1
|
R. Hinojosa D, J. Pataki N, Rossi P, Erhardt A, Guchait S, Pallini F, McNeill C, Müller C, Caironi M, Sommer M. Solubilizing Benzodifuranone-Based Conjugated Copolymers with Single-Oxygen-Containing Branched Side Chains. ACS APPLIED POLYMER MATERIALS 2024; 6:457-465. [PMID: 38230364 PMCID: PMC10788869 DOI: 10.1021/acsapm.3c02137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 01/18/2024]
Abstract
Single-oxygen-containing branched side chains are designed and used to solubilize n-type copolymers consisting of BDF (benzodifuranone), isatin, and thiophene-based units. We present a simple synthetic approach to side chains with varying linker distances between the backbone and the branching point. The synthetic pathway is straightforward and modular and starts with commercially available reagents. The side chains give rise to excellent solubilities of BDF-thiophene copolymers of up to 90 mg/mL, while still being moderate in size (26-34 atoms large). The excellent solubility furthermore allows high molar mass materials. BDF-thiophene copolymers are characterized in terms of optoelectronic and thermoelectric properties. The electrical conductivity of chemically doped polymers is found to scale with molar mass, reaching ∼1 S/cm for the highest molar mass and longest backbone-branching point distance.
Collapse
Affiliation(s)
- Diego R. Hinojosa
- Institut
für Chemie, Technische Universität
Chemnitz, Straße der Nationen 62, 09111 Chemnitz, Germany
- Forschungszentrum
MAIN, TU Chemnitz, Rosenbergstraße 6, 09126 Chemnitz, Germany
| | - Nathan J. Pataki
- Center
for Nano Science and Technology, Via Rubattino 81, 20134 Milano, Italy
- Department
of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133Milano ,Italy
| | - Pietro Rossi
- Center
for Nano Science and Technology, Via Rubattino 81, 20134 Milano, Italy
- Department
of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133Milano ,Italy
| | - Andreas Erhardt
- Department
of Materials Science and Engineering, Monash
University, Clayton, Victoria 3800, Australia
| | - Shubhradip Guchait
- Institute
Charles Sadron, Université de Strasbourg, Strasbourg F-67000, France
| | - Francesca Pallini
- Department
of Materials Science, Università
di Milano-Bicocca, via
Cozzi 55, 20125 Milan, Italy
| | - Christopher McNeill
- Department
of Materials Science and Engineering, Monash
University, Clayton, Victoria 3800, Australia
| | - Christian Müller
- Department
of Chemistry and Chemical Engineering Chalmers
University of Technology Göteborg 412 96, Sweden
| | - Mario Caironi
- Center
for Nano Science and Technology, Via Rubattino 81, 20134 Milano, Italy
| | - Michael Sommer
- Institut
für Chemie, Technische Universität
Chemnitz, Straße der Nationen 62, 09111 Chemnitz, Germany
- Forschungszentrum
MAIN, TU Chemnitz, Rosenbergstraße 6, 09126 Chemnitz, Germany
| |
Collapse
|
2
|
Wycisk V, Wagner MC, Urner LH. Trends in the Diversification of the Detergentome. Chempluschem 2024; 89:e202300386. [PMID: 37668309 DOI: 10.1002/cplu.202300386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/06/2023]
Abstract
Detergents are amphiphilic molecules that serve as enabling steps for today's world applications. The increasing diversity of the detergentome is key to applications enabled by detergent science. Regardless of the application, the optimal design of detergents is determined empirically, which leads to failed preparations, and raising costs. To facilitate project planning, here we review synthesis strategies that drive the diversification of the detergentome. Synthesis strategies relevant for industrial and academic applications include linear, modular, combinatorial, bio-based, and metric-assisted detergent synthesis. Scopes and limitations of individual synthesis strategies in context with industrial product development and academic research are discussed. Furthermore, when designing detergents, the selection of molecular building blocks, i. e., head, linker, tail, is as important as the employed synthesis strategy. To facilitate the design of safe-to-use and tailor-made detergents, we provide an overview of established head, linker, and tail groups and highlight selected scopes and limitations for applications. It becomes apparent that most recent contributions to the increasing chemical diversity of detergent building blocks originate from the development of detergents for membrane protein studies. The overview of synthesis strategies and molecular blocks will bring us closer to the ability to predictably design and synthesize optimal detergents for challenging future applications.
Collapse
Affiliation(s)
- Virginia Wycisk
- TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Marc-Christian Wagner
- TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Leonhard H Urner
- TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| |
Collapse
|
3
|
Ghani L, Kim S, Ehsan M, Lan B, Poulsen IH, Dev C, Katsube S, Byrne B, Guan L, Loland CJ, Liu X, Im W, Chae PS. Melamine-cored glucosides for membrane protein solubilization and stabilization: importance of water-mediated intermolecular hydrogen bonding in detergent performance. Chem Sci 2023; 14:13014-13024. [PMID: 38023530 PMCID: PMC10664503 DOI: 10.1039/d3sc03543c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/22/2023] [Indexed: 12/01/2023] Open
Abstract
Membrane proteins play essential roles in a number of biological processes, and their structures are important in elucidating such processes at the molecular level and also for rational drug design and development. Membrane protein structure determination is notoriously challenging compared to that of soluble proteins, due largely to the inherent instability of their structures in non-lipid environments. Micelles formed by conventional detergents have been widely used for membrane protein manipulation, but they are suboptimal for long-term stability of membrane proteins, making downstream characterization difficult. Hence, there is an unmet need for the development of new amphipathic agents with enhanced efficacy for membrane protein stabilization. In this study, we designed and synthesized a set of glucoside amphiphiles with a melamine core, denoted melamine-cored glucosides (MGs). When evaluated with four membrane proteins (two transporters and two G protein-coupled receptors), MG-C11 conferred notably enhanced stability compared to the commonly used detergents, DDM and LMNG. These promising findings are mainly attributed to a unique feature of the MGs, i.e., the ability to form dynamic water-mediated hydrogen-bond networks between detergent molecules, as supported by molecular dynamics simulations. Thus, MG-C11 is the first example of a non-peptide amphiphile capable of forming intermolecular hydrogen bonds within a protein-detergent complex environment. Detergent micelles formed via a hydrogen-bond network could represent the next generation of highly effective membrane-mimetic systems useful for membrane protein structural studies.
Collapse
Affiliation(s)
- Lubna Ghani
- Department of Bionano Engineering, Hanyang University Ansan 155-88 South Korea
| | - Seonghoon Kim
- School of Computational Sciences, Korea Institute for Advanced Study Seoul 024-55 South Korea
| | - Muhammad Ehsan
- Department of Bionano Engineering, Hanyang University Ansan 155-88 South Korea
| | - Baoliang Lan
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Medicine, School of Pharmaceutical Sciences, Tsinghua University Beijing 100084 China
| | - Ida H Poulsen
- Department of Neuroscience, University of Copenhagen Copenhagen DK-2200 Denmark
| | - Chandra Dev
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center Lubbock Texas 79430 USA
| | - Satoshi Katsube
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center Lubbock Texas 79430 USA
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London London SW7 2AZ UK
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center Lubbock Texas 79430 USA
| | - Claus J Loland
- Department of Neuroscience, University of Copenhagen Copenhagen DK-2200 Denmark
| | - Xiangyu Liu
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Medicine, School of Pharmaceutical Sciences, Tsinghua University Beijing 100084 China
| | - Wonpil Im
- Department of Biological Sciences, Chemistry, and Bioengineering Lehigh University Bethlehem PA 18015 USA
| | - Pil Seok Chae
- Department of Bionano Engineering, Hanyang University Ansan 155-88 South Korea
| |
Collapse
|
4
|
New MraY AA Inhibitors with an Aminoribosyl Uridine Structure and an Oxadiazole. Antibiotics (Basel) 2022; 11:antibiotics11091189. [PMID: 36139968 PMCID: PMC9495235 DOI: 10.3390/antibiotics11091189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
New inhibitors of the bacterial transferase MraY from Aquifex aeolicus (MraYAA), based on the aminoribosyl uridine central core of known natural MraY inhibitors, have been designed to generate interaction of their oxadiazole linker with the key amino acids (H324 or H325) of the enzyme active site, as observed for the highly potent inhibitors carbacaprazamycin, muraymycin D2 and tunicamycin. A panel of ten compounds was synthetized notably thanks to a robust microwave-activated one-step sequence for the synthesis of the oxadiazole ring that involved the O-acylation of an amidoxime and subsequent cyclization. The synthetized compounds, with various hydrophobic substituents on the oxadiazole ring, were tested against the MraYAA transferase activity. Although with poor antibacterial activity, nine out of the ten compounds revealed the inhibition of the MraYAA activity in the range of 0.8 µM to 27.5 µM.
Collapse
|
5
|
Zhao F, Zhu Z, Xie L, Luo F, Wang H, Qiu Y, Luo W, Zhou F, Xue D, Zhang Z, Hua T, Wu D, Liu Z, Le Z, Tao H. Two‐Dimensional Detergent Expansion Strategy for Membrane Protein Studies. Chemistry 2022; 28:e202201388. [DOI: 10.1002/chem.202201388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Fei Zhao
- iHuman Institute ShanghaiTech University Shanghai 201210 China
| | - Zhihao Zhu
- College of Chemistry Nanchang University Nanchang, Jiangxi Province 330031 China
| | - Linshan Xie
- iHuman Institute ShanghaiTech University Shanghai 201210 China
- School of Life Science and Technology ShanghaiTech University Shanghai 201210 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Feng Luo
- iHuman Institute ShanghaiTech University Shanghai 201210 China
| | - Huixia Wang
- iHuman Institute ShanghaiTech University Shanghai 201210 China
| | - Yanli Qiu
- iHuman Institute ShanghaiTech University Shanghai 201210 China
- School of Life Science and Technology ShanghaiTech University Shanghai 201210 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Weiling Luo
- iHuman Institute ShanghaiTech University Shanghai 201210 China
- School of Life Science and Technology ShanghaiTech University Shanghai 201210 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Fang Zhou
- iHuman Institute ShanghaiTech University Shanghai 201210 China
| | - Dongxiang Xue
- iHuman Institute ShanghaiTech University Shanghai 201210 China
| | - Zhihui Zhang
- iHuman Institute ShanghaiTech University Shanghai 201210 China
| | - Tian Hua
- iHuman Institute ShanghaiTech University Shanghai 201210 China
- School of Life Science and Technology ShanghaiTech University Shanghai 201210 China
| | - Dong Wu
- iHuman Institute ShanghaiTech University Shanghai 201210 China
| | - Zhi‐Jie Liu
- iHuman Institute ShanghaiTech University Shanghai 201210 China
- School of Life Science and Technology ShanghaiTech University Shanghai 201210 China
| | - Zhiping Le
- College of Chemistry Nanchang University Nanchang, Jiangxi Province 330031 China
| | - Houchao Tao
- iHuman Institute ShanghaiTech University Shanghai 201210 China
- Shanghai Frontiers Science Center of TCM Chemical Biology Innovation Research Institute of Traditional Chinese Medicine Shanghai University of Traditional Chinese Medicine Shanghai 201203 China
| |
Collapse
|
6
|
Yang M, Luo W, Zhang W, Wang H, Xue D, Wu Y, Zhao S, Zhao F, Zheng X, Tao H. Ugi Reaction Mediated Detergent Assembly for Membrane Protein Studies. Chem Asian J 2022; 17:e202200372. [PMID: 35575910 DOI: 10.1002/asia.202200372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/16/2022] [Indexed: 11/11/2022]
Abstract
Despite the continuous efforts, the current repertoire of detergents is still far from sufficient for the biophysics studies of membrane proteins (MPs). Toward the rapid expansion of detergent diversity, we herein report a new strategy based on Ugi reaction mediated modular assembly. Structural varieties, including hydrophobic tails and hydrophilic heads, could be conveniently introduced from the multiple reaction components. New detergents then were comprehensively evaluated in the physical properties and preliminarily screened by the thermal stabilization for a transporter MsbA and a spectrum of G protein-coupled receptors (GPCRs). For the glucagon-like peptide-1 receptor (GLP-1R), a class B GPCR, detergent M-23-M finally stood out in a second evaluation for the maintenance of homogeneity and was further illustrated its application in the improvement of NMR study. Besides the promising utility in the MP study, the current results exhibit intriguing structural-physical relationship that would allow the guidance in the tuning of detergent properties in the future.
