1
|
Lu QT, Du YB, Xu MM, Xie PP, Cai Q. Catalytic Asymmetric Aza-Electrophilic Additions of 1,1-Disubstituted Styrenes. J Am Chem Soc 2024; 146:21535-21545. [PMID: 39056748 DOI: 10.1021/jacs.4c04852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Electrophilic addition of alkenes is a textbook reaction that plays a pivotal role in organic chemistry. In the past decades, catalytic asymmetric variants of this important type of reaction have witnessed great achievements by the development of novel catalytic systems. However, enantioselective aza-electrophilic additions of unactivated alkenes, which could provide a transformative strategy for the preparation of synthetically significant nitrogen-containing compounds, still remain a formidable challenge. Herein, we have developed unprecedented Au(I)/NHC-catalyzed asymmetric aza-electrophilic additions of unactivated 1,1-disubstituted styrenes by the utilization of readily available dialkyl azodicarboxylates as electrophilic nitrogen sources. Based on this approach, a series of transformations, including [2 + 2] cycloaddition, intermolecular 1,2-oxyamination, and several types of intramolecular hydrazination-induced cyclizations, have been realized. These transformations provide a previously unattainable platform for the divergent synthesis of hydrazine derivatives, which could also be converted to other nitrogen-containing chiral synthons. Experimental and computational studies support the idea that carbocation intermediates are involved in reaction pathways.
Collapse
Affiliation(s)
- Qi-Tao Lu
- Department of Chemistry, Research Center for Molecular Recognition and Synthesis, Fudan University, Shanghai 200433, China
| | - Yuan-Bo Du
- Department of Chemistry, Research Center for Molecular Recognition and Synthesis, Fudan University, Shanghai 200433, China
| | - Meng-Meng Xu
- Department of Chemistry, Research Center for Molecular Recognition and Synthesis, Fudan University, Shanghai 200433, China
| | - Pei-Pei Xie
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Quan Cai
- Department of Chemistry, Research Center for Molecular Recognition and Synthesis, Fudan University, Shanghai 200433, China
| |
Collapse
|
2
|
Bian KJ, Nemoto D, Chen XW, Kao SC, Hooson J, West JG. Photocatalytic, modular difunctionalization of alkenes enabled by ligand-to-metal charge transfer and radical ligand transfer. Chem Sci 2023; 15:124-133. [PMID: 38131080 PMCID: PMC10732012 DOI: 10.1039/d3sc05231a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/09/2023] [Indexed: 12/23/2023] Open
Abstract
Ligand-to-metal charge transfer (LMCT) is a mechanistic strategy that provides a powerful tool to access diverse open-shell species using earth abundant elements and has seen tremendous growth in recent years. However, among many reaction manifolds driven by LMCT reactivity, a general and catalytic protocol for modular difunctionalization of alkenes remains unknown. Leveraging the synergistic cooperation of iron-catalyzed ligand-to-metal charge transfer and radical ligand transfer (RLT), here we report a photocatalytic, modular difunctionalization of alkenes using inexpensive iron salts catalytically to function as both radical initiator and terminator. Additionally, strategic use of a fluorine atom transfer reagent allows for general fluorochlorination of alkenes, providing the first example of interhalogen compound formation using earth abundant element photocatalysis. Broad scope, mild conditions and versatility in converting orthogonal nucleophiles (TMSN3 and NaCl) directly into corresponding open-shell radical species are demonstrated in this study, providing a robust means towards accessing vicinal diazides and homo-/hetero-dihalides motifs catalytically. These functionalities are important precursors/intermediates in medicinal and material chemistry. Preliminary mechanistic studies support the radical nature of these transformations, disclosing the tandem LMCT/RLT as a powerful reaction manifold in catalytic olefin difunctionalization.
Collapse
Affiliation(s)
- Kang-Jie Bian
- Department of Chemistry, Rice University 6100 Main St MS 602 Houston TX 77005 USA
| | - David Nemoto
- Department of Chemistry, Rice University 6100 Main St MS 602 Houston TX 77005 USA
| | - Xiao-Wei Chen
- Department of Chemistry, Rice University 6100 Main St MS 602 Houston TX 77005 USA
| | - Shih-Chieh Kao
- Department of Chemistry, Rice University 6100 Main St MS 602 Houston TX 77005 USA
| | - James Hooson
- Department of Chemistry, Rice University 6100 Main St MS 602 Houston TX 77005 USA
| | - Julian G West
- Department of Chemistry, Rice University 6100 Main St MS 602 Houston TX 77005 USA
| |
Collapse
|
3
|
Zhang D, Pu M, Liu Z, Zhou Y, Yang Z, Liu X, Wu YD, Feng X. Enantioselective anti-Dihalogenation of Electron-Deficient Olefin: A Triplet Halo-Radical Pylon Intermediate. J Am Chem Soc 2023; 145:4808-4818. [PMID: 36795915 DOI: 10.1021/jacs.2c13810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
The textbook alkene halogenation reaction establishes straightforward access to vicinal dihaloalkanes. However, a robust catalytic method for dihalogenizing electron-deficient olefins in an enantioselective manner is still under development, and its mechanism remains controversial. Herein, we disclose efficient regio-, anti-diastereo-, and enantioselective dibromination, bromochlorination, and dichlorination reactions of enones catalyzed by a chiral N,N'-dioxide/Yb(OTf)3 complex. With the combination of electrophilic halogen and halide salts as halogenating agents, an array of homo- and heterodihalogenated derivatives is achieved in moderate to good enantioselectivities. Moreover, DFT calculations reveal that a novel triplet halo-radical pylon intermediate is probable in accounting for the exclusive regio- and anti-diastereoselectivity.
Collapse
Affiliation(s)
- Dong Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Maoping Pu
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Zhenzhong Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhendong Yang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yun-Dong Wu
- Shenzhen Bay Laboratory, Shenzhen 518055, China.,Laboratory of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
4
|
Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Review. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 121:1-546. [PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number-from fewer than 25 in 1968-to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
5
|
Hu W, Lin Z, Wang C. Synthesis of Multisubstituted Allylic Alcohols via a Nickel-Catalyzed Cross-Electrophile Ring-Opening Reaction. Org Lett 2022; 24:5751-5755. [PMID: 35901221 DOI: 10.1021/acs.orglett.2c02199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein we report a nickel-catalyzed cross-electrophile ring-opening reaction of vinyl epoxides wherein aryl iodides, alkyl iodides, and benzyl chlorides can all serve as the electrophilic coupling partners, providing a new approach to preparing multisubstituted allylic alcohols. This new method features broad substrate scope (76 examples), good step-economy, and high L/B- and E/Z selectivity as well as mild reaction conditions.
