1
|
Nakashima Y, Kusano S, Inishi T, Nitta Y, Nishikata T. Continuous activation of phenoxide and CF 3I for multiple trifluoromethylations. Chem Commun (Camb) 2025; 61:1223-1226. [PMID: 39704182 DOI: 10.1039/d4cc06221c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
The introduction of multiple trifluoromethyl (CF3) groups into aromatic compounds remains a significant challenge in synthetic chemistry. Here, we report an unprecedented visible light-promoted multiple trifluoromethylation of phenols using commercially available CF3I. The key to success lies in our discovery of a "continuous activation strategy" that enables sequential trifluoromethylations through single-electron transfer from photoexcited phenoxide to CF3I until all ortho or para positions are occupied. This practical method provides access to previously inaccessible multi-CF3-substituted phenols under mild conditions, opening revolutionary possibilities for the design of fluorine-containing functional materials.
Collapse
Affiliation(s)
- Yusei Nakashima
- Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611, Japan.
| | - Shinjiro Kusano
- Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611, Japan.
| | - Tsukasa Inishi
- Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611, Japan.
| | - Yasuyuki Nitta
- Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611, Japan.
| | - Takashi Nishikata
- Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611, Japan.
| |
Collapse
|
2
|
Li Y, Zhou Y, Zhou D, Jiang Y, Butt M, Yang H, Que Y, Li Z, Chen G. Regioselective Homolytic C 2-H Borylation of Unprotected Adenosine and Adenine Derivatives via Minisci Reaction. J Am Chem Soc 2024; 146:21428-21441. [PMID: 39051926 DOI: 10.1021/jacs.4c03865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
A Minisci-type borylation of unprotected adenosine, adenine nucleotide, and adenosine analogues was successfully achieved through photocatalysis or thermal activation. Despite the challenges posed by the presence of two potential reactive sites (C2 and C8) in the purine motif, the unique nucleophilic amine-ligated boryl radicals effortlessly achieved excellent C2 site selectivity and simultaneously avoided the formation of multifunctionalized products. This protocol proved effective for the late-stage borylation of some important biomolecules as well as a few antiviral and antitumor drug molecules, such as AMP, cAMP, Vidarabine, Cordycepin, Tenofovir, Adefovir, GS-441524, etc. Theoretical calculations shed light on the site selectivity, revealing that the free energy barriers for the C2-Minisci addition are further lowered through the chelation of additive Mg2+ to N3 and furyl oxygen. This phenomenon has been confirmed by an IGMH analysis. Preliminary antitumor evaluation, derivation of the C2-borylated adenosine to other analogues with high-value functionalities, along with the CuAAC click reactions, suggest the potential application of this methodology in drug molecular optimization studies and chemical biology.
Collapse
Affiliation(s)
- Yangyan Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yutong Zhou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Key Laboratory of Green and High-value Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, Qinghai, P. R. China
| | - Dazhi Zhou
- Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
| | - Yujie Jiang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Madiha Butt
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Hui Yang
- Key Laboratory of Biocatalysis and Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Department of Pharmacy, Zunyi Medical University, Zunyi 563000, P. R. China
| | - Yingchuan Que
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhiming Li
- Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
| | - Gang Chen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Key Laboratory of Green and High-value Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, Qinghai, P. R. China
| |
Collapse
|
3
|
Xiong W, Lai G, Liu WH. A Type of Stable Amides Behaves as Acyl Transfer Reagents upon Visible-Light Irradiation through Self-Aromatization. Chemistry 2024; 30:e202401619. [PMID: 38773843 DOI: 10.1002/chem.202401619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 05/24/2024]
Abstract
Organic molecules with light-modifiable reactivity are important in many fields because they can serve as the "switch" for light to trigger chemical processes. Herein, we disclose a new type of stable non-twisted amides, the reactivity of which can be turned on by light as acyl transfer reagents. Upon photo-activation, these amides react with various nucleophiles including amines, phenols, hydroxide, thiols, boronic acids, and alkynes either under metal-free or metal-catalysis conditions. This reactivity hinges on the design and synthesis of a photo-activatable reagent (7-nitro-5,6-dihydrophenanthridine), which undergoes self-aromatization enabled by an internal oxidant under light. This masked acyl donor group is anticipated to be useful in scenarios where light is preferred to trigger a chemical process.
Collapse
Affiliation(s)
- Wenzhang Xiong
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Guoyin Lai
- Guangzhou Flower Flavours & Fragrances Co., Ltd, Guangzhou, 510442, China
| | - Wenbo H Liu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
4
|
Singh S, Singh RP. Photoinduced metal-free trifluoro/perfluoroalkylation of heteroarenes. Org Biomol Chem 2024; 22:4072-4076. [PMID: 38717247 DOI: 10.1039/d4ob00511b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
A practical and straightforward protocol to access trifluoromethylated/perfluoroalkylated heteroarenes via radical-type nucleophilic substitution rather than typical radical-type electrophilic substitution is described here. The substrate scope was observed to be broad and diverse-covering arenes, heteroarenes (containing N, O, S), bioactive cores, and allylic cores. Mechanistic studies confirmed a radical-mediated reaction pathway.
Collapse
Affiliation(s)
- Shashank Singh
- Department of Chemistry, Indian Institute of Technology, Delhi Hauz Khas, New Delhi, 110016, India.
| | - Ravi P Singh
- Department of Chemistry, Indian Institute of Technology, Delhi Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
5
|
Li S, Wei W, Chi K, Ferguson CTJ, Zhao Y, Zhang KAI. Promoting Photocatalytic Direct C-H Difluoromethylation of Heterocycles using Synergistic Dual-Active-Centered Covalent Organic Frameworks. J Am Chem Soc 2024; 146:12386-12394. [PMID: 38500309 PMCID: PMC11082899 DOI: 10.1021/jacs.3c12880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/20/2024]
Abstract
Difluoromethylation reactions are increasingly important for the creation of fluorine-containing heterocycles, which are core groups in a diverse range of biologically and pharmacologically active ingredients. Ideally, this typically challenging reaction could be performed photocatalytically under mild conditions. To achieve this separation of redox processes would be required for the efficient generation of difluoromethyl radicals and the reduction of oxygen. A covalent organic framework photocatalytic material was, therefore, designed with dual reactive centers. Here, anthracene was used as a reduction site and benzothiadiazole was used as an oxidation site, distributed in a tristyryl triazine framework. Efficient charge separation was ensured by the superior electron-donating and -accepting abilities of the dual centers, creating long-lived photogenerated electron-hole pairs. Photocatalytic difluoromethylation of 16 compounds with high yields and remarkable functional group tolerance was demonstrated; compounds included bioactive molecules such as xanthine and uracil. The structure-function relationship of the dual-active-center photocatalyst was investigated through electron spin resonance, femtosecond transient absorption spectroscopy, and density functional theory calculations.
