1
|
Ibarra-Gutiérrez JG, Solorio-Alvarado CR, Chacón-García L, López JA, Delgado-Piedra BY, Segura-Quezada LA, Hernández-Velázquez ED, García-Dueñas AK. Gold(I)-Catalyzed Synthesis of 2,2'-Biindoles via One-Pot Double Cycloisomerization Strategy. J Org Chem 2024. [PMID: 39540907 DOI: 10.1021/acs.joc.4c01309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The first systematic, concise and target-directed gold(I)-catalyzed synthesis of a family of 2,2'-biindoles containing different substitution patterns is described. The developed protocol involves the synthesis of 1,3-diyne-anilines followed by a one-pot gold(I)-catalyzed double cycloisomerization, giving rise to an efficient, broad and general protocol to get different 2,2'-biindoles under mild reaction conditions. Due to the methodological restriction of present methods for accessing this class of compounds, herein we present our synthetic proposal which allowed the preparation of several examples of 2,2'-biindoles. Their functionalization-guided us to the discovery that the chemical stability, is substitution structure-dependent.
Collapse
Affiliation(s)
- Jaime G Ibarra-Gutiérrez
- Campus Guanajuato, División de Ciencias Naturales y Exactas, Departamento de Química, Universidad de Guanajuato, Noria Alta S/N, 36050 Guanajuato, Guanajuato, México
| | - César R Solorio-Alvarado
- Campus Guanajuato, División de Ciencias Naturales y Exactas, Departamento de Química, Universidad de Guanajuato, Noria Alta S/N, 36050 Guanajuato, Guanajuato, México
| | - Luis Chacón-García
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Michoacan, Morelia 58033, México
| | - Jesús Adrián López
- MicroRNAs and Cancer Laboratory, Universidad Autónoma de Zacatecas, 98066 Zacatecas, Zac, Mexico
| | - B Yoaly Delgado-Piedra
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Michoacan, Morelia 58033, México
| | - Luis A Segura-Quezada
- Campus Guanajuato, División de Ciencias Naturales y Exactas, Departamento de Química, Universidad de Guanajuato, Noria Alta S/N, 36050 Guanajuato, Guanajuato, México
| | - Edson D Hernández-Velázquez
- Campus Guanajuato, División de Ciencias Naturales y Exactas, Departamento de Química, Universidad de Guanajuato, Noria Alta S/N, 36050 Guanajuato, Guanajuato, México
| | - Ana K García-Dueñas
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Michoacan, Morelia 58033, México
| |
Collapse
|
2
|
Li J, Chen B. Flexible hydrogen-bonded organic frameworks (HOFs): opportunities and challenges. Chem Sci 2024; 15:9874-9892. [PMID: 38966355 PMCID: PMC11220619 DOI: 10.1039/d4sc02628d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 05/20/2024] [Indexed: 07/06/2024] Open
Abstract
Flexible behavior is one of the most fascinating features of hydrogen-bonded organic frameworks (HOFs), which represent an emerging class of porous materials that are self-assembled via H-bonding between organic building units. Due to their unique flexibility, HOFs can undergo structural changes or transformations in response to various stimuli (physical or chemical). Taking advantage of this unique structural feature, flexible HOFs show potential in multifunctional applications such as gas storage/separation, molecular recognition, sensing, proton conductivity, biomedicine, etc. While some other flexible porous materials have been extensively studied, the dynamic behavior of HOFs remains relatively less explored. This perspective highlights the inherent flexible properties of HOFs, discusses their different flexible behaviors, including pore size/shape changes, interpenetration/stacking manner, H-bond breaking/reconstruction, and local dynamic behavior, and highlights their potential applications. We believe that this perspective will not only contribute to HOF chemistry and materials science, but will also facilitate the ongoing extensive research on dynamic porous materials.
Collapse
Affiliation(s)
- Jiantang Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, Zhejiang Normal University Jinhua 321004 P. R. China
| | - Banglin Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, Zhejiang Normal University Jinhua 321004 P. R. China
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Sciences, Fujian Normal University Fujian 350007 P. R. China
| |
Collapse
|
3
|
Jiang C, Wang JX, Liu D, Wu E, Gu XW, Zhang X, Li B, Chen B, Qian G. Supramolecular Entanglement in a Hydrogen-Bonded Organic Framework Enables Flexible-Robust Porosity for Highly Efficient Purification of Natural Gas. Angew Chem Int Ed Engl 2024; 63:e202404734. [PMID: 38635373 DOI: 10.1002/anie.202404734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/03/2024] [Accepted: 04/18/2024] [Indexed: 04/20/2024]
Abstract
The development of porous materials with flexible-robust characteristics shows some unique advantages to target high performance for gas separation, but remains a daunting challenge to achieve so far. Herein, we report a carboxyl-based hydrogen-bonded organic framework (ZJU-HOF-8a) with flexible-robust porosity for efficient purification of natural gas. ZJU-HOF-8a features a four-fold interpenetrated structure with dia topology, wherein abundant supramolecular entanglements are formed between the adjacent subnetworks through weak intermolecular hydrogen bonds. This structural configuration could not only stabilize the whole framework to establish the permanent porosity, but also enable the framework to show some flexibility due to its weak intermolecular interactions (so-called flexible-robust framework). The flexible-robust porosity of ZJU-HOF-8a was exclusively confirmed by gas sorption isotherms and single-crystal X-ray diffraction studies, showing that the flexible pore pockets can be opened by C3H8 and n-C4H10 molecules rather by C2H6 and CH4. This leads to notably higher C3H8 and n-C4H10 uptakes with enhanced selectivities than C2H6 over CH4 under ambient conditions, affording one of the highest n-C4H10/CH4 selectivities. The gas-loaded single-crystal structures coupled with theoretical simulations reveal that the loading of n-C4H10 can induce an obvious framework expansion along with pore pocket opening to improve n-C4H10 uptake and selectivity, while not for C2H6 adsorption. This work suggests an effective strategy of designing flexible-robust HOFs for improving gas separation properties.
Collapse
Affiliation(s)
- Chenghao Jiang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jia-Xin Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Di Liu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Enyu Wu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiao-Wen Gu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xu Zhang
- Jiangsu Engineering Laboratory for Environmental Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, 223300, China
| | - Bin Li
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Banglin Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Guodong Qian
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
4
|
Sei H, Oka K, Hori Y, Shigeta Y, Tohnai N. Network topology diversification of porous organic salts. Chem Sci 2024; 15:8008-8018. [PMID: 38817574 PMCID: PMC11134405 DOI: 10.1039/d4sc01218f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/29/2024] [Indexed: 06/01/2024] Open
Abstract
Hydrogen-bonded organic frameworks (HOFs) are porous organic materials constructed via hydrogen bonds. HOFs have solubility in specific high-polar organic solvents. Therefore, HOFs can be returned to their components and can be reconstructed, which indicates their high recyclability. Network topologies, which are the frameworks of porous structures, control the pore sizes and shapes of HOFs. Therefore, they strongly affect the functions of porous materials. However, hydrogen bonds are usually weak interactions, and the design of the intended network topology in HOFs from their components has been challenging. Porous organic salts (POSs) are an important class of HOFs, are hierarchically constructed via strong charge-assisted hydrogen bonds between sulfonic acids and amines, and therefore are expected to have high designability of the porous structure. However, the network topology of POSs has been limited to only dia-topology. Here, we combined tetrasulfonic acid with the adamantane core (4,4',4'',4'''-(adamantane-1,3,5,7-tetrayl)tetrabenzenesulfonic acid; AdPS) and triphenylmethylamines with modified substituents in para-positions of benzene rings (TPMA-X, X = F, methyl (Me), Cl, Br, I). We changed the steric hindrance between the adamantane and substituents (X) in TPMA-X and obtained not only the common dia-topology for POSs but also rare sod-topology, and lon- and uni-topologies that are formed for the first time in HOFs. Changing template molecules under preparation helped in successfully isolating the porous structures of AdPS/TPMA-Me with dia-, lon-, and sod-topologies which exhibited different gas adsorption properties. Therefore, for the first time, we demonstrated that the steric design of HOF components facilitated the formation, diversification, and control of the network topologies and functions of HOFs.
Collapse
Affiliation(s)
- Hiroi Sei
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University 2-1 Yamadaoka, Suita Osaka 565-0871 Japan
| | - Kouki Oka
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University 2-1 Yamadaoka, Suita Osaka 565-0871 Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University 2-1-1 Katahira, Aoba-ku Sendai Miyagi 980-8577 Japan
| | - Yuta Hori
- Center for Computational Sciences, University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8577 Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8577 Japan
| | - Norimitsu Tohnai
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University 2-1 Yamadaoka, Suita Osaka 565-0871 Japan
| |
Collapse
|
5
|
Vijayakanth T, Dasgupta S, Ganatra P, Rencus-Lazar S, Desai AV, Nandi S, Jain R, Bera S, Nguyen AI, Gazit E, Misra R. Peptide hydrogen-bonded organic frameworks. Chem Soc Rev 2024; 53:3640-3655. [PMID: 38450536 DOI: 10.1039/d3cs00648d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Hydrogen-bonded porous frameworks (HPFs) are versatile porous crystalline frameworks with diverse applications. However, designing chiral assemblies or biocompatible materials poses significant challenges. Peptide-based hydrogen-bonded porous frameworks (P-HPFs) are an exciting alternative to conventional HPFs due to their intrinsic chirality, tunability, biocompatibility, and structural diversity. Flexible, ultra-short peptide-based P-HPFs (composed of 3 or fewer amino acids) exhibit adaptable porous topologies that can accommodate a variety of guest molecules and capture hazardous greenhouse gases. Longer, folded peptides present challenges and opportunities in designing P-HPFs. This review highlights recent developments in P-HPFs using ultra-short peptides, folded peptides, and foldamers, showcasing their utility for gas storage, chiral recognition, chiral separation, and medical applications. It also addresses design challenges and future directions in the field.