Collapse
Affiliation(s)
- Weitao Hu
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Zhiyang Lin
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Chuan Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China.,Center for Excellence in Molecular Synthesis of CAS, Hefei, Anhui 230026, P.R. China
| |
Collapse
|
6
|
Lubaev A, Rathnayake MD, Eze F, Bayeh-Romero L. Catalytic Chemo-, Regio-, Diastereo-, and Enantioselective Bromochlorination of Unsaturated Systems Enabled by Lewis Base-Controlled Chloride Release. J Am Chem Soc 2022; 144:13294-13301. [PMID: 35820071 PMCID: PMC9945878 DOI: 10.1021/jacs.2c04588] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A new strategy is described for the Lewis base-catalyzed bromochlorination of unsaturated systems that is mechanistically distinct from prior methodologies. The novelty of this method hinges on the utilization of thionyl chloride as a latent chloride source in combination with as little as 1 mol % of triphenylphosphine or triphenylphosphine oxide as Lewis basic activators. This metal-free, catalytic chemo-, regio-, and diastereoselective bromochlorination of alkenes and alkynes exhibits excellent site selectivity in polyunsaturated systems and provides access to a wide variety of vicinal bromochlorides with up to >20:1 regio- and diastereoselectivity. The precision installation of Br, Cl, and I in various combinations is also demonstrated by simply varying the commercial halogenating reagents employed. Notably, when a chiral Lewis base promoter is employed, an enantioselective bromochlorination of chalcones is possible with up to a 92:8 enantiomeric ratio when utilizing only 1-3 mol % of (DHQD)2PHAL.
Collapse
|
7
|
Pellissier H. Recent developments in enantioselective titanium-catalyzed transformations. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
8
|
Blair DJ, Chitti S, Trobe M, Kostyra DM, Haley HMS, Hansen RL, Ballmer SG, Woods TJ, Wang W, Mubayi V, Schmidt MJ, Pipal RW, Morehouse GF, Palazzolo Ray AME, Gray DL, Gill AL, Burke MD. Automated iterative Csp 3-C bond formation. Nature 2022; 604:92-97. [PMID: 35134814 PMCID: PMC10500635 DOI: 10.1038/s41586-022-04491-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/28/2022] [Indexed: 11/09/2022]
Abstract
Fully automated synthetic chemistry would substantially change the field by providing broad on-demand access to small molecules. However, the reactions that can be run autonomously are still limited. Automating the stereospecific assembly of Csp3-C bonds would expand access to many important types of functional organic molecules1. Previously, methyliminodiacetic acid (MIDA) boronates were used to orchestrate the formation of Csp2-Csp2 bonds and were effective building blocks for automating the synthesis of many small molecules2, but they are incompatible with stereospecific Csp3-Csp2 and Csp3-Csp3 bond-forming reactions3-10. Here we report that hyperconjugative and steric tuning provide a new class of tetramethyl N-methyliminodiacetic acid (TIDA) boronates that are stable to these conditions. Charge density analysis11-13 revealed that redistribution of electron density increases covalency of the N-B bond and thereby attenuates its hydrolysis. Complementary steric shielding of carbonyl π-faces decreases reactivity towards nucleophilic reagents. The unique features of the iminodiacetic acid cage2, which are essential for generalized automated synthesis, are retained by TIDA boronates. This enabled Csp3 boronate building blocks to be assembled using automated synthesis, including the preparation of natural products through automated stereospecific Csp3-Csp2 and Csp3-Csp3 bond formation. These findings will enable increasingly complex Csp3-rich small molecules to be accessed via automated assembly.
Collapse
Affiliation(s)
- Daniel J Blair
- Roger Adams Laboratory, School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Sriyankari Chitti
- Roger Adams Laboratory, School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Melanie Trobe
- Roger Adams Laboratory, School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - David M Kostyra
- Roger Adams Laboratory, School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hannah M S Haley
- Roger Adams Laboratory, School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Richard L Hansen
- Department of Chemistry, REVOLUTION Medicines, Inc., Redwood City, CA, USA
| | - Steve G Ballmer
- Department of Chemistry, REVOLUTION Medicines, Inc., Redwood City, CA, USA
| | - Toby J Woods
- George L. Clark X-Ray Facility and 3M Materials Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Wesley Wang
- Roger Adams Laboratory, School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Vikram Mubayi
- Roger Adams Laboratory, School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Michael J Schmidt
- Roger Adams Laboratory, School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Robert W Pipal
- Roger Adams Laboratory, School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Greg F Morehouse
- Roger Adams Laboratory, School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Andrea M E Palazzolo Ray
- Roger Adams Laboratory, School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Danielle L Gray
- George L. Clark X-Ray Facility and 3M Materials Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Adrian L Gill
- Department of Chemistry, REVOLUTION Medicines, Inc., Redwood City, CA, USA
| | - Martin D Burke
- Roger Adams Laboratory, School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Carle Illinois College of Medicine, Urbana, IL, USA.
- Arnold and Mabel Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
9
|
Yan J, Zhou Z, He Q, Chen G, Wei H, Xie W. The applications of catalytic asymmetric halocyclization in natural product synthesis. Org Chem Front 2022. [DOI: 10.1039/d1qo01395e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Catalytic asymmetric halocyclization of olefinic substrate has evolved rapidly and been well utilized as a practical strategy for constructing enantioenriched cyclic skeletons in natural product synthesis.
Collapse
Affiliation(s)
- Jiahang Yan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Zhiqiang Zhou
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Qiaoqiao He
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Guzhou Chen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Hongbo Wei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Weiqing Xie
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
- Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, Shaanxi 712100, China
| |
Collapse
|
10
|
Lessard O, Lainé D, Fecteau CÉ, Johnson PA, Giguère D. Fundamental curiosity of multivicinal inter-halide stereocenters. Org Chem Front 2022. [DOI: 10.1039/d2qo01433e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A stereoselective strategy allowed the striking impact of a single halogen on the physical properties of inter-halide alkane units to be unravelled.
Collapse
Affiliation(s)
- Olivier Lessard
- Département de chimie, Université Laval, 1045 Avenue de la Médecine, Quebec City, QC, G1V0A6 Canada
| | - Danny Lainé
- Département de chimie, Université Laval, 1045 Avenue de la Médecine, Quebec City, QC, G1V0A6 Canada
| | - Charles-Émile Fecteau
- Département de chimie, Université Laval, 1045 Avenue de la Médecine, Quebec City, QC, G1V0A6 Canada
| | - Paul A. Johnson
- Département de chimie, Université Laval, 1045 Avenue de la Médecine, Quebec City, QC, G1V0A6 Canada
| | - Denis Giguère
- Département de chimie, Université Laval, 1045 Avenue de la Médecine, Quebec City, QC, G1V0A6 Canada
| |
Collapse
|
11
|
Abstract
The first example for the electrochemical cis-dichlorination of alkenes is presented. The reaction can be performed with little experimental effort by using phenylselenyl chloride as catalyst and tetrabutylammoniumchloride as supporting electrolyte, which also acts as nucleophilic reagent for the SN 2-type replacement of selenium versus chloride. Cyclic voltammetric measurements and control experiments revealed a dual role of phenylselenyl chloride in the reaction. Based on these results a reaction mechanism was postulated, where the key step of the process is the activation of a phenylselenyl chloride-alkene adduct by electrochemically generated phenylselenyl trichloride. Like this, different aliphatic and aromatic cyclic and acyclic alkenes were converted to the dichlorinated products. Thereby, throughout high diastereoselectivities were achieved for the cis-chlorinated compounds of >95 : 5 or higher.
