1
|
Bos JE, Siegler MA, Wezenberg SJ. Activity Control of a Synthetic Transporter by Photodynamic Modulation of Membrane Mobility and Incorporation. J Am Chem Soc 2024. [PMID: 39485737 DOI: 10.1021/jacs.4c10952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Artificial transmembrane transport systems are receiving a great deal of attention for their potential therapeutic application. A major challenge is to switch their activity in response to environmental stimuli, which has been achieved mostly by modulating the binding affinity. We demonstrate here that the activity of a synthetic anion transporter can be controlled through changes in the membrane mobility and incorporation. The transporters─equipped with azobenzene photoswitches─poorly incorporate into the bilayer membrane as their thermally stable (E,E,E)-isomers, but incorporation is triggered by UV irradiation to give the (Z)-containing isomers. The latter isomers, however, are found to have a lower mobility and are therefore the least active transporters. This opposite effect of E-Z isomerization on transport capability offers unique photocontrol as is demonstrated by in situ irradiation studies during the used transport assays. These results help to understand the behavior of artificial transporters in a bilayer and are highly important to future designs, with new modes of biological activity and with the possibility to direct motion, which may be crucial toward achieving active transport.
Collapse
Affiliation(s)
- Jasper E Bos
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Maxime A Siegler
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| | - Sander J Wezenberg
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
2
|
Antonenko YN, Veselov IM, Rokitskaya TI, Vinogradova DV, Khailova LS, Kotova EA, Maltsev AV, Bachurin SO, Shevtsova EF. Neuroprotective thiourea derivative uncouples mitochondria and exerts weak protonophoric action on lipid membranes. Chem Biol Interact 2024; 402:111190. [PMID: 39121899 DOI: 10.1016/j.cbi.2024.111190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/19/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
The isothiourea derivative NT-1505 is known as a neuroprotector and cognition enhancer in animal models of neurodegenerative diseases. Bearing in mind possible relation of the NT-1505-mediated neuroprotection to mitochondrial uncoupling activity, here, we examine NT-1505 effects on mitochondria functioning. At concentrations starting from 10 μM, NT-1505 prevented Ca2+-induced mitochondrial swelling, similar to common uncouplers. Alongside the inhibition of the mitochondrial permeability transition, NT-1505 caused a decrease in mitochondrial membrane potential and an increase in respiration rate in both isolated mammalian mitochondria and cell cultures, which resulted in the reduction of energy-dependent Ca2+ uptake by mitochondria. Based on the oppositely directed effects of bovine serum albumin and palmitate, we suggest the involvement of fatty acids in the NT-1505-mediated mitochondrial uncoupling. In addition, we measured the induction of electrical current across planar bilayer lipid membrane upon the addition of NT-1505 to the bathing solution. Importantly, introduction of the palmitic acid into the lipid bilayer composition led to weak proton selectivity of the NT-1505-mediated BLM current. Thus, the present study revealed an ability of NT-1505 to cause moderate protonophoric uncoupling of mitochondria, which could contribute to the neuroprotective effect of this compound.
Collapse
Affiliation(s)
- Yuri N Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1/40, 119991, Moscow, Russia.
| | - Ivan M Veselov
- Institute of Physiologically Active Compounds at the Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 1 Severnij Proezd, 142432, Chernogolovka, Russia
| | - Tatyana I Rokitskaya
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1/40, 119991, Moscow, Russia
| | - Daria V Vinogradova
- Institute of Physiologically Active Compounds at the Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 1 Severnij Proezd, 142432, Chernogolovka, Russia
| | - Lyudmila S Khailova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1/40, 119991, Moscow, Russia
| | - Elena A Kotova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1/40, 119991, Moscow, Russia
| | - Andrey V Maltsev
- Institute of Physiologically Active Compounds at the Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 1 Severnij Proezd, 142432, Chernogolovka, Russia
| | - Sergey O Bachurin
- Institute of Physiologically Active Compounds at the Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 1 Severnij Proezd, 142432, Chernogolovka, Russia
| | - Elena F Shevtsova
- Institute of Physiologically Active Compounds at the Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 1 Severnij Proezd, 142432, Chernogolovka, Russia.
| |
Collapse
|
3
|
Liu K, Epsztein R, Lin S, Qu J, Sun M. Ion-Ion Selectivity of Synthetic Membranes with Confined Nanostructures. ACS NANO 2024; 18:21633-21650. [PMID: 39114876 DOI: 10.1021/acsnano.4c00540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Synthetic membranes featuring confined nanostructures have emerged as a prominent category of leading materials that can selectively separate target ions from complex water matrices. Further advancements in these membranes will pressingly rely on the ability to elucidate the inherent connection between transmembrane ion permeation behaviors and the ion-selective nanostructures. In this review, we first abstract state-of-the-art nanostructures with a diversity of spatial confinements in current synthetic membranes. Next, the underlying mechanisms that govern ion permeation under the spatial nanoconfinement are analyzed. We then proceed to assess ion-selective membrane materials with a focus on their structural merits that allow ultrahigh selectivity for a wide range of monovalent and divalent ions. We also highlight recent advancements in experimental methodologies for measuring ionic permeability, hydration numbers, and energy barriers to transport. We conclude by putting forth the future research prospects and challenges in the realm of high-performance ion-selective membranes.
Collapse
Affiliation(s)
- Kairui Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Razi Epsztein
- Faculty of Civil and Environmental Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Shihong Lin
- Department of Civil and Environmental Engineering and Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Meng Sun
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
4
|
York E, McNaughton DA, Gertner DS, Gale PA, Murray M, Rawling T. Expanding the π-system of Fatty Acid-Anion Transporter Conjugates Modulates Their Mechanism of Proton Transport and Mitochondrial Uncoupling Activity. Chemistry 2024; 30:e202400931. [PMID: 38838073 DOI: 10.1002/chem.202400931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
Mitochondrial uncoupling by small molecule protonophores is a promising strategy for developing novel anticancer agents. Recently, aryl urea substituted fatty acids (aryl ureas) were identified as a new class of protonophoric anticancer agents. To mediate proton transport these molecules self-assemble into membrane-permeable anionic dimers in which intermolecular hydrogen bonds between the carboxylate and aryl-urea anion receptor delocalise the negative charge across the aromatic π-system. In this work, we extend the aromatic π-system by introducing a second phenyl substituent to the aryl urea scaffold and compare the proton transport mechanisms and mitochondrial uncoupling actions of these compounds to their monoaryl analogues. It was found that incorporation of meta-linked phenyl substituents into the aryl urea scaffold enhanced proton transport in vesicles and demonstrated superior capacity to depolarise mitochondria, inhibit ATP production and reduce the viability of MDA-MB-231 breast cancer cells. In contrast, diphenyl ureas linked through a 1,4-distribution across the phenyl ring displayed diminished proton transport activity, despite both diphenyl urea isomers possessing similar binding affinities for carboxylates. Mechanistic studies suggest that inclusion of a second aryl ring changes the proton transport mechanism, presumably due to steric factors that impose higher energy penalties for dimer formation.
Collapse
Affiliation(s)
- Edward York
- School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Daniel A McNaughton
- School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - David S Gertner
- School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Philip A Gale
- School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Michael Murray
- Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2000, Australia
- Woolcock Institute of Medical Research, Macquarie University, Macquarie Park, NSW, 2113, Australia
| | - Tristan Rawling
- School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia
| |
Collapse
|
5
|
Li Q, Gao H, Zhao Y, Zhou B, Yu L, Huang Q, Jiang L, Gao J. Covalent Organic Framework Interlayer Spacings as Perfectly Selective Artificial Proton Channels. Angew Chem Int Ed Engl 2024; 63:e202402094. [PMID: 38581623 DOI: 10.1002/anie.202402094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/16/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Biological proton channels have perfect selectivity in aqueous environment against almost all ions and molecules, a property that differs itself from other biological channels and a feature that remains challenging to realize for bulk artificial materials. The biological perfect selectivity originates from the fact that the channel has almost no free space for ion or water transport but generates a hydrogen bonded wire in the presence of protons to allow the proton hopping. Inspired by this, we used the interlayer spacings of covalent organic framework materials consisting of hydrophilic functional groups as perfectly selective artificial proton channels. The interlayer spacings are so narrow that no atoms or molecules can diffuse through. However, protons exhibit a diffusivity in the same order of magnitude as that in bulk water. Density functional theory calculations show that water molecules and the COF material form hydrogen bonded wires, allowing the proton hopping. We further demonstrate that the proton transport rate can be tuned by adjusting the acidity of the functional groups.