Collapse
Affiliation(s)
- Sizhe Li
- Department
of Materials Science, Fudan University, 200433 Shanghai, P. R. China
| | - Wenxin Wei
- Department
of Materials Science, Fudan University, 200433 Shanghai, P. R. China
| | - Kai Chi
- Department
of Materials Science, Fudan University, 200433 Shanghai, P. R. China
| | - Calum T. J. Ferguson
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
- School
of Chemistry, University of Birmingham, University Road W, Birmingham B15 2TT, United Kingdom
| | - Yan Zhao
- Department
of Materials Science, Fudan University, 200433 Shanghai, P. R. China
| | - Kai A. I. Zhang
- Department
of Materials Science, Fudan University, 200433 Shanghai, P. R. China
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
| |
Collapse
|
6
|
Fernandes AJ, Giri R, Houk KN, Katayev D. Review and Theoretical Analysis of Fluorinated Radicals in Direct C Ar-H Functionalization of (Hetero)arenes. Angew Chem Int Ed Engl 2024; 63:e202318377. [PMID: 38282182 DOI: 10.1002/anie.202318377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 01/30/2024]
Abstract
We highlight key contributions in the field of direct radical CAr- H (hetero)aromatic functionalization involving fluorinated radicals. A compilation of Functional Group Transfer Reagents and their diverse activation mechanisms leading to the release of radicals are discussed. The substrate scope for each radical is analyzed and classified into three categories according to the electronic properties of the substrates. Density functional theory computational analysis provides insights into the chemical reactivity of several fluorinated radicals through their electrophilicity and nucleophilicity parameters. Theoretical analysis of their reduction potentials also highlights the remarkable correlation between electrophilicity and oxidizing ability. It is also established that highly fluorinated radicals (e.g. ⋅OCF3) are capable of engaging in single-electron transfer (SET) processes rather than radical addition, which is in good agreement with experimental literature data. A reactivity scale, based on activation barrier of addition of these radicals to benzene is also elaborated using the high accuracy DLPNO-(U)CCSD(T) method.
Collapse
Affiliation(s)
- Anthony J Fernandes
- Department für Chemie und Biochemie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Rahul Giri
- Department für Chemie und Biochemie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Kendall N Houk
- Department of Chemistry and Biochemistry, University of California, 90095, Los Angeles, California, United States
| | - Dmitry Katayev
- Department für Chemie und Biochemie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| |
Collapse
|
7
|
Mi E, Zhou L, Tong Y, Qiu X, Zeng X, Li J, Xiong B. Copper-Mediated Cyclization of Terminal Alkynes with CF 3-Imidoyl Sulfoxonium Ylides To Construct 5-Trifluoromethylpyrroles. Org Lett 2024; 26:2249-2254. [PMID: 38451534 DOI: 10.1021/acs.orglett.4c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
A copper-mediated [3 + 2] cyclization of CF3-imidoyl sulfoxonium ylides and terminal alkynes has been demonstrated. This work provides a practical approach for assembling 5-trifluoromethylpyrroles with the merits of a broad substrate scope, good functional tolerance, and mild reaction conditions. Control experiments and DFT studies indicate that this reaction may involve the addition of π-bonds of terminal alkynes by copper-carbene radicals and hydrogen migration.
Collapse
Affiliation(s)
- E Mi
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Li Zhou
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Yixin Tong
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Xiaodong Qiu
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Xiaobao Zeng
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Jinlong Li
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Biao Xiong
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| |
Collapse
|
8
|
Lai C, Tang Z, Liu Z, Luo P, Zhang W, Zhang T, Zhang W, Dong Z, Liu X, Yang X, Wang F. Probing the functional hotspots inside protein hydrophobic pockets by in situ photochemical trifluoromethylation and mass spectrometry. Chem Sci 2024; 15:2545-2557. [PMID: 38362424 PMCID: PMC10866368 DOI: 10.1039/d3sc05106d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/11/2024] [Indexed: 02/17/2024] Open
Abstract
Due to the complex high-order structures and interactions of proteins within an aqueous solution, a majority of chemical functionalizations happen on the hydrophilic sites of protein external surfaces which are naturally exposed to the solution. However, the hydrophobic pockets inside proteins are crucial for ligand binding and function as catalytic centers and transporting tunnels. Herein, we describe a reagent pre-organization and in situ photochemical trifluoromethylation strategy to profile the functional sites inside the hydrophobic pockets of native proteins. Unbiased mass spectrometry profiling was applied for the characterization of trifluoromethylated sites with high sensitivity. Native proteins including myoglobin, trypsin, haloalkane dehalogenase, and human serum albumin have been engaged in this mild photochemical process and substantial hydrophobic site-specific and structure-selective trifluoromethylation substitutes are obtained without significant interference to their bioactivity and structures. Sodium triflinate is the only reagent required to functionalize the unprotected proteins with wide pH-range tolerance and high biocompatibility. This "in-pocket" activation model provides a general strategy to modify the potential binding pockets and gain essential structural insights into the functional hotspots inside protein hydrophobic pockets.
Collapse
Affiliation(s)
- Can Lai
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhiyao Tang
- Department of Chemistry, College of Science, Southern University of Science and Technology Shenzhen 518055 China
| | - Zheyi Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Pan Luo
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- Institute of Advanced Science Facilities Shenzhen 518107 China
| | - Wenxiang Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Tingting Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Wenhao Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhe Dong
- Department of Chemistry, College of Science, Southern University of Science and Technology Shenzhen 518055 China
| | - Xinyuan Liu
- Department of Chemistry, College of Science, Southern University of Science and Technology Shenzhen 518055 China
| | - Xueming Yang
- Department of Chemistry, College of Science, Southern University of Science and Technology Shenzhen 518055 China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- Institute of Advanced Science Facilities Shenzhen 518107 China
| | - Fangjun Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
9
|
Podskoczyj K, Kuszczynska A, Dziergowska A, Leszczynska G. Protection-Free, Two-step Synthesis of C5-C Functionalized Pyrimidine Nucleosides. Curr Protoc 2024; 4:e984. [PMID: 38327099 DOI: 10.1002/cpz1.984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
A simple, reliable, and efficient method for the gram-scale chemical synthesis of pyrimidine nucleosides functionalized with C5-carboxyl, nitrile, ester, amide, or amidine, starting from unprotected uridine and cytidine, is described. The protocol involves the synthesis of 5-trifluoromethyluridine and 5-trifluoromethylcytidine with Langlois reagent (CF3 SO2 Na) in the presence of tert-butyl hydroperoxide and subsequent transformation of the CF3 group to the C5-C 'carbon substituents' under alkaline conditions. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Synthesis and characterization of 5-trifluoromethyluridine (5-CF3 U) and 5-trifluoromethylcytidine (5-CF3 C) Basic Protocol 2: Conversion of 5-CF3 U and 5-CF3 C to several C5-substituted ribonucleosides.
Collapse
Affiliation(s)
- Karolina Podskoczyj
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Lodz, Poland
| | - Anna Kuszczynska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Lodz, Poland
| | - Agnieszka Dziergowska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Lodz, Poland
| | - Grazyna Leszczynska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
10
|
Li Z, Zhong Y, Qing Z, Li Z. A circuitous route for in vitro multi-enzyme cascade production of cytidine triphosphate to overcome the thermodynamic bottleneck. BIORESOUR BIOPROCESS 2024; 11:6. [PMID: 38647971 PMCID: PMC10992187 DOI: 10.1186/s40643-023-00724-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/23/2023] [Indexed: 04/25/2024] Open
Abstract
Cytidine triphosphate (CTP), as a substance involved in the metabolism of phospholipids, proteins and nucleic acids, has precise drug effects and is a direct precursor for the synthesis of drugs such as citicoline. In this study, we established an in vitro six-enzyme cascade system to generate CTP. To avoid thermodynamic bottlenecks, we employed a circuitous and two-stage reaction strategy. Using cytidine as the key substrate, the final product CTP is obtained via the deamination and uridine phosphorylation pathways, relying on the irreversible reaction of cytidine triphosphate synthase to catalyze the amination of uridine triphosphate. Several extremophilic microbial-derived deaminases were screened and characterized, and a suitable cytidine deaminase was selected to match the first-stage reaction conditions. In addition, directed evolution modification of the rate-limiting enzyme CTP synthetase in the pathway yielded a variant that successfully relieved the product feedback inhibition, along with a 1.7-fold increase in activity over the wild type. After optimizing the reaction conditions, we finally carried out the catalytic reaction at an initial cytidine concentration of 20 mM, and the yield of CTP exceeded 82% within 10.0 h.