Collapse
Affiliation(s)
- Thangavel Vijayakanth
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-6997801, Israel.
| | - Sneha Dasgupta
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, S.A.S. Nagar (Mohali) 160062, India.
| | - Pragati Ganatra
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA.
| | - Sigal Rencus-Lazar
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-6997801, Israel.
| | - Aamod V Desai
- School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK
| | - Shyamapada Nandi
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology, 600127, Chennai, India
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, S.A.S. Nagar (Mohali) 160062, India.
| | - Santu Bera
- Department of Chemistry, Ashoka University, Sonipat, Haryana 131029, India
| | - Andy I Nguyen
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA.
| | - Ehud Gazit
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-6997801, Israel.
- Sagol School of Neuroscience, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Rajkumar Misra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, S.A.S. Nagar (Mohali) 160062, India.
| |
Collapse
|
6
|
Chen XY, Cao LH, Bai XT, Cao XJ. Charge-Assisted Ionic Hydrogen-Bonded Organic Frameworks: Designable and Stabilized Multifunctional Materials. Chemistry 2024; 30:e202303580. [PMID: 38179818 DOI: 10.1002/chem.202303580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/06/2024]
Abstract
Hydrogen-bonded organic frameworks (HOFs) are a class of crystalline framework materials assembled by hydrogen bonds. HOFs have the advantages of high crystallinity, mild reaction conditions, good solution processability, and reproducibility. Coupled with the reversibility and flexibility of hydrogen bonds, HOFs can be assembled into a wide diversity of crystalline structures. Since the bonding energy of hydrogen bonds is lower than that of ligand and covalent bonds, the framework of HOFs is prone to collapse after desolventisation and the stability is not high, which limits the development and application of HOFs. In recent years, numerous stable and functional HOFs have been developed by π-π stacking, highly interpenetrated networks, charge-assisted, ligand-bond-assisted, molecular weaving, and covalent cross-linking. Charge-assisted ionic HOFs introduce electrostatic attraction into HOFs to improve stability while enriching structural diversity and functionality. In this paper, we review the development, the principles of rational design and assembly of charge-assisted ionic HOFs, and introduces the different building block construction modes of charge-assisted ionic HOFs. Highlight the applications of charge-assisted ionic HOFs in gas adsorption and separation, proton conduction, biological applications, etc., and prospects for the diverse design of charge-assisted ionic HOFs structures and multifunctional applications.
Collapse
Affiliation(s)
- Xu-Yong Chen
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Li-Hui Cao
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Xiang-Tian Bai
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Xiao-Jie Cao
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| |
Collapse
|
7
|
Wang H, Wang D, Wu Y, Zhao Y. Macrocycle-Based Hierarchically Porous Hydrogen-Bonded Organic Frameworks. Chemistry 2024; 30:e202303618. [PMID: 38117667 DOI: 10.1002/chem.202303618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 12/22/2023]
Abstract
Hydrogen-bonded organic frameworks (HOFs) are porous crystalline materials. The pores in HOFs are usually non-covalent extrinsic pores constructed through the formation of the framework. Supramolecular macrocycles with intrinsic pores in their structures are good candidates for constructing HOFs with intrinsic pores from the macrocycles themselves, thus leading to hierarchically porous structures. Combining the macrocycle and HOFs will endow these hierarchically porous materials with enhanced properties and special functionalities. This review summarizes recent advances in macrocycle-based HOFs, including the macrocycles used for constructing HOFs, the hierarchically porous structures of the HOFs, and the applications induced by the hierarchically HOFs porous structures. This review provides insights for future research on macrocycle-based hierarchically porous HOFs and the appropriate applications of the unique structures.
Collapse
Affiliation(s)
- Hui Wang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Road, 266042, Qingdao, China
- College of Chemical Engineering, Qingdao University of Science and Technology, Zhengzhou Road, 266042, Qingdao, China) Please change the image of the Frontispiece from the current image to the TOC image
| | - Danbo Wang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Road, 266042, Qingdao, China
| | - Yumin Wu
- College of Chemical Engineering, Qingdao University of Science and Technology, Zhengzhou Road, 266042, Qingdao, China) Please change the image of the Frontispiece from the current image to the TOC image
| | - Yingjie Zhao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Road, 266042, Qingdao, China
| |
Collapse
|
8
|
Chen C, Shen L, Lin H, Zhao D, Li B, Chen B. Hydrogen-bonded organic frameworks for membrane separation. Chem Soc Rev 2024; 53:2738-2760. [PMID: 38333989 DOI: 10.1039/d3cs00866e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Hydrogen-bonded organic frameworks (HOFs) are a new class of crystalline porous materials that are formed through the interconnection of organic or metal-organic building units via intermolecular hydrogen bonds. The remarkable flexibility and reversibility of hydrogen bonds, coupled with the customizable nature of organic units, endow HOFs with mild synthesis conditions, high crystallinity, solvent processability, and facile self-healing and regeneration properties. Consequently, these features have garnered significant attention across various fields, particularly in the realm of membrane separation. Herein, we present an overview of the recent advances in HOF-based membranes, including their advanced fabrication strategies and fascinating applications in membrane separation. To attain the desired HOF-based membranes, careful consideration is dedicated to crucial factors such as pore size, stability, hydrophilicity/hydrophobicity, and surface charge of the HOFs. Additionally, diverse preparation methods for HOF-based membranes, including blending, in situ growth, solution-processing, and electrophoretic deposition, have been analyzed. Furthermore, applications of HOF-based membranes in gas separation, water treatment, fuel cells, and other emerging application areas are presented. Finally, the challenges and prospects of HOF-based membranes are critically pointed out.
Collapse
Affiliation(s)
- Cheng Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Dieling Zhao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Bisheng Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Banglin Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua 321004, China
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, China.
| |
Collapse
|
9
|
Pedrini A, Marchetti D, Pinalli R, Massera C. Stimuli-Responsive, Dynamic Supramolecular Organic Frameworks. Chempluschem 2023; 88:e202300383. [PMID: 37675865 DOI: 10.1002/cplu.202300383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/08/2023]
Abstract
Supramolecular organic frameworks (SOFs) are a class of three-dimensional, potentially porous materials obtained by the self-assembly of organic building blocks held together by weak interactions such as hydrogen bonds, halogen bonds, π⋅⋅⋅π stacking and dispersion forces. SOFs are being extensively studied for their potential applications in gas storage and separation, catalysis, guest encapsulation and sensing. The supramolecular forces that guide their self-assembly endow them with an attractive combination of crystallinity and flexibility, providing intelligent dynamic materials that can respond to external stimuli in a reversible way. The present review article will focus on SOFs showing dynamic behaviour when exposed to different stimuli, highlighting fundamental aspects such as the combination of tectons and supramolecular interactions involved in the framework formation, structure-property relationship and their potential applications.
Collapse
Affiliation(s)
- Alessandro Pedrini
- Department of Chemistry, Life Sciences and Environmental Sustainability and INSTM UdR Parma, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Danilo Marchetti
- Department of Chemistry, Life Sciences and Environmental Sustainability and INSTM UdR Parma, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
- Center for Materials Interfaces, Electron Crystallography, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025, Pontedera, Italy
| | - Roberta Pinalli
- Department of Chemistry, Life Sciences and Environmental Sustainability and INSTM UdR Parma, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Chiara Massera
- Department of Chemistry, Life Sciences and Environmental Sustainability and INSTM UdR Parma, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| |
Collapse
|
10
|
Cai Y, Gao J, Li JH, Liu P, Zheng Y, Zhou W, Wu H, Li L, Lin RB, Chen B. Pore Modulation of Hydrogen-Bonded Organic Frameworks for Efficient Separation of Propylene. Angew Chem Int Ed Engl 2023; 62:e202308579. [PMID: 37486880 DOI: 10.1002/anie.202308579] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 07/26/2023]
Abstract
Developing hydrogen-bonded organic frameworks (HOFs) that combine functional sites, size control, and storage capability for targeting gas molecule capture is a novel and challenging venture. However, there is a lack of effective strategies to tune the hydrogen-bonded network to achieve high-performance HOFs. Here, a series of HOFs termed as HOF-ZSTU-M (M=1, 2, and 3) with different pore structures are obtained by introducing structure-directing agents (SDAs) into the hydrogen-bonding network of tetrakis (4-carboxyphenyl) porphyrin (TCPP). These HOFs have distinct space configurations with pore channels ranging from discrete to continuous multi-dimensional. Single-crystal X-ray diffraction (SCXRD) analysis reveals a rare diversity of hydrogen-bonding models dominated by SDAs. HOF-ZSTU-2, which forms a strong layered hydrogen-bonding network with ammonium (NH4 + ) through multiple carboxyl groups, has a suitable 1D "pearl-chain" channel for the selective capture of propylene (C3 H6 ). At 298 K and 1 bar, the C3 H6 storage density of HOF-ZSTU-2 reaches 0.6 kg L-1 , representing one of the best C3 H6 storage materials, while offering a propylene/propane (C3 H6 /C3 H8 ) selectivity of 12.2. Theoretical calculations and in situ SCXRD provide a detailed analysis of the binding strength of C3 H6 at different locations in the pearl-chain channel. Dynamic breakthrough tests confirm that HOF-ZSTU-2 can effectively separate C3 H6 from multi-mixtures.