Collapse
Affiliation(s)
- Meifang Yang
- University of South China, Department of Pharmacy, CHINA
| | - Weiling Luo
- ShanghaiTech University, iHuman Institute, CHINA
| | - Wei Zhang
- ShanghaiTech University, iHuman Institute, CHINA
| | - Huixia Wang
- ShanghaiTech University, iHuman Institute, CHINA
| | | | - Yiran Wu
- ShanghaiTech University, iHuman Institute, CHINA
| | - Suwen Zhao
- ShanghaiTech University, iHuman Institute, CHINA
| | - Fei Zhao
- ShanghaiTech University, iHuman Institute, 230 Haike Road, 201210, Shanghai, CHINA
| | - Xing Zheng
- University of South China, Department of Pharmacy, CHINA
| | - Houchao Tao
- Shanghai University of Traditional Chinese Medicine, Shanghai Frontiers Science Center of TCM Chemical Biology, Room 2421, Building 2, 1200 Cailun Road, 230032, Shanghai, CHINA
| |
Collapse
|
7
|
|
8
|
Ehsan M, Wang H, Katsube S, Munk CF, Du Y, Youn T, Yoon S, Byrne B, Loland CJ, Guan L, Kobilka BK, Chae PS. Glyco-steroidal amphiphiles (GSAs) for membrane protein structural study. Chembiochem 2022; 23:e202200027. [PMID: 35129249 PMCID: PMC8986615 DOI: 10.1002/cbic.202200027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/05/2022] [Indexed: 11/08/2022]
Abstract
Integral membrane proteins pose considerable challenges to high resolution structural analysis. Maintaining membrane proteins in their native state during protein isolation is essential for structural study of these bio-macromolecules. Detergents are the most commonly used amphiphilic compounds for stabilizing membrane proteins in solution outside a lipid bilayer. We previously introduced a glyco-diosgenin (GDN) detergent that was shown to be highly effective at stabilizing a wide range of membrane proteins. This steroidal detergent has additionally gained attention due to its compatibility with membrane protein structure study via cryo-EM. However, synthetic inconvenience limits widespread use of GDN in membrane protein study. To improve its synthetic accessibility and to further enhance detergent efficacy for protein stabilization, we designed a new class of glyco-steroid-based detergents using three steroid units: cholestanol, cholesterol and diosgenin. These new detergents were efficiently prepared and showed marked efficacy for protein stabilization in evaluation with a few model membrane proteins including two G protein-coupled receptors. Some new agents were not only superior to a gold standard detergent, DDM, but were also more effective than the original GDN at preserving protein integrity long term. These agents represent valuable alternatives to GDN, and are likely to facilitate structural determination of challenging membrane proteins.
Collapse
Affiliation(s)
- Muhammad Ehsan
- Hanyang University, Department of Bionano Engineering, KOREA, REPUBLIC OF
| | - Haoqing Wang
- Stanford University, Department of Molecular and Cellular Physiology, UNITED STATES
| | - Satoshi Katsube
- Texas Tech University, Department of Cell Physiology and Molecular Biophysics, UNITED STATES
| | - Chastine F Munk
- University of Copenhagen: Kobenhavns Universitet, Department of Neuroscience, DENMARK
| | - Yang Du
- Stanford University, Department of Molecular and Cellular Physiology, UNITED STATES
| | - Taeyeol Youn
- Hanyang University, Department of Bionano Engineering, KOREA, REPUBLIC OF
| | - Soyoung Yoon
- Hanyang University, Department of Bionano Engineering, KOREA, REPUBLIC OF
| | - Bernadette Byrne
- Imperial College London, Department of Life Sciences, UNITED KINGDOM
| | - Claus J Loland
- University of Copenhagen: Kobenhavns Universitet, Department of Neurosciences, DENMARK
| | - Lan Guan
- Texas Tech University, Department of Cell Physiology and Molecular Biophysics, UNITED STATES
| | - Brian K Kobilka
- Stanford University, Department of Molecular and Cellular Physiology, UNITED STATES
| | - Pil Seok Chae
- Hanyang University, Department of Bionano Engineering, 55 Hanyangdaehak-ro, 426-791, Ansan, KOREA, REPUBLIC OF
| |
Collapse
|
9
|
Haslem L, Brown M, Zhang XA, Hays JM, Hays FA. Purification of Membrane Proteins Overexpressed in Saccharomyces cerevisiae. Methods Mol Biol 2022; 2507:143-173. [PMID: 35773581 PMCID: PMC9400948 DOI: 10.1007/978-1-0716-2368-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Membrane protein (MP) functional and structural characterization requires large quantities of high-purity protein for downstream studies. Barriers to MP characterization include ample overexpression, solubilization, and purification of target proteins while maintaining native activity and structure. These barriers can be overcome by utilizing an efficient purification protocol in a high-yield eukaryotic expression system such as Saccharomyces cerevisiae. S. cerevisiae offers improved protein folding and posttranslational modifications compared to prokaryotic expression systems. This chapter contains practices used to overcome barriers of solubilization and purification using S. cerevisiae that are broadly applicable to diverse membrane associated, and membrane integrated, protein targets.
Collapse
Affiliation(s)
- Landon Haslem
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Marina Brown
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Xin A Zhang
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jennifer M Hays
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Franklin A Hays
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
10
|
Ehsan M, Wang H, Cecchetti C, Mortensen JS, Du Y, Hariharan P, Nygaard A, Lee HJ, Ghani L, Guan L, Loland CJ, Byrne B, Kobilka BK, Chae PS. Maltose-bis(hydroxymethyl)phenol (MBPs) and Maltose-tris(hydroxymethyl)phenol (MTPs) Amphiphiles for Membrane Protein Stability. ACS Chem Biol 2021; 16:1779-1790. [PMID: 34445864 DOI: 10.1021/acschembio.1c00578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Membrane protein structures provide a fundamental understanding of their molecular actions and are of importance for drug development. Detergents are widely used to solubilize, stabilize, and crystallize membrane proteins, but membrane proteins solubilized in conventional detergents are prone to denaturation and aggregation. Thus, developing novel detergents with enhanced efficacy for protein stabilization remains important. We report herein the design and synthesis of a class of phenol-derived maltoside detergents. Using two different linkers, we prepared two sets of new detergents, designated maltose-bis(hydroxymethyl)phenol (MBPs) and maltose-tris(hydroxymethyl)phenol (MTPs). The evaluation of these detergents with three transporters and two G-protein coupled receptors allowed us to identify a couple of new detergents (MBP-C9 and MTP-C12) that consistently conferred enhanced stability to all tested proteins compared to a gold standard detergent (DDM). Furthermore, the data analysis based on the detergent structures provides key detergent features responsible for membrane protein stabilization that together will facilitate the future design of novel detergents.
Collapse
Affiliation(s)
- Muhammad Ehsan
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 155-88, South Korea
| | - Haoqing Wang
- Department of Molecular and Cellular Physiology, Stanford University, California 94305, United States
| | - Cristina Cecchetti
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Jonas S. Mortensen
- Department of Neuroscience, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Yang Du
- Department of Molecular and Cellular Physiology, Stanford University, California 94305, United States
| | - Parameswaran Hariharan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Andreas Nygaard
- Department of Neuroscience, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Ho Jin Lee
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 155-88, South Korea
| | - Lubna Ghani
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 155-88, South Korea
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Claus J. Loland
- Department of Neuroscience, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Brian K. Kobilka
- Department of Molecular and Cellular Physiology, Stanford University, California 94305, United States
| | - Pil Seok Chae
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 155-88, South Korea
| |
Collapse
|
11
|
Liu L, Zhu Z, Zhou F, Xue D, Hu T, Luo W, Qiu Y, Wu D, Zhao F, Le Z, Tao H. Catalytically Cleavable Detergent for Membrane Protein Studies. ACS OMEGA 2021; 6:21087-21093. [PMID: 34423216 PMCID: PMC8375090 DOI: 10.1021/acsomega.1c02894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/26/2021] [Indexed: 05/04/2023]
Abstract
Throughout the in vitro studies of membrane proteins (MPs), proper detergents are essential for the preparation of stable aqueous samples. To date, universally applicable detergents have not yet been reported to accommodate the distinct requirements for the highly diversified MPs and at the different stages of MP manipulation. Detergent exchange often has to be performed. We report herein the catalytically cleavable detergents (CatCDs) that can be efficiently removed to facilitate a complete exchange. To this end, functional groups, like propargyl and allyl, are introduced as branched chains or built in the hydrophobic chain close to the hydrophilic head. The representative CatCDs can be used as usual detergents in the extraction and purification of MPs and later be removed upon the addition of catalytic palladium. Mediated by CatCD-1, reconstitution of a transporter protein MsbA into a series of detergents was achieved. The extension of these designs could facilitate the future optimization of other biophysics studies.
Collapse
Affiliation(s)
- Lu Liu
- Department
of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Zhihao Zhu
- Department
of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Fang Zhou
- iHuman
Institute, ShanghaiTech University, Y Building, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Dongxiang Xue
- iHuman
Institute, ShanghaiTech University, Y Building, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Tao Hu
- iHuman
Institute, ShanghaiTech University, Y Building, 393 Middle Huaxia Road, Shanghai 201210, China
- School
of Life Science and Technology, ShanghaiTech
University, L Building,
393 Middle Huaxia Road, Shanghai 201210, China
| | - Weiling Luo
- iHuman
Institute, ShanghaiTech University, Y Building, 393 Middle Huaxia Road, Shanghai 201210, China
- School
of Life Science and Technology, ShanghaiTech
University, L Building,
393 Middle Huaxia Road, Shanghai 201210, China
| | - Yanli Qiu
- iHuman
Institute, ShanghaiTech University, Y Building, 393 Middle Huaxia Road, Shanghai 201210, China
- School
of Life Science and Technology, ShanghaiTech
University, L Building,
393 Middle Huaxia Road, Shanghai 201210, China
| | - Dong Wu
- iHuman
Institute, ShanghaiTech University, Y Building, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Fei Zhao
- iHuman
Institute, ShanghaiTech University, Y Building, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Zhiping Le
- Department
of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Houchao Tao
- iHuman
Institute, ShanghaiTech University, Y Building, 393 Middle Huaxia Road, Shanghai 201210, China
| |
Collapse
|
12
|
Mousavifar L, Abdullayev S, Roy R. Recent Development in the Design of Neoglycoliposomes Bearing Arborescent Architectures. Molecules 2021; 26:molecules26144281. [PMID: 34299556 PMCID: PMC8303545 DOI: 10.3390/molecules26144281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
This brief review highlights systematic progress in the design of synthetic glycolipid (neoglycolipids) analogs evolving from the conventional architectures of natural glycosphingolipids and gangliosides. Given that naturally occurring glycolipids are composed of only one hydrophilic sugar head-group and two hydrophobic lipid tails embedded in the lipid bilayers of the cell membranes, they usually require extraneous lipids (phosphatidylcholine, cholesterol) to confer their stability. In order to obviate the necessity for these additional stabilizing ingredients, recent investigations have merged dendrimer chemistry with that of neoglycolipid syntheses. This singular approach has provided novel glycoarchitectures allowing reconsidering the necessity for the traditional one to two hydrophilic/hydrophobic ratio. An emphasis has been provided in the recent design of modular arborescent neoglycolipid syntheses coined glycodendrimersomes.
Collapse
Affiliation(s)
| | | | - René Roy
- Correspondence: ; Tel.: +1-514-987-3000 (ext. 2546)
| |
Collapse
|
13
|
Sadaf A, Kim S, Bae HE, Wang H, Nygaard A, Uegaki Y, Du Y, Munk CF, Katsube S, Sung Lee H, Bae J, Choi CW, Choi HJ, Byrne B, Gellman SH, Guan L, Loland CJ, Kobilka BK, Im W, Chae PS. Conformationally flexible core-bearing detergents with a hydrophobic or hydrophilic pendant: Effect of pendant polarity on detergent conformation and membrane protein stability. Acta Biomater 2021; 128:393-407. [PMID: 33933694 PMCID: PMC8222176 DOI: 10.1016/j.actbio.2021.04.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/31/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023]
Abstract
Membrane protein structures provide atomic level insight into essential biochemical processes and facilitate protein structure-based drug design. However, the inherent instability of these bio-macromolecules outside lipid bilayers hampers their structural and functional study. Detergent micelles can be used to solubilize and stabilize these membrane-inserted proteins in aqueous solution, thereby enabling their downstream characterizations. Membrane proteins encapsulated in detergent micelles tend to denature and aggregate over time, highlighting the need for development of new amphiphiles effective for protein solubility and stability. In this work, we present newly-designed maltoside detergents containing a pendant chain attached to a glycerol-decorated tris(hydroxymethyl)methane (THM) core, designated GTMs. One set of the GTMs has a hydrophobic pendant (ethyl chain; E-GTMs), and the other set has a hydrophilic pendant (methoxyethoxylmethyl chain; M-GTMs) placed in the hydrophobic-hydrophilic interfaces. The two sets of GTMs displayed profoundly different behaviors in terms of detergent self-assembly and protein stabilization efficacy. These behaviors mainly arise from the polarity difference between two pendants (ethyl and methoxyethoxylmethyl chains) that results in a large variation in detergent conformation between these sets of GTMs in aqueous media. The resulting high hydrophobic density in the detergent micelle interior is likely responsible for enhanced efficacy of the M-GTMs for protein stabilization compared to the E-GTMs and a gold standard detergent DDM. A representative GTM, M-GTM-O12, was more effective for protein stability than some recently developed detergents including LMNG. This is the first case study investigating the effect of pendant polarity on detergent geometry correlated with detergent efficacy for protein stabilization. STATEMENT OF SIGNIFICANCE: This study introduces new amphiphiles for use as biochemical tools in membrane protein studies. We identified a few hydrophilic pendant-bearing amphiphiles such as M-GTM-O11 and M-GTM-O12 that show remarkable efficacy for membrane protein solubilization and stabilization compared to a gold standard DDM, the hydrophobic counterparts (E-GTMs) and a significantly optimized detergent LMNG. In addition, detergent results obtained in the current study reveals the effect of detergent pendant polarity on protein solubility and stability. Thus, the current study represents both significant chemical and conceptual advance. The detergent tools and design principle introduced here advance protein science and facilitate structure-based drug design and development.