Collapse
Affiliation(s)
- Zonglin Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Yahui Zhong
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Zhoulei Qing
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Zhimin Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
11
|
Fernández-García S, Chantzakou VO, Juliá-Hernández F. Direct Decarboxylation of Trifluoroacetates Enabled by Iron Photocatalysis. Angew Chem Int Ed Engl 2023:e202311984. [PMID: 38088503 DOI: 10.1002/anie.202311984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Indexed: 12/30/2023]
Abstract
Trifluoroacetates are the most abundant and accessible sources of trifluoromethyl groups, which are key components in pharmaceuticals and agrochemicals. The generation of trifluoromethyl reactive radicals from trifluoroacetates requires their decarboxylation, which is hampered by their high oxidation potential. This constitutes a major challenge for redox-based methods, because of the need to pair the redox potentials with trifluoroacetate. Here we report a strategy based on iron photocatalysis to promote the direct photodecarboxylation of trifluoroacetates that displays reactivity features that escape from redox limitations. Our synthetic design has enabled the use of trifluoroacetates for the trifluoromethylation of more easily oxidizable organic substrates, offering new opportunities for late-stage derivatization campaigns using chemical feedstocks, Earth-abundant catalysts, and visible-light.
Collapse
Affiliation(s)
- Sara Fernández-García
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - Veronika O Chantzakou
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - Francisco Juliá-Hernández
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 30100, Murcia, Spain
| |
Collapse
|
12
|
Cong F, Zhang W, Zhang G, Liu J, Zhang Y, Zhou C, Wang L. Visible light as a sole requirement for alkylation of α-C(sp 3)-H of N-aryltetrahydroisoquinolines with alkylboronic acids. Org Biomol Chem 2023; 21:8910-8917. [PMID: 37906093 DOI: 10.1039/d3ob01154b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
An alkylation of α-C(sp3)-H at N-aryltetrahydroisoquinolines with alkylboronic acids was developed under visible-light irradiation in the absence of additional photocatalyst. The reaction proceeded well, tolerating a variety of functional groups, and featured low-cost and mild reaction conditions. A preliminary mechanistic study indicated that an electron donor-acceptor (EDA) complex between an electron-rich N-aryltetrahydroisoquinoline and an electron-poor alkylboronic acid was involved in the reaction.
Collapse
Affiliation(s)
- Feihu Cong
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Wenjing Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Gan Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Jie Liu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Yicheng Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Chao Zhou
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Lei Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P. R. China
| |
Collapse
|
13
|
Qi J, Xu J, Ang HT, Wang B, Gupta NK, Dubbaka SR, O'Neill P, Mao X, Lum Y, Wu J. Electrophotochemical Synthesis Facilitated Trifluoromethylation of Arenes Using Trifluoroacetic Acid. J Am Chem Soc 2023. [PMID: 37920956 DOI: 10.1021/jacs.3c10148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
The trifluoromethyl (CF3) group is an essential moiety in medicinal chemistry due to its unique physicochemical properties. While trifluoroacetic acid (TFA) is an inexpensive and easily accessible reagent, its use as a source of CF3 is highly challenging due to its high oxidation potential. In this study, we present a novel electrophotochemical approach that enables the use of TFA as the CF3 source for the selective, catalyst- and oxidant-free trifluoromethylation of (hetero)arenes. Key to our approach is the selective oxidation of TFA over arenes, generating CF3 radicals through oxidative decarboxylation. This strategy enables the sustainable and environmentally-friendly synthesis of CF3-, CF2H- and perfluoroalkyl-containing (hetero)arenes with a broad range of substrates. Importantly, our results demonstrate significantly improved chemoselectivity by light irradiation, opening up new possibilities for the synthetic and medicinal applications of TFA as an ideal yet underutilized CF3 source.
Collapse
Affiliation(s)
- Jing Qi
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Jinhui Xu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Hwee Ting Ang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Bingbing Wang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Nipun Kumar Gupta
- Institute of Materials Research and Engineering, Agency for Science Technology and Research, 2 Fusionopolis Way, 138634, Singapore
| | - Srinivas Reddy Dubbaka
- Pfizer Asia Manufacturing Pte Ltd., Manufacturing Technology Development Centre (MTDC), Synapse Building, #05-17, 3 Biopolis Drive, 138623, Singapore
| | - Patrick O'Neill
- Pfizer Ireland Pharmaceuticals, Process Development Centre, Ringaskiddy (PDC), Co-Cork 637578, Ireland
| | - Xianwen Mao
- Department of Materials Science and Engineering, National University of Singapore,9 Engineering Drive 1117575, Singapore
| | - Yanwei Lum
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117575, Singapore
| | - Jie Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
14
|
Keasler KT, Zick ME, Stacy EE, Kim J, Lee JH, Aeindartehran L, Runčevski T, Milner PJ. Handling fluorinated gases as solid reagents using metal-organic frameworks. Science 2023; 381:1455-1461. [PMID: 37769097 PMCID: PMC10799685 DOI: 10.1126/science.adg8835] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 08/24/2023] [Indexed: 09/30/2023]
Abstract
Fluorine is an increasingly common substituent in pharmaceuticals and agrochemicals because it improves the bioavailability and metabolic stability of organic molecules. Fluorinated gases represent intuitive building blocks for the late-stage installation of fluorinated groups, but they are generally overlooked because they require the use of specialized equipment. We report a general strategy for handling fluorinated gases as benchtop-stable solid reagents using metal-organic frameworks (MOFs). Gas-MOF reagents are prepared on gram-scale and used to facilitate fluorovinylation and fluoroalkylation reactions. Encapsulation of gas-MOF reagents within wax enables stable storage on the benchtop and controlled release into solution upon sonication, which represents a safer alternative to handling the gas directly. Furthermore, our approach enables high-throughput reaction development with these gases.