Collapse
Affiliation(s)
- Youlie Cai
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Junkuo Gao
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jing-Hong Li
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Puxu Liu
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yanchun Zheng
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Wei Zhou
- NST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-6102, USA
| | - Hui Wu
- NST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-6102, USA
| | - Libo Li
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Rui-Biao Lin
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Banglin Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| |
Collapse
|
11
|
Ding X, Luo Y, Wang W, Hu T, Chen J, Ye G. Charge-Assisted Hydrogen-Bonded Organic Frameworks with Inorganic Ammonium Regulated Switchable Open Polar Sites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207771. [PMID: 36799180 DOI: 10.1002/smll.202207771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/10/2023] [Indexed: 05/18/2023]
Abstract
Surface open polar sites within the voids of porous molecular crystals define the localized physicochemical environment for critical functions such as gas separation and molecular recognition. This study presents a new charge-assisted hydrogen bonding (H-bonding) motif, by exploiting inorganic ammonium (NH4 + ) cations as H-bond donors, to regulate the assembly of C2 -symmetric carboxylic tectons for building robust H-bonded frameworks with permanent ultra-micropores and open oxygen sites. Diverse building blocks are bridged by tetrahedral NH4 + to expand distinctive H-bonded networks with varied pore architectures. Particularly, the open polar oxygen sites can be switched by altering NH4 + sources to tune the deprotonation of carboxyl-containing tectons. The activated porous PTBA·NH4 ·DMF preserves the pore architecture and open polar oxygen sites, exhibiting remarkably selective sorption of CO2 (107.8 cm3 g-1 ,195 K) over N2 (11.2 cm3 g-1 , 77 K) and H2 (1.4 cm3 g-1 , 77 K).
Collapse
Affiliation(s)
- Xiaojun Ding
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Yilin Luo
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Wei Wang
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Tongyang Hu
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Jing Chen
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Gang Ye
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
12
|
Wang D, Zhao Y. Rigid-Flexible Hybrid Porous Molecular Crystals with Guest-Induced Reversible Crystallinity. Angew Chem Int Ed Engl 2023; 62:e202217903. [PMID: 36720717 DOI: 10.1002/anie.202217903] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/02/2023]
Abstract
A weak CH/O hydrogen-bonded organic framework (HOF) with both rigidity and flexibility that could easily and reversibly switch from a non-crystalline to a crystalline phase was constructed. The specific solvent molecule acts as a "key" to control the crystallinity, while the highly rigid triangle macrocycle as the building block is the "lock". The introduction and removal of the "key" could influence the local flexibility of the whole framework and lead to switchable crystallinity. Furthermore, the obtained HOF exhibits excellent separation efficiency for benzene and cyclohexane (94.4 %).
Collapse
Affiliation(s)
- Danbo Wang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Road, 266000, Qingdao, China
| | - Yingjie Zhao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Road, 266000, Qingdao, China
| |
Collapse
|
13
|
Tong L, Lin Y, Kou X, Shen Y, Shen Y, Huang S, Zhu F, Chen G, Ouyang G. Pore-Environment-Dependent Photoresponsive Oxidase-Like Activity in Hydrogen-Bonded Organic Frameworks. Angew Chem Int Ed Engl 2023; 62:e202218661. [PMID: 36719177 DOI: 10.1002/anie.202218661] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/01/2023]
Abstract
Mimicking the bioactivity of native enzymes through synthetic chemistry is an efficient means to advance the biocatalysts in a cell-free environment, however, remains long-standing challenges. Herein, we utilize structurally explicit hydrogen-bonded organic frameworks (HOFs) to mimic photo-responsive oxidase, and uncover the important role of pore environments on mediating oxidase-like activity by means of constructing isostructural HOFs. We discover that the HOF pore with suitable geometry can stabilize and spatially organize the catalytic substrate into a favorable catalytic route, as with the function of the native enzyme pocket. Based on the desirable photo-responsive oxidase-like activity, a visual and sensitive HOFs biosensor is established for the detection of phosphatase, an important biomarker of skeletal and hepatobiliary diseases. This work demonstrates that the pore environments significantly influence the nanozymes' activity in addition to the active center.
Collapse
Affiliation(s)
- Linjing Tong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yuhong Lin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xiaoxue Kou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yujian Shen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yong Shen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Siming Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Fang Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
14
|
Liu Y, Chang G, Zheng F, Chen L, Yang Q, Ren Q, Bao Z. Hybrid Hydrogen-Bonded Organic Frameworks: Structures and Functional Applications. Chemistry 2023; 29:e202202655. [PMID: 36414543 DOI: 10.1002/chem.202202655] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
As a new class of porous crystalline materials, hydrogen-bonded organic frameworks (HOFs) assembled from building blocks by hydrogen bonds have gained increasing attention. HOFs benefit from advantages including mild synthesis, easy purification, and good recyclability. However, some HOFs transform into unstable frameworks after desolvation, which hinders their further applications. Nowadays, the main challenges of developing HOFs lie in stability improvement, porosity establishment, and functionalization. Recently, more and more stable and permanently porous HOFs have been reported. Of all these design strategies, stronger charge-assisted hydrogen bonds and coordination bonds have been proven to be effective for developing stable, porous, and functional solids called hybrid HOFs, including ionic and metallized HOFs. This Review discusses the rational design synthesis principles of hybrid HOFs and their cutting-edge applications in selective inclusion, proton conduction, gas separation, catalysis and so forth.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of Biomass Chemical Engineering of, Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang Province, 310027, P.R. China
| | - Ganggang Chang
- State Key Laboratory of Advanced Technology for, Materials Synthesis and Processing, School of Chemistry Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei Province, 430070, P.R. China
| | - Fang Zheng
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province, 324000, P.R. China
| | - Lihang Chen
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province, 324000, P.R. China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of, Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang Province, 310027, P.R. China.,Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province, 324000, P.R. China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of, Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang Province, 310027, P.R. China.,Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province, 324000, P.R. China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of, Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang Province, 310027, P.R. China.,Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province, 324000, P.R. China
| |
Collapse
|
15
|
Yan X, Zhao Y, Cao G, Li X, Gao C, Liu L, Ahmed S, Altaf F, Tan H, Ma X, Xie Z, Zhang H. 2D Organic Materials: Status and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203889. [PMID: 36683257 PMCID: PMC9982583 DOI: 10.1002/advs.202203889] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/31/2022] [Indexed: 06/17/2023]
Abstract
In the past few decades, 2D layer materials have gradually become a central focus in materials science owing to their uniquely layered structural qualities and good optoelectronic properties. However, in the development of 2D materials, several disadvantages, such as limited types of materials and the inability to synthesize large-scale materials, severely confine their application. Therefore, further exploration of new materials and preparation methods is necessary to meet technological developmental needs. Organic molecular materials have the advantage of being customizable. Therefore, if organic molecular and 2D materials are combined, the resulting 2D organic materials would have excellent optical and electrical properties. In addition, through this combination, the free design and large-scale synthesis of 2D materials can be realized in principle. Furthermore, 2D organic materials exhibit excellent properties and unique functionalities along with great potential for developing sensors, biomedicine, and electronics. In this review, 2D organic materials are divided into five categories. The preparation methods and material properties of each class of materials are also described in detail. Notably, to comprehensively understand each material's advantages, the latest research applications for each material are presented in detail and summarized. Finally, the future development and application prospects of 2D organic materials are briefly discussed.