Collapse
Affiliation(s)
- Aiman Sadaf
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 155-88, South Korea
| | - Seonghoon Kim
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul 02455, South Korea
| | - Hyoung Eun Bae
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 155-88, South Korea
| | - Haoqing Wang
- Department of Molecular and Cellular Physiology, Stanford University, California 94305, USA
| | - Andreas Nygaard
- Department of Neuroscience, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Yuki Uegaki
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Yang Du
- Department of Molecular and Cellular Physiology, Stanford University, California 94305, USA
| | - Chastine F Munk
- Department of Neuroscience, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Satoshi Katsube
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Hyun Sung Lee
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 155-88, South Korea
| | - Jungnam Bae
- Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Chul Won Choi
- Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Hee-Jung Choi
- Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Samuel H Gellman
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, 53706, USA
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Claus J Loland
- Department of Neuroscience, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University, California 94305, USA
| | - Wonpil Im
- Department of Biological Sciences, Chemistry, and Bioengineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Pil Seok Chae
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 155-88, South Korea.
| |
Collapse
|
14
|
Das M, Mahler F, Hariharan P, Wang H, Du Y, Mortensen JS, Patallo EP, Ghani L, Glück D, Lee HJ, Byrne B, Loland CJ, Guan L, Kobilka BK, Keller S, Chae PS. Diastereomeric Cyclopentane-Based Maltosides (CPMs) as Tools for Membrane Protein Study. J Am Chem Soc 2020; 142:21382-21392. [PMID: 33315387 PMCID: PMC8015409 DOI: 10.1021/jacs.0c09629] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Amphiphilic agents, called detergents, are invaluable tools for studying membrane proteins. However, membrane proteins encapsulated by conventional head-to-tail detergents tend to denature or aggregate, necessitating the development of structurally distinct molecules with improved efficacy. Here, a novel class of diastereomeric detergents with a cyclopentane core unit, designated cyclopentane-based maltosides (CPMs), were prepared and evaluated for their ability to solubilize and stabilize several model membrane proteins. A couple of CPMs displayed enhanced behavior compared with the benchmark conventional detergent, n-dodecyl-β-d-maltoside (DDM), for all the tested membrane proteins including two G-protein-coupled receptors (GPCRs). Furthermore, CPM-C12 was notable for its ability to confer enhanced membrane protein stability compared with the previously developed conformationally rigid NBMs [J. Am. Chem. Soc. 2017, 139, 3072] and LMNG. The effect of the individual CPMs on protein stability varied depending on both the detergent configuration (cis/trans) and alkyl chain length, allowing us draw conclusions on the detergent structure-property-efficacy relationship. Thus, this study not only provides novel detergent tools useful for membrane protein research but also reports on structural features of the detergents critical for detergent efficacy in stabilizing membrane proteins.
Collapse
Affiliation(s)
- Manabendra Das
- Department of Bionanotechnology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 155-88, Korea
- Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663 Kaiserslautern, Germany
| | - Florian Mahler
- Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663 Kaiserslautern, Germany
| | - Parameswaran Hariharan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Haoqing Wang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, United States
| | - Yang Du
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, United States
| | - Jonas S Mortensen
- Department of Neuroscience, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Eugenio Pérez Patallo
- Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663 Kaiserslautern, Germany
| | - Lubna Ghani
- Department of Bionanotechnology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 155-88, Korea
| | - David Glück
- Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663 Kaiserslautern, Germany
| | - Ho Jin Lee
- Department of Bionanotechnology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 155-88, Korea
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Claus J Loland
- Department of Neuroscience, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, United States
| | - Sandro Keller
- Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663 Kaiserslautern, Germany
- Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Humboldtstr. 50/III, 8010 Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Pil Seok Chae
- Department of Bionanotechnology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 155-88, Korea
| |
Collapse
|
15
|
Bae HE, Cecchetti C, Du Y, Katsube S, Mortensen JS, Huang W, Rehan S, Lee HJ, Loland CJ, Guan L, Kobilka BK, Byrne B, Chae PS. Pendant-bearing glucose-neopentyl glycol (P-GNG) amphiphiles for membrane protein manipulation: Importance of detergent pendant chain for protein stabilization. Acta Biomater 2020; 112:250-261. [PMID: 32522715 PMCID: PMC7366829 DOI: 10.1016/j.actbio.2020.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 12/15/2022]
Abstract
Glucoside detergents are successfully used for membrane protein crystallization mainly because of their ability to form small protein-detergent complexes. In a previous study, we introduced glucose neopentyl glycol (GNG) amphiphiles with a branched diglucoside structure that has facilitated high resolution crystallographic structure determination of several membrane proteins. Like other glucoside detergents, however, these GNGs were less successful than DDM in stabilizing membrane proteins, limiting their wide use in protein structural study. As a strategy to improve GNG efficacy for protein stabilization, we introduced two different alkyl chains (i.e., main and pendant chains) into the GNG scaffold while maintaining the branched diglucoside head group. Of these pendant-bearing GNGs (P-GNGs), three detergents (GNG-2,14, GNG-3,13 and GNG-3,14) were not only notably better than both DDM (a gold standard detergent) and the previously described GNGs at stabilizing all six membrane proteins tested here, but were also as efficient as DDM at membrane protein extraction. The results suggest that the C14 main chain of the P-GNGs is highly compatible with the hydrophobic widths of membrane proteins, while the C2/C3 pendant chain is effective at strengthening detergent hydrophobic interactions. Based on the marked effect on protein stability and solubility, these glucoside detergents hold significant potential for membrane protein structural study. Furthermore, the independent roles of the detergent two alkyl chains first introduced in this study have shed light on new amphiphile design for membrane protein study. STATEMENT OF SIGNIFICANCE: Detergent efficacy for protein stabilization tends to be protein-specific, thus it is challenging to find a detergent that is effective at stabilizing multiple membrane proteins. By incorporating a pendant chain into our previous GNG scaffold, we prepared pendant chain-bearing GNGs (P-GNGs) and identified three P-GNGs that were highly effective at stabilizing all membrane proteins tested here including two GPCRs. In addition, the new detergents were as efficient as DDM at extracting membrane proteins, enabling use of these detergents over the multiple steps of protein isolation. The key difference between the P-GNGs and other glucoside detergents, the presence of a pendant chain, is likely to be responsible for their markedly enhanced protein stabilization behavior.
Collapse
Affiliation(s)
- Hyoung Eun Bae
- Department of Bionanotechnology, Hanyang University, Ansan, 15588 (Korea)
| | - Cristina Cecchetti
- Department of Life Sciences, Imperial College London, London, SW7 2AZ (UK)
| | - Yang Du
- Department of Molecular and Cellular Physiology, Stanford University, CA 94305 (USA)
| | - Satoshi Katsube
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430 (USA)
| | - Jonas S Mortensen
- Department of Neuroscience, University of Copenhagen, Copenhagen, DK-2200 (Denmark)
| | - Weijiao Huang
- Department of Molecular and Cellular Physiology, Stanford University, CA 94305 (USA)
| | - Shahid Rehan
- Institute of Biotechnology, University of Helsinki, Helsinki (Finland); HiLIFE, University of Helsinki, Helsinki (Finland)
| | - Ho Jin Lee
- Department of Bionanotechnology, Hanyang University, Ansan, 15588 (Korea)
| | - Claus J Loland
- Department of Neuroscience, University of Copenhagen, Copenhagen, DK-2200 (Denmark)
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430 (USA)
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University, CA 94305 (USA)
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, London, SW7 2AZ (UK)
| | - Pil Seok Chae
- Department of Bionanotechnology, Hanyang University, Ansan, 15588 (Korea).
| |
Collapse
|
16
|
Ehsan M, Katsube S, Cecchetti C, Du Y, Mortensen JS, Wang H, Nygaard A, Ghani L, Loland CJ, Kobilka BK, Byrne B, Guan L, Chae PS. New Malonate-Derived Tetraglucoside Detergents for Membrane Protein Stability. ACS Chem Biol 2020; 15:1697-1707. [PMID: 32501004 DOI: 10.1021/acschembio.0c00316] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Membrane proteins are widely studied in detergent micelles, a membrane-mimetic system formed by amphiphilic compounds. However, classical detergents have serious limitations in their utility, particularly for unstable proteins such as eukaryotic membrane proteins and membrane protein complexes, and thus, there is an unmet need for novel amphiphiles with enhanced ability to stabilize membrane proteins. Here, we developed a new class of malonate-derived detergents with four glucosides, designated malonate-derived tetra-glucosides (MTGs), and compared these new detergents with previously reported octyl glucose neopentyl glycol (OGNG) and n-dodecyl-β-d-maltoside (DDM). When tested with two G-protein coupled receptors (GPCRs) and three transporters, a couple of MTGs consistently conferred enhanced stability to all tested proteins compared to DDM and OGNG. As a result of favorable behaviors for a range of membrane proteins, these MTGs have substantial potential for membrane protein research. This study additionally provides a new detergent design principle based on the effect of a polar functional group (i.e., ether) on protein stability depending on its position in the detergent scaffold.
Collapse
Affiliation(s)
- Muhammad Ehsan
- Department of Bionanotechnology, Hanyang University, Ansan, 15588, Korea
| | - Satoshi Katsube
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Cristina Cecchetti
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Yang Du
- School of Life and Health Sciences, Kobilka Institute of Innovative Drug Discovery, Chinese University of Hong Kong, 2001 Longxiang Avenue, Shenzhen, Guangdong 518172, China
| | - Jonas S. Mortensen
- Department of Neuroscience, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Haoqing Wang
- Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, United States
| | - Andreas Nygaard
- Department of Neuroscience, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Lubna Ghani
- Department of Bionanotechnology, Hanyang University, Ansan, 15588, Korea
| | - Claus J. Loland
- Department of Neuroscience, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Brian K. Kobilka
- Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, United States
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Pil Seok Chae
- Department of Bionanotechnology, Hanyang University, Ansan, 15588, Korea
| |
Collapse
|
17
|
Ghani L, Munk CF, Zhang X, Katsube S, Du Y, Cecchetti C, Huang W, Bae HE, Saouros S, Ehsan M, Guan L, Liu X, Loland CJ, Kobilka BK, Byrne B, Chae PS. 1,3,5-Triazine-Cored Maltoside Amphiphiles for Membrane Protein Extraction and Stabilization. J Am Chem Soc 2019; 141:19677-19687. [PMID: 31809039 DOI: 10.1021/jacs.9b07883] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Despite their major biological and pharmacological significance, the structural and functional study of membrane proteins remains a significant challenge. A main issue is the isolation of these proteins in a stable and functional state from native lipid membranes. Detergents are amphiphilic compounds widely used to extract membrane proteins from the native membranes and maintain them in a stable form during downstream analysis. However, due to limitations of conventional detergents, it is essential to develop novel amphiphiles with optimal properties for protein stability in order to advance membrane protein research. Here we designed and synthesized 1,3,5-triazine-cored dimaltoside amphiphiles derived from cyanuric chloride. By introducing variations in the alkyl chain linkage (ether/thioether) and an amine-functionalized diol linker (serinol/diethanolamine), we prepared two sets of 1,3,5-triazine-based detergents. When tested with several model membrane proteins, these agents showed remarkable efficacy in stabilizing three transporters and two G protein-coupled receptors. Detergent behavior substantially varied depending on the detergent structural variation, allowing us to explore detergent structure-property-efficacy relationships. The 1,3,5-triazine-based detergents introduced here have significant potential for membrane protein study as a consequence of their structural diversity and universal stabilization efficacy for several membrane proteins.
Collapse
Affiliation(s)
- Lubna Ghani
- Department of Bionanotechnology , Hanyang University , Ansan 155-88 , Korea
| | - Chastine F Munk
- Department of Neuroscience , University of Copenhagen , Copenhagen DK-2200 , Denmark
| | - Xiang Zhang
- Beijing Advanced Innovation Center for Structural Biology, School of Medicine, School of Pharmaceutical Sciences , Tsinghua University , 100084 Beijing , China
| | - Satoshi Katsube
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine , Texas Tech University Health Sciences Center , Lubbock , Texas 79430 , United States
| | - Yang Du
- Department of Molecular and Cellular Physiology , Stanford University , Stanford , California 94305 , United States
| | - Cristina Cecchetti
- Department of Life Sciences , Imperial College London , London , SW7 2AZ , United Kingdom
| | - Weijiao Huang
- Department of Molecular and Cellular Physiology , Stanford University , Stanford , California 94305 , United States
| | - Hyoung Eun Bae
- Department of Bionanotechnology , Hanyang University , Ansan 155-88 , Korea
| | - Savvas Saouros
- Department of Life Sciences , Imperial College London , London , SW7 2AZ , United Kingdom
| | - Muhammad Ehsan
- Department of Bionanotechnology , Hanyang University , Ansan 155-88 , Korea
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine , Texas Tech University Health Sciences Center , Lubbock , Texas 79430 , United States
| | - Xiangyu Liu
- Beijing Advanced Innovation Center for Structural Biology, School of Medicine, School of Pharmaceutical Sciences , Tsinghua University , 100084 Beijing , China
| | - Claus J Loland
- Department of Neuroscience , University of Copenhagen , Copenhagen DK-2200 , Denmark
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology , Stanford University , Stanford , California 94305 , United States
| | - Bernadette Byrne
- Department of Life Sciences , Imperial College London , London , SW7 2AZ , United Kingdom
| | - Pil Seok Chae
- Department of Bionanotechnology , Hanyang University , Ansan 155-88 , Korea
| |
Collapse
|
18
|
Das M, Du Y, Mortensen JS, Ramos M, Ghani L, Lee HJ, Bae HE, Byrne B, Guan L, Loland CJ, Kobilka BK, Chae PS. Trehalose-cored amphiphiles for membrane protein stabilization: importance of the detergent micelle size in GPCR stability. Org Biomol Chem 2019; 17:3249-3257. [PMID: 30843907 DOI: 10.1039/c8ob03153c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite their importance in biology and medicinal chemistry, structural and functional studies of membrane proteins present major challenges. To study diverse membrane proteins, it is crucial to have the correct detergent to efficiently extract and stabilize the proteins from the native membranes for biochemical/biophysical downstream analyses. But many membrane proteins, particularly eukaryotic ones, are recalcitrant to stabilization and/or crystallization with currently available detergents and thus there are major efforts to develop novel detergents with enhanced properties. Here, a novel class of trehalose-cored amphiphiles are introduced, with multiple alkyl chains and carbohydrates projecting from the trehalose core unit are introduced. A few members displayed enhanced protein stabilization behavior compared to the benchmark conventional detergent, n-dodecyl-β-d-maltoside (DDM), for multiple tested membrane proteins: (i) a bacterial leucine transporter (LeuT), (ii) the R. capsulatus photosynthetic superassembly, and (iii) the human β2 adrenergic receptor (β2AR). Due to synthetic convenience and their favourable behaviors for a range of membrane proteins, these agents have potential for membrane protein research. In addition, the detergent property-efficacy relationship discussed here will guide future design of novel detergents.