Collapse
Affiliation(s)
- Kaitlyn T. Keasler
- Department of Chemistry and Chemical Biology, Cornell University; Ithaca, New York 14850, United States
| | - Mary E. Zick
- Department of Chemistry and Chemical Biology, Cornell University; Ithaca, New York 14850, United States
| | - Emily E. Stacy
- Department of Chemistry and Chemical Biology, Cornell University; Ithaca, New York 14850, United States
| | - Jaehwan Kim
- Department of Chemistry and Chemical Biology, Cornell University; Ithaca, New York 14850, United States
| | - Jung-Hoon Lee
- Computational Science Research Center, Korea Institute of Science and Technology (KIST); Seoul 02792, Republic of Korea
| | - Lida Aeindartehran
- Department of Chemistry, Southern Methodist University; Dallas, Texas 75275, United States
| | - Tomče Runčevski
- Department of Chemistry, Southern Methodist University; Dallas, Texas 75275, United States
| | - Phillip J. Milner
- Department of Chemistry and Chemical Biology, Cornell University; Ithaca, New York 14850, United States
| |
Collapse
|
15
|
Liu L, Gu YC, Zhang CP. Recent Advances in the Synthesis and Transformation of Carbamoyl Fluorides, Fluoroformates, and Their Analogues. CHEM REC 2023; 23:e202300071. [PMID: 37098875 DOI: 10.1002/tcr.202300071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/07/2023] [Indexed: 04/27/2023]
Abstract
Carbamoyl fluorides, fluoroformates, and their analogues are a class of important compounds and have been evidenced as versatile building blocks for the preparation of useful molecules in organic chemistry. While major achievements were made in the synthesis of carbamoyl fluorides, fluoroformates, and their analogues in the last half of 20th century, an increasing number of reports have focused on using O/S/Se=CF2 species or their equivalents as the fluorocarbonylation reagents for the direct construction of these compounds from the parent heteroatom-nucleophiles in recent years. This review mainly summarizes the advances in the synthesis and typical application of carbamoyl fluorides, fluoroformates, and their analogues by the halide exchanges and fluorocarbonylation reactions since 1980.
Collapse
Affiliation(s)
- Lei Liu
- School of Materials Science and Engineering & School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Yu-Cheng Gu
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG426EY, UK
| | - Cheng-Pan Zhang
- School of Materials Science and Engineering & School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| |
Collapse
|
16
|
Dang-Nguyen A, Legaspi KC, McCarty CT, Smith DK, Gustafson J. A Light-Promoted Innate Trifluoromethylation of Pyridones and Related N-Heteroarenes. Org Lett 2023. [PMID: 37377204 DOI: 10.1021/acs.orglett.3c01710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
We report a practical, light-mediated perfluoroalkylation using Langlois' reagent (sodium trifluoromethylsulfinate) that proceeds in the absence of any photocatalyst or additives. This method has allowed for the facile functionalization of pyridones and related N-heteroarenes such as azaindole. This protocol is operationally simple, uses readily available materials, and is tolerable for electron-neutral and -rich functional pyridones. Cyclic voltammetry was utilized as a mechanistic probe, and preliminary data suggest the reaction may involve an electrophilic radical mechanism.
Collapse
Affiliation(s)
- Ashley Dang-Nguyen
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, California 92182-1030, United States
| | - Kristine C Legaspi
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, California 92182-1030, United States
| | - Connor T McCarty
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, California 92182-1030, United States
| | - Diane K Smith
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, California 92182-1030, United States
| | - Jeffrey Gustafson
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, California 92182-1030, United States
| |
Collapse
|
17
|
Li HP, He XH, Peng C, Li JL, Han B. A straightforward access to trifluoromethylated natural products through late-stage functionalization. Nat Prod Rep 2023; 40:988-1021. [PMID: 36205211 DOI: 10.1039/d2np00056c] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Covering: 2011 to 2021Trifluoromethyl (CF3)-modified natural products have attracted increasing interest due to their magical effect in binding affinity and/or drug metabolism and pharmacokinetic properties. However, the chemo and regioselective construction of natural products (NPs) bearing a CF3 group still remains a long-standing challenge due to the complex chemical scaffolds and diverse reactive sites of NPs. In recent years, the development of late-stage functionalization strategies, including metal catalysis, organocatalysis, light-driven reactions, and electrochemical synthesis, has paved the way for direct trifluoromethylation process. In this review, we summarize the applications of these strategies in the late-stage trifluoromethylation of natural products in the past ten years with particular emphasis on the reaction model of each method. We also discuss the challenges, limitations, and future prospects of this approach.
Collapse
Affiliation(s)
- He-Ping Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiang-Hong He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jun-Long Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
18
|
Podskoczyj K, Klos A, Drewniak S, Leszczynska G. Two-step conversion of uridine and cytidine to variously C5-C functionalized analogs. Org Biomol Chem 2023; 21:2809-2815. [PMID: 36924236 DOI: 10.1039/d3ob00161j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
C5-substituted pyrimidine nucleosides are an important class of molecules that have practical use as biological probes and pharmaceuticals. Herein we report an operationally simple protocol for C5-functionalization of uridine and cytidine via transformation of underexploited 5-trifluoromethyluridine or 5-trifluoromethylcytidine, respectively. The unique reactivity of the CF3 group in the aromatic ring allowed the direct incorporation of several distinct C5-C "carbon substituents": carboxyl, nitrile, ester, amide, and amidine.
Collapse
Affiliation(s)
- Karolina Podskoczyj
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, Lodz 90-924, Poland.
| | - Anna Klos
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, Lodz 90-924, Poland.
| | - Szymon Drewniak
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, Lodz 90-924, Poland.
| | - Grazyna Leszczynska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, Lodz 90-924, Poland.
| |
Collapse
|
19
|
La-Ongthong K, Chantarojsiri T, Soorukram D, Leowanawat P, Reutrakul V, Kuhakarn C. Electrochemical trifluoromethylation of 2-isocyanobiaryls using CF 3SO 2Na: synthesis of 6-(trifluoromethyl)phenanthridines. Org Biomol Chem 2023; 21:4225-4236. [PMID: 36880879 DOI: 10.1039/d3ob00239j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
An efficient trifluoromethylation of 2-isocyanobiaryls was developed through the constant current electrolysis, employing sodium trifluoromethanesulfinate (CF3SO2Na) as the trifluoromethyl source. The method enabled the syntheses of a series of 6-(trifluoromethyl)phenanthridine derivatives in moderate to high yields under metal- and oxidant-free conditions. A gram-scale synthesis highlights the synthetic versatility of the reported protocol.
Collapse
Affiliation(s)
- Kannika La-Ongthong
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand. .,Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Teera Chantarojsiri
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand. .,Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Darunee Soorukram
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand. .,Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Pawaret Leowanawat
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand. .,Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Vichai Reutrakul
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand. .,Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Chutima Kuhakarn
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand. .,Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| |
Collapse
|
20
|
Dey S, Das A, Yadav RN, Boruah PJ, Bakli P, Baishya T, Sarkar K, Barman A, Sahu R, Maji B, Paul AK, Hossain MF. Visiblelight-induced ternary electron donor-acceptor complex enabled synthesis of 2-(2-hydrazinyl) thiazole derivatives and the assessment of their antioxidant and antidiabetic therapeutic potential. Org Biomol Chem 2023; 21:1771-1779. [PMID: 36727530 DOI: 10.1039/d2ob02308c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A mild and eco-friendly visible-light-induced synthesis of 2-(2-hydrazinyl) thiazole from readily accessible thiosemicarbazide, carbonyl, and phenacyl bromide in the absence of a metal catalyst and/or any extrinsic photosensitizer is reported. This approach only requires a source of visible light and a green solvent at room temperature to produce the medicinally privileged scaffolds of hydrazinyl-thiazole derivatives in good to outstanding yields. Experimental studies support the in situ formation of a visible-light-absorbing, photosensitized colored ternary EDA complex. The next step is to prepare a pair of radicals in an excited state, which makes it easier to prepare thiazole derivatives through a SET and PCET process. DFT calculations additionally supported the mechanistic analysis of the course of the reaction. The antioxidant and antidiabetic properties of some of the compounds in the synthesized library were tested in vitro. All the investigated compounds demonstrated appreciable antioxidant activity, as evidenced by the reducing power experiment and the IC50 values of the DPPH radical scavenging experiment. Furthermore, the IC50 values for 4c, 4d, and 4g also demonstrated a strong α-amylase inhibitory effect.