Collapse
Affiliation(s)
- Qi Li
- School of Chemical Engineering, Sichuan University, 610065, Chengdu, China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China
| | - Hongfei Gao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China
| | - Yongye Zhao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China
| | - Bo Zhou
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China
| | - Lei Yu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China
| | - Qingsong Huang
- School of Chemical Engineering, Sichuan University, 610065, Chengdu, China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
| | - Jun Gao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China
- Shandong Energy Institute, 266101, Qingdao, P. R. China
- Qingdao New Energy Shandong Laboratory, 266101, Qingdao, P. R. China
| |
Collapse
|
6
|
Kong Y, Zhang R, Li B, Zhao W, Wang J, Sun XW, Lv H, Liu R, Tang J, Wu B. Applying a Tripodal Hexaurea Receptor for Binding to an Antitumor Drug, Combretastatin-A4 Phosphate. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2570. [PMID: 38893834 PMCID: PMC11173554 DOI: 10.3390/ma17112570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
Phosphates play a crucial role in drug design, but their negative charge and high polarity make the transmembrane transport of phosphate species challenging. This leads to poor bioavailability of phosphate drugs. Combretastatin-A4 phosphate (CA4P) is such an anticancer monoester phosphate compound, but its absorption and clinical applicability are greatly limited. Therefore, developing carrier systems to effectively deliver phosphate drugs like CA4P is essential. Anion receptors have been found to facilitate the transmembrane transport of anions through hydrogen bonding. In this study, we developed a tripodal hexaurea anion receptor (L1) capable of binding anionic CA4P through hydrogen bonding, with a binding constant larger than 104 M-1 in a DMSO/water mixed solvent. L1 demonstrated superior binding ability compared to other common anions, and exhibited negligible cell cytotoxicity, making it a promising candidate for future use as a carrier for drug delivery.
Collapse
Affiliation(s)
- Yu Kong
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China; (Y.K.); (R.Z.); (W.Z.); (J.W.); (X.-W.S.); (H.L.); (R.L.)
| | - Rong Zhang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China; (Y.K.); (R.Z.); (W.Z.); (J.W.); (X.-W.S.); (H.L.); (R.L.)
| | - Boyang Li
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China;
| | - Wei Zhao
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China; (Y.K.); (R.Z.); (W.Z.); (J.W.); (X.-W.S.); (H.L.); (R.L.)
| | - Ji Wang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China; (Y.K.); (R.Z.); (W.Z.); (J.W.); (X.-W.S.); (H.L.); (R.L.)
| | - Xiao-Wen Sun
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China; (Y.K.); (R.Z.); (W.Z.); (J.W.); (X.-W.S.); (H.L.); (R.L.)
| | - Huihui Lv
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China; (Y.K.); (R.Z.); (W.Z.); (J.W.); (X.-W.S.); (H.L.); (R.L.)
| | - Rui Liu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China; (Y.K.); (R.Z.); (W.Z.); (J.W.); (X.-W.S.); (H.L.); (R.L.)
| | - Juan Tang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China; (Y.K.); (R.Z.); (W.Z.); (J.W.); (X.-W.S.); (H.L.); (R.L.)
| | - Biao Wu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China; (Y.K.); (R.Z.); (W.Z.); (J.W.); (X.-W.S.); (H.L.); (R.L.)
| |
Collapse
|
7
|
Peng XX, Zhang H, Zhang R, Li ZH, Yang ZS, Zhang J, Gao S, Zhang JL. Gallium Triggers Ferroptosis through a Synergistic Mechanism. Angew Chem Int Ed Engl 2023; 62:e202307838. [PMID: 37452698 DOI: 10.1002/anie.202307838] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/18/2023]
Abstract
The gallium ion (Ga3+ ) has long been believed to disrupt ferric homeostasis in the body by competing with iron cofactors in metalloproteins, ultimately leading to cell death. This study revealed that through an indirect pathway, gallium can trigger ferroptosis, a type of non-apoptotic cell death regulated by iron. This is exemplified by the gallium complex of the salen ligand (Ga-1); we found that Ga-1 acts as an effective anion transporter that can affect the pH gradient and change membrane permeability, leading to mitochondrial dysfunction and the release of ferrous iron from the electron transfer chain (ETC). In addition, Ga-1 also targeted protein disulfide isomerases (PDIs) located in the endoplasmic reticulum (ER) membrane, preventing the repair of the antioxidant glutathione (GSH) system and thus enforcing ferroptosis. Finally, a combination treatment of Ga-1 and dietary polyunsaturated fatty acids (PUFAs), which enhances lipid peroxidation during ferroptosis, showed a synergistic therapeutic effect both in vitro and in vivo. This study provided us with a strategy to synergistically induce Ferroptosis in tumor cells, thereby enhancing the anti-neoplastic effect.
Collapse
Affiliation(s)
- Xin-Xin Peng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Hang Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Ruijing Zhang
- Spin-X Institute, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Ze-Hao Li
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zi-Shu Yang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jing Zhang
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Song Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Spin-X Institute, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, P. R. China
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Jun-Long Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, P. R. China
| |
Collapse
|
8
|
York E, McNaughton DA, Duman MN, Gale PA, Rawling T. Fatty Acid-Activated Proton Transport by Bisaryl Anion Transporters Depolarises Mitochondria and Reduces the Viability of MDA-MB-231 Breast Cancer Cells. Biomolecules 2023; 13:1202. [PMID: 37627266 PMCID: PMC10452527 DOI: 10.3390/biom13081202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
In respiring mitochondria, the proton gradient across the inner mitochondrial membrane is used to drive ATP production. Mitochondrial uncouplers, which are typically weak acid protonophores, can disrupt this process to induce mitochondrial dysfunction and apoptosis in cancer cells. We have shown that bisaryl urea-based anion transporters can also mediate mitochondrial uncoupling through a novel fatty acid-activated proton transport mechanism, where the bisaryl urea promotes the transbilayer movement of deprotonated fatty acids and proton transport. In this paper, we investigated the impact of replacing the urea group with squaramide, amide and diurea anion binding motifs. Bisaryl squaramides were found to depolarise mitochondria and reduce MDA-MB-231 breast cancer cell viability to similar extents as their urea counterpart. Bisaryl amides and diureas were less active and required higher concentrations to produce these effects. For all scaffolds, the substitution of the bisaryl rings with lipophilic electron-withdrawing groups was required for activity. An investigation of the proton transport mechanism in vesicles showed that active compounds participate in fatty acid-activated proton transport, except for a squaramide analogue, which was sufficiently acidic to act as a classical protonophore and transport protons in the absence of free fatty acids.
Collapse
Affiliation(s)
- Edward York
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (E.Y.)
| | - Daniel A. McNaughton
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (E.Y.)
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Meryem-Nur Duman
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (E.Y.)
| | - Philip A. Gale
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (E.Y.)
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- The University of Sydney Nano Institute (SydneyNano), The University of Sydney, Sydney, NSW 2006, Australia
| | - Tristan Rawling
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (E.Y.)
| |
Collapse
|
9
|
de Jong J, Bos JE, Wezenberg SJ. Stimulus-Controlled Anion Binding and Transport by Synthetic Receptors. Chem Rev 2023; 123:8530-8574. [PMID: 37342028 PMCID: PMC10347431 DOI: 10.1021/acs.chemrev.3c00039] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Indexed: 06/22/2023]
Abstract
Anionic species are omnipresent and involved in many important biological processes. A large number of artificial anion receptors has therefore been developed. Some of these are capable of mediating transmembrane transport. However, where transport proteins can respond to stimuli in their surroundings, creation of synthetic receptors with stimuli-responsive functions poses a major challenge. Herein, we give a full overview of the stimulus-controlled anion receptors that have been developed thus far, including their application in membrane transport. In addition to their potential operation as membrane carriers, the use of anion recognition motifs in forming responsive membrane-spanning channels is discussed. With this review article, we intend to increase interest in transmembrane transport among scientists working on host-guest complexes and dynamic functional systems in order to stimulate further developments.