Collapse
Affiliation(s)
- Manabendra Das
- Department of Bionanotechnology, Hanyang University, Ansan, 155-88, Korea.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Sadaf A, Ramos M, Mortensen JS, Du Y, Bae HE, Munk CF, Hariharan P, Byrne B, Kobilka BK, Loland CJ, Guan L, Chae PS. Conformationally Restricted Monosaccharide-Cored Glycoside Amphiphiles: The Effect of Detergent Headgroup Variation on Membrane Protein Stability. ACS Chem Biol 2019; 14:1717-1726. [PMID: 31305987 DOI: 10.1021/acschembio.9b00166] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Detergents are widely used to isolate membrane proteins from lipid bilayers, but many proteins solubilized in conventional detergents are structurally unstable. Thus, there is major interest in the development of novel amphiphiles to facilitate membrane protein research. In this study, we have designed and synthesized novel amphiphiles with a rigid scyllo-inositol core, designated scyllo-inositol glycosides (SIGs). Varying the headgroup structure allowed the preparation of three sets of SIGs that were evaluated for their effects on membrane protein stability. When tested with a few model membrane proteins, representative SIGs conferred enhanced stability to the membrane proteins compared to a gold standard conventional detergent (DDM). Of the novel amphiphiles, a SIG designated STM-12 was most effective at preserving the stability of the multiple membrane proteins tested here. In addition, a comparative study of the three sets suggests that several factors, including micelle size and alkyl chain length, need to be considered in the development of novel detergents for membrane protein research. Thus, this study not only describes new detergent tools that are potentially useful for membrane protein structural study but also introduces plausible correlations between the chemical properties of detergents and membrane protein stabilization efficacy.
Collapse
Affiliation(s)
- Aiman Sadaf
- Department of Bionanotechnology, Hanyang University, Ansan 155-88, Korea
| | - Manuel Ramos
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Jonas S. Mortensen
- Department of Neuroscience, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Yang Du
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, United States
| | - Hyoung Eun Bae
- Department of Bionanotechnology, Hanyang University, Ansan 155-88, Korea
| | - Chastine F. Munk
- Department of Neuroscience, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Parameswaran Hariharan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K
| | - Brian K. Kobilka
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, United States
| | - Claus J. Loland
- Department of Neuroscience, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Pil Seok Chae
- Department of Bionanotechnology, Hanyang University, Ansan 155-88, Korea
| |
Collapse
|
20
|
Xue D, Xu T, Wang H, Wu M, Yuan Y, Wang W, Tan Q, Zhao F, Zhou F, Hu T, Jiang Z, Liu Z, Zhao S, Liu D, Wüthrich K, Tao H. Disulfide‐Containing Detergents (DCDs) for the Structural Biology of Membrane Proteins. Chemistry 2019; 25:11635-11640. [DOI: 10.1002/chem.201903190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Dongxiang Xue
- iHuman Institute ShanghaiTech University Ren Building 393 Middle Huaxia Road Pudong New District Shanghai 201210 China
- Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China
- University of Chinese Academy of Sciences No. 19A, Yuquan Road Beijing 100049 China
- School of Life Science and Technology ShanghaiTech University Shanghai 201210 China
| | - Tiandan Xu
- iHuman Institute ShanghaiTech University Ren Building 393 Middle Huaxia Road Pudong New District Shanghai 201210 China
- University of Chinese Academy of Sciences No. 19A, Yuquan Road Beijing 100049 China
- School of Life Science and Technology ShanghaiTech University Shanghai 201210 China
- CAS Center for Excellence in Molecular Cell Science Shanghai Institute of Biochemistry and Cell Biology Chinese Academy of Sciences Shanghai 200031 China
| | - Huixia Wang
- iHuman Institute ShanghaiTech University Ren Building 393 Middle Huaxia Road Pudong New District Shanghai 201210 China
- University of Chinese Academy of Sciences No. 19A, Yuquan Road Beijing 100049 China
- School of Life Science and Technology ShanghaiTech University Shanghai 201210 China
- CAS Center for Excellence in Molecular Cell Science Shanghai Institute of Biochemistry and Cell Biology Chinese Academy of Sciences Shanghai 200031 China
| | - Meng Wu
- iHuman Institute ShanghaiTech University Ren Building 393 Middle Huaxia Road Pudong New District Shanghai 201210 China
- University of Chinese Academy of Sciences No. 19A, Yuquan Road Beijing 100049 China
- School of Life Science and Technology ShanghaiTech University Shanghai 201210 China
- CAS Center for Excellence in Molecular Cell Science Shanghai Institute of Biochemistry and Cell Biology Chinese Academy of Sciences Shanghai 200031 China
| | - Ya Yuan
- iHuman Institute ShanghaiTech University Ren Building 393 Middle Huaxia Road Pudong New District Shanghai 201210 China
| | - Wei Wang
- Hubei Province Engineering and Technology Research Center, for Fluorinated Pharmaceuticals School of Pharmaceutical Sciences Wuhan University Wuhan 430071 China
| | - Qiwen Tan
- iHuman Institute ShanghaiTech University Ren Building 393 Middle Huaxia Road Pudong New District Shanghai 201210 China
| | - Fei Zhao
- iHuman Institute ShanghaiTech University Ren Building 393 Middle Huaxia Road Pudong New District Shanghai 201210 China
| | - Fang Zhou
- iHuman Institute ShanghaiTech University Ren Building 393 Middle Huaxia Road Pudong New District Shanghai 201210 China
- Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China
- University of Chinese Academy of Sciences No. 19A, Yuquan Road Beijing 100049 China
- School of Life Science and Technology ShanghaiTech University Shanghai 201210 China
| | - Tao Hu
- iHuman Institute ShanghaiTech University Ren Building 393 Middle Huaxia Road Pudong New District Shanghai 201210 China
- University of Chinese Academy of Sciences No. 19A, Yuquan Road Beijing 100049 China
- School of Life Science and Technology ShanghaiTech University Shanghai 201210 China
- CAS Center for Excellence in Molecular Cell Science Shanghai Institute of Biochemistry and Cell Biology Chinese Academy of Sciences Shanghai 200031 China
| | - Zhongxing Jiang
- Hubei Province Engineering and Technology Research Center, for Fluorinated Pharmaceuticals School of Pharmaceutical Sciences Wuhan University Wuhan 430071 China
| | - Zhi‐Jie Liu
- iHuman Institute ShanghaiTech University Ren Building 393 Middle Huaxia Road Pudong New District Shanghai 201210 China
- School of Life Science and Technology ShanghaiTech University Shanghai 201210 China
| | - Suwen Zhao
- iHuman Institute ShanghaiTech University Ren Building 393 Middle Huaxia Road Pudong New District Shanghai 201210 China
- School of Life Science and Technology ShanghaiTech University Shanghai 201210 China
| | - Dongsheng Liu
- iHuman Institute ShanghaiTech University Ren Building 393 Middle Huaxia Road Pudong New District Shanghai 201210 China
| | - Kurt Wüthrich
- iHuman Institute ShanghaiTech University Ren Building 393 Middle Huaxia Road Pudong New District Shanghai 201210 China
- School of Life Science and Technology ShanghaiTech University Shanghai 201210 China
| | - Houchao Tao
- iHuman Institute ShanghaiTech University Ren Building 393 Middle Huaxia Road Pudong New District Shanghai 201210 China
| |
Collapse
|
21
|
Ehsan M, Du Y, Mortensen JS, Hariharan P, Qu Q, Ghani L, Das M, Grethen A, Byrne B, Skiniotis G, Keller S, Loland CJ, Guan L, Kobilka BK, Chae PS. Self-Assembly Behavior and Application of Terphenyl-Cored Trimaltosides for Membrane-Protein Studies: Impact of Detergent Hydrophobic Group Geometry on Protein Stability. Chemistry 2019; 25:11545-11554. [PMID: 31243822 DOI: 10.1002/chem.201902468] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Indexed: 01/13/2023]
Abstract
Amphipathic agents are widely used in various fields including biomedical sciences. Micelle-forming detergents are particularly useful for in vitro membrane-protein characterization. As many conventional detergents are limited in their ability to stabilize membrane proteins, it is necessary to develop novel detergents to facilitate membrane-protein research. In the current study, we developed novel trimaltoside detergents with an alkyl pendant-bearing terphenyl unit as a hydrophobic group, designated terphenyl-cored maltosides (TPMs). We found that the geometry of the detergent hydrophobic group substantially impacts detergent self-assembly behavior, as well as detergent efficacy for membrane-protein stabilization. TPM-Vs, with a bent terphenyl group, were superior to the linear counterparts (TPM-Ls) at stabilizing multiple membrane proteins. The favorable protein stabilization efficacy of these bent TPMs is likely associated with a binding mode with membrane proteins distinct from conventional detergents and facial amphiphiles. When compared to n-dodecyl-β-d-maltoside (DDM), most TPMs were superior or comparable to this gold standard detergent at stabilizing membrane proteins. Notably, TPM-L3 was particularly effective at stabilizing the human β2 adrenergic receptor (β2 AR), a G-protein coupled receptor, and its complex with Gs protein. Thus, the current study not only provides novel detergent tools that are useful for membrane-protein study, but also suggests a critical role for detergent hydrophobic group geometry in governing detergent efficacy.
Collapse
Affiliation(s)
- Muhammad Ehsan
- Department of Bionanotechnology, Hanyang University, Ansan, 15588, Korea.,Current address: Department of Chemistry, Mirpur University of Science & Technology, Mirpur, AJK, 10250, Pakistan)
| | - Yang Du
- Molecular and Cellular Physiology, Stanford, CA, 94305, USA
| | - Jonas S Mortensen
- Department of Neuroscience, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Parameswaran Hariharan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center Lubbock, TX, 79430, USA
| | - Qianhui Qu
- Molecular and Cellular Physiology and Structural Biology, Stanford University, Stanford, CA, 94305, USA
| | - Lubna Ghani
- Department of Bionanotechnology, Hanyang University, Ansan, 15588, Korea
| | - Manabendra Das
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
| | - Anne Grethen
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Georgios Skiniotis
- Molecular and Cellular Physiology and Structural Biology, Stanford University, Stanford, CA, 94305, USA
| | - Sandro Keller
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
| | - Claus J Loland
- Department of Neuroscience, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center Lubbock, TX, 79430, USA
| | | | - Pil Seok Chae
- Department of Bionanotechnology, Hanyang University, Ansan, 15588, Korea
| |
Collapse
|
22
|
Zhang Q, Cherezov V. Chemical tools for membrane protein structural biology. Curr Opin Struct Biol 2019; 58:278-285. [PMID: 31285102 DOI: 10.1016/j.sbi.2019.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 01/24/2023]
Abstract
Solving high-resolution structures of membrane proteins has been an important challenge for decades, still lagging far behind that of soluble proteins even with the recent remarkable technological advances in X-ray crystallography and electron microscopy. Central to this challenge is the necessity to isolate and solubilize membrane proteins in a stable, natively folded and functional state, a process influenced by not only the proteins but also their surrounding chemical environment. This review highlights recent community efforts in the development and characterization of novel membrane agents and ligand tools to stabilize individual proteins and protein complexes, which together have accelerated progress in membrane protein structural biology.
Collapse
Affiliation(s)
- Qinghai Zhang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Vadim Cherezov
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
23
|
Ehsan M, Kumar A, Mortensen JS, Du Y, Hariharan P, Kumar KK, Ha B, Byrne B, Guan L, Kobilka BK, Loland CJ, Chae PS. Self-Assembly Behaviors of a Penta-Phenylene Maltoside and Its Application for Membrane Protein Study. Chem Asian J 2019; 14:1926-1931. [PMID: 30969484 PMCID: PMC7239035 DOI: 10.1002/asia.201900224] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/22/2019] [Indexed: 01/07/2023]
Abstract
We prepared an amphiphile with a penta-phenylene lipophilic group and a branched trimaltoside head group. This new agent, designated penta-phenylene maltoside (PPM), showed a marked tendency to self-assembly into micelles via strong aromatic-aromatic interactions in aqueous media, as evidenced by 1 H NMR spectroscopy and fluorescence studies. When utilized for membrane protein studies, this new agent was superior to DDM, a gold standard conventional detergent, in stabilizing multiple proteins long term. The ability of this agent to form aromatic-aromatic interactions is likely responsible for enhanced protein stabilization when associated with a target membrane protein.