Collapse
Affiliation(s)
- Sovan Dey
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling-734013, India.
| | - Arindam Das
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling-734013, India.
| | - Ram Naresh Yadav
- Department of Chemistry, Faculty of Engineering & Technology, Veer Bahadur Singh Purvanchal University, Jaunpur-222003, U.P, India
| | | | - Prerana Bakli
- Department of Chemistry, NIT, Meghalaya, Shillong-793003, India
| | - Tania Baishya
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur, Darjeeling-734013, India
| | - Koushik Sarkar
- Department of Chemical Sciences, IISER Kolkata, Mohanpur-741246, Nadia, WB, India
| | - Anup Barman
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling-734013, India.
| | - Ranabir Sahu
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur, Darjeeling-734013, India
| | - Biplab Maji
- Department of Chemical Sciences, IISER Kolkata, Mohanpur-741246, Nadia, WB, India
| | - Amit Kumar Paul
- Department of Chemistry, NIT, Meghalaya, Shillong-793003, India
| | - Md Firoj Hossain
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling-734013, India.
| |
Collapse
|
21
|
Tang L, Lv G, Cheng R, Yang F, Zhou Q. Three-Component Perfluoroalkylvinylation of Alkenes Enabled by Dual DBU/Fe Catalysis. Chemistry 2023; 29:e202203332. [PMID: 36351885 DOI: 10.1002/chem.202203332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/11/2022]
Abstract
Herein, a simple and efficient strategy that involves dual 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU)/iron-catalyzed alkene perfluoroalkylvinylation by using perfluoroalkyl iodides and 2-aminonaphthalene-1,4-diones as coupling partners is demonstrated. In terms of the developed catalytic system, various styrenes and aliphatic alkenes are well-tolerated, leading to the accurate preparation of perfluoroalkyl-containing 2-aminonaphthalene-1,4-diones in excellent regioselectivity. Moreover, the protocol can be readily applied in late-stage modifications of natural products and pharmaceuticals. The title reactions are featured by easily accessible and inexpensive catalysts and substrates, broad substrate applicability, and mild reaction conditions. Mechanistic investigations reveal a tandem C-I cleavable alkylation and C-C vinylation enabled by cooperative DBU/iron catalysis.
Collapse
Affiliation(s)
- Lin Tang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, P.R. China.,Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan, Xinyang, 464000, P.R. China
| | - Ge Lv
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, P.R. China
| | - Ruimin Cheng
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, P.R. China
| | - Fang Yang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, P.R. China
| | - Qiuju Zhou
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, P.R. China
| |
Collapse
|
22
|
Meng J, Zhou Y, Gu J, Deng J, Zheng Q, Ye X, Yao Q. Atmosphere- and Solvent-Controlled Coupling and Acetylation of Phenols Induced by Visible Light. J Org Chem 2023; 88:1855-1859. [PMID: 36695778 DOI: 10.1021/acs.joc.2c02470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A tunable coupling or acetylation of phenol derivatives with diacetyl was enabled through the switch of the atmosphere and solvent induced by visible light under metal-free conditions. Symmetric and asymmetric diphenols or binaphthols were obtained under oxygen in water or 1,1,1,3,3,3-hexafluoroisopropanol, whereas phenol acetates were formed under argon in the presence of diacetyl and acetic acid. The possibility to control the chemo- and regioselectivities enriches the synthetic versatility of photoreactions.
Collapse
Affiliation(s)
- Jiangtao Meng
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Department of Pharmacy, Zunyi Medical University, 6 Xuefu Road West, Zunyi 563000, China
| | - Yutong Zhou
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Department of Pharmacy, Zunyi Medical University, 6 Xuefu Road West, Zunyi 563000, China
| | - Jianyu Gu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Department of Pharmacy, Zunyi Medical University, 6 Xuefu Road West, Zunyi 563000, China
| | - Jinfei Deng
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Department of Pharmacy, Zunyi Medical University, 6 Xuefu Road West, Zunyi 563000, China
| | - Qianqiu Zheng
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Department of Pharmacy, Zunyi Medical University, 6 Xuefu Road West, Zunyi 563000, China
| | - Xiushen Ye
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China
| | - Qiuli Yao
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Department of Pharmacy, Zunyi Medical University, 6 Xuefu Road West, Zunyi 563000, China.,Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China
| |
Collapse
|
23
|
Li S, Yang W, Shi J, Dan T, Han Y, Cao ZC, Yang M. Synthesis of Trifluoromethyl-Substituted Allenols via Catalytic Trifluoromethylbenzoxylation of 1,3-Enynes. ACS Catal 2023. [DOI: 10.1021/acscatal.2c04978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Songrong Li
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, People’s Republic of China
| | - Wenwen Yang
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, People’s Republic of China
| | - Junjie Shi
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, People’s Republic of China
| | - Tingting Dan
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, People’s Republic of China
| | - Yujie Han
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, People’s Republic of China
| | - Zhi-Chao Cao
- Anhui Agricultural University, Hefei, Anhui 230036, People’s Republic of China
| | - Mingyu Yang
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, People’s Republic of China
| |
Collapse
|
24
|
Diversification of pharmaceutical molecules via late-stage C(sp2)–H functionalization. GREEN SYNTHESIS AND CATALYSIS 2023. [DOI: 10.1016/j.gresc.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
25
|
Wang H, Sun X, Linghu C, Deng Y, Wang Y, Wei C, Wang J, Zhang L. Catalyst-free direct C H trifluoromethylation of indoles with Togni’s reagent. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
26
|
Cui J, Tong Y, Li Y. Synthesis of Trifluoromethylated γ-Lactams through Radical Cascades of N-Cyano Alkenes with CF 3SO 2Na. J Org Chem 2022; 87:16090-16098. [PMID: 36370090 DOI: 10.1021/acs.joc.2c01775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
We report herein a facile strategy to synthesize trifluoromethylated γ-lactams through trifluoromethylcarbonylation of N-cyano alkenes using readily available CF3SO2Na as the CF3 radical source. A range of trifluoromethyl-containing γ-lactams was obtained in good yields. This transition-metal-free protocol is demonstrated with mild conditions, broad substrate scope, good functional group tolerance, convenient reagents, and an easy-to-handle operating system.
Collapse
Affiliation(s)
- Jianchao Cui
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Ye Tong
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yi Li
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
27
|
Deolka S, Govindarajan R, Vasylevskyi S, Roy MC, Khusnutdinova JR, Khaskin E. Ligand-free nickel catalyzed perfluoroalkylation of arenes and heteroarenes. Chem Sci 2022; 13:12971-12979. [PMID: 36425484 PMCID: PMC9667918 DOI: 10.1039/d2sc03879j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2023] Open
Abstract
We describe a "ligand-free" Ni-catalyzed perfluoroalkylation of heteroarenes to produce a diverse array of trfiluoromethyl, pentafluoroethyl and heptafluoropropyl adducts. Catalysis proceeds at room temperature via a radical pathway. The catalytic protocol is distinguished by its simplicity, and its wide scope demonstrates the potential in the late-stage functionalization of drug analogues and peptides.