Collapse
Affiliation(s)
- Xiaobing Yan
- School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain‐Like Neuromorphic Devices and Systems of Hebei ProvinceCollege of Electronic and Information EngineeringHebei UniversityBaoding071002China
| | - Ying Zhao
- School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain‐Like Neuromorphic Devices and Systems of Hebei ProvinceCollege of Electronic and Information EngineeringHebei UniversityBaoding071002China
| | - Gang Cao
- School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain‐Like Neuromorphic Devices and Systems of Hebei ProvinceCollege of Electronic and Information EngineeringHebei UniversityBaoding071002China
| | - Xiaoyu Li
- School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain‐Like Neuromorphic Devices and Systems of Hebei ProvinceCollege of Electronic and Information EngineeringHebei UniversityBaoding071002China
| | - Chao Gao
- School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain‐Like Neuromorphic Devices and Systems of Hebei ProvinceCollege of Electronic and Information EngineeringHebei UniversityBaoding071002China
| | - Luan Liu
- School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain‐Like Neuromorphic Devices and Systems of Hebei ProvinceCollege of Electronic and Information EngineeringHebei UniversityBaoding071002China
| | - Shakeel Ahmed
- Collaborative Innovation Center for Optoelectronic Science and TechnologyInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationInstitute of Microscale OptoelectronicsCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Faizah Altaf
- Department of ChemistryWomen University Bagh Azad KashmirBagh Azad KashmirBagh12500Pakistan
- School of Materials Science and EngineeringGeorgia Institute of Technology North AvenueAtlantaGA30332USA
| | - Hui Tan
- Department of RespiratoryShenzhen Children's HospitalShenzhen518036P. R. China
| | - Xiaopeng Ma
- Department of RespiratoryShenzhen Children's HospitalShenzhen518036P. R. China
| | - Zhongjian Xie
- Institute of PediatricsShenzhen Children's HospitalShenzhenGuangdong518038P. R. China
- Shenzhen International Institute for Biomedical ResearchShenzhenGuangdong518116China
| | - Han Zhang
- Collaborative Innovation Center for Optoelectronic Science and TechnologyInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationInstitute of Microscale OptoelectronicsCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060P. R. China
| |
Collapse
|
16
|
Xu X, Yan B. Recent advances in room temperature phosphorescence materials: design strategies, internal mechanisms and intelligent optical applications. Phys Chem Chem Phys 2023; 25:1457-1475. [PMID: 36597905 DOI: 10.1039/d2cp05063c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Room temperature phosphorescence (RTP) materials comprising organic-inorganic hybrid, pure organic, and polymer RTP materials have been a research focus due to their tunable molecular structures, long emission lifetimes and extensive optical applications. Many design methods including halogen bonding interactions, heavy atom effect, metal-organic frameworks, polymerization, host-guest doping, and H-aggregation have been developed by RTP researchers. Narrowing the energy gap between the S1 and lowest Tn states, enhancing the intersystem crossing (ISC) rate, increasing the spin-orbit coupling (SOC) value and stabilizing triplet emission states are the core factors to promoting RTP performance. In this review, lots of cases of organic-inorganic hybrid, pure organic, and polymer RTP materials with advanced design strategies, excellent RTP properties and intelligent applications have been classified and sorted. Their molecule structural designability and stimulus responsiveness endow them with RTP adjustability, which makes them excellent phosphors for modern optical applications. This review provides a systematic case elaboration of typical RTP systems in recent years and identifies the future challenges to improving RTP performance and finding novel applications.
Collapse
Affiliation(s)
- Xin Xu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China.
| | - Bing Yan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China.
| |
Collapse
|
17
|
Hashimoto T, Oketani R, Nobuoka M, Seki S, Hisaki I. Single Crystalline, Non-stoichiometric Cocrystals of Hydrogen-Bonded Organic Frameworks. Angew Chem Int Ed Engl 2023; 62:e202215836. [PMID: 36347770 DOI: 10.1002/anie.202215836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Indexed: 11/11/2022]
Abstract
Porous frameworks composed of non-stoichiometrically mixed multicomponent molecules attract much attention from a functional viewpoint. However, their designed preparation and precise structural characterization remain challenging. Herein, we demonstrate that cocrystallization of tetrakis(4-carboxyphenyl)hexahydropyrene and pyrene derivatives (CP-Hp and CP-Py, respectively) yields non-stoichiometric mixed frameworks through networking via hydrogen bonding. The composition ratio of CP-Hp and CP-Py in the framework was determined by single crystalline X-ray crystallographic analysis, indicating that the mixed frameworks were formed over a wide range of composition ratios. Furthermore, microscopic Raman spectroscopy on the single crystal indicates that the components are not uniformly distributed such as ideal solid solution, but are done gradationally or inhomogeneously.
Collapse
Affiliation(s)
- Taito Hashimoto
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Ryusei Oketani
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Masaki Nobuoka
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Shu Seki
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Ichiro Hisaki
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
18
|
Lin ZJ, Mahammed SAR, Liu TF, Cao R. Multifunctional Porous Hydrogen-Bonded Organic Frameworks: Current Status and Future Perspectives. ACS CENTRAL SCIENCE 2022; 8:1589-1608. [PMID: 36589879 PMCID: PMC9801510 DOI: 10.1021/acscentsci.2c01196] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Indexed: 05/20/2023]
Abstract
Hydrogen-bonded organic frameworks (HOFs), self-assembled from organic or metalated organic building blocks (also termed as tectons) by hydrogen bonding, π-π stacking, and other intermolecular interactions, have become an emerging class of multifunctional porous materials. So far, a library of HOFs with high porosity has been synthesized based on versatile tectons and supramolecular synthons. Benefiting from the flexibility and reversibility of H-bonds, HOFs feature high structural flexibility, mild synthetic reaction, excellent solution processability, facile healing, easy regeneration, and good recyclability. However, the flexible and reversible nature of H-bonds makes most HOFs suffer from poor structural designability and low framework stability. In this Outlook, we first describe the development and structural features of HOFs and summarize the design principles of HOFs and strategies to enhance their stability. Second, we highlight the state-of-the-art development of HOFs for diverse applications, including gas storage and separation, heterogeneous catalysis, biological applications, sensing, proton conduction, and other applications. Finally, current challenges and future perspectives are discussed.
Collapse
Affiliation(s)
- Zu-Jin Lin
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou 350002, P. R. China
- College
of Life Science, Fujian Agriculture and
Forestry University, Fuzhou, Fujian 350002, P. R. China
| | - Shaheer A. R. Mahammed
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou 350002, P. R. China
| | - Tian-Fu Liu
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou 350002, P. R. China
- Fujian
Science & Technology Innovation Laboratory for Optoelectronic
Information of China, Fuzhou, Fujian 350108, P. R. China
| | - Rong Cao
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou 350002, P. R. China
- Fujian
Science & Technology Innovation Laboratory for Optoelectronic
Information of China, Fuzhou, Fujian 350108, P. R. China
| |
Collapse
|
19
|
Chen L, Yuan Z, Zhang H, Ye Y, Yang Y, Xiang F, Cai K, Xiang S, Chen B, Zhang Z. A Flexible Hydrogen-Bonded Organic Framework Constructed from a Tetrabenzaldehyde with a Carbazole N-H Binding Site for the Highly Selective Recognition and Separation of Acetone. Angew Chem Int Ed Engl 2022; 61:e202213959. [PMID: 36259375 DOI: 10.1002/anie.202213959] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Indexed: 11/24/2022]
Abstract
Rational design of hydrogen-bonded organic frameworks (HOFs) with multiple functionalities is highly sought after but challenging. Herein, we report a multifunctional HOF (HOF-FJU-2) built from 4,4',4'',4'''-(9H-carbazole-1,3,6,8-tetrayl)tetrabenzaldehyde molecule with tetrabenzaldeyde for their H bonding interactions and carbazole N-H site for its specific recognition of small molecules. The Lewis acid N-H sites allow HOF-FJU-2 facilely separate acetone from its mixture with another solvent like methanol with smaller pKa value. The donor (D)-π-acceptor (A) aromatic nature of the organic building molecule endows this HOF with solvent dependent luminescent/chromic properties, so the column acetone/methanol separation on HOF-FJU-2 can be readily visualized.
Collapse
Affiliation(s)
- Liangji Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Zhen Yuan
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Hao Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Yingxiang Ye
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Yisi Yang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Fahui Xiang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Kaicong Cai
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Shengchang Xiang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Banglin Chen
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249-0698, USA
| | - Zhangjing Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| |
Collapse
|
20
|
Chen F, Xu H, Cai Y, Zhang W, Shen P, Zhang W, Xie H, Bai G, Xu S, Gao J. Multi-Responsive Sensor Based on Porous Hydrogen-Bonded Organic Frameworks for Selective Sensing of Ions and Dopamine Molecules. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248750. [PMID: 36557883 PMCID: PMC9781585 DOI: 10.3390/molecules27248750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022]
Abstract
Hydrogen-bonded organic frameworks (HOFs), as an emerging porous material, have attracted increasing research interest in fluorescence sensing due to their inherent fluorescence emission units with unique physicochemical properties. Herein, based on the organic building block 3,3',5,5'-tetrakis-(4-carboxyphenyl)-1,1'-biphenyl (H4TCBP), the porous material HOF-TCBP was successfully synthesized using hydrogen bond self-assembly in a DMF solution. The fluorescence properties of the HOF-TCBP solution showed that when the concentration was high, excimers were easily formed, the PL emission was red-shifted, and the fluorescence intensity became weaker. HOF-TCBP showed good sensitivity and selectivity to metal ions Fe3+, Cr3+, and anion Cr2O72-. In addition, HOF-TCBP can serve as a label-free fluorescent sensor material for the sensitive and selective detection of dopamine (DA). HOF-based DA sensing is actually easy, low-cost, simple to operate, and highly selective for many potential interfering substances, and it has been successfully applied to the detection of DA in biological samples with satisfactory recoveries (101.1-104.9%). To our knowledge, this is the first report of HOF materials for efficient detection of the neurotransmitter dopamine in biological fluids. In short, this work widely broadens the application of HOF materials as fluorescent sensors for the sensing of ions and biological disease markers.