Collapse
Affiliation(s)
- Muhammad Ehsan
- Department of Bionanotechnology, Hanyang University, Ansan, 15588, Korea
- Current address: Department of Chemistry, Mirpur University of Science&Technology (MUST), Mirpur-, 10250 (AJK), Pakistan
| | - Ashwani Kumar
- Department of Bionanotechnology, Hanyang University, Ansan, 15588, Korea
| | - Jonas S Mortensen
- Department of Neuroscience, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Yang Du
- Molecular and Cellular Physiology, Stanford University, Stanford, CA, 94305, USA
| | - Parameswaran Hariharan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center Lubbock, TX, 79430, USA
| | - Kaavya K Kumar
- Molecular and Cellular Physiology, Stanford University, Stanford, CA, 94305, USA
| | - Betty Ha
- Molecular and Cellular Physiology, Stanford University, Stanford, CA, 94305, USA
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center Lubbock, TX, 79430, USA
| | - Brian K Kobilka
- Molecular and Cellular Physiology, Stanford University, Stanford, CA, 94305, USA
| | - Claus J Loland
- Department of Neuroscience, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Pil Seok Chae
- Department of Bionanotechnology, Hanyang University, Ansan, 15588, Korea
| |
Collapse
|
24
|
Li Z, Chen G, Chen L, Zhang Y, Dai Z. Solution Properties of Alkyl β‐D‐Maltosides. J SURFACTANTS DETERG 2019. [DOI: 10.1002/jsde.12281] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zhencao Li
- College of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of EducationXiangtan University Xiangtan, 411105 Hunan People's Republic of China Republic of China
| | - Guoyong Chen
- College of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of EducationXiangtan University Xiangtan, 411105 Hunan People's Republic of China Republic of China
| | - Langqiu Chen
- College of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of EducationXiangtan University Xiangtan, 411105 Hunan People's Republic of China Republic of China
| | - Yanhua Zhang
- College of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of EducationXiangtan University Xiangtan, 411105 Hunan People's Republic of China Republic of China
| | - Zhiyong Dai
- Ausnutria Dairy (China) Co. Ltd. Changsha, 410005 Hunan People's Republic of China
| |
Collapse
|
25
|
Xue D, Wang J, Song X, Wang W, Hu T, Ye L, Liu Y, Zhou Q, Zhou F, Jiang ZX, Liu ZJ, Tao H. A Chemical Strategy for Amphiphile Replacement in Membrane Protein Research. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4319-4327. [PMID: 30781953 DOI: 10.1021/acs.langmuir.8b04072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Membrane mimics are indispensable tools in the structural and functional understanding of membrane proteins (MPs). Given stringent requirements of integral MP manipulations, amphiphile replacement is often required in sample preparation for various biophysical purposes. Current protocols generally rely on physical methodologies and rarely reach complete replacement. In comparison, we report herein a chemical alternative that facilitates the exhaustive exchange of membrane-mimicking systems for MP reconstitution. This method, named sacrifice-replacement strategy, was enabled by a class of chemically cleavable detergents (CCDs), derived from the disulfide incorporation in the traditional detergent n-dodecyl-β-d-maltopyranoside. The representative CCD behaved well in both solubilizing the diverse α-helical human G protein-coupled receptors and refolding of the β-barrel bacterial outer membrane protein X, and more importantly, it could also be readily degraded under mild conditions. By this means, the A2A adenosine receptor was successfully reconstituted into a series of commercial detergents for stabilization screening and nanodiscs for electron microscopy analysis. Featured by the simplicity and compatibility, this CCD-mediated strategy would later find more applications when being integrated in other biophysics studies.
Collapse
Affiliation(s)
- Dongxiang Xue
- iHuman Institute , ShanghaiTech University , Ren Building, 393 Middle Huaxia Road , Shanghai 201210 , China
- Shanghai Institute of Materia Medica , Chinese Academy of Sciences , 555 Zuchongzhi Road , Shanghai 201203 , China
- University of Chinese Academy of Sciences , No. 19A, Yuquan Road , Beijing 100049 , China
- School of Life Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| | - Jingjing Wang
- iHuman Institute , ShanghaiTech University , Ren Building, 393 Middle Huaxia Road , Shanghai 201210 , China
- University of Chinese Academy of Sciences , No. 19A, Yuquan Road , Beijing 100049 , China
- School of Life Science and Technology , ShanghaiTech University , Shanghai 201210 , China
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences , Chinese Academy of Sciences , Shanghai 200031 , China
| | - Xiyong Song
- University of Chinese Academy of Sciences , No. 19A, Yuquan Road , Beijing 100049 , China
- National Laboratory of Biomacromolecules, Institute of Biophysics , Chinese Academy of Sciences , Beijing 100101 , China
| | - Wei Wang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences , Wuhan University , Wuhan 430071 , China
| | - Tao Hu
- iHuman Institute , ShanghaiTech University , Ren Building, 393 Middle Huaxia Road , Shanghai 201210 , China
- Shanghai Institute of Materia Medica , Chinese Academy of Sciences , 555 Zuchongzhi Road , Shanghai 201203 , China
- University of Chinese Academy of Sciences , No. 19A, Yuquan Road , Beijing 100049 , China
- School of Life Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| | - Lintao Ye
- iHuman Institute , ShanghaiTech University , Ren Building, 393 Middle Huaxia Road , Shanghai 201210 , China
| | - Yang Liu
- iHuman Institute , ShanghaiTech University , Ren Building, 393 Middle Huaxia Road , Shanghai 201210 , China
| | - Qingtong Zhou
- iHuman Institute , ShanghaiTech University , Ren Building, 393 Middle Huaxia Road , Shanghai 201210 , China
| | - Fang Zhou
- iHuman Institute , ShanghaiTech University , Ren Building, 393 Middle Huaxia Road , Shanghai 201210 , China
- Shanghai Institute of Materia Medica , Chinese Academy of Sciences , 555 Zuchongzhi Road , Shanghai 201203 , China
- University of Chinese Academy of Sciences , No. 19A, Yuquan Road , Beijing 100049 , China
- School of Life Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| | - Zhong-Xing Jiang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences , Wuhan University , Wuhan 430071 , China
| | - Zhi-Jie Liu
- iHuman Institute , ShanghaiTech University , Ren Building, 393 Middle Huaxia Road , Shanghai 201210 , China
- School of Life Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| | - Houchao Tao
- iHuman Institute , ShanghaiTech University , Ren Building, 393 Middle Huaxia Road , Shanghai 201210 , China
| |
Collapse
|
26
|
Ehsan M, Du Y, Molist I, Seven AB, Hariharan P, Mortensen JS, Ghani L, Loland CJ, Skiniotis G, Guan L, Byrne B, Kobilka BK, Chae PS. Vitamin E-based glycoside amphiphiles for membrane protein structural studies. Org Biomol Chem 2019; 16:2489-2498. [PMID: 29564464 DOI: 10.1039/c8ob00270c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Membrane proteins play critical roles in a variety of cellular processes. For a detailed molecular level understanding of their biological functions and roles in disease, it is necessary to extract them from the native membranes. While the amphipathic nature of these bio-macromolecules presents technical challenges, amphiphilic assistants such as detergents serve as useful tools for membrane protein structural and functional studies. Conventional detergents are limited in their ability to maintain the structural integrity of membrane proteins and thus it is essential to develop novel agents with enhanced properties. Here, we designed and characterized a novel class of amphiphiles with vitamin E (i.e., α-tocopherol) as the hydrophobic tail group and saccharide units as the hydrophilic head group. Designated vitamin E-based glycosides (VEGs), these agents were evaluated for their ability to solubilize and stabilize a set of membrane proteins. VEG representatives not only conferred markedly enhanced stability to a diverse range of membrane proteins compared to conventional detergents, but VEG-3 also showed notable efficacy toward stabilization and visualization of a membrane protein complex. In addition to hydrophile-lipophile balance (HLB) of detergent molecules, the chain length and molecular geometry of the detergent hydrophobic group seem key factors in determining detergent efficacy for membrane protein (complex) stability.
Collapse
Affiliation(s)
- Muhammad Ehsan
- Department of Bionanotechnology, Hanyang University, Ansan, 15588, Korea.
| | - Yang Du
- Molecular and Cellular Physiology, Stanford, CA 94305, USA.
| | - Iago Molist
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
| | - Alpay B Seven
- Molecular and Cellular Physiology, Stanford, CA 94305, USA.
| | - Parameswaran Hariharan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center Lubbock, TX 79430, USA.
| | - Jonas S Mortensen
- Department of Neuroscience, University of Copenhagen, DK- 2200 Copenhagen, Denmark.
| | - Lubna Ghani
- Department of Bionanotechnology, Hanyang University, Ansan, 15588, Korea.
| | - Claus J Loland
- Department of Neuroscience, University of Copenhagen, DK- 2200 Copenhagen, Denmark.
| | | | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center Lubbock, TX 79430, USA.
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
| | | | - Pil Seok Chae
- Department of Bionanotechnology, Hanyang University, Ansan, 15588, Korea.
| |
Collapse
|
27
|
Ji S, Shen W, Chen L, Zhang Y, Wu X, Fan Y, Fu F, Chen G. Synthesis and properties of sugar-based surfactants alkoxyethyl β-D-glucopyranoside. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.12.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Breyton C, Javed W, Vermot A, Arnaud CA, Hajjar C, Dupuy J, Petit-Hartlein I, Le Roy A, Martel A, Thépaut M, Orelle C, Jault JM, Fieschi F, Porcar L, Ebel C. Assemblies of lauryl maltose neopentyl glycol (LMNG) and LMNG-solubilized membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:939-957. [PMID: 30776334 DOI: 10.1016/j.bbamem.2019.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 02/08/2019] [Accepted: 02/08/2019] [Indexed: 12/11/2022]
Abstract
Laurylmaltose neopentylglycol (LMNG) bears two linked hydrophobic chains of equal length and two hydrophilic maltoside groups. It arouses a strong interest in the field of membrane protein biochemistry, since it was shown to efficiently solubilize and stabilize membrane proteins often better than the commonly used dodecylmaltopyranoside (DDM), and to allow structure determination of some challenging membrane proteins. However, LMNG was described to form large micelles, which could be unfavorable for structural purposes. We thus investigated its auto-assemblies and the association state of different membrane proteins solubilized in LMNG by analytical ultracentrifugation, size exclusion chromatography coupled to light scattering, centrifugation on sucrose gradient and/or small angle scattering. At high concentrations (in the mM range), LMNG forms long rods, and it stabilized the membrane proteins investigated herein, i.e. a bacterial multidrug transporter, BmrA; a prokaryotic analogous of the eukaryotic NADPH oxidases, SpNOX; an E. coli outer membrane transporter, FhuA; and the halobacterial bacteriorhodopsin, bR. BmrA, in the Apo and the vanadate-inhibited forms showed reduced kinetics of limited proteolysis in LMNG compared to DDM. Both SpNOX and BmrA display an increased specific activity in LMNG compared to DDM. The four proteins form LMNG complexes with their usual quaternary structure and with usual amount of bound detergent. No heterogeneous complexes related to the large micelle size of LMNG alone were observed. In conditions where LMNG forms assemblies of large size, FhuA crystals diffracting to 4.0 Å were obtained by vapor diffusion. LMNG large micelle size thus does not preclude membrane protein homogeneity and crystallization.
Collapse
Affiliation(s)
- Cécile Breyton
- Univ. Grenoble Alpes, CNRS, CEA, Institute for Structural Biology (IBS), 38000 Grenoble, France
| | - Waqas Javed
- Univ. Grenoble Alpes, CNRS, CEA, Institute for Structural Biology (IBS), 38000 Grenoble, France; University of Lyon, CNRS, UMR5086, Molecular Microbiology and Structural Biochemistry, IBCP, Lyon 69367, France
| | - Annelise Vermot
- Univ. Grenoble Alpes, CNRS, CEA, Institute for Structural Biology (IBS), 38000 Grenoble, France
| | - Charles-Adrien Arnaud
- Univ. Grenoble Alpes, CNRS, CEA, Institute for Structural Biology (IBS), 38000 Grenoble, France
| | - Christine Hajjar
- Univ. Grenoble Alpes, CNRS, CEA, Institute for Structural Biology (IBS), 38000 Grenoble, France
| | - Jérôme Dupuy
- Univ. Grenoble Alpes, CNRS, CEA, Institute for Structural Biology (IBS), 38000 Grenoble, France
| | - Isabelle Petit-Hartlein
- Univ. Grenoble Alpes, CNRS, CEA, Institute for Structural Biology (IBS), 38000 Grenoble, France
| | - Aline Le Roy
- Univ. Grenoble Alpes, CNRS, CEA, Institute for Structural Biology (IBS), 38000 Grenoble, France
| | - Anne Martel
- Institut Max Von Laue Paul Langevin, 38042 Grenoble, France
| | - Michel Thépaut
- Univ. Grenoble Alpes, CNRS, CEA, Institute for Structural Biology (IBS), 38000 Grenoble, France
| | - Cédric Orelle
- University of Lyon, CNRS, UMR5086, Molecular Microbiology and Structural Biochemistry, IBCP, Lyon 69367, France
| | - Jean-Michel Jault
- University of Lyon, CNRS, UMR5086, Molecular Microbiology and Structural Biochemistry, IBCP, Lyon 69367, France
| | - Franck Fieschi
- Univ. Grenoble Alpes, CNRS, CEA, Institute for Structural Biology (IBS), 38000 Grenoble, France
| | - Lionel Porcar
- Institut Max Von Laue Paul Langevin, 38042 Grenoble, France
| | - Christine Ebel
- Univ. Grenoble Alpes, CNRS, CEA, Institute for Structural Biology (IBS), 38000 Grenoble, France.
| |
Collapse
|
29
|
Hussain H, Helton T, Du Y, Mortensen JS, Hariharan P, Ehsan M, Byrne B, Loland CJ, Kobilka BK, Guan L, Chae PS. A comparative study of branched and linear mannitol-based amphiphiles on membrane protein stability. Analyst 2019; 143:5702-5710. [PMID: 30334564 DOI: 10.1039/c8an01408f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The study of membrane proteins is extremely challenging, mainly because of the incompatibility of the hydrophobic surfaces of membrane proteins with an aqueous medium. Detergents are essential agents used to maintain membrane protein stability in non-native environments. However, conventional detergents fail to stabilize the native structures of many membrane proteins. Development of new amphipathic agents with enhanced efficacy for membrane protein stabilization is necessary to address this important problem. We have designed and synthesized linear and branched mannitol-based amphiphiles (MNAs), and comparative studies showed that most of the branched MNAs had advantages over the linear agents in terms of membrane protein stability. In addition, a couple of the new MNAs displayed favorable behaviors compared to n-dodecyl-β-d-maltoside and the previously developed MNAs in maintaining the native protein structures, indicating potential utility of these new agents in membrane protein study.