Collapse
Affiliation(s)
- Shubham Deolka
- Coordination Chemistry and Catalysis Unit, Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha, Onna-son 904-0495 Okinawa Japan
| | - Ramadoss Govindarajan
- Coordination Chemistry and Catalysis Unit, Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha, Onna-son 904-0495 Okinawa Japan
| | - Serhii Vasylevskyi
- Coordination Chemistry and Catalysis Unit, Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha, Onna-son 904-0495 Okinawa Japan
| | - Michael C Roy
- Coordination Chemistry and Catalysis Unit, Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha, Onna-son 904-0495 Okinawa Japan
| | - Julia R Khusnutdinova
- Coordination Chemistry and Catalysis Unit, Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha, Onna-son 904-0495 Okinawa Japan
| | - Eugene Khaskin
- Coordination Chemistry and Catalysis Unit, Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha, Onna-son 904-0495 Okinawa Japan
| |
Collapse
|
28
|
Muta R, Torigoe T, Kuninobu Y. 3-Position-Selective C–H Trifluoromethylation of Pyridine Rings Based on Nucleophilic Activation. Org Lett 2022; 24:8218-8222. [DOI: 10.1021/acs.orglett.2c03327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Ryuhei Muta
- Department of Molecular and Material Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
| | - Takeru Torigoe
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
- Department of Interdisciplinary Engineering Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
| | - Yoichiro Kuninobu
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
- Department of Interdisciplinary Engineering Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
| |
Collapse
|
29
|
Huang AX, Fu YR, Zhu HL, Zeng FL, Chen XL, Tang S, Qu LB, Yu B. Visible-Light-Promoted Phosphorylation/Cyclization of 1-Acryloyl-2-cyanoindoles in Green Solvent. J Org Chem 2022; 87:14433-14442. [PMID: 36257064 DOI: 10.1021/acs.joc.2c01890] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A visible-light-induced persulfate-promoted cascade phosphorylation/cyclization reaction to access various phosphorylated pyrrolo[1,2-a]indolediones under mild conditions was developed. Notably, the transformation was carried out with diethyl carbonate/H2O as a green medium at room temperature. More impressively, traditional metal catalysts and photocatalysts could be effectively avoided. The reactions are simple to operate, easy to scale up, and have good functional group tolerance.
Collapse
Affiliation(s)
- An-Xiang Huang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China
| | - Yi-Rui Fu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China
| | - Hu-Lin Zhu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China
| | - Fan-Lin Zeng
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China
| | - Xiao-Lan Chen
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China
| | - Shi Tang
- College of Chemistry and Chemical Engineering, Jishou University, Renmingnan Road No. 120, Hunan 416000, China
| | - Ling-Bo Qu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China
| | - Bing Yu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China
| |
Collapse
|
30
|
Eisenreich F, Palmans ARA. Direct C-H Trifluoromethylation of (Hetero)Arenes in Water Enabled by Organic Photoredox-Active Amphiphilic Nanoparticles. Chemistry 2022; 28:e202201322. [PMID: 35730657 PMCID: PMC9544737 DOI: 10.1002/chem.202201322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Indexed: 11/10/2022]
Abstract
Photoredox-catalyzed chemical conversions are predominantly operated in organic media to ensure good compatibility between substrates and catalysts. Yet, when conducted in aqueous media, they are an attractive, mild, and green way to introduce functional groups into organic molecules. We here show that trifluoromethyl groups can be readily installed into a broad range of organic compounds by using water as the reaction medium and light as the energy source. To bypass solubility obstacles, we developed robust water-soluble polymeric nanoparticles that accommodate reagents and photocatalysts within their hydrophobic interior under high local concentrations. By taking advantage of the high excited state reduction potential of N-phenylphenothiazine (PTH) through UV light illumination, the direct C-H trifluoromethylation of a wide array of small organic molecules is achieved selectively with high substrate conversion. Key to our approach is slowing down the production of CF3 radicals during the chemical process by reducing the catalyst loading as well as the light intensity, thereby improving effectiveness and selectivity of this aqueous photocatalytic method. Furthermore, the catalyst system shows excellent recyclability and can be fueled by sunlight. The method we propose here is versatile, widely applicable, energy efficient, and attractive for late-stage introduction of trifluoromethyl groups into biologically active molecules.
Collapse
Affiliation(s)
- Fabian Eisenreich
- Laboratory of Macromolecular and Organic ChemistryInstitute of Complex Molecular SystemsDepartment of Chemical Engineering and ChemistryEindhoven University of TechnologyP.O. Box 5135600 MBEindhoven (TheNetherlands
| | - Anja R. A. Palmans
- Laboratory of Macromolecular and Organic ChemistryInstitute of Complex Molecular SystemsDepartment of Chemical Engineering and ChemistryEindhoven University of TechnologyP.O. Box 5135600 MBEindhoven (TheNetherlands
| |
Collapse
|
31
|
Orlova RK, Sokolenko LV, Babadzhanova LA, Filatov AA, Yagupolskii YL. GLP (Good Laboratory Procedure) for SCF3 construction: Useful procedure for trifluoromethylation of thiols by reaction with trifluoromethyliodide. J Fluor Chem 2022. [DOI: 10.1016/j.jfluchem.2022.110004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Forni JA, Gandhi VH, Polyzos A. Carbonylative Hydroacylation of Styrenes with Alkyl Halides by Multiphoton Tandem Photoredox Catalysis in Flow. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- José A. Forni
- School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Vir H. Gandhi
- School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Anastasios Polyzos
- School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
- Dr A. Polyzos CSIRO Manufacturing, Research Way, Clayton, Victoria 3168, Australia
| |
Collapse
|
33
|
Baguia H, Evano G. Direct Perfluoroalkylation of C−H Bonds in (Hetero)arenes. Chemistry 2022; 28:e202200975. [DOI: 10.1002/chem.202200975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Hajar Baguia
- Laboratoire de Chimie Organique Service de Chimie et Physico-Chimie Organiques Université libre de Bruxelles (ULB) Avenue F. D. Roosevelt 50, CP160/06 1050 Brussels Belgium
| | - Gwilherm Evano
- Laboratoire de Chimie Organique Service de Chimie et Physico-Chimie Organiques Université libre de Bruxelles (ULB) Avenue F. D. Roosevelt 50, CP160/06 1050 Brussels Belgium
| |
Collapse
|
34
|
Chen D, Jiang J, Wan J. Advances in the Transition Metal‐Free C‐H Trifluoromethylation. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Demao Chen
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education. College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang 330022 P. R. China
| | - Jianwen Jiang
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education. College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang 330022 P. R. China
| | - Jie‐Ping Wan
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education. College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang 330022 P. R. China
| |
Collapse
|
35
|
Jain R, Dhillon NS, Farquhar ER, Wang B, Li X, Kiselar J, Chance MR. Multiplex Chemical Labeling of Amino Acids for Protein Footprinting Structure Assessment. Anal Chem 2022; 94:9819-9825. [PMID: 35763792 PMCID: PMC9983563 DOI: 10.1021/acs.analchem.2c01640] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Protein footprinting with mass spectrometry is an established structural biology technique for mapping solvent accessibility and assessing molecular-level interactions of proteins. In hydroxyl radical protein footprinting (HRPF), hydroxyl (OH) radicals generated by water radiolysis or other methods covalently label protein side chains. Because of the wide dynamic range of OH reactivity, not all side chains are easily detected in a single experiment. Novel reagent development and the use of radical chain reactions for labeling, including trifluoromethyl radicals, is a potential approach to normalize the labeling across a diverse set of residues. HRPF in the presence of a trifluoromethylation reagent under the right conditions could provide a "one-pot" reaction for multiplex labeling of protein side chains. Toward this goal, we have systematically evaluated amino acid labeling with the recently investigated Langlois' reagent (LR) activated by X-ray-mediated water radiolysis, followed by three different mass spectrometry methods. We compared the reactivity of CF3 and OH radical labeling for all 20 protein side chains in a competition-free environment. We found that all 20 amino acids exhibited CF3 or OH labeling in LR. Our investigations provide the evidence and knowledge set to perfect hydroxyl radical-activated trifluoromethyl chemistry as "one-pot" reaction for multiplex labeling of protein side chains to achieve higher resolution in HRPF.