Collapse
Affiliation(s)
- Julia Strehl
- Institut für ChemieUniversität OldenburgCarl-von-Ossietzky-Straße 9–1126111OldenburgGermany
| | - Cornelius Fastie
- Institut für ChemieUniversität OldenburgCarl-von-Ossietzky-Straße 9–1126111OldenburgGermany
| | - Gerhard Hilt
- Institut für ChemieUniversität OldenburgCarl-von-Ossietzky-Straße 9–1126111OldenburgGermany
| |
Collapse
|
12
|
Song X, Meng S, Zhang H, Jiang Y, Chan ASC, Zou Y. Dibrominated addition and substitution of alkenes catalyzed by Mn 2(CO) 10. Chem Commun (Camb) 2021; 57:13385-13388. [PMID: 34823257 DOI: 10.1039/d1cc04534b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A practical method for the dibromination of alkenes without using molecular bromine is consistently appealing in organic synthesis. Herein, we report Mn-catalyzed dibrominated addition and substitution of alkenes only with N-bromosuccinimide, producing a variety of synthetically valuable dibrominated compounds in moderate to high yields.
Collapse
Affiliation(s)
- Xianheng Song
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Shanshui Meng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China. .,Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangzhou 510006, China
| | - Hong Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Yi Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Albert S C Chan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China. .,Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangzhou 510006, China
| | - Yong Zou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China. .,Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangzhou 510006, China
| |
Collapse
|
13
|
Kong J, Jiang ZJ, Xu J, Li Y, Cao H, Ding Y, Tang B, Chen J, Gao Z. Ortho-Deuteration of Aromatic Aldehydes via a Transient Directing Group-Enabled Pd-Catalyzed Hydrogen Isotope Exchange. J Org Chem 2021; 86:13350-13359. [PMID: 34516112 DOI: 10.1021/acs.joc.1c01411] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A practical and scalable ortho-selective deuteration of aromatic aldehydes was accomplished by Pd-catalyzed hydrogen isotope exchange with deuterium oxide as an inexpensive deuterium source. The use of tert-leucine as a transient directing group facilitates the exchange, affording a wide range of ortho-deuterated aromatic aldehydes with deuterium incorporation up to 97%. The control experiments suggest that the addition of silver trifluoroacetate resists the unexpected reduction of Pd(II), while the theoretical study indicates a rapid reversible concerted metalation-deprotonation process.
Collapse
Affiliation(s)
- Junhua Kong
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. China.,College of Chemical and Biological Engineering, Zhejiang University, Zhejiang 310027, P. R. China
| | - Zhi-Jiang Jiang
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. China
| | - Jiayuan Xu
- Department of Chemical and Environment Engineering, The University of Nottingham Ningbo China, Ningbo 315100, P. R. China
| | - Yan Li
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. China.,College of Chemical and Biological Engineering, Zhejiang University, Zhejiang 310027, P. R. China
| | - Hong Cao
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. China
| | - Yanan Ding
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. China
| | - Bencan Tang
- Department of Chemical and Environment Engineering, The University of Nottingham Ningbo China, Ningbo 315100, P. R. China
| | - Jia Chen
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. China
| | - Zhanghua Gao
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. China
| |
Collapse
|
14
|
Thadathil DA, Varghese A, Radhakrishnan KV. The Renaissance of Electro‐Organic Synthesis for the Difunctionalization of Alkenes and Alkynes: A Sustainable Approach. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100447] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ditto Abraham Thadathil
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road Bengaluru, Karnataka 560029 India
| | - Anitha Varghese
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road Bengaluru, Karnataka 560029 India
| | - Kokkuvayil Vasu Radhakrishnan
- Chemical Sciences and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695019 India
| |
Collapse
|
15
|
|
16
|
Kumar KV, Nixon PD, Johnson SJ, Ananthi N. C2 symmetric copper (II) complexes of l-valine and l-phenyl alanine based chiral diimines for catalytic asymmetric Henry reaction. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Bock J, Guria S, Wedek V, Hennecke U. Enantioselective Dihalogenation of Alkenes. Chemistry 2021; 27:4517-4530. [DOI: 10.1002/chem.202003176] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/01/2020] [Indexed: 01/17/2023]
Affiliation(s)
- Jonathan Bock
- Organic Chemistry Research Group (ORGC) Department of Chemistry and Department of Bioengineering Sciences Vrije Universiteit Brussel (VUB) Pleinlaan 2 1050 Brussels Belgium
| | - Sudip Guria
- Organic Chemistry Research Group (ORGC) Department of Chemistry and Department of Bioengineering Sciences Vrije Universiteit Brussel (VUB) Pleinlaan 2 1050 Brussels Belgium
| | - Volker Wedek
- Organic Chemistry Research Group (ORGC) Department of Chemistry and Department of Bioengineering Sciences Vrije Universiteit Brussel (VUB) Pleinlaan 2 1050 Brussels Belgium
| | - Ulrich Hennecke
- Organic Chemistry Research Group (ORGC) Department of Chemistry and Department of Bioengineering Sciences Vrije Universiteit Brussel (VUB) Pleinlaan 2 1050 Brussels Belgium
| |
Collapse
|
18
|
Ren LQ, He YS, Yang YT, Li ZF, Xue ZY, Li QH, Liu TL. Chlorocyclization/cycloreversion of allylic alcohols to vinyl chlorides. Org Chem Front 2021. [DOI: 10.1039/d1qo01218e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Unprecedented chlorination of allylic alcohols: a simple mix-and-go procedure for the cyclization/cycloreversion of secondary and tertiary allylic alcohols with chloronium ions under mild conditions and practical access to remote carbonyl vinyl chlorides.