Collapse
Affiliation(s)
- Hazrat Hussain
- Department of Bionanotechnology, Hanyang University, Ansan, 15588, Korea.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Successful amphiphiles as the key to crystallization of membrane proteins: Bridging theory and practice. Biochim Biophys Acta Gen Subj 2018; 1863:437-455. [PMID: 30419284 DOI: 10.1016/j.bbagen.2018.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/31/2018] [Accepted: 11/07/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Membrane proteins constitute a major group of proteins and are of great significance as pharmaceutical targets, but underrepresented in the Protein Data Bank. Particular reasons are their low expression yields and the constant need for cautious and diligent handling in a sufficiently stable hydrophobic environment substituting for the native membrane. When it comes to protein crystallization, such an environment is often established by detergents. SCOPE OF REVIEW In this review, 475 unique membrane protein X-ray structures from the online data bank "Membrane proteins of known 3D structure" are presented with a focus on the detergents essential for protein crystallization. By systematic analysis of the most successful compounds, including current trends in amphiphile development, we provide general insights for selection and design of detergents for membrane protein crystallization. MAJOR CONCLUSIONS The most successful detergents share common features, giving rise to favorable protein interactions. The hydrophile-lipophile balance concept of well-balanced hydrophilic and hydrophobic detergent portions is still the key to successful protein crystallization. Although a single detergent compound is sufficient in most cases, sometimes a suitable mixture of detergents has to be found to alter the resulting protein-detergent complex. Protein crystals with a high diffraction limit involve a tight crystal packing generally favored by detergents with shorter alkyl chains. GENERAL SIGNIFICANCE The formation of well-diffracting membrane protein crystals strongly depends on suitable surfactants, usually screened in numerous crystallization trials. The here-presented findings provide basic criteria for the assessment of surfactants within the vast space of potential crystallization conditions for membrane proteins.
Collapse
|
31
|
Bae HE, Du Y, Hariharan P, Mortensen JS, Kumar KK, Ha B, Das M, Lee HS, Loland CJ, Guan L, Kobilka BK, Chae PS. Asymmetric maltose neopentyl glycol amphiphiles for a membrane protein study: effect of detergent asymmetricity on protein stability. Chem Sci 2018; 10:1107-1116. [PMID: 30774908 PMCID: PMC6346398 DOI: 10.1039/c8sc02560f] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 11/04/2018] [Indexed: 12/21/2022] Open
Abstract
An asymmetric MNG, MNG-8,12, provided enhanced stability to human G protein-coupled receptors (GPCRs) compared to the symmetric MNG, MNG-3.
Maintaining protein stability in an aqueous solution is a prerequisite for protein structural and functional studies, but conventional detergents have increasingly showed limited ability to maintain protein integrity. A representative novel agent, maltose neopentyl glycol-3 (MNG-3), has recently substantially contributed to membrane protein structural studies. Motivated by the popular use of this novel agent, we prepared asymmetric versions of MNG-3 and evaluated these agents with several membrane proteins including two G protein-coupled receptors in this study. We found that some new MNGs were significantly more effective than MNG-3 at preserving protein integrity in the long term, suggesting that these asymmetric MNGs will find a wide use in membrane protein studies. In addition, this is the first study addressing the favorable effect of detergent asymmetric nature on membrane protein stability.
Collapse
Affiliation(s)
- Hyoung Eun Bae
- Department of Bionanotechnology , Hanyang University , Ansan , 15588 Korea .
| | - Yang Du
- Molecular and Cellular Physiology , Stanford , CA 94305 , USA .
| | - Parameswaran Hariharan
- Department of Cell Physiology and Molecular Biophysics , Center for Membrane Protein Research , School of Medicine , Texas Tech University Health Sciences Center Lubbock , TX 79430 , USA .
| | - Jonas S Mortensen
- Department of Neuroscience , University of Copenhagen , DK-2200 Copenhagen , Denmark .
| | - Kaavya K Kumar
- Molecular and Cellular Physiology , Stanford , CA 94305 , USA .
| | - Betty Ha
- Molecular and Cellular Physiology , Stanford , CA 94305 , USA .
| | - Manabendra Das
- Department of Bionanotechnology , Hanyang University , Ansan , 15588 Korea .
| | - Hyun Sung Lee
- Department of Bionanotechnology , Hanyang University , Ansan , 15588 Korea .
| | - Claus J Loland
- Department of Neuroscience , University of Copenhagen , DK-2200 Copenhagen , Denmark .
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics , Center for Membrane Protein Research , School of Medicine , Texas Tech University Health Sciences Center Lubbock , TX 79430 , USA .
| | - Brian K Kobilka
- Molecular and Cellular Physiology , Stanford , CA 94305 , USA .
| | - Pil Seok Chae
- Department of Bionanotechnology , Hanyang University , Ansan , 15588 Korea .
| |
Collapse
|
32
|
|
33
|
Wolfe AJ, Gugel JF, Chen M, Movileanu L. Kinetics of Membrane Protein-Detergent Interactions Depend on Protein Electrostatics. J Phys Chem B 2018; 122:9471-9481. [PMID: 30251852 DOI: 10.1021/acs.jpcb.8b07889] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Interactions of a membrane protein with a detergent micelle represent a fundamental process with practical implications in structural and chemical biology. Quantitative assessment of the kinetics of protein-detergent complex (PDC) interactions has always been challenged by complicated behavior of both membrane proteins and solubilizing detergents in aqueous phase. Here, we show the kinetic reads of the desorption of maltoside-containing detergents from β-barrel membrane proteins. Using steady-state fluorescence polarization (FP) anisotropy measurements, we recorded real-time, specific signatures of the PDC interactions. The results of these measurements were used to infer the model-dependent rate constants of association and dissociation of the proteomicelles. Remarkably, the kinetics of the PDC interactions depend on the overall protein charge despite the nonionic nature of the detergent monomers. In the future, this approach might be employed for high-throughput screening of kinetic fingerprints of different membrane proteins stabilized in micelles that contain mixtures of various detergents.
Collapse
Affiliation(s)
- Aaron J Wolfe
- Department of Physics , Syracuse University , 201 Physics Building , Syracuse , New York 13244-1130 , United States.,Structural Biology, Biochemistry, and Biophysics Program , Syracuse University , 111 College Place , Syracuse , New York 13244-4100 , United States
| | - Jack F Gugel
- Department of Physics , Syracuse University , 201 Physics Building , Syracuse , New York 13244-1130 , United States
| | - Min Chen
- Department of Chemistry , University of Massachusetts , 820 LGRT, 710 North Pleasant Street , Amherst , Massachusetts 01003-9336 , United States
| | - Liviu Movileanu
- Department of Physics , Syracuse University , 201 Physics Building , Syracuse , New York 13244-1130 , United States.,Structural Biology, Biochemistry, and Biophysics Program , Syracuse University , 111 College Place , Syracuse , New York 13244-4100 , United States.,Department of Biomedical and Chemical Engineering , Syracuse University , 223 Link Hall , Syracuse , New York 13244 , United States
| |
Collapse
|
34
|
Das M, Du Y, Mortensen JS, Hariharan P, Lee HS, Byrne B, Loland CJ, Guan L, Kobilka BK, Chae PS. Rationally Engineered Tandem Facial Amphiphiles for Improved Membrane Protein Stabilization Efficacy. Chembiochem 2018; 19:2225-2232. [PMID: 30070754 DOI: 10.1002/cbic.201800388] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Indexed: 01/11/2023]
Abstract
A new family of tandem facial glucosides/maltosides (TFGs/TFMs) for membrane protein manipulation was prepared. The best detergent varied depending on the hydrophobic thickness of the target protein, but ether-based TFMs (TFM-C0E, TFM-C3E, and TFM-C5E) were notable for their ability to confer higher membrane protein stability than the previously developed amide-based TFA-1 (P. S. Chae, K. Gotfryd, J. Pacyna, L. J. W. Miercke, S. G. F. Rasmussen, R. A. Robbins, R. R. Rana, C. J. Loland, B. Kobilka, R. Stroud, B. Byrne, U. Gether, S. H. Gellman, J. Am. Chem. Soc. 2010, 132, 16750-16752). Thus, this study not only introduces novel agents with the potential to be used in membrane protein research but also highlights the importance of both the hydrophobic length and linker functionality of the detergent in stabilizing membrane proteins.
Collapse
Affiliation(s)
- Manabendra Das
- Department of Bionanotechnology, Hanyang University, 55 Hanyangdaehak-ro, Ansan, 155-88, Korea.,Present address: Molecular Biophysics, Technische Universität Kaiserslautern, Erwin-Schrödinger-Strasse 13, 67663, Kaiserslautern, Germany
| | - Yang Du
- Molecular and Cellular Physiology, Stanford University, 279 Campus Drive, Stanford, CA, 94305, USA
| | - Jonas S Mortensen
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Parameswaran Hariharan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, 3601 4th St. MS 6551, Lubbock, TX, 79430, USA
| | - Hyun Sung Lee
- Department of Bionanotechnology, Hanyang University, 55 Hanyangdaehak-ro, Ansan, 155-88, Korea
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Claus J Loland
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, 3601 4th St. MS 6551, Lubbock, TX, 79430, USA
| | - Brian K Kobilka
- Molecular and Cellular Physiology, Stanford University, 279 Campus Drive, Stanford, CA, 94305, USA
| | - Pil Seok Chae
- Department of Bionanotechnology, Hanyang University, 55 Hanyangdaehak-ro, Ansan, 155-88, Korea
| |
Collapse
|
35
|
|
36
|
Ehsan M, Ghani L, Du Y, Hariharan P, Mortensen JS, Ribeiro O, Hu H, Skiniotis G, Loland CJ, Guan L, Kobilka BK, Byrne B, Chae PS. New penta-saccharide-bearing tripod amphiphiles for membrane protein structure studies. Analyst 2018; 142:3889-3898. [PMID: 28913526 DOI: 10.1039/c7an01168g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Integral membrane proteins either alone or as complexes carry out a range of key cellular functions. Detergents are indispensable tools in the isolation of membrane proteins from biological membranes for downstream studies. Although a large number of techniques and tools, including a wide variety of detergents, are available, purification and structural characterization of many membrane proteins remain challenging. In the current study, a new class of tripod amphiphiles bearing two different penta-saccharide head groups, designated TPSs, were developed and evaluated for their ability to extract and stabilize a range of diverse membrane proteins. Variations in the structures of the detergent head and tail groups allowed us to prepare three sets of the novel agents with distinctive structures. Some TPSs (TPS-A8 and TPS-E7) were efficient at extracting two proteins in a functional state while others (TPS-E8 and TPS-E10L) conferred marked stability to all membrane proteins (and membrane protein complexes) tested here compared to a conventional detergent. Use of TPS-E10L led to clear visualization of a receptor-Gs complex using electron microscopy, indicating profound potential in membrane protein research.
Collapse
Affiliation(s)
- Muhammad Ehsan
- Department of Bionanotechnology, Hanyang University, Ansan, 15588, Korea.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ehsan M, Das M, Stern V, Du Y, Mortensen JS, Hariharan P, Byrne B, Loland CJ, Kobilka BK, Guan L, Chae PS. Steroid-Based Amphiphiles for Membrane Protein Study: The Importance of Alkyl Spacers for Protein Stability. Chembiochem 2018; 19:1433-1443. [PMID: 29660780 PMCID: PMC7238963 DOI: 10.1002/cbic.201800106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Indexed: 01/04/2023]
Abstract
Membrane proteins allow effective communication between cells and organelles and their external environments. Maintaining membrane protein stability in a non-native environment is the major bottleneck to their structural study. Detergents are widely used to extract membrane proteins from the membrane and to keep the extracted protein in a stable state for downstream characterisation. In this study, three sets of steroid-based amphiphiles-glyco-diosgenin analogues (GDNs) and steroid-based pentasaccharides either lacking a linker (SPSs) or containing a linker (SPS-Ls)-have been developed as new chemical tools for membrane protein research. These detergents were tested with three membrane proteins in order to characterise their ability to extract membrane proteins from the membrane and to stabilise membrane proteins long-term. Some of the detergents, particularly the SPS-Ls, displayed favourable behaviour with the tested membrane proteins. This result indicates the potential utility of these detergents as chemical tools for membrane protein structural study and a critical role of the simple alkyl spacer in determining detergent efficacy.