Collapse
Affiliation(s)
- Rohit Jain
- Center for Synchrotron Biosciences, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA,Center for Proteomics and Bioinformatics, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Nanak S. Dhillon
- Department of Nutrition, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Erik R. Farquhar
- Center for Synchrotron Biosciences, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Benlian Wang
- Center for Proteomics and Bioinformatics, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Xiaolin Li
- Center for Proteomics and Bioinformatics, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Janna Kiselar
- Center for Proteomics and Bioinformatics, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA,Department of Nutrition, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Mark R. Chance
- Center for Synchrotron Biosciences, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA,Center for Proteomics and Bioinformatics, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA,Department of Nutrition, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA,Corresponding Author: Mark R. Chance - Center for Synchrotron Biosciences; Center for Proteomics and Bioinformatics; Department of Nutrition, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA.
| |
Collapse
|
36
|
|
37
|
Li P, Yang X, Liu J, Zhang Y, Wang L, Gao Y. Photo‐driven Radical Addition/Cyclization of Biaryl Vinyl Ketones with CF3SO2Na and ArCF2CO2K without an External Photocatalyst. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Pinhua Li
- Huaibei Normal University Department of Chemistry Dongshan Road 235000 Huaibei CHINA
| | - Xingyu Yang
- Huaibei Normal University Department of Chemistry Huaibei CHINA
| | - Jie Liu
- Huaibei Normal University Department of Chemistry Huaibei CHINA
| | - Yicheng Zhang
- Huaibei Normal University Department of Chemistry Huaibei CHINA
| | - Lei Wang
- Huaibei Normal University Department of Chemistry Huaibei CHINA
| | - Yanhui Gao
- Huaibei Normal University Department of chemistry CHINA
| |
Collapse
|
38
|
Tang L, Yang F, Zhang S, Lv G, Zhou Q, Zheng L. Fe-Catalyzed Radical Trifluoromethyl-Alkenylation of Alkenes or Alkynes with 2-Amino-1,4-naphthoquinones. J Org Chem 2022; 87:7274-7290. [PMID: 35594549 DOI: 10.1021/acs.joc.2c00477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The first Fe-catalyzed three-component radical trifluoromethyl-alkenylation of alkenes with 2-amino-1,4-naphthoquinones and CF3SO2Na is reported. The developed reaction enables the highly regioselective preparation of a variety of valuable CF3-substituted 1,4-naphthoquinones in acceptable yields. In the light of the catalytic system, alkynes smoothly afford the corresponding three- or four-component trifluoromethyl-alkenylation products. This protocol features use of easily available and inexpensive reagents, broad substrate scope, and simple reaction conditions.
Collapse
Affiliation(s)
- Lin Tang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Fang Yang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Shuai Zhang
- Nanjing Harris Bio-Pharmaceutical Technology Co. LTD, Nanjing, Jiangsu 211100, China
| | - Ge Lv
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Qiuju Zhou
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Lingyun Zheng
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| |
Collapse
|
39
|
Lan J, Li S, Lin K, Zhou P, Chen W, Gao L, Zhu T. The eco-friendly electrosynthesis of trifluoromethylated spirocyclic indolines and their anticancer activity. Org Biomol Chem 2022; 20:3475-3479. [PMID: 35388872 DOI: 10.1039/d2ob00459c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A method for the electrochemical diastereoselective oxytrifluoromethylation of indoles was developed for the eco-friendly synthesis of CF3-containing spirocyclic indolines. The cascade reaction comprised anodic oxidation to obtain CF3 radicals, the addition of radicals to indoles, and intramolecular spirocyclization. The reaction system without external chemical oxidants could easily be scaled up. Antiproliferation assays of these CF3-substituted spirocyclic indolines exhibited their promising activities and selectivities toward several types of cancer cells, including Huh-7, A549, and cisplatin-resistant cancer cells (A549/DDP).
Collapse
Affiliation(s)
- Jianyong Lan
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| | - Shaoyun Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, P. R. China.
| | - Kejun Lin
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| | - Peng Zhou
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| | - Weili Chen
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| | - Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, P. R. China.
| | - Tingshun Zhu
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| |
Collapse
|
40
|
Wang F, Fu R, Chen J, Rong J, Wang E, Zhang J, Zhang Z, Jiang Y. Metal-free synthesis of gem-difluorinated heterocycles from enaminones and difluorocarbene precursors. Chem Commun (Camb) 2022; 58:3477-3480. [PMID: 35191446 DOI: 10.1039/d2cc00383j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A cascade strategy to synthesise gem-difluorinated 2H-furans from reactions of BrCF2CO2Et with enaminones has been described. The reactions tolerate a wide variety of functional groups under metal-free conditions. An active aminocyclopropane is proposed to be a key intermediate through the cyclopropanation of difluorocarbene with enaminones, which further triggers a regioselective C-C bond cleavage in situ to afford the corresponding gem-difluorinated 2H-furans.
Collapse
Affiliation(s)
- Fei Wang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China.
| | - Rui Fu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China.
| | - Jie Chen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China. .,Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Jiaxin Rong
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China.
| | - Enfu Wang
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Jian Zhang
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Zhengyu Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China.
| | - Yaojia Jiang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China. .,Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| |
Collapse
|
41
|
Wei D, Li H, Yang C, Fu J, Chen H, Bai L, Wang W, Yang H, Yang L, Liang Y. Visible light‐driven acridone catalysis for atom transfer radical polymerization. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Donglei Wei
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province Ludong University Yantai China
| | - Huili Li
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province Ludong University Yantai China
| | - Chuanqing Yang
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province Ludong University Yantai China
| | - Jianmin Fu
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province Ludong University Yantai China
| | - Hou Chen
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province Ludong University Yantai China
| | - Liangjiu Bai
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province Ludong University Yantai China
| | - Wenxiang Wang
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province Ludong University Yantai China
| | - Huawei Yang
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province Ludong University Yantai China
| | - Lixia Yang
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province Ludong University Yantai China
| | - Ying Liang
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province Ludong University Yantai China
| |
Collapse
|
42
|
Xiong W, Qin WB, Zhao YS, Fu KZ, Liu GK. Direct C(sp3)−H Difluoromethylation via Radical-Radical Cross-Coupling by Visible-Light Photoredox Catalysis. Org Chem Front 2022. [DOI: 10.1039/d2qo00192f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, the radical-radical cross-coupling strategy for direct difluoromethylation of C(sp3)−H bond is reported. This transformation was readily accomplished under transition metal-free photoredox catalysis in the presence of 3 mol% of...
Collapse
|
43
|
Lian P, Li R, Wan X, Xiang Z, Liu H, Cao Z, Wan X. Acetylation of alcohols and amines under visible light irradiation: diacetyl as an acylation reagent and photosensitizer. Org Chem Front 2022. [DOI: 10.1039/d1qo01613j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
An unprecedented strategy for the acetylation of alcohols and amines using diacetyl as both an acylation reagent and a photosensitizer was well developed.