Collapse
Affiliation(s)
- Li-Qing Ren
- School of Chemistry and Chemical Engineering, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing, 400715, China
| | - Yu-Shuai He
- School of Chemistry and Chemical Engineering, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing, 400715, China
| | - Yu-Ting Yang
- School of Chemistry and Chemical Engineering, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing, 400715, China
| | - Zhao-Feng Li
- School of Chemistry and Chemical Engineering, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing, 400715, China
| | - Zhi-Yong Xue
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Qing-Hua Li
- School of Chemistry and Chemical Engineering, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing, 400715, China
| | - Tang-Lin Liu
- School of Chemistry and Chemical Engineering, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing, 400715, China
| |
Collapse
|
19
|
Li J, Shi Y. Catalytic enantioselective bromohydroxylation of cinnamyl alcohols. RSC Adv 2021; 11:13040-13046. [PMID: 35423889 PMCID: PMC8697332 DOI: 10.1039/d1ra02297k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 11/21/2022] Open
Abstract
This work describes an effective enantioselective bromohydroxylation of cinnamyl alcohols with (DHQD)2PHAL as the catalyst and H2O as the nucleophile, providing a variety of corresponding optically active bromohydrins with up to 95% ee. Optically active bromohydrins are obtained with up to 95% ee via asymmetric bromohydroxylation of cinnamyl alcohols with H2O as nucleophile.![]()
Collapse
Affiliation(s)
- Jing Li
- Institute of Natural and Synthetic Organic Chemistry
- Changzhou University
- Changzhou 213164
- P. R. China
| | - Yian Shi
- Institute of Natural and Synthetic Organic Chemistry
- Changzhou University
- Changzhou 213164
- P. R. China
- Department of Chemistry
| |
Collapse
|
20
|
Steigerwald DC, Soltanzadeh B, Sarkar A, Morgenstern CC, Staples RJ, Borhan B. Ritter-enabled catalytic asymmetric chloroamidation of olefins. Chem Sci 2020; 12:1834-1842. [PMID: 34163947 PMCID: PMC8179065 DOI: 10.1039/d0sc05224h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Intermolecular asymmetric haloamination reactions are challenging due to the inherently high halenium affinity (HalA) of the nitrogen atom, which often leads to N-halogenated products as a kinetic trap. To circumvent this issue, acetonitrile, possessing a low HalA, was used as the nucleophile in the catalytic asymmetric Ritter-type chloroamidation of allyl-amides. This method is compatible with Z and E alkenes with both alkyl and aromatic substitution. Mild acidic workup reveals the 1,2-chloroamide products with enantiomeric excess greater than 95% for many examples. We also report the successful use of the sulfonamide chlorenium reagent dichloramine-T in this chlorenium-initiated catalytic asymmetric Ritter-type reaction. Facile modifications lead to chiral imidazoline, guanidine, and orthogonally protected 1,2,3 chiral tri-amines. Intermolecular haloamination reactions are challenging due to the high halenium affinity of the nitrogen atom. This is circumvented by using acetonitrile as an attenuated nucleophile, resulting in an enantioselective halo-Ritter reaction.![]()
Collapse
Affiliation(s)
| | - Bardia Soltanzadeh
- Michigan State University, Department of Chemistry East Lansing MI 48824 USA
| | - Aritra Sarkar
- Michigan State University, Department of Chemistry East Lansing MI 48824 USA
| | | | - Richard J Staples
- Michigan State University, Department of Chemistry East Lansing MI 48824 USA
| | - Babak Borhan
- Michigan State University, Department of Chemistry East Lansing MI 48824 USA
| |
Collapse
|
21
|
Moss III FR, Cabrera GE, McKenna GM, Salerno GJ, Shuken SR, Landry ML, Weiss TM, Burns NZ, Boxer SG. Halogenation-Dependent Effects of the Chlorosulfolipids of Ochromonas danica on Lipid Bilayers. ACS Chem Biol 2020; 15:2986-2995. [PMID: 33035052 DOI: 10.1021/acschembio.0c00624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The chlorosulfolipids are amphiphilic natural products with stereochemically complex patterns of chlorination and sulfation. Despite their role in toxic shellfish poisoning, potential pharmacological activities, and unknown biological roles, they remain understudied due to the difficulties in purifying them from natural sources. The structure of these molecules, with a charged sulfate group in the middle of the hydrophobic chain, appears incompatible with the conventional lipid bilayer structure. Questions about chlorosulfolipids remain unanswered partly due to the unavailability of structural analogues with which to conduct structure-function studies. We approach this problem by combining enantioselective total synthesis and membrane biophysics. Using a combination of Langmuir pressure-area isotherms of lipid monolayers, fluorescence imaging of vesicles, mass spectrometry imaging, natural product isolation, small-angle X-ray scattering, and cryogenic electron microscopy, we show that danicalipin A (1) likely inserts into lipid bilayers in the headgroup region and alters their structure and phase behavior. Specifically, danicalipin A (1) thins the bilayer and fluidizes it, allowing even saturated lipid to form fluid bilayers. Lipid monolayers show similar fluidizing upon insertion of danicalipin A (1). Furthermore, we show that the halogenation of the molecule is critical for its membrane activity, likely due to sterically controlled conformational changes. Synthetic unchlorinated and monochlorinated analogues do not thin and fluidize lipid bilayers to the same extent as the natural product. Overall, this study sheds light on how amphiphilic small molecules interact with lipid bilayers and the importance of stereochemistry and halogenation for this interaction.
Collapse
Affiliation(s)
- Frank R. Moss III
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Gabrielle E. Cabrera
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Grace M. McKenna
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Giulio J. Salerno
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Steven R. Shuken
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Matthew L. Landry
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Thomas M. Weiss
- Stanford Synchrotron Radiation Laboratory, Stanford Linear Accelerator Center, Stanford University, Menlo Park, California 94025, United States
| | - Noah Z. Burns
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Steven G. Boxer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
22
|
Lian P, Long W, Li J, Zheng Y, Wan X. Visible‐Light‐Induced Vicinal Dichlorination of Alkenes through LMCT Excitation of CuCl
2. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010801] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Pengcheng Lian
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 P. R. China
| | - Wenhao Long
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 P. R. China
| | - Jingjing Li
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 P. R. China
| | - Yonggao Zheng
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 P. R. China
| | - Xiaobing Wan
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 P. R. China
| |
Collapse
|
23
|
Lian P, Long W, Li J, Zheng Y, Wan X. Visible‐Light‐Induced Vicinal Dichlorination of Alkenes through LMCT Excitation of CuCl
2. Angew Chem Int Ed Engl 2020; 59:23603-23608. [DOI: 10.1002/anie.202010801] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Indexed: 01/31/2023]
Affiliation(s)
- Pengcheng Lian
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 P. R. China
| | - Wenhao Long
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 P. R. China
| | - Jingjing Li
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 P. R. China
| | - Yonggao Zheng
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 P. R. China
| | - Xiaobing Wan
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 P. R. China
| |
Collapse
|
24
|
Beleh OM, Miller E, Toste FD, Miller SJ. Catalytic Dynamic Kinetic Resolutions in Tandem to Construct Two-Axis Terphenyl Atropisomers. J Am Chem Soc 2020; 142:16461-16470. [PMID: 32857500 DOI: 10.1021/jacs.0c08057] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The defined structure of molecules bearing multiple stereogenic axes is of increasing relevance to materials science, pharmaceuticals, and catalysis. However, catalytic enantioselective approaches to control multiple stereogenic axes remain synthetically challenging. We report the catalytic synthesis of two-axis terphenyl atropisomers, with complementary strategies to both chlorinated and brominated variants, formed with high diastereo- and enantioselectivity. The chemistry proceeds through a sequence of two distinct dynamic kinetic resolutions: first, an atroposelective ring opening of Bringmann-type lactones produces a product with one established axis of chirality, and second, a stereoselective arene halogenation delivers the product with the second axis of chirality established. In order to achieve these results, a class of Brønsted basic guanidinylated peptides, which catalyze an efficient atroposelective chlorination, is reported for the first time. In addition, a complementary bromination is reported, which also establishes the second stereogenic axis. These bromo-terphenyls are accessible following the discovery that chiral anion phase transfer catalysis by C2-symmetric phosphoric acids allows catalyst control in the second stereochemistry-determining event. Accordingly, we established the fully catalyst-controlled stereodivergent synthesis of all possible chlorinated stereoisomers while also demonstrating diastereodivergence in the brominated variants, with significant levels of enantioselectivity in all cases.