Collapse
Affiliation(s)
- Muhammad Ehsan
- Department of Bionanotechnology, Hanyang University, 55 Hanyangdaehak-ro, Ansan, 15588, Republic of Korea
| | - Manabendra Das
- Department of Bionanotechnology, Hanyang University, 55 Hanyangdaehak-ro, Ansan, 15588, Republic of Korea
| | - Valerie Stern
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University, Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430, USA
| | - Yang Du
- Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA, 94305, USA
| | - Jonas S Mortensen
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Parameswaran Hariharan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University, Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430, USA
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Claus J Loland
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Brian K Kobilka
- Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA, 94305, USA
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University, Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430, USA
| | - Pil Seok Chae
- Department of Bionanotechnology, Hanyang University, 55 Hanyangdaehak-ro, Ansan, 15588, Republic of Korea
| |
Collapse
|
38
|
Das M, Du Y, Mortensen JS, Bae HE, Byrne B, Loland CJ, Kobilka BK, Chae PS. An Engineered Lithocholate-Based Facial Amphiphile Stabilizes Membrane Proteins: Assessing the Impact of Detergent Customizability on Protein Stability. Chemistry 2018; 24:9860-9868. [PMID: 29741269 DOI: 10.1002/chem.201801141] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/27/2018] [Indexed: 01/06/2023]
Abstract
Amphiphiles are critical tools for the structural and functional study of membrane proteins. Membrane proteins encapsulated by conventional head-to-tail detergents tend to undergo structural degradation, necessitating the development of structurally novel agents with improved efficacy. In recent years, facial amphiphiles have yielded encouraging results in terms of membrane protein stability. Herein, we report a new facial detergent (i.e., LFA-C4) that confers greater stability to tested membrane proteins than the bola form analogue. Owing to the increased facial property and the adaptability of the detergent micelles in complex with different membrane proteins, LFA-C4 yields increased stability compared to n-dodecyl-β-d-maltoside (DDM). Thus, this study not only describes a novel maltoside detergent with enhanced protein-stabilizing properties, but also shows that the customizable nature of a detergent plays an important role in the stabilization of membrane proteins. Owing to both synthetic convenience and enhanced stabilization efficacy for a range of membrane proteins, the new agent has major potential in membrane protein research.
Collapse
Affiliation(s)
- Manabendra Das
- Department of Bionanotechnology, Hanyang University, Ansan, 155-88, Korea
| | - Yang Du
- Molecular and Cellular Physiology, Stanford, CA, 94305, USA
| | - Jonas S Mortensen
- Department of Neuroscience, University of Copenhagen, Copenhagen N, DK-2200, Denmark
| | - Hyoung Eun Bae
- Department of Bionanotechnology, Hanyang University, Ansan, 155-88, Korea
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Claus J Loland
- Department of Neuroscience, University of Copenhagen, Copenhagen N, DK-2200, Denmark
| | | | - Pil Seok Chae
- Department of Bionanotechnology, Hanyang University, Ansan, 155-88, Korea
| |
Collapse
|
39
|
Wolfe AJ, Gugel JF, Chen M, Movileanu L. Detergent Desorption of Membrane Proteins Exhibits Two Kinetic Phases. J Phys Chem Lett 2018; 9:1913-1919. [PMID: 29595981 PMCID: PMC5908730 DOI: 10.1021/acs.jpclett.8b00549] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Gradual dissociation of detergent molecules from water-insoluble membrane proteins culminates in protein aggregation. However, the time-dependent trajectory of this process remains ambiguous because the signal-to-noise ratio of most spectroscopic and calorimetric techniques is drastically declined by the presence of protein aggregates in solution. We show that by using steady-state fluorescence polarization (FP) spectroscopy the dissociation of the protein-detergent complex (PDC) can be inspected in real time at detergent concentrations below the critical micelle concentration. This article provides experimental evidence of the coexistence of two distinct phases of the dissociations of detergent monomers from membrane proteins. We first noted a slow detergent predesolvation process, which was accompanied by a relatively modest change in the FP anisotropy, suggesting a small number of dissociated detergent monomers from the proteomicelles. This predesolvation phase was followed by a fast detergent desolvation process, which was highlighted by a major alteration in the FP anisotropy. The durations and rates of these phases were dependent on both the detergent concentration and the interfacial PDC interactions. Further development of this approach might lead to the creation of a new semiquantitative method for the assessment of the kinetics of association and dissociation of proteomicelles.
Collapse
Affiliation(s)
- Aaron J. Wolfe
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
- Structural Biology, Biochemistry, and Biophysics Program, Syracuse University, 111 College Place, Syracuse, New York 13244-4100, USA
| | - Jack F. Gugel
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
| | - Min Chen
- Department of Chemistry, University of Massachusetts Amherst, 820 LGRT, 710 North Pleasant Street, Amherst, Massachusetts 01003-9336, USA
| | - Liviu Movileanu
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
- Structural Biology, Biochemistry, and Biophysics Program, Syracuse University, 111 College Place, Syracuse, New York 13244-4100, USA
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse University, 223 Link Hall, Syracuse, New York 13244, USA
| |
Collapse
|
40
|
Sadaf A, Du Y, Santillan C, Mortensen JS, Molist I, Seven AB, Hariharan P, Skiniotis G, Loland CJ, Kobilka BK, Guan L, Byrne B, Chae PS. Dendronic trimaltoside amphiphiles (DTMs) for membrane protein study. Chem Sci 2017; 8:8315-8324. [PMID: 29619178 PMCID: PMC5858085 DOI: 10.1039/c7sc03700g] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/14/2017] [Indexed: 01/07/2023] Open
Abstract
A novel amphiphile with a dendronic hydrophobic group (DTM-A6) was markedly effective at stabilizing and visualizing a GPCR-Gs complex.
The critical contribution of membrane proteins in normal cellular function makes their detailed structure and functional analysis essential. Detergents, amphipathic agents with the ability to maintain membrane proteins in a soluble state in aqueous solution, have key roles in membrane protein manipulation. Structural and functional stability is a prerequisite for biophysical characterization. However, many conventional detergents are limited in their ability to stabilize membrane proteins, making development of novel detergents for membrane protein manipulation an important research area. The architecture of a detergent hydrophobic group, that directly interacts with the hydrophobic segment of membrane proteins, is a key factor in dictating their efficacy for both membrane protein solubilization and stabilization. In the current study, we developed two sets of maltoside-based detergents with four alkyl chains by introducing dendronic hydrophobic groups connected to a trimaltoside head group, designated dendronic trimaltosides (DTMs). Representative DTMs conferred enhanced stabilization to multiple membrane proteins compared to the benchmark conventional detergent, DDM. One DTM (i.e., DTM-A6) clearly outperformed DDM in stabilizing human β2 adrenergic receptor (β2AR) and its complex with Gs protein. A further evaluation of this DTM led to a clear visualization of β2AR-Gs complex via electron microscopic analysis. Thus, the current study not only provides novel detergent tools useful for membrane protein study, but also suggests that the dendronic architecture has a role in governing detergent efficacy for membrane protein stabilization.
Collapse
Affiliation(s)
- Aiman Sadaf
- Department of Bionanotechnology , Hanyang University , Ansan , 155-88 , Korea .
| | - Yang Du
- Molecular and Cellular Physiology , Stanford , CA 94305 , USA .
| | - Claudia Santillan
- Department of Cell Physiology and Molecular Biophysics , Center for Membrane Protein Research , School of Medicine , Texas Tech University Health Sciences Center , Lubbock , TX 79430 , USA .
| | - Jonas S Mortensen
- Center of Neuroscience , University of Copenhagen , DK 2200 Copenhagen , Denmark .
| | - Iago Molist
- Department of Life Sciences , Imperial College London , London , SW7 2AZ , UK .
| | - Alpay B Seven
- Structural Biology & Molecular and Cellular Physiology , Stanford , CA 94305 , USA .
| | - Parameswaran Hariharan
- Department of Cell Physiology and Molecular Biophysics , Center for Membrane Protein Research , School of Medicine , Texas Tech University Health Sciences Center , Lubbock , TX 79430 , USA .
| | - Georgios Skiniotis
- Structural Biology & Molecular and Cellular Physiology , Stanford , CA 94305 , USA .
| | - Claus J Loland
- Center of Neuroscience , University of Copenhagen , DK 2200 Copenhagen , Denmark .
| | - Brian K Kobilka
- Molecular and Cellular Physiology , Stanford , CA 94305 , USA .
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics , Center for Membrane Protein Research , School of Medicine , Texas Tech University Health Sciences Center , Lubbock , TX 79430 , USA .
| | - Bernadette Byrne
- Department of Life Sciences , Imperial College London , London , SW7 2AZ , UK .
| | - Pil Seok Chae
- Department of Bionanotechnology , Hanyang University , Ansan , 155-88 , Korea .
| |
Collapse
|
41
|
Ji S, Shen W, Chen L, Zhang Y, Wu X. Synthesis and properties of alkoxyethyl 2-acetamido-2-deoxy- α - D -glucopyranoside. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
42
|
Wolfe AJ, Hsueh YC, Blanden AR, Mohammad MM, Pham B, Thakur AK, Loh SN, Chen M, Movileanu L. Interrogating Detergent Desolvation of Nanopore-Forming Proteins by Fluorescence Polarization Spectroscopy. Anal Chem 2017; 89:8013-8020. [PMID: 28650154 PMCID: PMC5558884 DOI: 10.1021/acs.analchem.7b01339] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Understanding how membrane proteins interact with detergents is of fundamental and practical significance in structural and chemical biology as well as in nanobiotechnology. Current methods for inspecting protein-detergent complex (PDC) interfaces require high concentrations of protein and are of low throughput. Here, we describe a scalable, spectroscopic approach that uses nanomolar protein concentrations in native solutions. This approach, which is based on steady-state fluorescence polarization (FP) spectroscopy, kinetically resolves the dissociation of detergents from membrane proteins and protein unfolding. For satisfactorily solubilizing detergents, at concentrations much greater than the critical micelle concentration (CMC), the fluorescence anisotropy was independent of detergent concentration. In contrast, at detergent concentrations comparable with or below the CMC, the anisotropy readout underwent a time-dependent decrease, showing a specific and sensitive protein unfolding signature. Functionally reconstituted membrane proteins into a bilayer membrane confirmed predictions made by these FP-based determinations with respect to varying refolding conditions. From a practical point of view, this 96-well analytical approach will facilitate a massively parallel assessment of the PDC interfacial interactions under a fairly broad range of micellar and environmental conditions. We expect that these studies will potentially accelerate research in membrane proteins pertaining to their extraction, solubilization, stabilization, and crystallization, as well as reconstitution into bilayer membranes.
Collapse
Affiliation(s)
- Aaron J. Wolfe
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
- Structural Biology, Biochemistry, and Biophysics Program, Syracuse University, 111 College Place, Syracuse, New York 13244-4100, USA
| | - Yi-Ching Hsueh
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
| | - Adam R. Blanden
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, 4249 Weiskotten Hall, 766 Irving Av., Syracuse, New York 13210, USA
| | - Mohammad M. Mohammad
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
| | - Bach Pham
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003-9336, USA
| | - Avinash K. Thakur
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
- Structural Biology, Biochemistry, and Biophysics Program, Syracuse University, 111 College Place, Syracuse, New York 13244-4100, USA
| | - Stewart N. Loh
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, 4249 Weiskotten Hall, 766 Irving Av., Syracuse, New York 13210, USA
| | - Min Chen
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003-9336, USA
| | - Liviu Movileanu
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
- Structural Biology, Biochemistry, and Biophysics Program, Syracuse University, 111 College Place, Syracuse, New York 13244-4100, USA
- Department of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York 13244, USA
| |
Collapse
|
43
|
Abstract
High-resolution membrane protein structures are essential for understanding the molecular basis of diverse biological events and important in drug development. Detergents are usually used to extract these bio-macromolecules from the membranes and maintain them in a soluble and stable state in aqueous solutions for downstream characterization. However, many eukaryotic membrane proteins solubilized in conventional detergents tend to undergo structural degradation, necessitating the development of new amphiphilic agents with enhanced properties. In this study, we designed and synthesized a novel class of glucoside amphiphiles, designated tandem malonate-based glucosides (TMGs). A few TMG agents proved effective at both stabilizing a range of membrane proteins and extracting proteins from the membrane environment. These favourable characteristics, along with synthetic convenience, indicate that these agents have potential in membrane protein research.
Collapse
|
44
|
Overcoming bottlenecks in the membrane protein structural biology pipeline. Biochem Soc Trans 2017; 44:838-44. [PMID: 27284049 DOI: 10.1042/bst20160049] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Indexed: 02/07/2023]
Abstract
Membrane proteins account for a third of the eukaryotic proteome, but are greatly under-represented in the Protein Data Bank. Unfortunately, recent technological advances in X-ray crystallography and EM cannot account for the poor solubility and stability of membrane protein samples. A limitation of conventional detergent-based methods is that detergent molecules destabilize membrane proteins, leading to their aggregation. The use of orthologues, mutants and fusion tags has helped improve protein stability, but at the expense of not working with the sequence of interest. Novel detergents such as glucose neopentyl glycol (GNG), maltose neopentyl glycol (MNG) and calixarene-based detergents can improve protein stability without compromising their solubilizing properties. Styrene maleic acid lipid particles (SMALPs) focus on retaining the native lipid bilayer of a membrane protein during purification and biophysical analysis. Overcoming bottlenecks in the membrane protein structural biology pipeline, primarily by maintaining protein stability, will facilitate the elucidation of many more membrane protein structures in the near future.