Collapse
Affiliation(s)
| | | | - Sander J. Wezenberg
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| |
Collapse
|
10
|
Gilchrist AM, Wu X, Hawkins BA, Hibbs DE, Gale PA. Fluorinated tetrapodal anion transporters. iScience 2023; 26:105988. [PMID: 36818308 PMCID: PMC9932467 DOI: 10.1016/j.isci.2023.105988] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/08/2023] [Accepted: 01/12/2023] [Indexed: 01/25/2023] Open
Abstract
Synthetic anion transporters show potential in treating life-threatening diseases like cystic fibrosis and cancer. However, with increasingly complex transporter architectures designed to control anion binding and transport, it is important to consider solubility and deliverability during transporter design. The fluorination of synthetic anion transporters has been shown to tune the transporter lipophilicity, transport rates, and binding strength. In this work, we expand on our previously reported tetrapodal (thio)urea transporters with a series of fluorinated tetrapodal anion transporters. The effects of fluorination on tuning the lipophilicity, solubility, deliverability, and anion transport selectivity of the tetrapodal scaffold were investigated using anion-binding and transport assays. The primary mode of anion transport was H+/X- cotransport, with the most fluorinated tetrathiourea (8) displaying the highest transport activity in the 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS) assay. Intriguingly, inversion of the transmembrane Cl- vs NO3 - transport selectivity compared with previously reported tripodal (thio)urea transporters was observed under a modified HPTS assay.
Collapse
Affiliation(s)
| | - Xin Wu
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Bryson A. Hawkins
- School of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
| | - David E. Hibbs
- School of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia,The University of Sydney, The University of Sydney Nano Institute (Sydney Nano), Sydney, NSW 2006, Australia
| | - Philip A. Gale
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia,The University of Sydney, The University of Sydney Nano Institute (Sydney Nano), Sydney, NSW 2006, Australia,Corresponding author
| |
Collapse
|
11
|
MacDermott-Opeskin H, Clarke C, Wu X, Roseblade A, York E, Pacchini E, Roy R, Cranfield C, Gale PA, O'Mara ML, Murray M, Rawling T. Protonophoric and mitochondrial uncoupling activity of aryl-carbamate substituted fatty acids. Org Biomol Chem 2022; 21:132-139. [PMID: 36453203 DOI: 10.1039/d2ob02049a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Aryl-urea substituted fatty acids are protonophores and mitochondrial uncouplers that utilise a urea-based synthetic anion transport moiety to carry out the protonophoric cycle. Herein we show that replacement of the urea group with carbamate, a functional group not previously reported to possess anion transport activity, produces analogues that retain the activity of their urea counterparts. Thus, the aryl-carbamate substituted fatty acids uncouple oxidative phosphorylation and inhibit ATP production by collapsing the mitochondrial proton gradient. Proton transport proceeds via self-assembly of the deprotonated aryl-carbamates into membrane permeable dimeric species, formed by intermolecular binding of the carboxylate group to the carbamate moiety. These results highlight the anion transport capacity of the carbamate functional group.
Collapse
Affiliation(s)
- Hugo MacDermott-Opeskin
- Research School of Chemistry, College of Science, The Australian National University, Canberra, ACT, 0200, Australia
| | - Callum Clarke
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| | - Xin Wu
- School of Chemistry, The University of Sydney, NSW, 2006, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Ariane Roseblade
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| | - Edward York
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| | - Ethan Pacchini
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| | - Ritik Roy
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| | - Charles Cranfield
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Philip A Gale
- School of Chemistry, The University of Sydney, NSW, 2006, Australia.,The University of Sydney Nano Institute (SydneyNano), The University of Sydney, NSW, 2006, Australia
| | - Megan L O'Mara
- Research School of Chemistry, College of Science, The Australian National University, Canberra, ACT, 0200, Australia.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Michael Murray
- Discipline of Pharmacology, School of Medical Sciences, The University of Sydney, NSW 2006, Australia
| | - Tristan Rawling
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| |
Collapse
|
12
|
Bruns CJ. Moving forward in the semantic soup of artificial molecular machine taxonomy. NATURE NANOTECHNOLOGY 2022; 17:1231-1234. [PMID: 36494473 DOI: 10.1038/s41565-022-01247-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Affiliation(s)
- Carson J Bruns
- ATLAS Institute, University of Colorado Boulder, Boulder, CO, USA.
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
13
|
Maslowska-Jarzyna K, Bąk KM, Zawada B, Chmielewski MJ. pH-Dependent transport of amino acids across lipid bilayers by simple monotopic anion carriers. Chem Sci 2022; 13:12374-12381. [PMID: 36382290 PMCID: PMC9629080 DOI: 10.1039/d2sc04346g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/04/2022] [Indexed: 11/07/2023] Open
Abstract
The transport of amino acids across lipid membranes is vital for the proper functioning of every living cell. In spite of that, examples of synthetic transporters that can facilitate amino acid transport are rare. This is mainly because at physiological conditions amino acids predominantly exist as highly polar zwitterions and proper shielding of their charged termini, which is necessary for fast diffusion across lipophilic membranes, requires complex and synthetically challenging heteroditopic receptors. Here we report the first simple monotopic anion receptor, dithioamide 1, that efficiently transports a variety of natural amino acids across lipid bilayers at physiological pH. Mechanistic studies revealed that the receptor rapidly transports deprotonated amino acids, even though at pH 7.4 these forms account for less than 3% of the total amino acid concentration. We also describe a new fluorescent assay for the selective measurement of the transport of deprotonated amino acids into liposomes. The new assay allowed us to study the pH-dependence of amino acid transport and elucidate the mechanism of transport by 1, as well as to explain its exceptionally high activity. With the newly developed assay we screened also four other representative examples of monotopic anion transporters, of which two showed promising activity. Our results imply that heteroditopic receptors are not necessary for achieving high amino acid transport activities and that many of the previously reported anionophores might be active amino acid transporters. Based on these findings, we propose a new strategy for the development of artificial amino acid transporters with improved properties.
Collapse
Affiliation(s)
- Krystyna Maslowska-Jarzyna
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw Żwirki i Wigury 101 Warsaw 02-089 Poland
| | - Krzysztof M Bąk
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw Żwirki i Wigury 101 Warsaw 02-089 Poland
| | - Bartłomiej Zawada
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw Żwirki i Wigury 101 Warsaw 02-089 Poland
| | - Michał J Chmielewski
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw Żwirki i Wigury 101 Warsaw 02-089 Poland
| |
Collapse
|
14
|
York E, McNaughton DA, Roseblade A, Cranfield CG, Gale PA, Rawling T. Structure-Activity Relationship and Mechanistic Studies of Bisaryl Urea Anticancer Agents Indicate Mitochondrial Uncoupling by a Fatty Acid-Activated Mechanism. ACS Chem Biol 2022; 17:2065-2073. [PMID: 35854216 DOI: 10.1021/acschembio.1c00807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Targeting the cancer cell mitochondrion is a promising approach for developing novel anticancer agents. The experimental anticancer agent N,N'-bis(3,5-dichlorophenyl)urea (SR4) induces apoptotic cell death in several cancer cell lines by uncoupling mitochondrial oxidative phosphorylation (OxPhos) using a protein-free mechanism. However, the precise mechanism by which SR4 depolarizes mitochondria is unclear because SR4 lacks an acidic functional group typically found in protein-independent uncouplers. Recently, it was shown that structurally related thioureas can facilitate proton transport across lipid bilayers by a fatty acid-activated mechanism, in which the fatty acid acts as the site of protonation/deprotonation and the thiourea acts as an anion transporter that shuttles deprotonated fatty acids across the phospholipid bilayer to enable proton leak. In this paper, we show that SR4-mediated proton transport is enhanced by the presence of free fatty acids in the lipid bilayer, indicating that SR4 uncouples mitochondria through the fatty acid-activated mechanism. This mechanistic insight was used to develop a library of substituted bisaryl ureas for structure-activity relationship studies and subsequent cell testing. It was found that lipophilic electron-withdrawing groups on bisaryl ureas enhanced electrogenic proton transport via the fatty acid-activated mechanism and had the capacity to depolarize mitochondria and reduce the viability of MDA-MB-231 breast cancer cells. The most active compound in the series reduced cell viability with greater potency than SR4 and was more effective at inhibiting adenosine triphosphate production.