Collapse
Affiliation(s)
- Omar M Beleh
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Edward Miller
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - F Dean Toste
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Scott J Miller
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
25
|
Chen R, Yang S, Zhang Y. Recent progress in the total synthesis of marine brominated sesquiterpene aplydactone. Org Biomol Chem 2020; 18:1036-1045. [PMID: 31961356 DOI: 10.1039/c9ob02642h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aplydactone is a brominated sesquiterpene isolated from the sea hare Aplysia dactylomela. Structurally, it features a complex cage-like skeleton containing a highly strained tricyclic-[4.2.0.03,8]-4-decanone system. Its unique structural features have fascinated many synthetic chemists. In this review, the synthetic efforts towards aplydactone in the last five years are summarized in two categories including nonbiomimetic synthesis and biomimetic synthesis based on the core synthetic strategy. These syntheses set a classical and instructive example for the syntheses of other marine natural products.
Collapse
Affiliation(s)
- Renzhi Chen
- Department of Chemistry and Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China.
| | - Sihan Yang
- Department of Chemistry and Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China.
| | - Yandong Zhang
- Department of Chemistry and Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China.
| |
Collapse
|
26
|
Liu C, Zhu C, Cai Y, Yang Z, Zeng H, Chen F, Jiang H. Fluorohalogenation of
gem
‐Difluoroalkenes: Synthesis and Applications of α‐Trifluoromethyl Halides. Chemistry 2020; 26:1953-1957. [DOI: 10.1002/chem.201905445] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Chi Liu
- Key Laboratory of Functional Molecular Engineering of, Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 P. R. China
| | - Chuanle Zhu
- Key Laboratory of Functional Molecular Engineering of, Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 P. R. China
| | - Yingying Cai
- Key Laboratory of Functional Molecular Engineering of, Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 P. R. China
| | - Zhiyi Yang
- Key Laboratory of Functional Molecular Engineering of, Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 P. R. China
| | - Hao Zeng
- Key Laboratory of Functional Molecular Engineering of, Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 P. R. China
| | - Fulin Chen
- Key Laboratory of Functional Molecular Engineering of, Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 P. R. China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of, Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 P. R. China
| |
Collapse
|
27
|
Karabiyikoglu S, Brethomé AV, Palacin T, Paton RS, Fletcher SP. Enantiomerically enriched tetrahydropyridine allyl chlorides. Chem Sci 2020. [DOI: 10.1039/d0sc00377h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Enantiomerically enriched allyl halides are rare due to their configurational lability. Stable piperidine-based allyl chloride enantiomers can be produced via kinetic resolution, and undergo highly enantiospecific catalyst-free substitutions.
Collapse
Affiliation(s)
- Sedef Karabiyikoglu
- Department of Chemistry
- Chemistry Research Laboratory
- University of Oxford
- Oxford
- UK
| | | | - Thomas Palacin
- Department of Chemistry
- Chemistry Research Laboratory
- University of Oxford
- Oxford
- UK
| | - Robert S. Paton
- Department of Chemistry
- Colorado State University Fort Collins
- USA
| | - Stephen P. Fletcher
- Department of Chemistry
- Chemistry Research Laboratory
- University of Oxford
- Oxford
- UK
| |
Collapse
|
28
|
Wang N, Saidhareddy P, Jiang X. Construction of sulfur-containing moieties in the total synthesis of natural products. Nat Prod Rep 2020; 37:246-275. [DOI: 10.1039/c8np00093j] [Citation(s) in RCA: 221] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review surveys the total syntheses of sulfur-containing natural products where sulfur atoms are introduced with different sulfurization agents to construct related sulfur-containing moieties.
Collapse
Affiliation(s)
- Nengzhong Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- P. R. China
| | - Puli Saidhareddy
- Shanghai Key Laboratory of Green Chemistry and Chemical Process
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- P. R. China
| | - Xuefeng Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- P. R. China
| |
Collapse
|
29
|
Brummel BR, Lee KG, McMillen CD, Kolis JW, Whitehead DC. One-Pot Absolute Stereochemical Identification of Alcohols via Guanidinium Sulfate Crystallization. Org Lett 2019; 21:9622-9627. [DOI: 10.1021/acs.orglett.9b03792] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Beau R. Brummel
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Kinsey G. Lee
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Colin D. McMillen
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Joseph W. Kolis
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Daniel C. Whitehead
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
30
|
Umezawa T, Shibata M, Tamagawa R, Matsuda F. Neighboring Effect of Intramolecular Chlorine Atoms on Epoxide Opening Reaction by Chloride Anions. Org Lett 2019; 21:7731-7735. [PMID: 31535869 DOI: 10.1021/acs.orglett.9b02624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We investigated the diastereoselectivity of ring openings for chloro vinyl epoxides with various chlorination reagents. In the chlorinolysis reactions using vinyl epoxides having an allyl alcohol, inversion:retention ratios varied depending on the chloride sources. In limited cases, the increase in retention ratio was consistent with the intervention of chloronium ions. In contrast, all vinyl epoxides bearing an α,β-unsaturated ester gave only the inversion products. These results suggest the electron-withdrawing property suppressed the chloronium ions.