Collapse
|
45
|
Hussain H, Du Y, Tikhonova E, Mortensen JS, Ribeiro O, Santillan C, Das M, Ehsan M, Loland CJ, Guan L, Kobilka BK, Byrne B, Chae PS. Resorcinarene-Based Facial Glycosides: Implication of Detergent Flexibility on Membrane-Protein Stability. Chemistry 2017; 23:6724-6729. [PMID: 28303608 DOI: 10.1002/chem.201605016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Indexed: 11/08/2022]
Abstract
As a membrane-mimetic system, detergent micelles are popularly used to extract membrane proteins from lipid environments and to maintain their solubility and stability in an aqueous medium. However, many membrane proteins encapsulated in conventional detergents tend to undergo structural degradation during extraction and purification, thus necessitating the development of new agents with enhanced properties. In the current study, two classes of new amphiphiles are introduced, resorcinarene-based glucoside and maltoside amphiphiles (designated RGAs and RMAs, respectively), for which the alkyl chains are facially segregated from the carbohydrate head groups. Of these facial amphiphiles, two RGAs (RGA-C11 and RGA-C13) conferred markedly enhanced stability to four tested membrane proteins compared to a gold-standard conventional detergent. The relatively high water solubility and micellar stability of the RGAs compared to the RMAs, along with their generally favourable behaviours for membrane protein stabilisation described here, are likely to be, at least in part, a result of the high conformational flexibility of these glucosides. This study suggests that flexibility could be an important factor in determining the suitability of new detergents for membrane protein studies.
Collapse
Affiliation(s)
- Hazrat Hussain
- Department of Bionanotechnology, Hanyang University, Ansan, 155-88, Korea
| | - Yang Du
- Molecular and Cellular Physiology, Stanford University, Stanford, CA, 94305, USA
| | - Elena Tikhonova
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Jonas S Mortensen
- Center of Neuroscience, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Orquidea Ribeiro
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Claudia Santillan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Manabendra Das
- Department of Bionanotechnology, Hanyang University, Ansan, 155-88, Korea
| | - Muhammad Ehsan
- Department of Bionanotechnology, Hanyang University, Ansan, 155-88, Korea
| | - Claus J Loland
- Center of Neuroscience, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Brian K Kobilka
- Molecular and Cellular Physiology, Stanford University, Stanford, CA, 94305, USA
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Pil Seok Chae
- Department of Bionanotechnology, Hanyang University, Ansan, 155-88, Korea
| |
Collapse
|
46
|
Das M, Du Y, Ribeiro O, Hariharan P, Mortensen JS, Patra D, Skiniotis G, Loland CJ, Guan L, Kobilka BK, Byrne B, Chae PS. Conformationally Preorganized Diastereomeric Norbornane-Based Maltosides for Membrane Protein Study: Implications of Detergent Kink for Micellar Properties. J Am Chem Soc 2017; 139:3072-3081. [PMID: 28218862 PMCID: PMC5818264 DOI: 10.1021/jacs.6b11997] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Detergents are essential tools for functional and structural studies of membrane proteins. However, conventional detergents are limited in their scope and utility, particularly for eukaryotic membrane proteins. Thus, there are major efforts to develop new amphipathic agents with enhanced properties. Here, a novel class of diastereomeric agents with a preorganized conformation, designated norbornane-based maltosides (NBMs), were prepared and evaluated for their ability to solubilize and stabilize membrane proteins. Representative NBMs displayed enhanced behaviors compared to n-dodecyl-β-d-maltoside (DDM) for all membrane proteins tested. Efficacy of the individual NBMs varied depending on the overall detergent shape and alkyl chain length. Specifically, NBMs with no kink in the lipophilic region conferred greater stability to the proteins than NBMs with a kink. In addition, long alkyl chain NBMs were generally better at stabilizing membrane proteins than short alkyl chain agents. Furthermore, use of one well-behaving NBM enabled us to attain a marked stabilization and clear visualization of a challenging membrane protein complex using electron microscopy. Thus, this study not only describes novel maltoside detergents with enhanced protein-stabilizing properties but also suggests that overall detergent geometry has an important role in determining membrane protein stability. Notably, this is the first systematic study on the effect of detergent kinking on micellar properties and associated membrane protein stability.
Collapse
Affiliation(s)
- Manabendra Das
- Department of Bionanotechnology, Hanyang University, Ansan 155-88, Korea
| | - Yang Du
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, United States
| | - Orquidea Ribeiro
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Parameswaran Hariharan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Jonas S. Mortensen
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Dhabaleswar Patra
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Georgios Skiniotis
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Claus J. Loland
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Brian K. Kobilka
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, United States
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Pil Seok Chae
- Department of Bionanotechnology, Hanyang University, Ansan 155-88, Korea
| |
Collapse
|
47
|
Abstract
Membrane proteins are crucial components of cellular membranes and are responsible for a variety of physiological functions. The advent of new tools and technologies for structural biology of membrane proteins has led to a significant increase in the number of structures deposited to the Protein Data Bank during the past decade. This new knowledge has expanded our fundamental understanding of their mechanism of function and contributed to the drug-design efforts. In this chapter we discuss current approaches for membrane protein expression, solubilization, crystallization, and data collection. Additionally, we describe the protein quality-control assays that are often instrumental as a guideline for a shorter path toward the structure.
Collapse
Affiliation(s)
- Andrii Ishchenko
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA, 90089, USA
| | - Enrique E Abola
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA, 90089, USA
| | - Vadim Cherezov
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
48
|
Cho KH, Ribeiro O, Du Y, Tikhonova E, Mortensen JS, Markham K, Hariharan P, Loland CJ, Guan L, Kobilka BK, Byrne B, Chae PS. Mesitylene-Cored Glucoside Amphiphiles (MGAs) for Membrane Protein Studies: Importance of Alkyl Chain Density in Detergent Efficacy. Chemistry 2016; 22:18833-18839. [PMID: 27743406 DOI: 10.1002/chem.201603338] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Indexed: 01/14/2023]
Abstract
Detergents serve as useful tools for membrane protein structural and functional studies. Their amphipathic nature allows detergents to associate with the hydrophobic regions of membrane proteins whilst maintaining the proteins in aqueous solution. However, widely used conventional detergents are limited in their ability to maintain the structural integrity of membrane proteins and thus there are major efforts underway to develop novel agents with improved properties. We prepared mesitylene-cored glucoside amphiphiles (MGAs) with three alkyl chains and compared these agents with previously developed xylene-linked maltoside agents (XMAs) with two alkyl chains and a conventional detergent (DDM). When these agents were evaluated for four membrane proteins including a G protein-coupled receptor (GPCR), some agents such as MGA-C13 and MGA-C14 resulted in markedly enhanced stability of membrane proteins compared to both DDM and the XMAs. This favourable behaviour is due likely to the increased hydrophobic density provided by the extra alkyl chain. Thus, this study not only describes new glucoside agents with potential for membrane protein research, but also introduces a new detergent design principle for future development.
Collapse
Affiliation(s)
- Kyung Ho Cho
- Department of Bionanotechnology, Hanyang University, Ansan, 15588, Korea
| | - Orquidea Ribeiro
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Yang Du
- Molecular and Cellular Physiology, Stanford, CA, 94305, USA
| | - Elena Tikhonova
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Jonas S Mortensen
- Department of Neuroscience and Pharmacology, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Kelsey Markham
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Parameswaran Hariharan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Claus J Loland
- Department of Neuroscience and Pharmacology, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | | | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Pil Seok Chae
- Department of Bionanotechnology, Hanyang University, Ansan, 15588, Korea
| |
Collapse
|
49
|
Cho KH, Hariharan P, Mortensen JS, Du Y, Nielsen AK, Byrne B, Kobilka BK, Loland CJ, Guan L, Chae PS. Isomeric Detergent Comparison for Membrane Protein Stability: Importance of Inter-Alkyl-Chain Distance and Alkyl Chain Length. Chembiochem 2016; 17:2334-2339. [PMID: 27981750 DOI: 10.1002/cbic.201600429] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Indexed: 01/23/2023]
Abstract
Membrane proteins encapsulated by detergent micelles are widely used for structural study. Because of their amphipathic property, detergents have the ability to maintain protein solubility and stability in an aqueous medium. However, conventional detergents have serious limitations in their scope and utility, particularly for eukaryotic membrane proteins and membrane protein complexes. Thus, a number of new agents have been devised; some have made significant contributions to membrane protein structural studies. However, few detergent design principles are available. In this study, we prepared meta and ortho isomers of the previously reported para-substituted xylene-linked maltoside amphiphiles (XMAs), along with alkyl chain-length variation. The isomeric XMAs were assessed with three membrane proteins, and the meta isomer with a C12 alkyl chain was most effective at maintaining solubility/stability of the membrane proteins. We propose that interplay between the hydrophile-lipophile balance (HLB) and alkyl chain length is of central importance for high detergent efficacy. In addition, differences in inter-alkyl-chain distance between the isomers influence the ability of the detergents to stabilise membrane proteins.
Collapse
Affiliation(s)
- Kyung Ho Cho
- Department of Bionanotechnology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, 15588, Korea
| | - Parameswaran Hariharan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, 3601 4thStreet MS 6551, Lubbock, TX, 79430, USA
| | - Jonas S Mortensen
- Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, 18.6 Panum Institute, 2200, Copenhagen, Denmark
| | - Yang Du
- Molecular and Cellular Physiology, Stanford University, 157 Beckman Center, 279 Campus Drive, Stanford, CA, 94305, USA
| | - Anne K Nielsen
- Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, 18.6 Panum Institute, 2200, Copenhagen, Denmark
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, Exhibition Road, South Kensington, London, SW7 2AZ, UK
| | - Brian K Kobilka
- Molecular and Cellular Physiology, Stanford University, 157 Beckman Center, 279 Campus Drive, Stanford, CA, 94305, USA
| | - Claus J Loland
- Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, 18.6 Panum Institute, 2200, Copenhagen, Denmark
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, 3601 4thStreet MS 6551, Lubbock, TX, 79430, USA
| | - Pil Seok Chae
- Department of Bionanotechnology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, 15588, Korea
| |
Collapse
|
50
|
Das M, Du Y, Mortensen JS, Ribeiro O, Hariharan P, Guan L, Loland CJ, Kobilka BK, Byrne B, Chae PS. Butane-1,2,3,4-tetraol-based amphiphilic stereoisomers for membrane protein study: importance of chirality in the linker region. Chem Sci 2016; 8:1169-1177. [PMID: 28451257 PMCID: PMC5369527 DOI: 10.1039/c6sc02981g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/27/2016] [Indexed: 12/14/2022] Open
Abstract
Chirality variation in amphiphile architecture resulted in a significant difference in detergent efficacy for membrane protein stabilisation.
Amphiphile selection is a crucial step in membrane protein structural and functional study. As conventional detergents have limited scope and utility, novel agents with enhanced efficacy need to be developed. Although a large number of novel agents have been reported, so far there has been no systematically designed comparative study of the protein stabilization efficacy of stereo-isomeric amphiphiles. Here we designed and prepared a novel class of stereo-isomeric amphiphiles, designated butane-1,2,3,4-tetraol-based maltosides (BTMs). These stereoisomers showed markedly different behaviour for most of the targeted membrane proteins depending on the chirality of the linker region. These findings indicate an important role for detergent stereochemistry in membrane protein stabilization. In addition, we generally observed enhanced detergent efficacy with increasing alkyl chain length, reinforcing the importance of the balance between hydrophobicity and hydrophilicity in detergent design. The stereo-isomeric difference in detergent efficacy observed provides an important design principle for the development of novel amphiphiles for membrane protein manipulation.
Collapse
Affiliation(s)
- Manabendra Das
- Department of Bionanotechnology , Hanyang University , Ansan , 15588 , Korea .
| | - Yang Du
- Molecular and Cellular Physiology , Stanford , CA 94305 , USA .
| | - Jonas S Mortensen
- Department of Neuroscience and Pharmacology , University of Copenhagen , DK-2200 Copenhagen , Denmark .
| | - Orquidea Ribeiro
- Department of Life Sciences , Imperial College London , London , SW7 2AZ , UK .
| | - Parameswaran Hariharan
- Department of Cell Physiology and Molecular Biophysics , Center for Membrane Protein Research , School of Medicine , Texas Tech University Health Sciences Center , Lubbock , TX 79430 , USA .
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics , Center for Membrane Protein Research , School of Medicine , Texas Tech University Health Sciences Center , Lubbock , TX 79430 , USA .
| | - Claus J Loland
- Department of Neuroscience and Pharmacology , University of Copenhagen , DK-2200 Copenhagen , Denmark .
| | - Brian K Kobilka
- Molecular and Cellular Physiology , Stanford , CA 94305 , USA .
| | - Bernadette Byrne
- Department of Life Sciences , Imperial College London , London , SW7 2AZ , UK .
| | - Pil Seok Chae
- Department of Bionanotechnology , Hanyang University , Ansan , 15588 , Korea .
| |
Collapse
|