building blocks via the simultaneous formation of dynamic coordinative (N→metal) and covalent (N═C) bonds. Design strategies employ multidentate pyridyl-imine ligands to define either the edges or the faces of polyhedral structures. Octahedral metal ions, such as FeII, CoII, NiII, ZnII, and CdII, constitute the vertices. The generality of this technique has enabled the preparation of capsules with diverse three-dimensional structures. This Account highlights how fundamental investigations into the host-guest chemistry of capsules prepared through subcomponent self-assembly have led to the design of useful functions and new applications. We start by discussing simple host-guest systems involving a single capsule and continue to systems that include multiple capsules and guests, whose interactions give rise to complex functional behavior. Many of the capsules presented herein bind varied neutral guests, including aromatic or aliphatic molecules, biomolecules, and fullerenes. Binding selectivity is influenced by solvent effects, weak non-covalent interactions between hosts and guests, and the size, shape, flexibility, and degree of surface enclosure of the inner spaces of the capsules. Some hosts are able to adaptively rearrange structurally or express a different ratio of cage diastereomers to optimize the guest binding ability of the system. In other cases the bound guest can be either protected from degradation or catalytically transformed through encapsulation. Other capsules bind anions, most often in organic solvents and occasionally in water. Complexation is usually driven by a combination of electrostatic interactions, hydrogen bonding, and coordination to additional metal centers. Anion binding can also induce cage diastereomeric reconfiguration in a similar manner to some neutral guests, illustrating the general ability of subcomponent self-assembled capsules to respond to stimuli due to their dynamic nature. Capsules have been developed as supramolecular extractants for the selective removal of anions from water and as channels for transporting anions through planar lipid bilayers and into vesicles. Different capsules may work together, allowing for functions more complex than those achievable within single host-guest systems. Incorporation of stimuli-responsive capsules into multicage systems allows individual capsules within the network to be addressed and may allow signals to be passed between network members. We first present strategies to achieve selective guest binding and controlled guest release using mixtures of capsules with varied affinities for guests and different stabilities toward external stimuli. We then discuss strategies to separate capsules with encapsulated cargos via selective phase transfer, where the solvent affinities of capsules change as a result of anion exchange or post-assembly modification. The knowledge gained from these multicage systems may lead to the design of synthetic systems that can perform complex tasks in biomimetic fashion, paving the way for new supramolecular technologies to address practical problems.
Collapse
Affiliation(s)
- Dawei Zhang
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Tanya K. Ronson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Jonathan R. Nitschke
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| |
Collapse
|
44
|
Miller TF, Holloway LR, Nye PP, Lyon Y, Beran GJO, Harman WH, Julian RR, Hooley RJ. Small Structural Variations Have Large Effects on the Assembly Properties and Spin State of Room Temperature High Spin Fe(II) Iminopyridine Cages. Inorg Chem 2018; 57:13386-13396. [DOI: 10.1021/acs.inorgchem.8b01973] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tabitha F. Miller
- Department of Chemistry, University of California—Riverside, Riverside, California 92521, United States
| | - Lauren R. Holloway
- Department of Chemistry, University of California—Riverside, Riverside, California 92521, United States
| | - Phoebe P. Nye
- Department of Chemistry, University of California—Riverside, Riverside, California 92521, United States
| | - Yana Lyon
- Department of Chemistry, University of California—Riverside, Riverside, California 92521, United States
| | - Gregory J. O. Beran
- Department of Chemistry, University of California—Riverside, Riverside, California 92521, United States
| | - W. Hill Harman
- Department of Chemistry, University of California—Riverside, Riverside, California 92521, United States
| | - Ryan R. Julian
- Department of Chemistry, University of California—Riverside, Riverside, California 92521, United States
| | - Richard J. Hooley
- Department of Chemistry, University of California—Riverside, Riverside, California 92521, United States
| |
Collapse
|
45
|
Zhiquan L, Xie H, Border SE, Gallucci J, Pavlović RZ, Badjić JD. A Stimuli-Responsive Molecular Capsule with Switchable Dynamics, Chirality, and Encapsulation Characteristics. J Am Chem Soc 2018; 140:11091-11100. [PMID: 30099876 DOI: 10.1021/jacs.8b06190] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Lei Zhiquan
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Han Xie