Collapse
Affiliation(s)
- Taiki Umezawa
- Division of Environmental Materials Science, Graduate School of Environmental Science , Hokkaido University , Sapporo 060-0810 , Japan
| | - Masayuki Shibata
- Division of Environmental Materials Science, Graduate School of Environmental Science , Hokkaido University , Sapporo 060-0810 , Japan
| | - Ryutaro Tamagawa
- Division of Environmental Materials Science, Graduate School of Environmental Science , Hokkaido University , Sapporo 060-0810 , Japan
| | - Fuyuhiko Matsuda
- Division of Environmental Materials Science, Graduate School of Environmental Science , Hokkaido University , Sapporo 060-0810 , Japan
| |
Collapse
|
31
|
Kramer P, Grimmer J, Bolte M, Manolikakes G. An Enamide-Based Domino Reaction for a Highly Stereoselective Synthesis of Tetrahydropyrans. Angew Chem Int Ed Engl 2019; 58:13056-13059. [PMID: 31298800 PMCID: PMC6772187 DOI: 10.1002/anie.201907565] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Indexed: 12/23/2022]
Abstract
A novel method for the highly stereoselective synthesis of tetrahydropyrans is reported. This domino reaction is based on a twofold addition of enamides to aldehydes followed by a subsequent cyclization and furnishes fully substituted tetrahydropyrans in high yields. Three new σ‐bonds and five continuous stereogenic centers are formed in this one‐pot process with a remarkable degree of diastereoselectivity. In most cases, the formation of only one out of 16 possible diastereomers is observed. Two different stereoisomers can be accessed in a controlled fashion starting either from an E‐ or a Z‐configured enamide.
Collapse
Affiliation(s)
- Philipp Kramer
- Department of Organic Chemistry, Technical University Kaiserslautern, Erwin-Schrödinger-Strasse Geb. 54, 67663, Kaiserslautern, Germany
| | - Jennifer Grimmer
- Department of Organic Chemistry, Technical University Kaiserslautern, Erwin-Schrödinger-Strasse Geb. 54, 67663, Kaiserslautern, Germany
| | - Michael Bolte
- Department of Inorganic and Analytical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue-Strasse 7, 60438, Frankfurt am Main, Germany
| | - Georg Manolikakes
- Department of Organic Chemistry, Technical University Kaiserslautern, Erwin-Schrödinger-Strasse Geb. 54, 67663, Kaiserslautern, Germany
| |
Collapse
|
32
|
Kramer P, Grimmer J, Bolte M, Manolikakes G. An Enamide‐Based Domino Reaction for a Highly Stereoselective Synthesis of Tetrahydropyrans. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Philipp Kramer
- Department of Organic Chemistry Technical University Kaiserslautern Erwin-Schrödinger-Strasse Geb. 54 67663 Kaiserslautern Germany
| | - Jennifer Grimmer
- Department of Organic Chemistry Technical University Kaiserslautern Erwin-Schrödinger-Strasse Geb. 54 67663 Kaiserslautern Germany
| | - Michael Bolte
- Department of Inorganic and Analytical Chemistry Goethe University Frankfurt am Main Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Georg Manolikakes
- Department of Organic Chemistry Technical University Kaiserslautern Erwin-Schrödinger-Strasse Geb. 54 67663 Kaiserslautern Germany
| |
Collapse
|
33
|
Sarie JC, Neufeld J, Daniliuc CG, Gilmour R. Catalytic Vicinal Dichlorination of Unactivated Alkenes. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02313] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jérôme C. Sarie
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Jessica Neufeld
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Constantin G. Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Ryan Gilmour
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
34
|
Gilbert BB, Eey STC, Ryabchuk P, Garry O, Denmark SE. Organoselenium-catalyzed enantioselective syn-dichlorination of unbiased alkenes. Tetrahedron 2019; 75:4086-4098. [PMID: 31768077 PMCID: PMC6876749 DOI: 10.1016/j.tet.2019.05.054] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The enantioselective dichlorination of alkenes is a continuing challenge in organic synthesis owing to the limitations of selective and independent antarafacial delivery of both electrophilic chlorenium and nucleophilic chloride to an olefin. Development of a general method for the enantioselective dichlorination of isolated alkenes would allow access to a wide variety of polyhalogenated natural products. Accordingly, the enantioselective suprafacial dichlorination of alkenes catalyzed by electrophilic organoselenium reagents has been developed to address these limitations. The evaluation of twenty-three diselenides as precatalysts for enantioselective dichlorination is described, with a maximum e.r. of 76:24 Additionally, mechanistic studies suggest an unexpected Dynamic Kinetic Asymmetric Transformation (DyKAT) process may be operative.
Collapse
Affiliation(s)
- Bradley B. Gilbert
- Department of Chemistry, University of Illinois, 600 S. Mathews Ave. Urbana, IL 61801, USA
| | - Stanley T.-C. Eey
- Department of Chemistry, University of Illinois, 600 S. Mathews Ave. Urbana, IL 61801, USA
| | - Pavel Ryabchuk
- Department of Chemistry, University of Illinois, 600 S. Mathews Ave. Urbana, IL 61801, USA
| | - Olivia Garry
- Department of Chemistry, University of Illinois, 600 S. Mathews Ave. Urbana, IL 61801, USA
| | - Scott E. Denmark
- Department of Chemistry, University of Illinois, 600 S. Mathews Ave. Urbana, IL 61801, USA
| |
Collapse
|
35
|
Sondermann P, Carreira EM. Stereochemical Revision, Total Synthesis, and Solution State Conformation of the Complex Chlorosulfolipid Mytilipin B. J Am Chem Soc 2019; 141:10510-10519. [PMID: 31244189 DOI: 10.1021/jacs.9b05013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Chlorosulfolipids constitute a structurally intriguing and synthetically challenging class of marine natural products that are isolated from mussels and freshwater algae. The most complex structure from this family of compounds is currently represented by Mytilipin B, isolated in 2002 from culinary mussel Mytilus galloprovincialis, whose initially proposed structure was shown to be incorrect. In this study, we present the synthesis of four diastereomers which allowed the reassignment of eight stereocenters and the stereochemical revision of Mytilipin B, along with the determination of the dominant solution-state conformation.