Collapse
Affiliation(s)
- Edward York
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | | | - Ariane Roseblade
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Charles G Cranfield
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Philip A Gale
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.,The University of Sydney Nano Institute (SydneyNano), The University of Sydney, Sydney, NSW 2006, Australia
| | - Tristan Rawling
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
15
|
Shen J, Ye R, Liu Z, Zeng H. Hybrid Pyridine–Pyridone Foldamer Channels as M2‐Like Artificial Proton Channels. Angew Chem Int Ed Engl 2022; 61:e202200259. [DOI: 10.1002/anie.202200259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Jie Shen
- College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| | - Ruijuan Ye
- College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| | - Zhiwei Liu
- Department of Chemistry & Biochemistry Rowan University 201 Mullica Hill Road Glassboro NJ 08028 USA
| | - Huaqiang Zeng
- College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| |
Collapse
|
16
|
Shen J, Ye R, Liu Z, Zeng H. Hybrid Pyridine–Pyridone Foldamer Channels as M2‐Like Artificial Proton Channels. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jie Shen
- College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| | - Ruijuan Ye
- College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| | - Zhiwei Liu
- Department of Chemistry & Biochemistry Rowan University 201 Mullica Hill Road Glassboro NJ 08028 USA
| | - Huaqiang Zeng
- College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| |
Collapse
|
17
|
Chen L, Wu X, Gilchrist AM, Gale PA. Organoplatinum Compounds as Anion-Tuneable Uphill Hydroxide Transporters. Angew Chem Int Ed Engl 2022; 61:e202116355. [PMID: 35192743 PMCID: PMC9310596 DOI: 10.1002/anie.202116355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Indexed: 11/12/2022]
Abstract
Active transport of ions uphill, creating a concentration gradient across a cell membrane, is essential for life. It remains a significant challenge to develop synthetic systems that allow active uphill transport. Here, a transport process fuelled by organometallic compounds is reported that creates a pH gradient. The hydrolysis reaction of PtII complexes results in the formation of aqua complexes that established rapid transmembrane movement ("flip-flop") of neutral Pt-OH species, leading to protonation of the OH group in the inner leaflet, generating OH- ions, and so increasing the pH in the intravesicular solution. The organoplatinum complex effectively transports bound hydroxide ions across the membrane in a neutral complex. The initial net flow of the PtII complex into the vesicles generates a positive electric potential that can further drive uphill transport because the electric potential is opposed to the chemical potential of OH- . The OH- ions equilibrate with this transmembrane electric potential but cannot remove it due to the relatively low permeability of the charged species. As a result, effective hydroxide transport against its concentration gradient can be achieved, and multiple additions can continuously drive the generation of OH- against its concentration gradient up to ΔpH>2. Moreover, the external addition of different anions can control the generation of OH- depending on their anion binding affinity. When anions displayed very high binding affinities towards PtII compounds, such as halides, the external anions could dissipate the pH gradient. In contrast, a further pH increase was observed for weak binding anions, such as sulfate, due to the increase of positive electric potential.
Collapse
Affiliation(s)
- Li‐Jun Chen
- School of ChemistryThe University of SydneySydneyNSW 2006Australia
| | - Xin Wu
- School of ChemistryThe University of SydneySydneyNSW 2006Australia
| | | | - Philip A. Gale
- School of ChemistryThe University of SydneySydneyNSW 2006Australia
- The University of Sydney Nano Institute (SydneyNano)The University of SydneySydneyNSW 2006Australia
| |
Collapse
|
18
|
Chen L, Wu X, Gilchrist AM, Gale PA. Organoplatinum Compounds as Anion‐Tuneable Uphill Hydroxide Transporters. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Li‐Jun Chen
- School of Chemistry The University of Sydney Sydney NSW 2006 Australia
| | - Xin Wu
- School of Chemistry The University of Sydney Sydney NSW 2006 Australia
| | | | - Philip A. Gale
- School of Chemistry The University of Sydney Sydney NSW 2006 Australia
- The University of Sydney Nano Institute (SydneyNano) The University of Sydney Sydney NSW 2006 Australia
| |
Collapse
|
19
|
Wezenberg SJ, Chen LJ, Bos JE, Feringa BL, Howe ENW, Wu X, Siegler MA, Gale PA. Photomodulation of Transmembrane Transport and Potential by Stiff-Stilbene Based Bis(thio)ureas. J Am Chem Soc 2022; 144:331-338. [PMID: 34932344 PMCID: PMC8759083 DOI: 10.1021/jacs.1c10034] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Indexed: 12/14/2022]
Abstract
Membrane transport proteins fulfill important regulatory functions in biology with a common trait being their ability to respond to stimuli in the environment. Various small-molecule receptors, capable of mediating transmembrane transport, have been successfully developed. However, to confer stimuli-responsiveness on them poses a fundamental challenge. Here we demonstrate photocontrol of transmembrane transport and electric potential using bis(thio)ureas derived from stiff-stilbene. UV-vis and 1H NMR spectroscopy are used to monitor E-Z photoisomerization of these bis(thio)ureas and 1H NMR titrations reveal stronger binding of chloride to the (Z)-form than to the (E)-form. Additional insight into the binding properties is provided by single crystal X-ray crystallographic analysis and DFT geometry optimization. Importantly, the (Z)-isomers are much more active in transmembrane transport than the respective (E)-isomers as shown through various assays. As a result, both membrane transport and depolarization can be modulated upon irradiation, opening up new prospects toward light-based therapeutics as well as physiological and optopharmacological tools for studying anion transport-associated diseases and to stimulate neuronal activity, respectively.
Collapse
Affiliation(s)
- Sander J. Wezenberg
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Li-Jun Chen
- School
of Chemistry, The University of Sydney, Sydney NSW 2006, Australia
| | - Jasper E. Bos
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Ben L. Feringa
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Ethan N. W. Howe
- School
of Chemistry, The University of Sydney, Sydney NSW 2006, Australia
| | - Xin Wu
- School
of Chemistry, The University of Sydney, Sydney NSW 2006, Australia
| | - Maxime A. Siegler
- Department
of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Philip A. Gale
- School
of Chemistry, The University of Sydney, Sydney NSW 2006, Australia
- The
University of Sydney Nano Institute (SydneyNano), The University of
Sydney, Sydney NSW 2006, Australia
| |
Collapse
|
20
|
Binding and transport properties of a benzo[b]thiophene‐based mono‐(thio)urea library. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
Gilchrist AM, Wang P, Carreira-Barral I, Alonso-Carrillo D, Wu X, Quesada R, Gale PA. Supramolecular methods: the 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS) transport assay. Supramol Chem 2021. [DOI: 10.1080/10610278.2021.1999956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Patrick Wang
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | | | | | - Xin Wu
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Roberto Quesada
- Departmento De Química, Universidad De Burgos, Burgos, Spain
| | - Philip A. Gale
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
22
|
Wu X, Gale PA. Measuring anion transport selectivity: a cautionary tale. Chem Commun (Camb) 2021; 57:3979-3982. [PMID: 33885701 DOI: 10.1039/d1cc01038g] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
pH-dependent liposomal assays are often used to determine anion selectivity in transmembrane anion transport experiments. We discuss the validity and limitations of these assays, and provide guidelines for their use to avoid misleading results.
Collapse
Affiliation(s)
- Xin Wu
- School of Chemistry, The University of Sydney, New South Wales 2006, Australia.
| | - Philip A Gale
- School of Chemistry, The University of Sydney, New South Wales 2006, Australia. .,The University of Sydney Nano Institute (SydneyNano), The University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
23
|
Škulj S, Brkljača Z, Kreiter J, Pohl EE, Vazdar M. Molecular Dynamics Simulations of Mitochondrial Uncoupling Protein 2. Int J Mol Sci 2021; 22:ijms22031214. [PMID: 33530558 PMCID: PMC7866055 DOI: 10.3390/ijms22031214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 11/16/2022] Open
Abstract
Molecular dynamics (MD) simulations of uncoupling proteins (UCP), a class of transmembrane proteins relevant for proton transport across inner mitochondrial membranes, represent a complicated task due to the lack of available structural data. In this work, we use a combination of homology modelling and subsequent microsecond molecular dynamics simulations of UCP2 in the DOPC phospholipid bilayer, starting from the structure of the mitochondrial ATP/ADP carrier (ANT) as a template. We show that this protocol leads to a structure that is impermeable to water, in contrast to MD simulations of UCP2 structures based on the experimental NMR structure. We also show that ATP binding in the UCP2 cavity is tight in the homology modelled structure of UCP2 in agreement with experimental observations. Finally, we corroborate our results with conductance measurements in model membranes, which further suggest that the UCP2 structure modeled from ANT protein possesses additional key functional elements, such as a fatty acid-binding site at the R60 region of the protein, directly related to the proton transport mechanism across inner mitochondrial membranes.
Collapse
Affiliation(s)
- Sanja Škulj
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia; (S.Š.); (Z.B.)
| | - Zlatko Brkljača
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia; (S.Š.); (Z.B.)
| | - Jürgen Kreiter
- Department of Biomedical Sciences, Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Elena E. Pohl
- Department of Biomedical Sciences, Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, 1210 Vienna, Austria;
- Correspondence: (E.E.P.); (M.V.)
| | - Mario Vazdar
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia; (S.Š.); (Z.B.)