Collapse
Affiliation(s)
- Faqiang Chen
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, Institute of Optoelectronic Materials and Devices, Collage of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Hui Xu
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, Institute of Optoelectronic Materials and Devices, Collage of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
- Correspondence: (H.X.); (J.G.); Tel.: +86-0571-86843618 (J.G.)
| | - Youlie Cai
- Institute of Functional Porous Materials, The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Wei Zhang
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, Institute of Optoelectronic Materials and Devices, Collage of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Penglei Shen
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, Institute of Optoelectronic Materials and Devices, Collage of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Wenhua Zhang
- Technical Center of Hangzhou Customs, Hangzhou 310016, China
| | - Hangqing Xie
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, Institute of Optoelectronic Materials and Devices, Collage of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Gongxun Bai
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, Institute of Optoelectronic Materials and Devices, Collage of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Shiqing Xu
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, Institute of Optoelectronic Materials and Devices, Collage of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Junkuo Gao
- Institute of Functional Porous Materials, The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Correspondence: (H.X.); (J.G.); Tel.: +86-0571-86843618 (J.G.)
| |
Collapse
|
21
|
Boer SA, Conte L, Tarzia A, Huxley MT, Gardiner MG, Appadoo DRT, Ennis C, Doonan CJ, Richardson C, White NG. Water Sorption Controls Extreme Single-Crystal-to-Single-Crystal Molecular Reorganization in Hydrogen Bonded Organic Frameworks. Chemistry 2022; 28:e202201929. [PMID: 35768334 DOI: 10.1002/chem.202201929] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Indexed: 01/07/2023]
Abstract
As hydrogen bonded frameworks are held together by relatively weak interactions, they often form several different frameworks under slightly different synthesis conditions and respond dynamically to stimuli such as heat and vacuum. However, these dynamic restructuring processes are often poorly understood. In this work, three isoreticular hydrogen bonded organic frameworks assembled through charge-assisted amidinium⋅⋅⋅carboxylate hydrogen bonds (1C/C , 1Si/C and 1Si/Si ) are studied. Three distinct phases for 1C/C and four for 1Si/C and 1Si/Si are fully structurally characterized. The transitions between these phases involve extreme yet recoverable molecular-level framework reorganization. It is demonstrated that these transformations are related to water content and can be controlled by humidity, and that the non-porous anhydrous phase of 1C/C shows reversible water sorption through single crystal to crystal restructuring. This mechanistic insight opens the way for the future use of the inherent dynamism present in hydrogen bonded frameworks.
Collapse
Affiliation(s)
- Stephanie A Boer
- Research School of Chemistry, Australian National University, Canberra, 2600 ACT, Australia
- ANSTO Australian Synchrotron, Clayton, 3168 VIC, Australia
| | - Luke Conte
- School of Chemistry and Molecular Bioscience, Faculty of Science Medicine and Health, University of Wollongong, Wollongong, 2520 NSW, Australia
| | - Andrew Tarzia
- Department of Chemistry and Centre for Advanced Materials, University of Adelaide, Adelaide, 5005 SA, Australia
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, W12 0BZ, UK
| | - Michael T Huxley
- Department of Chemistry and Centre for Advanced Materials, University of Adelaide, Adelaide, 5005 SA, Australia
| | - Michael G Gardiner
- Research School of Chemistry, Australian National University, Canberra, 2600 ACT, Australia
| | | | - Courtney Ennis
- Department of Chemistry, University of Otago, Dunedin, 9054, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, 6140, Wellington, New Zealand
| | - Christian J Doonan
- Department of Chemistry and Centre for Advanced Materials, University of Adelaide, Adelaide, 5005 SA, Australia
| | - Christopher Richardson
- School of Chemistry and Molecular Bioscience, Faculty of Science Medicine and Health, University of Wollongong, Wollongong, 2520 NSW, Australia
| | - Nicholas G White
- Research School of Chemistry, Australian National University, Canberra, 2600 ACT, Australia
| |
Collapse
|
22
|
Yang Z, Hashimoto T, Oketani R, Nakamura T, Hisaki I. Geometrically Mismatched Hydrogen‐bonded Framework Composed of Tetratopic Carboxylic Acid. Chemistry 2022; 28:e202201571. [DOI: 10.1002/chem.202201571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Zhuxi Yang
- Division of Environmental Materials Science Graduate School of Environmental Science Hokkaido University 060-0810 Sapporo Hokkaido Japan
| | - Taito Hashimoto
- Division of Chemistry Graduate School of Engineering Science Osaka University 1–3 Machikaneyama 560-8531 Toyonaka Osaka Japan
| | - Ryusei Oketani
- Division of Chemistry Graduate School of Engineering Science Osaka University 1–3 Machikaneyama 560-8531 Toyonaka Osaka Japan
| | - Takayoshi Nakamura
- Division of Environmental Materials Science Graduate School of Environmental Science Hokkaido University 060-0810 Sapporo Hokkaido Japan
- Research Institute for Electronic Science Hokkaido University 001-0020 Sapporo Hokkaido Japan
| | - Ichiro Hisaki
- Division of Chemistry Graduate School of Engineering Science Osaka University 1–3 Machikaneyama 560-8531 Toyonaka Osaka Japan
| |
Collapse
|
23
|
Hsu YF, Wu TW, Kang YH, Wu CY, Liu YH, Peng SM, Kong KV, Yang JS. Porous Supramolecular Assembly of Pentiptycene-Containing Gold(I) Complexes: Persistent Excited-State Aurophilicity and Inclusion-Induced Emission Enhancement. Inorg Chem 2022; 61:11981-11991. [PMID: 35838662 DOI: 10.1021/acs.inorgchem.2c01786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report herein a porous supramolecular framework formed by a linear mononuclear Au(I) complex (1) via the tongue-and-groove-like joinery between the pentiptycene U-cavities (grooves) and the rod-shaped π-conjugated backbone and alkyl chains (tongues) with the assistance of C-H···π and aurophilic interactions. The framework contains distorted tetrahedral Au4 units, which undergo stepwise and persistent photoinduced Au(I)-Au(I) bond shortening (excited-state aurophilicity), leading to multicolored luminescence photochromism. The one-dimensional pore channels could accommodate different solvates and guests, and the guest inclusion-induced luminescence enhancement (up to 300%) and/or vapochromism are characterized. A correlation between the aurophilic bonding and the luminescence activity is uncovered by TDDFT calculations. Isostructural derivatives 2 and 3 corroborate both the robustness of the porous supramolecular assembly and the mechanisms of the stimulation-induced luminescence properties of 1. This work demonstrates the cooperation of aurophilicity and structural porosity and adaptability in achieving novel supramolecular photochemical properties.
Collapse
Affiliation(s)
- Ying-Feng Hsu
- Department of Chemistry, National Taiwan University, Taipei 10617 Taiwan
| | - Ting-Wei Wu
- Department of Chemistry, National Taiwan University, Taipei 10617 Taiwan
| | - Yu-Hsuan Kang
- Department of Chemistry, National Taiwan University, Taipei 10617 Taiwan
| | - Cheng-Yun Wu
- Department of Chemistry, National Taiwan University, Taipei 10617 Taiwan
| | - Yi-Hung Liu
- Department of Chemistry, National Taiwan University, Taipei 10617 Taiwan
| | - Shie-Ming Peng
- Department of Chemistry, National Taiwan University, Taipei 10617 Taiwan
| | - Kien Voon Kong
- Department of Chemistry, National Taiwan University, Taipei 10617 Taiwan
| | - Jye-Shane Yang
- Department of Chemistry, National Taiwan University, Taipei 10617 Taiwan
| |
Collapse
|
24
|
|
25
|
Song X, Wang Y, Wang C, Wang D, Zhuang G, Kirlikovali KO, Li P, Farha OK. Design Rules of Hydrogen-Bonded Organic Frameworks with High Chemical and Thermal Stabilities. J Am Chem Soc 2022; 144:10663-10687. [PMID: 35675383 DOI: 10.1021/jacs.2c02598] [Citation(s) in RCA: 109] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hydrogen-bonded organic frameworks (HOFs), self-assembled from strategically pre-designed molecular tectons with complementary hydrogen-bonding patterns, are rapidly evolving into a novel and important class of porous materials. In addition to their common features shared with other functionalized porous materials constructed from modular building blocks, the intrinsically flexible and reversible H-bonding connections endow HOFs with straightforward purification procedures, high crystallinity, solution processability, and recyclability. These unique advantages of HOFs have attracted considerable attention across a broad range of fields, including gas adsorption and separation, catalysis, chemical sensing, and electrical and optical materials. However, the relatively weak H-bonding interactions within HOFs can potentially limit their stability and potential use in further applications. To that end, this Perspective highlights recent advances in the development of chemically and thermally robust HOF materials and systematically discusses relevant design rules and synthesis strategies to access highly stable HOFs.
Collapse
Affiliation(s)
- Xiyu Song
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Yao Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Chen Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Dong Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Guowei Zhuang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Kent O Kirlikovali
- Department of Chemistry, International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Peng Li
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Omar K Farha
- Department of Chemistry, International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
26
|
Chiral hydrogen-bonded organic frameworks used as a chiral stationary phase for chiral separation in gas chromatography. J Chromatogr A 2022; 1675:463150. [PMID: 35660319 DOI: 10.1016/j.chroma.2022.463150] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/02/2022] [Accepted: 05/13/2022] [Indexed: 11/22/2022]
Abstract
Hydrogen-bonded organic frameworks (HOFs) are two dimensional (2D) or three dimensional (3D) porous crystalline materials constructed by Hydrogen bond interaction. In recent years, a variety of functional HOF materials have been successfully synthesized and used in structural identification, environmental pollutant removal, chiral resolution, drug delivery, fluorescence sensing, etc. Here, we first reported that a HOF to coated capillary column for high-resolution gas chromatographic separation of a wide range of analytes, including n-alkanes, n-alcohols, polycyclic aromatic hydrocarbons, and positional isomers, especially for racemates, the HOFs column showed excellent separation repeatability and reproducibility. The relative standard deviation (RSD) values for the retention times were in the range of 0.37-2.43% for run to run (n = 3), 0.38-2.51% for day-to-day (n = 3), and 0.31-2.54% for column-to-column (n = 3), respectively. Moreover, we applied density-functional theory to calculate the adsorption of enantiomers in HOF structures. This work proved that the HOFs had great application prospects as stationary phase in gas chromatography.