Collapse
Affiliation(s)
- Philipp Sondermann
- Eidgenössische Technische Hochschule Zürich , Vladimir-Prelog-Weg 3 , 8093 Zürich , Switzerland
| | - Erick M Carreira
- Eidgenössische Technische Hochschule Zürich , Vladimir-Prelog-Weg 3 , 8093 Zürich , Switzerland
| |
Collapse
|
36
|
Wedek V, Van Lommel R, Daniliuc CG, De Proft F, Hennecke U. Organokatalytische, enantioselektive Dichlorierung unfunktionalisierter Alkene. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901777] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Volker Wedek
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstr. 40 48149 Münster Deutschland
| | - Ruben Van Lommel
- General Chemistry Research GroupDepartment of ChemistryVrije Universiteit Brussel (VUB) Pleinlaan 2 1050 Brussels Belgien
| | - Constantin G. Daniliuc
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstr. 40 48149 Münster Deutschland
| | - Frank De Proft
- General Chemistry Research GroupDepartment of ChemistryVrije Universiteit Brussel (VUB) Pleinlaan 2 1050 Brussels Belgien
| | - Ulrich Hennecke
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstr. 40 48149 Münster Deutschland
- Organic Chemistry Research GroupDepartment of Chemistry and Department of Bioengineering SciencesVrije Universiteit Brussel (VUB) Pleinlaan 2 1050 Brussels Belgien
| |
Collapse
|
37
|
Wedek V, Van Lommel R, Daniliuc CG, De Proft F, Hennecke U. Organocatalytic, Enantioselective Dichlorination of Unfunctionalized Alkenes. Angew Chem Int Ed Engl 2019; 58:9239-9243. [PMID: 31012510 DOI: 10.1002/anie.201901777] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/27/2019] [Indexed: 12/14/2022]
Abstract
The use of a new class of unsymmetrical cinchona-alkaloid-based, phthalazine-bridged organocatalysts enabled the highly enantioselective dichlorination of unfunctionalized alkenes. In combination with the electrophilic chlorinating agent 1,3-dichloro-5,5-dimethylhydantoin (DCDMH) and triethylsilyl chloride (TES-Cl) as the source of nucleophilic chloride, 1-aryl-2-alkyl alkenes were dichlorinated with enantioselectivities of up to 94:6 er. Initial mechanistic investigations suggest that no free chlorine is formed, and by replacement of the chloride by fluoride, enantioselective chlorofluorinations of alkenes are possible.
Collapse
Affiliation(s)
- Volker Wedek
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstr. 40, 48149, Münster, Germany
| | - Ruben Van Lommel
- General Chemistry Research Group, Department of Chemistry, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050, Brussels, Belgium
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstr. 40, 48149, Münster, Germany
| | - Frank De Proft
- General Chemistry Research Group, Department of Chemistry, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050, Brussels, Belgium
| | - Ulrich Hennecke
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstr. 40, 48149, Münster, Germany.,Organic Chemistry Research Group, Department of Chemistry and Department of Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050, Brussels, Belgium
| |
Collapse
|
38
|
Abstract
A concise and selective synthesis of the dichlorinated meroterpenoid azamerone is described. The paucity of tactics for the synthesis of natural-product-relevant chiral organochlorides motivated the development of unique strategies for accessing these motifs in enantioenriched forms. The route features a novel enantioselective chloroetherification reaction, a Pd-catalyzed cross-coupling between a quinone diazide and a boronic hemiester, and a late-stage tetrazine [4+2]-cycloaddition/oxidation cascade.
Collapse
Affiliation(s)
- Matthew L Landry
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Grace M McKenna
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Noah Z Burns
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| |
Collapse
|
39
|
Cao Q, Luo J, Zhao X. Chiral Sulfide Catalysis for Desymmetrizing Enantioselective Chlorination. Angew Chem Int Ed Engl 2019; 58:1315-1319. [PMID: 30456895 DOI: 10.1002/anie.201811621] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/15/2018] [Indexed: 02/01/2023]
Abstract
An unprecendented chiral sulfide catalyzed desymmetrizing enantioselective chlorination is disclosed. Various aryl-tethered diolefins and diaryl-tethered olefins afforded teralins and tricyclic hexahydrophenalene derivatives, respectively, bearing multiple stereogenic centers in high yields with excellent enantio- and diastereoselectivities. In contrast, the tertiary amine catalyst (DHQD)2 PHAL led to a diastereomeric product. The products could be transformed into a variety of compounds, such as spiro-N-heterocycles.
Collapse
Affiliation(s)
- Qingxiang Cao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jie Luo
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xiaodan Zhao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
40
|
Cao Q, Luo J, Zhao X. Chiral Sulfide Catalysis for Desymmetrizing Enantioselective Chlorination. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201811621] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Qingxiang Cao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry; School of Chemistry; Sun Yat-Sen University; Guangzhou 510275 China
| | - Jie Luo
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry; School of Chemistry; Sun Yat-Sen University; Guangzhou 510275 China
| | - Xiaodan Zhao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry; School of Chemistry; Sun Yat-Sen University; Guangzhou 510275 China
| |
Collapse
|
41
|
Chiu HC, See XY, Tonks IA. Dative Directing Group Effects in Ti-Catalyzed [2+2+1] Pyrrole Synthesis: Chemo- and Regioselective Alkyne Heterocoupling. ACS Catal 2019; 9:216-223. [PMID: 31768294 DOI: 10.1021/acscatal.8b04669] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Transient dative substrate-Ti interactions have been found to play a key role in controlling the regioselectivity of alkyne insertion and [2+2] cycloaddition in Ti-catalyzed [2+2+1] pyrrole synthesis and Ti-catalyzed alkyne hydroamination. TMS-protected alkynes with pendent Lewis basic groups can invert the regioselectivity of TMS-protected alkyne insertion, leading to the selective formation of highly substituted 3-TMS pyrroles. The competency of various potential directing groups was investigated, and it was found that the directing-group effect can be tuned by modifying the catalyst Lewis acidity, the directing-group basicity, or the directing-group tether length. Dative directing-group effects are unexplored with Ti catalysts, and this study demonstrates the potential power of dative substrate-Ti interactions in tuning selectivity.
Collapse
Affiliation(s)
- Hsin-Chun Chiu
- Department of Chemistry, University of Minnesota−Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Xin Yi See
- Department of Chemistry, University of Minnesota−Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Ian A. Tonks
- Department of Chemistry, University of Minnesota−Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
42
|
Seidl FJ, Min C, Lopez JA, Burns NZ. Catalytic Regio- and Enantioselective Haloazidation of Allylic Alcohols. J Am Chem Soc 2018; 140:15646-15650. [PMID: 30403852 DOI: 10.1021/jacs.8b10799] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Herein we report a highly regio- and stereoselective haloazidation of allylic alcohols. This enantioselective reaction uses readily available materials and can be performed on a variety of alkyl-substituted alkenes and can incorporate either bromine or chlorine as the electrophilic halogen component. Both halide and azido groups of the resulting products can be transformed into valuable building blocks with complete stereospecificity. The first example of an enantioselective 1,4-haloazidation of a conjugated diene is reported as well as its application to a concise synthesis of an aza-sugar.