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague, Czech Republic
- Correspondence: (E.E.P.); (M.V.)
| |
Collapse
|
24
|
Cho SY, Lim S, Ahn KS, Kwak HJ, Park J, Um JY. Farnesol induces mitochondrial/peroxisomal biogenesis and thermogenesis by enhancing the AMPK signaling pathway in vivo and in vitro. Pharmacol Res 2021; 163:105312. [PMID: 33246168 DOI: 10.1016/j.phrs.2020.105312] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/30/2020] [Accepted: 11/16/2020] [Indexed: 12/25/2022]
Abstract
Thermogenic activation of brown adipose tissue has been considered as an obesity treatment strategy that consumes energy. In this study, we investigated whether farnesol in vivoandin vitro models induces thermogenesis and affect the activation of the mitochondria and peroxisomes, which are key organelles in activated brown adipocytes. Farnesol induced the expression of thermogenic factors such as uncoupling protein 1 (UCP1), peroxisome proliferator-activated receptor γ coactivator 1 alpha (PGC1α), and PR domain zinc-finger protein 16 (PRDM16) together with the phosphorylation of AMP-activated protein kinase alpha (AMPKα) in brown adipose tissue and primary cultured brown adipocytes. Farnesol promoted lipolytic enzymes: hormone sensitive lipase (HSL) and adipose triglyceride lipase (ATGL). We confirmed that these inductions of lipolysis by farnesol were the underlying causes of β-oxidation activation. Farnesol also increased the expression of oxidative phosphorylation (OXPHOS) complexes and the oxygen consumption rate (OCR) and the expansion of peroxisomes. Moreover, we proved that the thermogenic activity of farnesol was dependent on AMPKα activation using Compound C inhibitor or siRNA-AMPKα knockdown. These results suggest that farnesol may be a potential agent for the treatment of obesity by inducing energy consumption through heat generation.
Collapse
Affiliation(s)
- Seon Yeon Cho
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea; Basic Research Laboratory for Comorbidity Research and Department of Comorbidity Research, KyungHee Institute of Convergence Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Seona Lim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea; Basic Research Laboratory for Comorbidity Research and Department of Comorbidity Research, KyungHee Institute of Convergence Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Kwang Seok Ahn
- Basic Research Laboratory for Comorbidity Research and Department of Comorbidity Research, KyungHee Institute of Convergence Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyun Jeong Kwak
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon, Republic of Korea
| | - Jinbong Park
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea; Basic Research Laboratory for Comorbidity Research and Department of Comorbidity Research, KyungHee Institute of Convergence Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.
| | - Jae-Young Um
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
25
|
Gilchrist AM, Chen L, Wu X, Lewis W, Howe EN, Macreadie LK, Gale PA. Tetrapodal Anion Transporters. Molecules 2020; 25:E5179. [PMID: 33172141 PMCID: PMC7664440 DOI: 10.3390/molecules25215179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 11/17/2022] Open
Abstract
Synthetic anion transporters that facilitate chloride transport are promising candidates for channelopathy treatments. However, most anion transporters exhibit an undesired side effect of facilitating proton transport via interacting with fatty acids present in the membrane. To address the limitation, we here report the use of a new tetrapodal scaffold to maximize the selective interaction with spherical chloride over binding the carboxylate headgroup of fatty acids. One of the new transporters demonstrated a high selectivity for chloride uniport over fatty acid-induced proton transport while being >10 times more active in chloride uniport than strapped calixpyrroles that were previously the only class of compounds known to possess similar selectivity properties.
Collapse
Affiliation(s)
- Alexander M. Gilchrist
- School of Chemistry (F11), The University of Sydney, Sydney 2006, Australia; (A.M.G.); (L.C.); (X.W.); (W.L.); (E.N.W.H.); (L.K.M.)
| | - Lijun Chen
- School of Chemistry (F11), The University of Sydney, Sydney 2006, Australia; (A.M.G.); (L.C.); (X.W.); (W.L.); (E.N.W.H.); (L.K.M.)
| | - Xin Wu
- School of Chemistry (F11), The University of Sydney, Sydney 2006, Australia; (A.M.G.); (L.C.); (X.W.); (W.L.); (E.N.W.H.); (L.K.M.)
| | - William Lewis
- School of Chemistry (F11), The University of Sydney, Sydney 2006, Australia; (A.M.G.); (L.C.); (X.W.); (W.L.); (E.N.W.H.); (L.K.M.)
- Sydney Analytical, The University of Sydney, Sydney 2006, Australia
| | - Ethan N.W. Howe
- School of Chemistry (F11), The University of Sydney, Sydney 2006, Australia; (A.M.G.); (L.C.); (X.W.); (W.L.); (E.N.W.H.); (L.K.M.)
| | - Lauren K. Macreadie
- School of Chemistry (F11), The University of Sydney, Sydney 2006, Australia; (A.M.G.); (L.C.); (X.W.); (W.L.); (E.N.W.H.); (L.K.M.)
| | - Philip A. Gale
- School of Chemistry (F11), The University of Sydney, Sydney 2006, Australia; (A.M.G.); (L.C.); (X.W.); (W.L.); (E.N.W.H.); (L.K.M.)
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Sydney 2006, Australia
| |
Collapse
|
26
|
Zheng S, Jiang J, Lee A, Barboiu M. A Voltage‐Responsive Synthetic Cl−‐Channel Regulated by pH. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Shao‐Ping Zheng
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier France
| | - Ji‐Jun Jiang
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Arie Lee
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier France
| | - Mihail Barboiu
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier France
| |
Collapse
|
27
|
Zheng S, Jiang J, Lee A, Barboiu M. A Voltage‐Responsive Synthetic Cl−‐Channel Regulated by pH. Angew Chem Int Ed Engl 2020; 59:18920-18926. [DOI: 10.1002/anie.202008393] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/10/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Shao‐Ping Zheng
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier France
| | - Ji‐Jun Jiang
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Arie Lee
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier France
| | - Mihail Barboiu
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier France
| |
Collapse
|
28
|
Zheng S, Huang L, Sun Z, Barboiu M. Self‐Assembled Artificial Ion‐Channels toward Natural Selection of Functions. Angew Chem Int Ed Engl 2020; 60:566-597. [DOI: 10.1002/anie.201915287] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Shao‐Ping Zheng
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier France
| | - Li‐Bo Huang
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier France
| | - Zhanhu Sun
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier France
| | - Mihail Barboiu
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier France
| |
Collapse
|
29
|
Zheng S, Huang L, Sun Z, Barboiu M. Selbstorganisierte künstliche Ionenkanäle für die natürliche Selektion von Funktionen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915287] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shao‐Ping Zheng
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier Frankreich
| | - Li‐Bo Huang
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier Frankreich
| | - Zhanhu Sun
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier Frankreich
| | - Mihail Barboiu
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier Frankreich
| |
Collapse
|
30
|
Rawling T, MacDermott-Opeskin H, Roseblade A, Pazderka C, Clarke C, Bourget K, Wu X, Lewis W, Noble B, Gale PA, O'Mara ML, Cranfield C, Murray M. Aryl urea substituted fatty acids: a new class of protonophoric mitochondrial uncoupler that utilises a synthetic anion transporter. Chem Sci 2020; 11:12677-12685. [PMID: 34094462 PMCID: PMC8163295 DOI: 10.1039/d0sc02777d] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/10/2020] [Indexed: 01/21/2023] Open
Abstract
Respiring mitochondria establish a proton gradient across the mitochondrial inner membrane (MIM) that is used to generate ATP. Protein-independent mitochondrial uncouplers collapse the proton gradient and disrupt ATP production by shuttling protons back across the MIM in a protonophoric cycle. Continued cycling relies on the formation of MIM-permeable anionic species that can return to the intermembrane space after deprotonation in the mitochondrial matrix. Previously described protonophores contain acidic groups that are part of delocalised π-systems that provide large surfaces for charge delocalisation and facilitate anion permeation across the MIM. Here we present a new class of protonophoric uncoupler based on aryl-urea substituted fatty acids in which an acidic group and a π-system are separated by a long alkyl chain. The aryl-urea group in these molecules acts as a synthetic anion receptor that forms intermolecular hydrogen bonds with the fatty acid carboxylate after deprotonation. Dispersal of the negative charge across the aryl-urea system produces lipophilic dimeric complexes that can permeate the MIM and facilitate repeated cycling. Substitution of the aryl-urea group with lipophilic electron withdrawing groups is critical to complex lipophilicity and uncoupling activity. The aryl-urea substituted fatty acids represent the first biological example of mitochondrial uncoupling mediated by the interaction of a fatty acid and an anion receptor moiety, via self-assembly.