Collapse
Affiliation(s)
- Pengcheng Lian
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Ruyi Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiao Wan
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zixin Xiang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Hang Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhiyu Cao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiaobing Wan
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
44
|
Xiao F, Lin JH, Hao F, Zheng X, Guo Y, Xiao JC. Visible light mediated C-H trifluoromethylation of (hetero)arenes. Org Chem Front 2022. [DOI: 10.1039/d2qo00067a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A protocol on visible light mediated C-H trifluoromethylation of unactivated (hetero)arenes under blue LED irradiation has been developed. The reaction enables the rapid construction of a range of CF3-containing (hetero)arenes...
Collapse
|
45
|
Huang M, Ma J, Zou Z, Li H, Liu J, Kong L, Pan Y, Zhang W, Liang Y, Wang Y. A photoinduced transient activating strategy for late-stage chemoselective C(sp 3)–H trifluoromethylation of azines. Chem Sci 2022; 13:11312-11319. [PMID: 36320576 PMCID: PMC9533475 DOI: 10.1039/d2sc03989c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/24/2022] [Indexed: 11/23/2022] Open
Abstract
The direct functionalization of C(sp3)–H bonds is an ultimately ideal synthetic strategy with high atom economy and step efficiency. However, the direct trifluoromethylation of electron-deficient heteroaryl adjacent C(sp3)–H bonds remains a formidable challenge. We have described a transient activating strategy involving a Tf-shift process and π–π stacking interaction for catalyst-free direct benzylic C(sp3)–H trifluoromethylation of azines, such as pyridine, pyrimidine, quinoline, dihydropyridinone, tetrahydroisoquinoline and tetrahydroquinazoline, with an air-stable crystalline imidazolium sulfonate reagent IMDN-Tf. This bench-stable cationic reagent offers a scalable and practical protocol for the late-stage modification of drug molecules with high site selectivity, which avoids the prefunctionalization and the use of stoichiometric metals and strong oxidants. Furthermore, comprehensive mechanistic studies revealed the determining effect of π–π stacking for the activation of azinylic C(sp3)–H bonds. Late-stage C(sp3)–H functionalization of unactivated azines: the traceless Tf switching process offers ample opportunities for site-selective derivatization of heteroaryls, allowing for the rapid increase of molecular complexity.![]()
Collapse
Affiliation(s)
- Mengjun Huang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jiawei Ma
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhenlei Zou
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Heyin Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jiyang Liu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Lingyu Kong
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi Pan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Weigang Zhang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
46
|
Bazyar Z, Tavakoliana M, Hosseini-Sarvari M. Au–Pd@ZnO alloy nanoparticles: a promising heterogeneous photocatalyst toward decarboxylative trifluoromethylation under visible-light irradiation. NEW J CHEM 2022. [DOI: 10.1039/d2nj02212e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Au–Pd@ZnO alloy nanoparticles have promising potential as heterogeneous photocatalysts for decarboxylative trifluoromethylation reactions under visible light irradiation.
Collapse
Affiliation(s)
- Zahra Bazyar
- Nano Photocatalysis Lab, Department of Chemistry, Shiraz University, Shiraz 7194684795, IR, Iran
| | - Mina Tavakoliana
- Nano Photocatalysis Lab, Department of Chemistry, Shiraz University, Shiraz 7194684795, IR, Iran
| | - Mona Hosseini-Sarvari
- Nano Photocatalysis Lab, Department of Chemistry, Shiraz University, Shiraz 7194684795, IR, Iran
| |
Collapse
|
47
|
Baishya G, Dutta NB. Recent Advances in Direct C−H Trifluoromethylation of N‐Heterocycles. ChemistrySelect 2021. [DOI: 10.1002/slct.202103407] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gakul Baishya
- Chemical Sciences & Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Nibedita B. Dutta
- Chemical Sciences & Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Rain Forest Research Institute Jorhat 785001 India
| |
Collapse
|
48
|
Bock L, Schultheiß SK, Maschauer S, Lasch R, Gradl S, Prante O, Zard SZ, Heinrich MR. Synthesis of 2‐(Chlorodifluoromethyl)indoles for Nucleophilic Halogen Exchange with [
18
F]Fluoride. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Leonard Bock
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry Friedrich-Alexander-Universität Erlangen-Nürnberg Nikolaus-Fiebiger-Str. 10 91058 Erlangen Germany
| | - Stefanie K. Schultheiß
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry Friedrich-Alexander-Universität Erlangen-Nürnberg Nikolaus-Fiebiger-Str. 10 91058 Erlangen Germany
| | - Simone Maschauer
- Department of Nuclear Medicine, Molecular Imaging and Radiochemistry Friedrich-Alexander-Universität Erlangen-Nürnberg Schwabachanlage 12 91054 Erlangen Germany
| | - Roman Lasch
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry Friedrich-Alexander-Universität Erlangen-Nürnberg Nikolaus-Fiebiger-Str. 10 91058 Erlangen Germany
| | - Susanne Gradl
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry Friedrich-Alexander-Universität Erlangen-Nürnberg Nikolaus-Fiebiger-Str. 10 91058 Erlangen Germany
| | - Olaf Prante
- Department of Nuclear Medicine, Molecular Imaging and Radiochemistry Friedrich-Alexander-Universität Erlangen-Nürnberg Schwabachanlage 12 91054 Erlangen Germany
| | - Samir Z. Zard
- Laboratoire de Synthèse Organique associé au CNRS Ecole Polytechnique 91128 Palaiseau France
| | - Markus R. Heinrich
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry Friedrich-Alexander-Universität Erlangen-Nürnberg Nikolaus-Fiebiger-Str. 10 91058 Erlangen Germany
| |
Collapse
|
49
|
Zhang T, Luo P, Lai C, Liu Z, Jin Y, Wang F. Catalyst-free Photochemical Bromination of Unprotected Aromatic Amino Acid Derivatives by Using a Rotating Ultraviolet Photoreactor. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1413-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
Dai P, Li C, Li Y, Zhu Y, Teng P, Gu Y, Zhang W. Direct Difluoromethylation of Heterocycles through Photosensitized Electron Transfer. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Peng Dai
- Jiangsu Key Laboratory of Pesticide Science College of Sciences Nanjing Agricultural University Nanjing 210095 China
| | - Chenxiao Li
- Jiangsu Key Laboratory of Pesticide Science College of Sciences Nanjing Agricultural University Nanjing 210095 China
| | - Yufei Li
- Jiangsu Key Laboratory of Pesticide Science College of Sciences Nanjing Agricultural University Nanjing 210095 China
| | - Yuchuan Zhu
- Jiangsu Key Laboratory of Pesticide Science College of Sciences Nanjing Agricultural University Nanjing 210095 China
| | - Peng Teng
- Jiangsu Key Laboratory of Pesticide Science College of Sciences Nanjing Agricultural University Nanjing 210095 China
| | - Yu‐Cheng Gu
- Syngenta Jealott's Hill International Research Centre Bracknell Berkshire RG42 6EY United Kingdom, UK
| | - Wei‐Hua Zhang
- Jiangsu Key Laboratory of Pesticide Science College of Sciences Nanjing Agricultural University Nanjing 210095 China
| |
Collapse
|