Collapse
Affiliation(s)
- Frederick J Seidl
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Chang Min
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Jovan A Lopez
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Noah Z Burns
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| |
Collapse
|
43
|
Zhong F, Yue WJ, Zhang HJ, Zhang CY, Yin L. Catalytic Asymmetric Construction of Halogenated Stereogenic Carbon Centers by Direct Vinylogous Mannich-Type Reaction. J Am Chem Soc 2018; 140:15170-15175. [DOI: 10.1021/jacs.8b09484] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Feng Zhong
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Wen-Jun Yue
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Hai-Jun Zhang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Cheng-Yuan Zhang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Liang Yin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
44
|
Cai Y, Liu X, Zhou P, Feng X. Asymmetric Catalytic Halofunctionalization of α,β-Unsaturated Carbonyl Compounds. J Org Chem 2018; 84:1-13. [PMID: 30339377 DOI: 10.1021/acs.joc.8b01951] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Halofunctionalization methods enable the vicinal difunctionalization of alkenes with heteroatom nucleophiles and halogen moieties. As a fundamental transformation in organic synthesis, the catalytic asymmetric variants have only recently been reported. In sharp contrast to the asymmetric halocyclization of simple alkenes which involves a nucleophile-assisted alkene activation process, the asymmetric halofunctionalization of enones developed by our laboratory features an electrophile-assisted 1,4-addition pathway. Our work in this area has resulted in the development of several different types of regio-, diastereo-, and enantioselective processes, including inter- and intramolecular haloaminations, haloetherifications, and haloazidations. The scope, updated mechanism, limitations, and future perspective of these reactions are discussed.
Collapse
Affiliation(s)
- Yunfei Cai
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , China.,School of Chemistry and Chemical Engineering , Chongqing University , 174 Shazheng Street , Chongqing 400030 , China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Pengfei Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , China
| |
Collapse
|
45
|
Enantioselective intermolecular iodoacetalization of enol ethers catalyzed by chiral Co(III)-complex-templated Brønsted acids. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.08.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
46
|
Xu J, Zhang Y, Qin T, Zhao X. Catalytic Regio- and Enantioselective Oxytrifluoromethylthiolation of Aliphatic Internal Alkenes by Neighboring Group Assistance. Org Lett 2018; 20:6384-6388. [DOI: 10.1021/acs.orglett.8b02672] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jia Xu
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Yuanyuan Zhang
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Tian Qin
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Xiaodan Zhao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
47
|
Cao YM, Lentz D, Christmann M. Synthesis of Enantioenriched Bromohydrins via Divergent Reactions of Racemic Intermediates from Anchimeric Oxygen Borrowing. J Am Chem Soc 2018; 140:10677-10681. [PMID: 30099869 DOI: 10.1021/jacs.8b06432] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We report a chiral phosphoric acid catalyzed bromocyclization/regiodivergent reaction of racemic intermediates sequence, which is enabled by anchimeric oxygen borrowing. Different types of alkenes are applicable, and both enantiomers of the bromohydrin products were obtained in generally excellent yields and enantioselectivities. In addition, an example of enantioconvergent synthesis from the two isomeric products is presented.
Collapse
Affiliation(s)
- Yi-Ming Cao
- Institute of Chemistry and Biochemistry , Freie Universität Berlin , Takustraße 3 , 14195 Berlin , Germany
| | - Dieter Lentz
- Institute of Chemistry and Biochemistry , Freie Universität Berlin , Takustraße 3 , 14195 Berlin , Germany
| | - Mathias Christmann
- Institute of Chemistry and Biochemistry , Freie Universität Berlin , Takustraße 3 , 14195 Berlin , Germany
| |
Collapse
|
48
|
Lin J, Song R, Hu M, Li J. Recent Advances in the Intermolecular Oxidative Difunctionalization of Alkenes. CHEM REC 2018; 19:440-451. [DOI: 10.1002/tcr.201800053] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 07/05/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Jie Lin
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources RecycleNanchang Hangkong University Nanchang 330063 China
| | - Ren‐Jie Song
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources RecycleNanchang Hangkong University Nanchang 330063 China
| | - Ming Hu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources RecycleNanchang Hangkong University Nanchang 330063 China
| | - Jin‐Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources RecycleNanchang Hangkong University Nanchang 330063 China
| |
Collapse
|
49
|
Zhang S, Li Y, Xu Y, Wang Z. Recent progress in copper catalyzed asymmetric Henry reaction. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
50
|
Abstract
To date, more than 5000 biogenic halogenated molecules have been characterized. This number continues to increase as chemists explore chloride- and bromide-rich marine environments in search of novel bioactive natural products. Naturally occurring organohalogens span nearly all biosynthetic structural classes, exhibit a range of unique biological activities, and have been the subject of numerous investigations. Despite the abundance of and interest in halogenated molecules, enantioselective methods capable of forging carbon-halogen bonds in synthetically relevant contexts remain scarce. Accordingly, syntheses of organohalogens often rely on multistep functional group interconversions to establish carbon-halogen stereocenters. Our group has developed an enantioselective dihalogenation reaction and utilized it in the only reported examples of catalytic enantioselective halogenation in natural product synthesis. In this Account, we describe our laboratory's development of a method for catalytic, enantioselective dihalogenation and the application of this method to the synthesis of both mono- and polyhalogenated natural products. In the first part, we describe the initial discovery of a TADDOL-mediated dibromination of cinnamyl alcohols. Extension of this reaction to a second-generation system capable of selective bromochlorination, dichlorination, and dibromination is then detailed. This system is capable of controlling the enantioselectivity of dihalide formation, chemoselectivity for polyolefinic substrates, and regioselectivity in the case of bromochlorination. The ability of this method to exert control over regioselectivity of halide delivery permits selective halogenation of electronically nonbiased olefins required for total synthesis. In the second part, we demonstrate how the described dihalogenation has provided efficient access to a host of structurally diverse natural products. The most direct application of this methodology is in the synthesis of naturally occurring vicinal dihalides. Chiral vicinal bromochlorides represent a class of >175 natural products; syntheses of five members of this class, including its flagship member, (+)-halomon, have been accomplished through use of the catalytic, enantioselective bromochlorination. Likewise, enantioselective dichlorination has provided selective access to two members of the chlorosulfolipids, a class of linear, acyclic polychlorides. Synthesis of chiral monohalides has been achieved through solvolysis of enantioenriched bromochlorides; this approach has resulted in the synthesis of five bromocyclohexane-containing natural products through an enantiospecific bromopolyene cyclization. In reviewing these syntheses, a framework for the synthesis of chiral organohalogens mediated by catalytic, enantioselective dihalogenation has emerged. The development of a selective dihalogenation method has been highly enabling in the synthesis of halogenated natural products. In this Account, we detail all examples of catalytic, enantioselective halogenation in total synthesis and encourage the further development of synthetically useful halogenation methodologies.
Collapse
Affiliation(s)
- Matthew L. Landry
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Noah Z. Burns
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|