Collapse
|
27
|
Shao D, Peng P, You M, Shen LF, She SY, Zhang YQ, Tian Z. Hydrogen-Bonded Framework of a Cobalt(II) Complex Showing Superior Stability and Field-Induced Slow Magnetic Relaxation. Inorg Chem 2022; 61:3754-3762. [PMID: 35167748 DOI: 10.1021/acs.inorgchem.2c00034] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A unique hydrogen-bonded organic-inorganic framework (HOIF) constructed from a mononuclear cobalt(II) complex, [Co(MCA)2·(H2O)2] (HMCA = 4-imidazolecarboxylic acid), via multiple hydrogen-bonding interactions was synthesized and structurally characterized. The Co(II) center in the HOIF features a highly distorted octahedral coordination environment. Remarkably, the CoII HOIF showed permanent porosity with superior stability as established by combined thermogravimetric analysis (TGA), variable-temperature infrared spectra (IR), variable-temperature powder X-ray diffraction data (PXRD), and a CO2 isotherm. Structural studies reveal that short multiple hydrogen bonds should be responsible for the superior thermal and chemical stability of a HIOF. Magnetic investigations reveal the large easy-plane magnetic anisotropy of the Co2+ ions with the fitted D values being 22.1 (magnetic susceptibility and magnetization data) and 29.1 cm-1 (reduced magnetization data). In addition, the HOIF exhibits field-induced slow magnetic relaxation at low temperature with an effective energy barrier of Ueff = 45.2 cm-1, indicative of a hydrogen-bonded framework single-ion magnet of the compound. The origin of the significant magnetic anisotropy of the complex was also understood from computational studies. In addition, BS-DFT calculations indicate that the superexchange interactions between the neighboring CoII ions are non-negligible antiferromagnetism with JCo-Co = -0.5 cm-1. The foregoing results provide not only a carboxylate-imidazole ligand approach toward a stable HOIF but also a promising way to build a robust single-ion magnet via hydrogen-bond interactions.
Collapse
Affiliation(s)
- Dong Shao
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, P. R. China
| | - Peng Peng
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, P. R. China
| | - Maolin You
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Lin-Feng Shen
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, P. R. China
| | - Shi-Yuan She
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, P. R. China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Zhengfang Tian
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, P. R. China
| |
Collapse
|
28
|
di Nunzio MR, Suzuki Y, Hisaki I, Douhal A. HOFs Built from Hexatopic Carboxylic Acids: Structure, Porosity, Stability, and Photophysics. Int J Mol Sci 2022; 23:1929. [PMID: 35216044 PMCID: PMC8875020 DOI: 10.3390/ijms23041929] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 02/05/2023] Open
Abstract
Hydrogen-bonded organic frameworks (HOFs) have attracted renewed attention as another type of promising candidates for functional porous materials. In most cases of HOF preparation, the applied molecular design principle is based on molecules with rigid π-conjugated skeleton together with more than three H-bonding groups to achieve 2D- or 3D-networked structures. However, the design principle does not always work, but results in formation of unexpected structures, where subtle structural factors of which we are not aware dictate the entire structure of HOFs. In this contribution, we assess recent advances in HOFs, focusing on those composed of hexatopic building block molecules, which can provide robust frameworks with a wide range of topologies and properties. The HOFs described in this work are classified into three types, depending on their H-bonded structural motifs. Here in, we focus on: (1) the chemical aspects that govern their unique fundamental chemistry and structures; and (2) their photophysics at the ensemble and single-crystal levels. The work addresses and discusses how these aspects affect and orient their photonic applicability. We trust that this contribution will provide a deep awareness and will help scientists to build up a systematic series of porous materials with the aim to control both their structural and photodynamical assets.
Collapse
Affiliation(s)
- Maria Rosaria di Nunzio
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain;
| | - Yuto Suzuki
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, Osaka 565-0871, Japan;
| | - Ichiro Hisaki
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, Osaka 565-0871, Japan;
| | - Abderrazzak Douhal
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain;
| |
Collapse
|
29
|
Xu X, Yan B. The postsynthetic renaissance of luminescent lanthanide ions on crystalline porous organic framework materials. CrystEngComm 2022. [DOI: 10.1039/d2ce00880g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of crystalline porous organic framework materials (CPOFs), such as metal-organic frameworks (MOFs), covalent organic frameworks (COFs) and hydrogen bonded organic frameworks (HOFs) have received extensive attentions due to...
Collapse
|
30
|
Kobayashi M, Kubo H, Oketani R, Hisaki I. Quinoxaline-annelated hexadehydro[12]annulene: Use of a new building block to construct a hydrogen-bonded hexagonal molecular network. CrystEngComm 2022. [DOI: 10.1039/d2ce00676f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new hexatopic carboxylic acid with a quinoxaline-annelated dehydro[12]annulene core (TQ12) was synthesized and subjected to spectroscopy for comparison with tribenzodehydro[12]annulene derivative (T12). Subsequently, TQ12 was utilized for construction of...
Collapse
|
31
|
Foyle ÉM, Tay HM, White NG. Towards hydrogen and halogen bonded frameworks based on 3,5-bis(triazolyl)pyridinium motifs. CrystEngComm 2022. [DOI: 10.1039/d2ce00273f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Construction of supramolecular assemblies using hydrogen and halogen bonding between anions and the 3,5-bis(triazolyl)pyridinium motif was investigated.
Collapse
Affiliation(s)
- Émer M. Foyle
- Research School of Chemistry, The Australian National University, Canberra, ACT, Australia
| | - Hui Min Tay
- Research School of Chemistry, The Australian National University, Canberra, ACT, Australia
| | - Nicholas G. White
- Research School of Chemistry, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
32
|
Muang-Non P, Toop HD, Doonan CJ, White NG. Use of modulators and light to control crystallisation of a hydrogen bonded framework. Chem Commun (Camb) 2021; 58:306-309. [PMID: 34889329 DOI: 10.1039/d1cc06164j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of concentration, organic co-solvent, and salt modulators on the crystallisation of a hydrogen bonded framework was studied. The framework contains ∼1.4 nm wide channels and contains a diazobenzene based dicarboxylate anion. Light-induced cis/trans switching of this anion was also used to control crystallisation.
Collapse
Affiliation(s)
- Phonlakrit Muang-Non
- Research School of chemistry, The Australian National University, Canberra, ACT, Australia.
| | - Hamish D Toop
- Department of Chemistry and Centre for Advanced Materials, The University of Adelaide, Adelaide, Australia
| | - Christian J Doonan
- Department of Chemistry and Centre for Advanced Materials, The University of Adelaide, Adelaide, Australia
| | - Nicholas G White
- Research School of chemistry, The Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
33
|
Yang Z, Moriyama A, Oketani R, Nakamura T, Hisaki I. Two-dimensional Porous Framework Assembled through Hydrogen-bonds and Dipole-dipole Interactions. CHEM LETT 2021. [DOI: 10.1246/cl.210465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zhuxi Yang
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Ayana Moriyama
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Ryusei Oketani
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Takayoshi Nakamura
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
- Research Institute for Electronic Science, Hokkaido University, 10-20 Sapporo, Hokkaido 001-0020, Japan
| | - Ichiro Hisaki
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
34
|
Suzuki Y, Gutiérrez M, Tanaka S, Gomez E, Tohnai N, Yasuda N, Matubayasi N, Douhal A, Hisaki I. Construction of isostructural hydrogen-bonded organic frameworks: limitations and possibilities of pore expansion. Chem Sci 2021; 12:9607-9618. [PMID: 34349933 PMCID: PMC8293819 DOI: 10.1039/d1sc02690a] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/18/2021] [Indexed: 11/21/2022] Open
Abstract
The library of isostructural porous frameworks enables a systematic survey to optimize the structure and functionality of porous materials. In contrary to metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), a handful of isostructural frameworks have been reported for hydrogen-bonded organic frameworks (HOFs) due to the weakness of the bonds. Herein, we provide a rule-of-thumb to develop isostructural HOFs, where we demonstrate the construction of the third and fourth generation of isostructural HAT-based HOFs (TolHAT-1 and ThiaHAT-1) by considering three important structural factors, that are (1) directional H-bonding, (2) shape-fitted docking of the HAT core, and (3) modulation of peripheral moieties. Their structural and photo-physical properties including HCl vapor detection are presented. Moreover, TolHAT-1, ThiaHAT-1, and other isostructural HOFs (CPHAT-1 and CBPHAT-1) were thoroughly compared from the viewpoints of structures and properties. Importantly, molecular dynamics (MD) simulation proves to be rationally capable of evaluating the stability of isostructural HOFs. These results can accelerate the development of various isostructural molecular porous materials.