Collapse
Affiliation(s)
- Tristan Rawling
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney Sydney NSW 2007 Australia +61-2-9514-7956
| | - Hugo MacDermott-Opeskin
- Research School of Chemistry, College of Science, The Australian National University Canberra ACT 0200 Australia
| | - Ariane Roseblade
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney Sydney NSW 2007 Australia +61-2-9514-7956
| | - Curtis Pazderka
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney Sydney NSW 2007 Australia +61-2-9514-7956
| | - Callum Clarke
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney Sydney NSW 2007 Australia +61-2-9514-7956
| | - Kirsi Bourget
- Discipline of Pharmacology, School of Medical Sciences, University of Sydney Sydney NSW 2006 Australia
| | - Xin Wu
- School of Chemistry, University of Sydney Sydney NSW 2006 Australia
| | - William Lewis
- School of Chemistry, University of Sydney Sydney NSW 2006 Australia
| | - Benjamin Noble
- Research School of Chemistry, College of Science, The Australian National University Canberra ACT 0200 Australia
- School of Engineering, College of Science, Engineering and Health, RMIT University Melbourne VIC 3001 Australia
| | - Philip A Gale
- School of Chemistry, University of Sydney Sydney NSW 2006 Australia
| | - Megan L O'Mara
- Research School of Chemistry, College of Science, The Australian National University Canberra ACT 0200 Australia
| | - Charles Cranfield
- School of Life Sciences, Faculty of Science, University of Technology Sydney Sydney NSW 2007 Australia
| | - Michael Murray
- Discipline of Pharmacology, School of Medical Sciences, University of Sydney Sydney NSW 2006 Australia
| |
Collapse
|
31
|
Davis JT, Gale PA, Quesada R. Advances in anion transport and supramolecular medicinal chemistry. Chem Soc Rev 2020; 49:6056-6086. [PMID: 32692794 DOI: 10.1039/c9cs00662a] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Advances in anion transport by synthetic supramolecular systems are discussed in this article. Developments in the design of discrete molecular carriers for anions and supramolecular anion channels are reviewed followed by an overview of the use of these systems in biological systems as putative treatments for diseases such as cystic fibrosis and cancer.
Collapse
Affiliation(s)
- Jeffery T Davis
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA.
| | - Philip A Gale
- School of Chemistry (F11), The University of Sydney, NSW 2006, Australia.
| | - Roberto Quesada
- Departmento de Química, Universidad de Burgos, 09001 Burgos, Spain.
| |
Collapse
|
32
|
|
33
|
Malla JA, Umesh RM, Vijay A, Mukherjee A, Lahiri M, Talukdar P. Apoptosis-inducing activity of a fluorescent barrel-rosette M +/Cl - channel. Chem Sci 2020; 11:2420-2428. [PMID: 34084406 PMCID: PMC8157539 DOI: 10.1039/c9sc06520b] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 01/16/2020] [Indexed: 01/03/2023] Open
Abstract
Synthetic transmembrane ion transport systems are emerging as new tools for anticancer therapy. Here, a series of 2-hydroxy-N 1,N 3-diarylisophthalamide-based fluorescent ion channel-forming compounds are reported. Ion transport studies across large unilamellar vesicles confirmed that the compound with two 3,5-bis(trifluoromethyl)phenyl arms is the most efficient transporter among the series and it facilitates M+/Cl- symport. The compound formed supramolecular ion channels with a single-channel conductance of 100 ± 2 pS, a diameter of 5.06 ± 0.16 Å and a permeability ratio, P Cl- /P K+ , of 8.29 ± 1. The molecular dynamics simulations of the proposed M2.11 channel (i.e. 11 coaxial layers of a dimeric rosette) with K+ and Cl- in the preequilibrated POPC lipid bilayer with water molecules illustrated various aspects of channel formation and ion permeation. Cell viability assay with the designed compounds indicated that cell death is being induced by the individual compounds which follow the order of their ion transport activity and chloride and cations play roles in cell death. The inherent fluorescence of the most active transporter was helpful to monitor its permeation in cells by confocal microscopy. The apoptosis-inducing activity upon perturbation of intracellular ionic homeostasis was established by monitoring mitochondrial membrane depolarization, generation of reactive oxygen species, cytochrome c release, activation of the caspase 9 pathway, and finally the uptake of the propidium iodide dye in the treated MCF7 cells.
Collapse
Affiliation(s)
- Javid Ahmad Malla
- Department of Chemistry, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Rintu M Umesh
- Department of Biology, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Amal Vijay
- Department of Chemistry, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Arnab Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Mayurika Lahiri
- Department of Biology, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Pinaki Talukdar
- Department of Chemistry, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| |
Collapse
|
34
|
Townshend G, Thompson GS, White LJ, Hiscock JR, Ortega-Roldan JL. The elucidation of phospholipid bilayer–small molecule interactions using a combination of phospholipid nanodiscs and solution state NMR techniques. Chem Commun (Camb) 2020; 56:4015-4018. [DOI: 10.1039/c9cc09948d] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Quantifying phospholipid bilayer–small molecule interactions is vital to the development of new drug candidates and/or medicinal therapies.
Collapse
Affiliation(s)
- Georgina Townshend
- School of Biosciences
- University of Kent
- Canterbury
- UK
- School of Physical Sciences
| | | | | | | | | |
Collapse
|
35
|
Picci G, Carreira-Barral I, Alonso-Carrillo D, Sanz-González D, Fernández-López P, García-Valverde M, Caltagirone C, Quesada R. Simple isophthalamides/dipicolineamides as active transmembrane anion transporters. Supramol Chem 2019. [DOI: 10.1080/10610278.2019.1702194] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Giacomo Picci
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Monserrato, Italy
| | | | | | | | | | | | - Claudia Caltagirone
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Monserrato, Italy
| | - Roberto Quesada
- Departamento de Química, Universidad de Burgos, Burgos, Spain
| |
Collapse
|
36
|
Wu X, Small JR, Cataldo A, Withecombe AM, Turner P, Gale PA. Voltage‐Switchable HCl Transport Enabled by Lipid Headgroup–Transporter Interactions. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xin Wu
- School of Chemistry The University of Sydney Sydney New South Wales 2006 Australia
| | - Jennifer R. Small
- School of Chemistry The University of Sydney Sydney New South Wales 2006 Australia
- Chemistry University of Southampton Southampton SO17 1BJ UK
| | - Alessio Cataldo
- School of Chemistry The University of Sydney Sydney New South Wales 2006 Australia
- Department of Chemistry University of Copenhagen Universitetsparken 5 2100 Copenhagen Ø Denmark
| | - Anne M. Withecombe
- School of Chemistry The University of Sydney Sydney New South Wales 2006 Australia
| | - Peter Turner
- School of Chemistry The University of Sydney Sydney New South Wales 2006 Australia
| | - Philip A. Gale
- School of Chemistry The University of Sydney Sydney New South Wales 2006 Australia
| |
Collapse
|
37
|
Wu X, Small JR, Cataldo A, Withecombe AM, Turner P, Gale PA. Voltage‐Switchable HCl Transport Enabled by Lipid Headgroup–Transporter Interactions. Angew Chem Int Ed Engl 2019; 58:15142-15147. [DOI: 10.1002/anie.201907466] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/20/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Xin Wu
- School of Chemistry The University of Sydney Sydney New South Wales 2006 Australia
| | - Jennifer R. Small
- School of Chemistry The University of Sydney Sydney New South Wales 2006 Australia
- Chemistry University of Southampton Southampton SO17 1BJ UK
| | - Alessio Cataldo
- School of Chemistry The University of Sydney Sydney New South Wales 2006 Australia
- Department of Chemistry University of Copenhagen Universitetsparken 5 2100 Copenhagen Ø Denmark
| | - Anne M. Withecombe
- School of Chemistry The University of Sydney Sydney New South Wales 2006 Australia
| | - Peter Turner
- School of Chemistry The University of Sydney Sydney New South Wales 2006 Australia
| | - Philip A. Gale
- School of Chemistry The University of Sydney Sydney New South Wales 2006 Australia
| |
Collapse
|
38
|
Abstract
Our work on the complexation of fluoride anions using group 15 Lewis acids has led us to investigate the use of these main group compounds as anion transporters. In this paper, we report on the anion transport properties of tetraarylstibonium and tetraarylbismuthonium cations of the general formula [Ph3PnAr]+ with Pn = Sb or Bi and with Ar = phenyl, naphthyl, anthryl, or pyrenyl. Using EYPC-based large unilamellar vesicles, we show that these main group cations transport hydroxide, fluoride and chloride anions across phospholipid bilayers. A comparison of the properties of [Ph3SbAnt]+ and [Ph3BiAnt]+ (Ant = 9-anthryl) illustrates the favorable role played by the Lewis acidity of the central pnictogen element with respect to the anion transport. Finally, we show that [Ph3SbAnt]+ accelerates the fluoride-induced hemolysis of human red blood cells, an effect that we assign to the transporter-facilitated influx of toxic fluoride anions.