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Sarah E. Border
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Judith Gallucci
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Radoslav Z. Pavlović
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Jovica D. Badjić
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
46
|
Scott HS, Staniland RW, Kruger PE. Spin crossover in homoleptic Fe(II) imidazolylimine complexes. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.02.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
47
|
Zhang W, Yang D, Zhao J, Hou L, Sessler JL, Yang XJ, Wu B. Controlling the Recognition and Reactivity of Alkyl Ammonium Guests Using an Anion Coordination-Based Tetrahedral Cage. J Am Chem Soc 2018; 140:5248-5256. [DOI: 10.1021/jacs.8b01488] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Wenyao Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China
| | - Dong Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China
| | - Jie Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China
| | - Lekai Hou
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China
| | - Jonathan L. Sessler
- Center for Supramolecular Chemistry and Catalysis, Shanghai University, Shanghai 200444, China
| | - Xiao-Juan Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China
| | - Biao Wu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China
| |
Collapse
|
48
|
Bogie PM, Holloway LR, Lyon Y, Onishi NC, Beran GJO, Julian RR, Hooley RJ. A Springloaded Metal-Ligand Mesocate Allows Access to Trapped Intermediates of Self-Assembly. Inorg Chem 2018; 57:4155-4163. [DOI: 10.1021/acs.inorgchem.8b00370] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Paul M. Bogie
- Department of Chemistry, University of California-Riverside, Riverside, California 92521, United States
| | - Lauren R. Holloway
- Department of Chemistry, University of California-Riverside, Riverside, California 92521, United States
| | - Yana Lyon
- Department of Chemistry, University of California-Riverside, Riverside, California 92521, United States
| | - Nicole C. Onishi
- Department of Chemistry, University of California-Riverside, Riverside, California 92521, United States
| | - Gregory J. O. Beran
- Department of Chemistry, University of California-Riverside, Riverside, California 92521, United States
| | - Ryan R. Julian
- Department of Chemistry, University of California-Riverside, Riverside, California 92521, United States
| | - Richard J. Hooley
- Department of Chemistry, University of California-Riverside, Riverside, California 92521, United States
| |
Collapse
|
49
|
Bravin C, Badetti E, Puttreddy R, Pan F, Rissanen K, Licini G, Zonta C. Binding Profiles of Self-Assembled Supramolecular Cages from ESI-MS Based Methodology. Chemistry 2018; 24:2936-2943. [DOI: 10.1002/chem.201704725] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Carlo Bravin
- Department of Chemical Sciences; University of Padova; via Marzolo 1 35131 Padova (PD) Italy
| | - Elena Badetti
- Department of Chemical Sciences; University of Padova; via Marzolo 1 35131 Padova (PD) Italy
| | - Rakesh Puttreddy
- Nanoscience Center; Department of Chemistry; University of Jyvaskyla; P.O. Box 35 40014 Jyvaskyla Finland
| | - Fangfang Pan
- Nanoscience Center; Department of Chemistry; University of Jyvaskyla; P.O. Box 35 40014 Jyvaskyla Finland
| | - Kari Rissanen
- Nanoscience Center; Department of Chemistry; University of Jyvaskyla; P.O. Box 35 40014 Jyvaskyla Finland
| | - Giulia Licini
- Department of Chemical Sciences; University of Padova; via Marzolo 1 35131 Padova (PD) Italy
| | - Cristiano Zonta
- Department of Chemical Sciences; University of Padova; via Marzolo 1 35131 Padova (PD) Italy
| |
Collapse
|
50
|
Han WK, Zhang HX, Wang Y, Liu W, Yan X, Li T, Gu ZG. Tetrahedral metal–organic cages with cube-like cavities for selective encapsulation of fullerene guests and their spin-crossover properties. Chem Commun (Camb) 2018; 54:12646-12649. [DOI: 10.1039/c8cc06652c] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Selective encapsulation of fullerene guests and solid state spin-crossover behaviors were observed in iron(ii) tetrahedral metal–organic cages with cube-like cavities.
Collapse
Affiliation(s)
- Wang-Kang Han
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University
- Wuxi 214122
- P. R. China
| | - Hai-Xia Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University
- Wuxi 214122
- P. R. China
| | - Yong Wang
- College of Chemistry, Chemical Engineering and Material Science, Soochow University
- Su Zhou 215123
- P. R. China
| | - Wei Liu
- College of Chemistry, Chemical Engineering and Material Science, Soochow University
- Su Zhou 215123
- P. R. China
| | - Xiaodong Yan
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University
- Wuxi 214122
- P. R. China
| | - Tao Li
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University
- Wuxi 214122
- P. R. China
| | - Zhi-Guo Gu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University
- Wuxi 214122
- P. R. China
- International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University
- Wuxi 214122
| |
Collapse
|