Collapse
Affiliation(s)
- Yuto Suzuki
- Division of Chemistry, Graduate School of Engineering Science, Osaka University 1-3 Machikaneyama Toyonaka Osaka 560-8531 Japan
| | - Mario Gutiérrez
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, INAMOL, Universidad de Castilla-La Mancha Avenida Carlos III, S/N 45071 Toledo Spain
| | - Senri Tanaka
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University 1-3 Machikaneyama Toyonaka Osaka 560-8531 Japan
| | - Eduardo Gomez
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, INAMOL, Universidad de Castilla-La Mancha Avenida Carlos III, S/N 45071 Toledo Spain
| | - Norimitsu Tohnai
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University 2-1 Yamadaoka Suita Osaka 565-7891 Japan
| | | | - Nobuyuki Matubayasi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University 1-3 Machikaneyama Toyonaka Osaka 560-8531 Japan
| | - Abderrazzak Douhal
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, INAMOL, Universidad de Castilla-La Mancha Avenida Carlos III, S/N 45071 Toledo Spain
| | - Ichiro Hisaki
- Division of Chemistry, Graduate School of Engineering Science, Osaka University 1-3 Machikaneyama Toyonaka Osaka 560-8531 Japan
| |
Collapse
|
35
|
Kasahara Y, Hisaki I, Akutagawa T, Takeda T. Fluorescent molecular glass based on hexadehydrotribenzo[12]annulene. Chem Commun (Camb) 2021; 57:5374-5377. [PMID: 33973596 DOI: 10.1039/d1cc01356d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We prepared octylbenzoate-substituted [12]DBA (C8[12]DBA) as an organic molecular glass material. Even with a central large, planar π unit of [12]DBA, which is generally advantageous for the formation of a crystalline/liquid crystalline state, this compound formed a thermally stable glass state due to its small intermolecular π contact between [12]DBA units and twisted geometries around the terminal benzoate units. C8[12]DBA showed a unique dielectric anomaly and isolated fluorescence properties in the glass state.
Collapse
Affiliation(s)
- Yotaro Kasahara
- Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan.
| | - Ichiro Hisaki
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Tomoyuki Akutagawa
- Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan. and Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Sendai, Miyagi 980-8577, Japan
| | - Takashi Takeda
- Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan. and Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Sendai, Miyagi 980-8577, Japan
| |
Collapse
|
36
|
di Nunzio MR, Hisaki I, Douhal A. HOFs under light: Relevance to photon-based science and applications. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2021. [DOI: 10.1016/j.jphotochemrev.2021.100418] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
37
|
Huang Q, Li W, Mao Z, Zhang H, Li Y, Ma D, Wu H, Zhao J, Yang Z, Zhang Y, Gong L, Aldred MP, Chi Z. Dynamic molecular weaving in a two-dimensional hydrogen-bonded organic framework. Chem 2021. [DOI: 10.1016/j.chempr.2021.02.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
38
|
Synthesis and Photobehavior of a NewDehydrobenzoannulene-Based HOF with Fluorine Atoms: From Solution to Single Crystals Observation. Int J Mol Sci 2021; 22:ijms22094803. [PMID: 33946609 PMCID: PMC8124357 DOI: 10.3390/ijms22094803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 11/17/2022] Open
Abstract
Hydrogen-bonded organic frameworks (HOFs) are the focus of intense scientific research due their potential applications in science and technology. Here, we report on the synthesis, characterization, and photobehavior of a new HOF (T12F-1(124TCB)) based on a dehydrobenzoannulene derivative containing fluorine atoms (T12F-COOH). This HOF exhibits a 2D porous sheet, which is hexagonally networked via H-bonds between the carboxylic groups, and has an interlayers distance (4.3 Å) that is longer than that of a typical π–π interaction. The presence of the fluorine atoms in the DBA molecular units largely increases the emission quantum yield in DMF (0.33, T12F-COOH) when compared to the parent compound (0.02, T12-COOH). The time-resolved dynamics of T12F-COOH in DMF is governed by the emission from a locally excited state (S1, ~0.4 ns), a charge-transfer state (S1(CT), ~2 ns), and a room temperature emissive triplet state (T1, ~20 ns), in addition to a non-emissive triplet structure with a charge-transfer character (T1(CT), τ = 0.75 µs). We also report on the results using T12F-ester. Interestingly, FLIM experiments on single crystals unravel that the emission lifetimes of the crystalline HOF are almost twice those of the amorphous ones or the solid T12F-ester sample. This shows the relevance of the H-bonds in the photodynamics of the HOF and provides a strong basis for further development and study of HOFs based on DBAs for potential applications in photonics.
Collapse
|
39
|
Zhang X, Wang J, Li L, Pei J, Krishna R, Wu H, Zhou W, Qian G, Chen B, Li B. A Rod‐Packing Hydrogen‐Bonded Organic Framework with Suitable Pore Confinement for Benchmark Ethane/Ethylene Separation. Angew Chem Int Ed Engl 2021; 60:10304-10310. [DOI: 10.1002/anie.202100342] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Xu Zhang
- State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Jia‐Xin Wang
- State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Libo Li
- College of Chemistry and Chemical Engineering Taiyuan University of Technology Taiyuan 030024 Shanxi China
| | - Jiyan Pei
- State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Rajamani Krishna
- Van't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Hui Wu
- NIST Center for Neutron Research National Institute of Standards and Technology Gaithersburg MD 20899-6102 USA
| | - Wei Zhou
- NIST Center for Neutron Research National Institute of Standards and Technology Gaithersburg MD 20899-6102 USA
| | - Guodong Qian
- State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Banglin Chen
- Department of Chemistry University of Texas at San Antonio One UTSA Circle San Antonio TX 78249-0698 USA
| | - Bin Li
- State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| |
Collapse
|
40
|
Zhang X, Wang J, Li L, Pei J, Krishna R, Wu H, Zhou W, Qian G, Chen B, Li B. A Rod‐Packing Hydrogen‐Bonded Organic Framework with Suitable Pore Confinement for Benchmark Ethane/Ethylene Separation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100342] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Xu Zhang
- State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Jia‐Xin Wang
- State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Libo Li
- College of Chemistry and Chemical Engineering Taiyuan University of Technology Taiyuan 030024 Shanxi China
| | - Jiyan Pei
- State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Rajamani Krishna
- Van't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Hui Wu
- NIST Center for Neutron Research National Institute of Standards and Technology Gaithersburg MD 20899-6102 USA
| | - Wei Zhou
- NIST Center for Neutron Research National Institute of Standards and Technology Gaithersburg MD 20899-6102 USA
| | - Guodong Qian
- State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Banglin Chen
- Department of Chemistry University of Texas at San Antonio One UTSA Circle San Antonio TX 78249-0698 USA
| | - Bin Li
- State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| |
Collapse
|
41
|
Yu Z, Chen XM, Liu ZY, Wang M, Huang S, Yang H. A phase-dependent photoluminescent discotic liquid crystal bearing a graphdiyne substructure. Chem Commun (Camb) 2021; 57:911-914. [PMID: 33393549 DOI: 10.1039/d0cc05959e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In recent years, graphdiyne and its derivatives with fascinating electro-optic properties have attracted tremendous scientific attention. Here we design and synthesize a graphdiyne-derived discotic liquid crystal material by decorating six wedge-shaped 3,4,5-tris(dodecyloxy)benzoate groups on the fundamental structural unit of graphdiyne, the dehydrotribenzo[18]annulene core. This graphdiyne-derived liquid crystal material exhibits a cubic phase and a hexagonal columnar phase at varied temperatures. Most interestingly, this molecule displays a tunable phase-dependent photoluminescence behavior. Under the irradiation of 365 nm wavelength ultraviolet light, the luminescent material emits pale blue, green and azure light in the cubic, hexagonal columnar and isotropic phases respectively. This graphdiyne-derived discotic liquid crystal with excellent optical characteristics might have application potentials in organic optoelectronic functional materials and devices.
Collapse
Affiliation(s)
- Zhen Yu
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, State Key Laboratory of Bioelectronics, Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, Jiangsu, China.
| | - Xu-Man Chen
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, State Key Laboratory of Bioelectronics, Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, Jiangsu, China.
| | - Zhi-Yang Liu
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, State Key Laboratory of Bioelectronics, Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, Jiangsu, China.
| | - Meng Wang
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, State Key Laboratory of Bioelectronics, Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, Jiangsu, China.
| | - Shuai Huang
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, State Key Laboratory of Bioelectronics, Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, Jiangsu, China.
| | - Hong Yang
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, State Key Laboratory of Bioelectronics, Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, Jiangsu, China.
| |
Collapse
|
42
|
Shivakumar KI, Noro SI, Yamaguchi Y, Ishigaki Y, Saeki A, Takahashi K, Nakamura T, Hisaki I. A hydrogen-bonded organic framework based on redox-active tri(dithiolylidene)cyclohexanetrione. Chem Commun (Camb) 2021; 57:1157-1160. [PMID: 33411863 DOI: 10.1039/d0cc07776c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Redox-active hexakis(4-carboxyphenyl) tri(dithiolylidene)cyclohexanetrione (CPDC) was synthesized. The CPDC-based porous framework, constructed via anomalistic helical hydrogen-bonding, exhibites permanent porosity and photoconductivity.