Collapse
|
39
|
García‐Calvo J, Torroba T, Brañas‐Fresnillo V, Perdomo G, Cózar‐Castellano I, Li Y, Legrand Y, Barboiu M. Manipulation of Transmembrane Transport by Synthetic K
+
Ionophore Depsipeptides and Its Implications in Glucose‐Stimulated Insulin Secretion in β‐Cells. Chemistry 2019; 25:9287-9294. [DOI: 10.1002/chem.201901372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Indexed: 12/19/2022]
Affiliation(s)
- José García‐Calvo
- Department of ChemistryFaculty of ScienceUniversity of Burgos 09001 Burgos Spain
| | - Tomás Torroba
- Department of ChemistryFaculty of ScienceUniversity of Burgos 09001 Burgos Spain
| | | | - Germán Perdomo
- Department of Health SciencesSchool of Health SciencesUniversity of Burgos 09001 Burgos Spain
| | - Irene Cózar‐Castellano
- Institute of Molecular Biology and Genetics-IBGMUniversity of Valladolid-CSIC 47003 Valladolid Spain
| | - Yu‐Hao Li
- Adaptive Supramolecular Nanosystems GroupInstitut Européen des Membranes Place Eugène Bataillon, CC047 34095 Montpellier Cedex 5 France
| | - Yves‐Marie Legrand
- Adaptive Supramolecular Nanosystems GroupInstitut Européen des Membranes Place Eugène Bataillon, CC047 34095 Montpellier Cedex 5 France
| | - Mihail Barboiu
- Adaptive Supramolecular Nanosystems GroupInstitut Européen des Membranes Place Eugène Bataillon, CC047 34095 Montpellier Cedex 5 France
| |
Collapse
|
40
|
Howe ENW, Gale PA. Fatty Acid Fueled Transmembrane Chloride Transport. J Am Chem Soc 2019; 141:10654-10660. [DOI: 10.1021/jacs.9b02116] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Ethan N. W. Howe
- School of Chemistry, The University of Sydney, Sydney NSW 2006, Australia
| | - Philip A. Gale
- School of Chemistry, The University of Sydney, Sydney NSW 2006, Australia
| |
Collapse
|
41
|
Abstract
Recently, we showed that synthetic anion transporters DSC4P-1 and SA-3 had activity related to cancer cell death. They were found to increase intracellular chloride and sodium ion concentrations. They were also found to induce apoptosis (DSC4P-1) and both induce apoptosis and inhibit autophagy (SA-3). However, determinants underlying these phenomenological findings were not elucidated. The absence of mechanistic understanding has limited the development of yet-improved systems. Here, we show that three synthetic anion transporters, DSC4P-1, SA-3, and 8FC4P, induce osmotic stress in cells by increasing intracellular ion concentrations. This triggers the generation of reactive oxygen species via a sequential process and promotes caspase-dependent apoptosis. In addition, two of the transporters, SA-3 and 8FC4P, induce autophagy by increasing the cytosolic calcium ion concentration promoted by osmotic stress. However, they eventually inhibit the autophagy process as a result of their ability to disrupt lysosome function through a transporter-mediated decrease in a lysosomal chloride ion concentration and an increase in the lysosomal pH.
Collapse
|
42
|
Jowett LA, Ricci A, Wu X, Howe ENW, Gale PA. Investigating the Influence of Steric Hindrance on Selective Anion Transport. Molecules 2019; 24:molecules24071278. [PMID: 30986928 PMCID: PMC6480120 DOI: 10.3390/molecules24071278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 02/01/2023] Open
Abstract
A series of symmetrical and unsymmetrical alkyl tren based tris-thiourea anion transporters were synthesised and their anion binding and transport properties studied. Overall, increasing the steric bulk of the substituents resulted in improved chloride binding and transport abilities. Including a macrocycle in the scaffold enhanced the selectivity of chloride transport in the presence of fatty acids, by reducing the undesired H⁺ flux facilitated by fatty acid flip-flop. This study demonstrates the benefit of including enforced steric hindrance and encapsulation in the design of more selective anion receptors.
Collapse
Affiliation(s)
- Laura A Jowett
- School of Chemistry (F11), The University of Sydney, Sydney, NSW 2006, Australia.
- Chemistry, University of Southampton, Southampton SO17 1BJ, UK.
| | - Angela Ricci
- Chemistry, University of Southampton, Southampton SO17 1BJ, UK.
- Department of Pure and Applied Sciences, Chemistry Section, Universita Degli Studi Di Urbino "Carlo Bo", via della Stazione 4, 61029 Urbino PU, Italia.
| | - Xin Wu
- School of Chemistry (F11), The University of Sydney, Sydney, NSW 2006, Australia.
- Chemistry, University of Southampton, Southampton SO17 1BJ, UK.
| | - Ethan N W Howe
- School of Chemistry (F11), The University of Sydney, Sydney, NSW 2006, Australia.
- Chemistry, University of Southampton, Southampton SO17 1BJ, UK.
| | - Philip A Gale
- School of Chemistry (F11), The University of Sydney, Sydney, NSW 2006, Australia.
- Chemistry, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
43
|
Ježek P, Jabůrek M, Porter RK. Uncoupling mechanism and redox regulation of mitochondrial uncoupling protein 1 (UCP1). BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:259-269. [DOI: 10.1016/j.bbabio.2018.11.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 10/15/2018] [Accepted: 11/07/2018] [Indexed: 01/11/2023]
|
44
|
Spooner MJ, Li H, Marques I, Costa PMR, Wu X, Howe ENW, Busschaert N, Moore SJ, Light ME, Sheppard DN, Félix V, Gale PA. Fluorinated synthetic anion carriers: experimental and computational insights into transmembrane chloride transport. Chem Sci 2019; 10:1976-1985. [PMID: 30881627 PMCID: PMC6381411 DOI: 10.1039/c8sc05155k] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 12/05/2018] [Indexed: 11/21/2022] Open
Abstract
A series of fluorinated tripodal tris-thioureas function as highly active anion transporters across lipid bilayers and cell membranes. Here, we investigate their mechanism of action using anion transport assays in cells and synthetic vesicles and molecular modelling of transporter-lipid interactions. When compared with non-fluorinated analogues, fluorinated compounds demonstrate a different mechanism of membrane transport because the free transporter cannot effectively diffuse through the membrane. As a result, in H+/Cl- cotransport assays, fluorinated transporters require the presence of oleic acid to form anionic oleate complexes for recycling of the transporter, whereas non-fluorinated analogues readily diffuse through the membrane as free transporters and show synergistic transport with the proton transporter gramicidin. Molecular dynamics simulations revealed markedly stronger transporter-lipid interactions for fluorinated compounds compared with non-fluorinated analogues and hence, higher energy barriers for fluorinated compounds to cross the membrane as free transporters. With use of appropriate proton transporters to ensure measurement of the correct rate-limiting steps, the transport rates determined in synthetic vesicle assays show excellent agreement with the anion transport rates determined in cell-based assays. We conclude that integration of computational and experimental methods provides a strategy to optimise transmembrane anion transporter design for biomedical applications.