Collapse
Affiliation(s)
- Kilingaru I Shivakumar
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Hyodo T, Tominaga M, Yamaguchi K. Guest-dependent single-crystal-to-single-crystal transformations in porous adamantane-bearing macrocycles. CrystEngComm 2021. [DOI: 10.1039/d0ce01782e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
An adamantane-bearing macrocycle exhibited permanent intrinsic porosity and adsorption of small guests in single-crystal-to-single-crystal fashions. The guest capture resulted in the structural transformations of supramolecular organic frameworks.
Collapse
Affiliation(s)
- Tadashi Hyodo
- Faculty of Pharmaceutical Sciences at Kagawa Campus
- Tokushima Bunri University
- Sanuki
- Japan
| | - Masahide Tominaga
- Faculty of Pharmaceutical Sciences at Kagawa Campus
- Tokushima Bunri University
- Sanuki
- Japan
| | - Kentaro Yamaguchi
- Faculty of Pharmaceutical Sciences at Kagawa Campus
- Tokushima Bunri University
- Sanuki
- Japan
| |
Collapse
|
44
|
Martín-Arroyo M, Castells-Gil J, Bilbao N, Almora-Barrios N, Martí-Gastaldo C, González-Rodríguez D. Crystalline supramolecular organic frameworks via hydrogen-bonding between nucleobases. Chem Commun (Camb) 2021; 57:1659-1662. [DOI: 10.1039/d0cc07707k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We describe here the first crystalline hydrogen-bonded organic framework made from complementary guanine and cytosine nucleobases.
Collapse
Affiliation(s)
- Miguel Martín-Arroyo
- Departamento de Química Orgánica
- Facultad de Ciencias
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| | | | - Nerea Bilbao
- Departamento de Química Orgánica
- Facultad de Ciencias
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| | | | | | - David González-Rodríguez
- Departamento de Química Orgánica
- Facultad de Ciencias
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| |
Collapse
|
45
|
Tominaga M, Hyodo T, Hikami Y, Yamaguchi K. Solvent-dependent alignments and halogen-related interactions in inclusion crystals of adamantane-based macrocycle with pyridazine moieties. CrystEngComm 2021. [DOI: 10.1039/d0ce01576h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Six inclusion crystals were formed from crystallization of an adamantane-based macrocycle bearing pyridazine parts in various solvents. In inclusion crystals with cyclic ethers, halogen⋯halogen interactions between the macrocycles were observed.
Collapse
Affiliation(s)
- Masahide Tominaga
- Faculty of Pharmaceutical Sciences at Kagawa Campus
- Tokushima Bunri University
- Sanuki
- Japan
| | - Tadashi Hyodo
- Faculty of Pharmaceutical Sciences at Kagawa Campus
- Tokushima Bunri University
- Sanuki
- Japan
| | - Yuya Hikami
- Faculty of Pharmaceutical Sciences at Kagawa Campus
- Tokushima Bunri University
- Sanuki
- Japan
| | - Kentaro Yamaguchi
- Faculty of Pharmaceutical Sciences at Kagawa Campus
- Tokushima Bunri University
- Sanuki
- Japan
| |
Collapse
|
46
|
Zeng F, Tang LL, Liao J, Ding MH, Ou GC. Formation of sandwich, macrocyclic and box supramolecular assemblies that were controlled by the distance of two oxygen atoms in hydrogen bonding donors. CrystEngComm 2021. [DOI: 10.1039/d1ce00644d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sandwich, macrocyclic and box supramolecular assemblies were synthesized. They can further self assemble to form a double-layer supramolecular polymer, nanotubes and one-dimensional “iron chain type” supramolecular polymer.
Collapse
Affiliation(s)
- Fei Zeng
- Department of Biology and Chemistry
- Hunan University of Science and Engineering
- Yongzhou 425199
- China
| | - Lin-Li Tang
- Department of Biology and Chemistry
- Hunan University of Science and Engineering
- Yongzhou 425199
- China
| | - Juan Liao
- Department of Biology and Chemistry
- Hunan University of Science and Engineering
- Yongzhou 425199
- China
| | - Man-Hua Ding
- Department of Biology and Chemistry
- Hunan University of Science and Engineering
- Yongzhou 425199
- China
| | - Guang-Chuan Ou
- Department of Biology and Chemistry
- Hunan University of Science and Engineering
- Yongzhou 425199
- China
| |
Collapse
|
47
|
Suzuki Y, Tohnai N, Saeki A, Hisaki I. Hydrogen-bonded organic frameworks of twisted polycyclic aromatic hydrocarbon. Chem Commun (Camb) 2020; 56:13369-13372. [PMID: 33030481 DOI: 10.1039/d0cc06081j] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A dibenzo[g,p]chrysene (DBC)-based hydrogen-bonded organic framework (HOF) was constructed by shape-fitted docking of the twisted π-conjugated core. The activated HOF, possessing exactly eclipsed stacking of the DBC cores, (CPDBC-1a) had a BET surface area of 1548 m2 g-1 and possessed photoconductivity.
Collapse
Affiliation(s)
- Yuto Suzuki
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
| | - Norimitsu Tohnai
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akinori Saeki
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ichiro Hisaki
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
| |
Collapse
|
48
|
Poppe M, Chen C, Poppe S, Kerzig C, Liu F, Tschierske C. Different Modes of Deformation of Soft Triangular Honeycombs at the Sub-5 nm Scale. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2005070. [PMID: 33063389 DOI: 10.1002/adma.202005070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/06/2020] [Indexed: 06/11/2023]
Abstract
Patterning on the sub-5 nm length scale is a contemporary challenge for further miniaturization of microelectronic circuits. Here, the first soft self-assembled triangular patterns are reported showing transitions between regular and two different kinds of isosceles (acute and obtuse angled) triangles on this length scale, formed by liquid crystalline honeycombs of polyphilic block molecules involving a fluorinated oligo(para-phenylene ethynylene) core. The type of formed triangular pattern depends on the degree and position of fluorination and on temperature. They are the first soft honeycombs combining tilted and nontilted organizations in a uniform nanostructure, where the tilted molecules in only one or two sides of the triangular prismatic cells dominate the shape and the size of the morphology.
Collapse
Affiliation(s)
- Marco Poppe
- Department of Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes Str. 2, Halle/Saale, D-06108, Germany
| | - Changlong Chen
- State Key Laboratory for Mechanical Behaviour of Materials, Shaanxi International Research Center for Soft Matter, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Silvio Poppe
- Department of Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes Str. 2, Halle/Saale, D-06108, Germany
| | - Christoph Kerzig
- Department of Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes Str. 2, Halle/Saale, D-06108, Germany
| | - Feng Liu
- State Key Laboratory for Mechanical Behaviour of Materials, Shaanxi International Research Center for Soft Matter, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Carsten Tschierske
- Department of Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes Str. 2, Halle/Saale, D-06108, Germany
| |
Collapse
|
49
|
Suzuki Y, Tohnai N, Hisaki I. Triaxially Woven Hydrogen‐Bonded Chicken Wires of a Tetrakis(carboxybiphenyl)ethene. Chemistry 2020; 26:17056-17062. [DOI: 10.1002/chem.202002546] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/20/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Yuto Suzuki
- Graduate School of Engineering Science Osaka University 1-3 Machikaneyama Toyonaka Osaka 560-8531 Japan
| | - Norimitsu Tohnai
- Graduate School of Engineering Osaka University 2-1 Yamadaoka Suita Osaka 565-0871 Japan
| | - Ichiro Hisaki
- Graduate School of Engineering Science Osaka University 1-3 Machikaneyama Toyonaka Osaka 560-8531 Japan
| |
Collapse
|
50
|
Ye ZM, Zhang XW, Liao PQ, Xie Y, Xu YT, Zhang XF, Wang C, Liu DX, Huang NY, Qiu ZH, Zhou DD, He CT, Zhang JP. A Hydrogen-Bonded yet Hydrophobic Porous Molecular Crystal for Molecular-Sieving-like Separation of Butane and Isobutane. Angew Chem Int Ed Engl 2020; 59:23322-23328. [PMID: 32897617 DOI: 10.1002/anie.202011300] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Indexed: 11/10/2022]
Abstract
Porous molecular crystals sustained by hydrogen bonds and/or weaker connections are an intriguing type of adsorbents, but they rarely demonstrate efficient adsorptive separation because of poor structural robustness and tailorability. Herein, we report a porous molecular crystal based on hydrogen-bonded cyclic dinuclear AgI complex, which exhibits exceptional hydrophobicity with a water contact angle of 134°, and high chemical stability in water at pH 2-13. The seemingly rigid adsorbent shows a pore-opening or nonporous-to-porous type butane adsorption isotherm and complete exclusion of isobutane, indicating potential molecular sieving. Quantitative column breakthrough experiments show slight co-adsorption of isobutane with an experimental butane/isobutane selectivity of 23, and isobutane can be purified more efficiently than for butane. In situ powder/single-crystal X-ray diffraction and computational simulations reveal that a trivial guest-induced structural transformation plays a critical role.
Collapse
Affiliation(s)
- Zi-Ming Ye
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xue-Wen Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Pei-Qin Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yi Xie
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yan-Tong Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xue-Feng Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Chao Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - De-Xuan Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ning-Yu Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ze-Hao Qiu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Dong-Dong Zhou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Chun-Ting He
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.,Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Jie-Peng Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|