Collapse
Affiliation(s)
| | - Hongyu Li
- School of Physiology, Pharmacology and Neuroscience , University of Bristol , Biomedical Sciences Building, University Walk , Bristol BS8 1TD , UK .
| | - Igor Marques
- Department of Chemistry , CICECO - Aveiro Institute of Materials , University of Aveiro , 3810-193 , Aveiro , Portugal .
| | - Pedro M R Costa
- Department of Chemistry , CICECO - Aveiro Institute of Materials , University of Aveiro , 3810-193 , Aveiro , Portugal .
| | - Xin Wu
- School of Chemistry , The University of Sydney , NSW 2006 , Australia .
| | - Ethan N W Howe
- School of Chemistry , The University of Sydney , NSW 2006 , Australia .
| | | | - Stephen J Moore
- Chemistry , University of Southampton , Southampton SO17 1BJ , UK
| | - Mark E Light
- Chemistry , University of Southampton , Southampton SO17 1BJ , UK
| | - David N Sheppard
- School of Physiology, Pharmacology and Neuroscience , University of Bristol , Biomedical Sciences Building, University Walk , Bristol BS8 1TD , UK .
| | - Vítor Félix
- Department of Chemistry , CICECO - Aveiro Institute of Materials , University of Aveiro , 3810-193 , Aveiro , Portugal .
| | - Philip A Gale
- Chemistry , University of Southampton , Southampton SO17 1BJ , UK
- School of Chemistry , The University of Sydney , NSW 2006 , Australia .
| |
Collapse
|
45
|
Affiliation(s)
| | - Philip A. Gale
- School of Chemistry, The University of Sydney, Australia
| |
Collapse
|
46
|
|
47
|
Ježek P, Holendová B, Garlid KD, Jabůrek M. Mitochondrial Uncoupling Proteins: Subtle Regulators of Cellular Redox Signaling. Antioxid Redox Signal 2018; 29:667-714. [PMID: 29351723 PMCID: PMC6071544 DOI: 10.1089/ars.2017.7225] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Mitochondria are the energetic, metabolic, redox, and information signaling centers of the cell. Substrate pressure, mitochondrial network dynamics, and cristae morphology state are integrated by the protonmotive force Δp or its potential component, ΔΨ, which are attenuated by proton backflux into the matrix, termed uncoupling. The mitochondrial uncoupling proteins (UCP1-5) play an eminent role in the regulation of each of the mentioned aspects, being involved in numerous physiological events including redox signaling. Recent Advances: UCP2 structure, including purine nucleotide and fatty acid (FA) binding sites, strongly support the FA cycling mechanism: UCP2 expels FA anions, whereas uncoupling is achieved by the membrane backflux of protonated FA. Nascent FAs, cleaved by phospholipases, are preferential. The resulting Δp dissipation decreases superoxide formation dependent on Δp. UCP-mediated antioxidant protection and its impairment are expected to play a major role in cell physiology and pathology. Moreover, UCP2-mediated aspartate, oxaloacetate, and malate antiport with phosphate is expected to alter metabolism of cancer cells. CRITICAL ISSUES A wide range of UCP antioxidant effects and participations in redox signaling have been reported; however, mechanisms of UCP activation are still debated. Switching off/on the UCP2 protonophoretic function might serve as redox signaling either by employing/releasing the extra capacity of cell antioxidant systems or by directly increasing/decreasing mitochondrial superoxide sources. Rapid UCP2 degradation, FA levels, elevation of purine nucleotides, decreased Mg2+, or increased pyruvate accumulation may initiate UCP-mediated redox signaling. FUTURE DIRECTIONS Issues such as UCP2 participation in glucose sensing, neuronal (synaptic) function, and immune cell activation should be elucidated. Antioxid. Redox Signal. 29, 667-714.
Collapse
Affiliation(s)
- Petr Ježek
- 1 Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences , Prague, Czech Republic
| | - Blanka Holendová
- 1 Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences , Prague, Czech Republic
| | - Keith D Garlid
- 2 UCLA Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA , Los Angeles, California
| | - Martin Jabůrek
- 1 Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences , Prague, Czech Republic
| |
Collapse
|
48
|
Wu X, Howe ENW, Gale PA. Supramolecular Transmembrane Anion Transport: New Assays and Insights. Acc Chem Res 2018; 51:1870-1879. [PMID: 30063324 DOI: 10.1021/acs.accounts.8b00264] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Transmembrane anion transport has been the focus of a number of supramolecular chemistry research groups for a number of years. Much of this research is driven by the biological relevance of anion transport and the search to find new treatments for diseases such as cystic fibrosis, which is caused by genetic problems leading to faulty cystic fibrosis transmembrane conductance regulator (CFTR) channels, which in turn lead to reduced chloride and bicarbonate transport through epithelial cell membranes. Considerable effort has been devoted to the development of new transporters, and our group along with others have been searching for combinations of organic scaffolds and anion binding groups that produce highly effective transporters that work at low concentration. These compounds may be used in the future as "channel replacement therapies", restoring the flux of anions through epithelial cell membranes and ameliorating the symptoms of cystic fibrosis. Less effort has been put into gaining a fundamental understanding of anion transport processes. Over the last 3 years, our group has developed a number of new transport assays that allow anion transport mechanisms to be determined. This Account covers the latest developments in this area, providing a concise review of the new techniques we can use to study anion transport processes individually without resorting to measurement of exchange processes and the new insights that these assays provide. The Account provides an overview of the effects of anion transporters on cells and an explanation of why many systems perturb pH gradients within cells in addition to transporting chloride. We discuss assays to determine whether anionophores facilitate chloride or HCl transport and how this latter assay can be modified to determine chloride versus proton selectivity in small-molecule anion receptors. We show how molecular design can be used to produce receptors that are capable of transporting chloride without perturbing pH gradients. We cover the role that anion transporters in the presence of fatty acids play in dissipating pH gradients across lipid bilayer membranes and the effect that this process has on chloride-selective transport. We also discuss how coupling of anion transport to cation transport by natural cationophores can be used to determine whether anion transport is electrogenic or electroneutral. In addition, we compare these new assays to the previously used chloride/nitrate exchange assay and show how this exchange assay can underestimate the chloride transport ability of certain receptors that are rate-limited by nitrate transport.
Collapse
Affiliation(s)
- Xin Wu
- School of Chemistry (F11), The University of Sydney, Sydney, NSW 2006, Australia
| | - Ethan N. W. Howe
- School of Chemistry (F11), The University of Sydney, Sydney, NSW 2006, Australia
| | - Philip A. Gale
- School of Chemistry (F11), The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
49
|
Jowett LA, Howe ENW, Wu X, Busschaert N, Gale PA. New Insights into the Anion Transport Selectivity and Mechanism of Tren-based Tris-(thio)ureas. Chemistry 2018; 24:10475-10487. [PMID: 29786913 DOI: 10.1002/chem.201801463] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/09/2018] [Indexed: 11/07/2022]
Abstract
The anion transport properties of a series of previously reported tren-based anionophores have been revisited using new assays designed to measure anion uniport. This study provides new insights into the transport mechanism and selectivity of this important class of transporters. Specifically, we report the chloride and nitrate transport selectivity of these systems and quantify sulfate transport to determine EC50 values for sulfate transport for the first time. Two new assays were developed to study bicarbonate transport allowing accurate quantification of chloride/bicarbonate exchange.
Collapse
Affiliation(s)
- Laura A Jowett
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Ethan N W Howe
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Xin Wu
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| | | | - Philip A Gale
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
50
|
Hernando E, Capurro V, Cossu C, Fiore M, García-Valverde M, Soto-Cerrato V, Pérez-Tomás R, Moran O, Zegarra-Moran O, Quesada R. Small molecule anionophores promote transmembrane anion permeation matching CFTR activity. Sci Rep 2018; 8:2608. [PMID: 29422673 PMCID: PMC5805763 DOI: 10.1038/s41598-018-20708-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/22/2018] [Indexed: 12/30/2022] Open
Abstract
Anion selective ionophores, anionophores, are small molecules capable of facilitating the transmembrane transport of anions. Inspired in the structure of natural product prodigiosin, four novel anionophores 1a-d, including a 1,2,3-triazole group, were prepared. These compounds proved highly efficient anion exchangers in model phospholipid liposomes. The changes in the hydrogen bond cleft modified the anion transport selectivity exhibited by these compounds compared to prodigiosin and suppressed the characteristic high toxicity of the natural product. Their activity as anionophores in living cells was studied and chloride efflux and iodine influx from living cells mediated by these derivatives was demonstrated. These compounds were shown to permeabilize cellular membranes to halides with efficiencies close to the natural anion channel CFTR at doses that do not compromise cellular viability. Remarkably, optimal transport efficiency was measured in the presence of pH gradients mimicking those found in the airway epithelia of Cystic Fibrosis patients. These results support the viability of developing small molecule anionophores as anion channel protein surrogates with potential applications in the treatment of conditions such as Cystic Fibrosis derived from the malfunction of natural anion transport mechanisms.
Collapse
Affiliation(s)
- Elsa Hernando
- Departamento de Química, Universidad de Burgos, 09001, Burgos, Spain
| | - Valeria Capurro
- U.O.C. Genetica Medica, Instituto Giannina Gaslini, Genoa, Italy
| | | | | | | | - Vanessa Soto-Cerrato
- Cancer Cell Biology Research Group, Department of Pathology and Experimental Therapeutics, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Ricardo Pérez-Tomás
- Cancer Cell Biology Research Group, Department of Pathology and Experimental Therapeutics, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | | | | | - Roberto Quesada
- Departamento de Química, Universidad de Burgos, 09001, Burgos, Spain.
| |
Collapse
|